301
|
Nasopharyngeal polymicrobial colonization during health, viral upper respiratory infection and upper respiratory bacterial infection. J Infect 2017; 75:26-34. [PMID: 28412081 DOI: 10.1016/j.jinf.2017.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES We sought to understand how polymicrobial colonization varies during health, viral upper respiratory infection (URI) and acute upper respiratory bacterial infection to understand differences in infection-prone vs. non-prone patients. METHODS Nasopharyngeal (NP) samples were collected from 74 acute otitis media (AOM) infection-prone and 754 non-prone children during 2094 healthy visits, 673 viral URI visits and 631 AOM visits. Three otopathogens Streptococcus pneumoniae (Spn), Nontypeable Haemophilus influenzae (NTHi), and Moraxella catarrhalis (Mcat) were identified by culture. RESULTS NP colonization rates of multiple otopathogens during health were significantly lower than during viral URI, and during URI they were lower than at onset of upper respiratory bacterial infection in both AOM infection-prone and non-prone children. AOM infection-prone children had higher polymicrobial colonization rates than non-prone children during health, viral URI and AOM. Polymicrobial colonization rates of AOM infection-prone children during health were equivalent to that of non-prone children during viral URI, and during viral URI were equivalent to that of non-prone during AOM infection. Spn colonization was positively associated with NTHi and Mcat colonization during health, but negatively during AOM infection. CONCLUSION The infection-prone patients more frequently have multiple potential bacterial pathogens in the NP than the non-prone patients. Polymicrobial interaction in the NP differs during health and at onset of infection.
Collapse
|
302
|
Kc R, Shukla SD, Walters EH, O'Toole RF. Temporal upregulation of host surface receptors provides a window of opportunity for bacterial adhesion and disease. MICROBIOLOGY-SGM 2017; 163:421-430. [PMID: 28113047 DOI: 10.1099/mic.0.000434] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Host surface receptors provide bacteria with a foothold from which to attach, colonize and, in some cases, invade tissue and elicit human disease. In this review, we discuss several key host receptors and cognate adhesins that function in bacterial pathogenesis. In particular, we examine the elevated expression of host surface receptors such as CEACAM-1, CEACAM-6, ICAM-1 and PAFR in response to specific stimuli. We explore how upregulated receptors, in turn, expose the host to a range of bacterial infections in the respiratory tract. It is apparent that exploitation of receptor induction for bacterial adherence is not unique to one body system, but is also observed in the central nervous, gastrointestinal and urogenital systems. Prokaryotic pathogens which utilize this mechanism for their infectivity include Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis and Escherichia coli. A number of approaches have been used, in both in vitro and in vivo experimental models, to inhibit bacterial attachment to temporally expressed host receptors. Some of these novel strategies may advance future targeted interventions for the prevention and treatment of bacterial disease.
Collapse
Affiliation(s)
- Rajendra Kc
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS 7000, Australia
| | - Shakti D Shukla
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Eugene H Walters
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS 7000, Australia
| | - Ronan F O'Toole
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
303
|
Prevaes SMPJ, de Steenhuijsen Piters WAA, de Winter-de Groot KM, Janssens HM, Tramper-Stranders GA, Chu MLJN, Tiddens HA, van Westreenen M, van der Ent CK, Sanders EAM, Bogaert D. Concordance between upper and lower airway microbiota in infants with cystic fibrosis. Eur Respir J 2017; 49:49/3/1602235. [PMID: 28356374 DOI: 10.1183/13993003.02235-2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/23/2016] [Indexed: 12/29/2022]
Abstract
Nasopharyngeal and oropharyngeal samples are commonly used to direct therapy for lower respiratory tract infections in non-expectorating infants with cystic fibrosis (CF).We aimed to investigate the concordance between the bacterial community compositions of 25 sets of nasopharyngeal, oropharyngeal and bronchoalveolar lavage (BAL) samples from 17 infants with CF aged ∼5 months (n=13) and ∼12 months (n=12) using conventional culturing and 16S-rRNA sequencing.Clustering analyses demonstrated that BAL microbiota profiles were in general characterised by a mixture of oral and nasopharyngeal bacteria, including commensals like Streptococcus, Neisseria, Veillonella and Rothia spp. and potential pathogens like Staphylococcus aureus, Haemophilus influenzae and Moraxella spp. Within each individual, however, the degree of concordance differed between microbiota of both upper respiratory tract niches and the corresponding BAL.The inconsistent intra-individual concordance between microbiota of the upper and lower respiratory niches suggests that the lungs of infants with CF may have their own microbiome that seems seeded by, but is not identical to, the upper respiratory tract microbiome.
