302
|
Brandl K, Plitas G, Schnabl B, DeMatteo RP, Pamer EG. MyD88-mediated signals induce the bactericidal lectin RegIII gamma and protect mice against intestinal Listeria monocytogenes infection. ACTA ACUST UNITED AC 2007; 204:1891-900. [PMID: 17635956 PMCID: PMC2118673 DOI: 10.1084/jem.20070563] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Listeria monocytogenes is a food-borne bacterial pathogen that causes systemic infection by traversing the intestinal mucosa. Although MyD88-mediated signals are essential for defense against systemic L. monocytogenes infection, the role of Toll-like receptor and MyD88 signaling in intestinal immunity against this pathogen has not been defined. We show that clearance of L. monocytogenes from the lumen of the distal small intestine is impaired in MyD88−/− mice. The distal ileum of wild-type (wt) mice expresses high levels of RegIIIγ, which is a bactericidal lectin that is secreted into the bowel lumen, whereas RegIIIγ expression in MyD88−/− mice is nearly undetectable. In vivo depletion of RegIIIγ from the small intestine of wt mice diminishes killing of luminal L. monocytogenes, whereas reconstitution of MyD88-deficient mice with recombinant RegIIIγ enhances intestinal bacterial clearance. Experiments with bone marrow chimeric mice reveal that MyD88-mediated signals in nonhematopoietic cells induce RegIIIγ expression in the small intestine, thereby enhancing bacterial killing. Our findings support a model of MyD88-mediated epithelial conditioning that protects the intestinal mucosa against bacterial invasion by inducing RegIIIγ.
Collapse
Affiliation(s)
- Katharina Brandl
- Infectious Diseases Service, Department of Medicine, Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
303
|
Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol 2007; 5:e177. [PMID: 17594176 PMCID: PMC1896187 DOI: 10.1371/journal.pbio.0050177] [Citation(s) in RCA: 1963] [Impact Index Per Article: 109.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 05/04/2007] [Indexed: 11/25/2022] Open
Abstract
Almost immediately after a human being is born, so too is a new microbial ecosystem, one that resides in that person's gastrointestinal tract. Although it is a universal and integral part of human biology, the temporal progression of this process, the sources of the microbes that make up the ecosystem, how and why it varies from one infant to another, and how the composition of this ecosystem influences human physiology, development, and disease are still poorly understood. As a step toward systematically investigating these questions, we designed a microarray to detect and quantitate the small subunit ribosomal RNA (SSU rRNA) gene sequences of most currently recognized species and taxonomic groups of bacteria. We used this microarray, along with sequencing of cloned libraries of PCR-amplified SSU rDNA, to profile the microbial communities in an average of 26 stool samples each from 14 healthy, full-term human infants, including a pair of dizygotic twins, beginning with the first stool after birth and continuing at defined intervals throughout the first year of life. To investigate possible origins of the infant microbiota, we also profiled vaginal and milk samples from most of the mothers, and stool samples from all of the mothers, most of the fathers, and two siblings. The composition and temporal patterns of the microbial communities varied widely from baby to baby. Despite considerable temporal variation, the distinct features of each baby's microbial community were recognizable for intervals of weeks to months. The strikingly parallel temporal patterns of the twins suggested that incidental environmental exposures play a major role in determining the distinctive characteristics of the microbial community in each baby. By the end of the first year of life, the idiosyncratic microbial ecosystems in each baby, although still distinct, had converged toward a profile characteristic of the adult gastrointestinal tract. It has been recognized for nearly a century that human beings are inhabited by a remarkably dense and diverse microbial ecosystem, yet we are only just beginning to understand and appreciate the many roles that these microbes play in human health and development. Knowing the composition of this ecosystem is a crucial step toward understanding its roles. In this study, we designed and applied a ribosomal DNA microarray-based approach to trace the development of the intestinal flora in 14 healthy, full-term infants over the first year of life. We found that the composition and temporal patterns of the microbial communities varied widely from baby to baby, supporting a broader definition of healthy colonization than previously recognized. By one year of age, the babies retained their uniqueness but had converged toward a profile characteristic of the adult gastrointestinal tract. The composition and temporal patterns of development of the intestinal microbiota in a pair of fraternal twins were strikingly similar, suggesting that genetic and environmental factors shape our gut microbiota in a reproducible way. Microarray profiling of the microbial communities of infant guts throughout the first year shows initial variation then convergence on the adult flora, providing new insight into this human ecosystem.
Collapse
Affiliation(s)
- Chana Palmer
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Elisabeth M Bik
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Daniel B DiGiulio
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - David A Relman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Patrick O Brown
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
304
|
Martin FPJ, Dumas ME, Wang Y, Legido-Quigley C, Yap IKS, Tang H, Zirah S, Murphy GM, Cloarec O, Lindon JC, Sprenger N, Fay LB, Kochhar S, van Bladeren P, Holmes E, Nicholson JK. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol 2007; 3:112. [PMID: 17515922 PMCID: PMC2673711 DOI: 10.1038/msb4100153] [Citation(s) in RCA: 331] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 03/14/2007] [Indexed: 12/13/2022] Open
Abstract
Symbiotic gut microorganisms (microbiome) interact closely with the mammalian host's metabolism and are important determinants of human health. Here, we decipher the complex metabolic effects of microbial manipulation, by comparing germfree mice colonized by a human baby flora (HBF) or a normal flora to conventional mice. We perform parallel microbiological profiling, metabolic profiling by (1)H nuclear magnetic resonance of liver, plasma, urine and ileal flushes, and targeted profiling of bile acids by ultra performance liquid chromatography-mass spectrometry and short-chain fatty acids in cecum by GC-FID. Top-down multivariate analysis of metabolic profiles reveals a significant association of specific metabotypes with the resident microbiome. We derive a transgenomic graph model showing that HBF flora has a remarkably simple microbiome/metabolome correlation network, impacting directly on the host's ability to metabolize lipids: HBF mice present higher ileal concentrations of tauro-conjugated bile acids, reduced plasma levels of lipoproteins but higher hepatic triglyceride content associated with depletion of glutathione. These data indicate that the microbiome modulates absorption, storage and the energy harvest from the diet at the systems level.
Collapse
Affiliation(s)
- François-Pierre J Martin
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Marc-Emmanuel Dumas
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Yulan Wang
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Cristina Legido-Quigley
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Ivan K S Yap
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Huiru Tang
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Séverine Zirah
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Gerard M Murphy
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Olivier Cloarec
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - John C Lindon
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Norbert Sprenger
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Laurent B Fay
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Sunil Kochhar
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | | | - Elaine Holmes
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Jeremy K Nicholson
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| |
Collapse
|