Collapse
Affiliation(s)
- Sabine M P J Prevaes
- Dept of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Dept of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands.,Both authors contributed equally
| | - Karin M de Winter-de Groot
- Dept of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands.,Both authors contributed equally
| | - Hettie M Janssens
- Dept of Paediatric Pulmonology and Allergology, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Gerdien A Tramper-Stranders
- Dept of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Mei Ling J N Chu
- Dept of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Harm A Tiddens
- Dept of Paediatric Pulmonology and Allergology, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Mireille van Westreenen
- Dept of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Cornelis K van der Ent
- Dept of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Elisabeth A M Sanders
- Dept of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Debby Bogaert
- Dept of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
304
|
Bacterial and viral pathogen spectra of acute respiratory infections in under-5 children in hospital settings in Dhaka city. PLoS One 2017; 12:e0174488. [PMID: 28346512 PMCID: PMC5367831 DOI: 10.1371/journal.pone.0174488] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/09/2017] [Indexed: 02/01/2023] Open
Abstract
The study aimed to examine for the first time the spectra of viral and bacterial pathogens along with the antibiotic susceptibility of the isolated bacteria in under-5 children with acute respiratory infections (ARIs) in hospital settings of Dhaka, Bangladesh. Nasal swabs were collected from 200 under-five children hospitalized with clinical signs of ARIs. Nasal swabs from 30 asymptomatic children were also collected. Screening of viral pathogens targeted ten respiratory viruses using RT-qPCR. Bacterial pathogens were identified by bacteriological culture methods and antimicrobial susceptibility of the isolates was determined following CLSI guidelines. About 82.5% (n = 165) of specimens were positive for pathogens. Of 165 infected cases, 3% (n = 6) had only single bacterial pathogens, whereas 43.5% (n = 87) cases had only single viral pathogens. The remaining 36% (n = 72) cases had coinfections. In symptomatic cases, human rhinovirus was detected as the predominant virus (31.5%), followed by RSV (31%), HMPV (13%), HBoV (11%), HPIV-3 (10.5%), and adenovirus (7%). Streptococcus pneumoniae was the most frequently isolated bacterial pathogen (9%), whereas Klebsiella pneumaniae, Streptococcus spp., Enterobacter agglomerans, and Haemophilus influenzae were 5.5%, 5%, 2%, and 1.5%, respectively. Of 15 multidrug-resistant bacteria, a Klebsiella pneumoniae isolate and an Enterobacter agglomerans isolate exhibited resistance against more than 10 different antibiotics. Both ARI incidence and predominant pathogen detection rates were higher during post-monsoon and winter, peaking in September. Pathogen detection rates and coinfection incidence in less than 1-year group were significantly higher (P = 0.0034 and 0.049, respectively) than in 1–5 years age group. Pathogen detection rate (43%) in asymptomatic cases was significantly lower compared to symptomatic group (P<0.0001). Human rhinovirus, HPIV-3, adenovirus, Streptococcus pneumonia, and Klebsiella pneumaniae had significant involvement in coinfections with P values of 0.0001, 0.009 and 0.0001, 0.0001 and 0.001 respectively. Further investigations are required to better understand the clinical roles of the isolated pathogens and their seasonality.
Collapse
|
305
|
Almand EA, Moore MD, Jaykus LA. Virus-Bacteria Interactions: An Emerging Topic in Human Infection. Viruses 2017; 9:v9030058. [PMID: 28335562 PMCID: PMC5371813 DOI: 10.3390/v9030058] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 01/26/2023] Open
Abstract
Bacteria and viruses often occupy the same niches, however, interest in their potential collaboration in promoting wellness or disease states has only recently gained traction. While the interaction of some bacteria and viruses is well characterized (e.g., influenza virus), researchers are typically more interested in the location of the infection than the manner of cooperation. There are two overarching types of bacterial-virus disease causing interactions: direct interactions that in some way aid the viruses, and indirect interactions aiding bacteria. The virus-promoting direct interactions occur when the virus exploits a bacterial component to facilitate penetration into the host cell. Conversely, indirect interactions result in increased bacterial pathogenesis as a consequence of viral infection. Enteric viruses mainly utilize the direct pathway, while respiratory viruses largely affect bacteria in an indirect fashion. This review focuses on some key examples of how virus-bacteria interactions impact the infection process across the two organ systems, and provides evidence supporting this as an emerging theme in infectious disease.
Collapse
Affiliation(s)
- Erin A Almand
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Matthew D Moore
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA.
- Current address: Centers for Disease Control and Prevention, Enteric Diseases Laboratory Branch, 1600 Clifton Rd., Atlanta, GA 30329, USA..
| | - Lee-Ann Jaykus
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA.
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
306
|
Vu DL, Kaiser L. The concept of commensal viruses almost 20 years later: redefining borders in clinical virology. Clin Microbiol Infect 2017; 23:688-690. [PMID: 28288831 PMCID: PMC7130093 DOI: 10.1016/j.cmi.2017.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/28/2017] [Accepted: 03/04/2017] [Indexed: 01/21/2023]
Affiliation(s)
- D-L Vu
- Geneva University Hospital, Department of Internal Medicine Specialties, Division of Infectious Diseases, Switzerland.
| | - L Kaiser
- Geneva University Hospital, Department of Internal Medicine Specialties, Division of Infectious Diseases, Switzerland
| |
Collapse
|
307
|
Abstract
Secondary bacterial pneumonia after viral respiratory infection remains a significant source of morbidity and mortality. Susceptibility is mediated by a variety of viral and bacterial factors, and complex interactions with the host immune system. Prevention and treatment strategies are limited to influenza vaccination and antibiotics/antivirals respectively. Novel approaches to identifying the individuals with influenza who are at increased risk for secondary bacterial pneumonias are urgently needed. Given the threat of further pandemics and the heightened prevalence of these viruses, more research into the immunologic mechanisms of this disease is warranted with the hope of discovering new potential therapies.
Collapse
Affiliation(s)
- Jason E Prasso
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 37-131, Los Angeles, CA 90095, USA
| | - Jane C Deng
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs Healthcare System, University of Michigan, 2215 Fuller Road, 111G Pulmonary, Ann Arbor, MI 48105, USA.
| |
Collapse
|
308
|
Wishaupt JO, Ploeg TVD, Smeets LC, Groot RD, Versteegh FGA, Hartwig NG. Pitfalls in interpretation of CT-values of RT-PCR in children with acute respiratory tract infections. J Clin Virol 2017; 90:1-6. [PMID: 28259567 PMCID: PMC7185604 DOI: 10.1016/j.jcv.2017.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/26/2016] [Accepted: 02/19/2017] [Indexed: 11/12/2022]
Abstract
Background The relation between viral load and disease severity in childhood acute respiratory tract infections (ARI) is not fully understood. Objectives To assess the clinical relevance of the relation between viral load, determined by cycle threshold (CT) value of real-time reverse transcription-polymerase chain reaction assays and disease severity in children with single- and multiple viral ARI. Study design 582 children with ARI were prospectively followed and tested for 15 viruses. Correlations were calculated between CT values and clinical parameters. Results In single viral ARI, statistically significant correlations were found between viral loads of Respiratory Syncytial Virus (RSV) and hospitalization and between viral loads of Human Coronavirus (HCoV) and a disease severity score. In multiple-viral ARI, statistically significant correlations between viral load and clinical parameters were found. In RSV-Rhinovirus (RV) multiple infections, a low viral load of RV was correlated with a high length of hospital stay and a high duration of extra oxygen use. The mean CT value for RV, HCoV and Parainfluenza virus was significantly lower in single- versus multiple infections. Conclusion Although correlations between CT values and clinical parameters in patients with single and multiple viral infection were found, the clinical importance of these findings is limited because individual differences in host-, viral and laboratory factors complicate the interpretation of statistically significant findings. In multiple infections, viral load cannot be used to differentiate between disease causing virus and innocent bystanders.
Collapse
Affiliation(s)
- Jérôme O Wishaupt
- Reinier de Graaf Hospital, Department of Pediatrics, PO Box 5011, 2600GA Delft, The Netherlands.
| | - Tjeerd van der Ploeg
- Pieter van Foreest Institute for Education and Research, Medical Center Alkmaar, PO Box 501, 1800AM Alkmaar, The Netherlands
| | - Leo C Smeets
- Reinier Haga Medisch Diagnostisch Centrum, PO Box 5011, 2600GA Delft, The Netherlands
| | - Ronald de Groot
- Radboud University Medical Center, Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, PO Box 9101, 6500HB Nijmegen, The Netherlands
| | - Florens G A Versteegh
- Groene Hart Ziekenhuis, Department of Pediatrics, PO Box 1098, 2800BB Gouda, The Netherlands; Ghent University Hospital, Department of Pediatrics, De Pintelaan 185, 9000 Gent, Belgium
| | - Nico G Hartwig
- Franciscus Gasthuis en Vlietland, Department of Pediatrics, Postbus 10900, 3004BA Rotterdam, The Netherlands; Erasmus MC, University Medical Center Rotterdam, Department of Pediatric Infectious Diseases and Immunology, PO Box 2040, 3000CA Rotterdam, The Netherlands
| |
Collapse
|
309
|
Igartua C, Davenport ER, Gilad Y, Nicolae DL, Pinto J, Ober C. Host genetic variation in mucosal immunity pathways influences the upper airway microbiome. MICROBIOME 2017; 5:16. [PMID: 28143570 PMCID: PMC5286564 DOI: 10.1186/s40168-016-0227-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/25/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND The degree to which host genetic variation can modulate microbial communities in humans remains an open question. Here, we performed a genetic mapping study of the microbiome in two accessible upper airway sites, the nasopharynx and the nasal vestibule, during two seasons in 144 adult members of a founder population of European decent. RESULTS We estimated the relative abundances (RAs) of genus level bacteria from 16S rRNA gene sequences and examined associations with 148,653 genetic variants (linkage disequilibrium [LD] r 2 < 0.5) selected from among all common variants discovered in genome sequences in this population. We identified 37 microbiome quantitative trait loci (mbQTLs) that showed evidence of association with the RAs of 22 genera (q < 0.05) and were enriched for genes in mucosal immunity pathways. The most significant association was between the RA of Dermacoccus (phylum Actinobacteria) and a variant 8 kb upstream of TINCR (rs117042385; p = 1.61 × 10-8; q = 0.002), a long non-coding RNA that binds to peptidoglycan recognition protein 3 (PGLYRP3) mRNA, a gene encoding a known antimicrobial protein. A second association was between a missense variant in PGLYRP4 (rs3006458) and the RA of an unclassified genus of family Micrococcaceae (phylum Actinobacteria) (p = 5.10 × 10-7; q = 0.032). CONCLUSIONS Our findings provide evidence of host genetic influences on upper airway microbial composition in humans and implicate mucosal immunity genes in this relationship.
Collapse
Affiliation(s)
- Catherine Igartua
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Emily R Davenport
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Dan L Nicolae
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Department of Statistics, University of Chicago, Chicago, IL, 60637, USA
| | - Jayant Pinto
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Chicago, Chicago, IL, 60637, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
310
|
Xu Q, Casey JR, Almudevar A, Pichichero ME. Correlation of higher antibody levels to pneumococcal proteins with protection from pneumococcal acute otitis media but not protection from nasopharyngeal colonization in young children. Clin Microbiol Infect 2017; 23:487.e1-487.e6. [PMID: 28143785 DOI: 10.1016/j.cmi.2017.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVES We previously found that nasopharyngeal (NP) colonization by Streptococcus pneumoniae elicits mucosal antibody responses to three protein vaccine candidates: pneumococcal histidine triad protein D (PhtD), pneumococcal choline-binding protein A (PcpA), and detoxified pneumolysin (PlyD1). Here we sought to determine if mucosal antibody levels to the proteins correlated with protection from acute otitis media (AOM) and NP colonization. METHODS A total of 228 NP samples were prospectively collected from 100 healthy infants at 6-24 months of age. Whenever children were diagnosed with AOM, middle ear fluids were collected to confirm the diagnosis by microbiological culture. NP mucosal IgG and IgA were quantified by ELISA. RESULTS Higher NP mucosal antibody levels to S. pneumoniae proteins correlated with significantly decreased likelihood of developing AOM caused by S. pneumoniae during 3 to 12 months of subsequent prospective monitoring. Specifically, children who did not experience AOM (n=111samples) caused by S. pneumoniae had two- to five-fold higher mucosal IgG levels to PcpA (all p values <0.01), six- to eight-fold higher IgA to PhtD (all p values <0.05); two- to three-folder higher IgA to PcpA (all p values <0.05), and two- to three-fold higher IgA to PlyD1 (p 0.08, p 0.03 and p 0.08) compared with children who did experience AOM (n=18samples). No association between mucosal antibody levels to the three proteins and NP colonization with S. pneumoniae was found. CONCLUSION Higher NP mucosal IgG levels to PcpA, and IgA to PhtD, PcpA and PlyD1 correlate with reduced risk of development of S. pneumoniae AOM infection but not with reduced risk of NP colonization in young children.
Collapse
Affiliation(s)
- Q Xu
- Rochester General Hospital Research Institute, Rochester, NY, USA
| | - J R Casey
- Legacy Pediatrics, Rochester, NY, USA
| | - A Almudevar
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - M E Pichichero
- Rochester General Hospital Research Institute, Rochester, NY, USA; Legacy Pediatrics, Rochester, NY, USA.
| |
Collapse
|
311
|
Janowski A, Newland J. Of the Phrensy: an update on the epidemiology and pathogenesis of bacterial meningitis in the pediatric population. F1000Res 2017; 6. [PMID: 28184287 PMCID: PMC5288681 DOI: 10.12688/f1000research.8533.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 01/23/2023] Open
Abstract
In the past century, advances in antibiotics and vaccination have dramatically altered the incidence and clinical outcomes of bacterial meningitis. We review the shifting epidemiology of meningitis in children, including after the implementation of vaccines that target common meningitic pathogens and the introduction of intrapartum antibiotic prophylaxis offered to mothers colonized with
Streptococcus agalactiae. We also discuss what is currently known about the pathogenesis of meningitis. Recent studies of the human microbiome have illustrated dynamic relationships of bacterial and viral populations with the host, which may potentiate the risk of bacterial meningitis.
Collapse
Affiliation(s)
- Andrew Janowski
- Division of Pediatric Infectious Diseases, Washington University in St Louis, St. Louis, MO, USA
| | - Jason Newland
- Division of Pediatric Infectious Diseases, Washington University in St Louis, St. Louis, MO, USA
| |
Collapse
|
312
|
Grützmacher K, Keil V, Leinert V, Leguillon F, Henlin A, Couacy-Hymann E, Köndgen S, Lang A, Deschner T, Wittig RM, Leendertz FH. Human quarantine: Toward reducing infectious pressure on chimpanzees at the Taï Chimpanzee Project, Côte d'Ivoire. Am J Primatol 2017; 80. [PMID: 28095600 PMCID: PMC7161855 DOI: 10.1002/ajp.22619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 12/02/2022]
Abstract
Due to their genetic relatedness, great apes are highly susceptible to common human respiratory pathogens. Although most respiratory pathogens, such as human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV), rarely cause severe disease in healthy human adults, they are associated with considerable morbidity and mortality in wild great apes habituated to humans for research or tourism. To prevent pathogen transmission, most great ape projects have established a set of hygiene measures ranging from keeping a specific distance, to the use of surgical masks and establishment of quarantines. This study investigates the incidence of respiratory symptoms and human respiratory viruses in humans at a human‐great ape interface, the Taï Chimpanzee Project (TCP) in Côte d'Ivoire, and consequently, the effectiveness of a 5‐day quarantine designed to reduce the risk of potential exposure to human respiratory pathogens. To assess the impact of quarantine as a preventative measure, we monitored the quarantine process and tested 262 throat swabs for respiratory viruses, collected during quarantine over a period of 1 year. Although only 1 subject tested positive for a respiratory virus (HRSV), 17 subjects developed symptoms of infection while in quarantine and were subsequently kept from approaching the chimpanzees, preventing potential exposure in 18 cases. Our results suggest that quarantine—in combination with monitoring for symptoms—is effective in reducing the risk of potential pathogen exposure. This research contributes to our understanding of how endangered great apes can be protected from human‐borne infectious disease.
Collapse
Affiliation(s)
- Kim Grützmacher
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany.,Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Verena Keil
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany
| | - Vera Leinert
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Floraine Leguillon
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany.,University Montpellier 2, Montpellier, France
| | - Arthur Henlin
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany.,University Montpellier 2, Montpellier, France
| | - Emmanuel Couacy-Hymann
- Laboratoire National d'appui au Développement Agricole/Laboratoire Central de Pathologie Animale, Bingerville, Côte d'Ivoire
| | - Sophie Köndgen
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany
| | - Alexander Lang
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany
| | - Tobias Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Roman M Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Taï Chimpanzee Project, CSRS, Abidjan, Côte d'Ivoire
| | - Fabian H Leendertz
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
313
|
Annamalay A, Le Souëf P. Viral-Bacterial Interactions in Childhood Respiratory Tract Infections. VIRAL INFECTIONS IN CHILDREN, VOLUME I 2017. [PMCID: PMC7122469 DOI: 10.1007/978-3-319-54033-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
314
|
Prevalence of Pneumococcal Nasopharyngeal Carriage Among Children 2-18 Months of Age: Baseline Study Pre Introduction of Pneumococcal Vaccination in Cuba. Pediatr Infect Dis J 2017; 36:e22-e28. [PMID: 27649366 DOI: 10.1097/inf.0000000000001341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND A new vaccine candidate against pneumococcus is being developed in Cuba, and it is a priority of the national health system. There is limited information on nasopharyngeal colonization burden, though it is essential for monitoring the impact of the vaccine. The study aims to estimate the prevalence of nasopharyngeal colonization in children 2-18 months of age and identify circulating serotypes, antimicrobial resistance and its association with selected risk factors. METHODS A cross-sectional study was conducted between October and December 2013 in Cienfuegos municipality. Inclusion criteria were evaluated, and informed consent was obtained from the parents. Clinical and epidemiologic data were collected through a semistructured questionnaire. Nasopharyngeal swabs according to established protocols were taken. Data analysis included frequency distributions and comparison of proportions. The association between colonization and selected risk factors was assessed by multivariate analysis. RESULTS A total of 984 children (87.2% living in urban areas) were included. The overall prevalence of colonization was 21.6%. The most frequent serotypes isolated were 6A (23.1%), 23F (10.8%), 6B (10.3%), 19F (8.5%) and 14 (3.3%). We found no resistance to β-lactamases in circulating serotypes. Living with sibling younger than 5 years, previous respiratory infections, previous hospitalization and day-care attendance were determinants of nasopharyngeal carriage. CONCLUSIONS The findings suggest that the burden of pneumococcal disease and colonization in Cuba could be significantly affected after vaccine introduction.
Collapse
|
315
|
Taylor SL, Wesselingh S, Rogers GB. Host-microbiome interactions in acute and chronic respiratory infections. Cell Microbiol 2016; 18:652-62. [PMID: 26972325 DOI: 10.1111/cmi.12589] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/03/2016] [Indexed: 12/11/2022]
Abstract
Respiratory infection is a leading cause of global morbidity and mortality. Understanding the factors that influence risk and outcome of these infections is essential to improving care. We increasingly understand that interactions between the microbial residents of our mucosal surfaces and host regulatory systems is fundamental to shaping local and systemic immunity. These mechanisms are most well defined in the gastrointestinal tract, however analogous systems also occur in the airways. Moreover, we now appreciate that the host-microbiota interactions at a given mucosal surface influence systemic host processes, in turn, affecting the course of infection at other anatomical sites. This review discusses the mechanisms by which the respiratory microbiome influences acute and chronic airway disease and examines the contribution of cross-talk between the gastrointestinal and respiratory compartments to microbe-mucosa interactions.
Collapse
Affiliation(s)
- Steven L Taylor
- SAHMRI Infection and Immunity Theme, School of Medicine, Flinders University, Bedford Park, Adelaide, Australia
| | - Steve Wesselingh
- SAHMRI Infection and Immunity Theme, School of Medicine, Flinders University, Bedford Park, Adelaide, Australia
| | - Geraint B Rogers
- SAHMRI Infection and Immunity Theme, School of Medicine, Flinders University, Bedford Park, Adelaide, Australia
| |
Collapse
|
316
|
Gaeta NC, Lima SF, Teixeira AG, Ganda EK, Oikonomou G, Gregory L, Bicalho RC. Deciphering upper respiratory tract microbiota complexity in healthy calves and calves that develop respiratory disease using shotgun metagenomics. J Dairy Sci 2016; 100:1445-1458. [PMID: 27988122 DOI: 10.3168/jds.2016-11522] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/27/2016] [Indexed: 11/19/2022]
Abstract
Bovine respiratory disease (BRD) is a multifactorial disorder responsible for severe economic losses in dairy and feedlot herds. Advances in next-generation sequencing mean that microbial communities in clinical samples, including non-culturable bacteria, can be characterized. Our aim was to evaluate the microbiota of the upper respiratory tract of healthy calves and calves with BRD using whole-genome sequencing (shotgun metagenomics). We performed deep nasopharyngeal swabs on 16 Holstein heifer calves (10 healthy and 6 diagnosed with BRD during the study) at 14 and 28 d of life in 1 dairy herd near Ithaca, New York. Total DNA was extracted, and whole-genome sequencing was performed using the MiSeq Illumina platform (Illumina Inc., San Diego, CA). Samples included 5 predominant phyla: Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Tenericutes. At the genus level, we observed differences between groups for Pseudomonas spp. At the species level, Mannheimia haemolytica was the most abundant bacterium detected. We detected significant differences between groups of calves in the relative abundance of Pseudomonas fluorescens. Pasteurella multocida was among the 20 most abundant species, and Moraxella catarrhalis, commonly associated with pneumonia in humans, was detected in all groups. Analysis of resistance to antibiotics and compounds profiling revealed differences in cobalt-zinc-cadmium resistance. Further research to elucidate the role of Moraxella catarrhalis in BRD is warranted. Genes that were resistant to cobalt-zinc-cadmium, observed mostly in calves with BRD, might be associated with difficulties in antibiotic treatment.
Collapse
Affiliation(s)
- Natália C Gaeta
- Department of Medical Clinic, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil 05508-270
| | - Svetlana F Lima
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca 14853, NY
| | - Andre G Teixeira
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca 14853, NY
| | - Erika K Ganda
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca 14853, NY
| | - Georgios Oikonomou
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca 14853, NY; Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Neston CH64 7TE, United Kingdom
| | - Lilian Gregory
- Department of Medical Clinic, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil 05508-270
| | - Rodrigo C Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca 14853, NY.
| |
Collapse
|
317
|
Gjini E, Madec S. A slow-fast dynamic decomposition links neutral and non-neutral coexistence in interacting multi-strain pathogens. THEOR ECOL-NETH 2016. [DOI: 10.1007/s12080-016-0320-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
318
|
Enhanced protective responses to a serotype-independent pneumococcal vaccine when combined with an inactivated influenza vaccine. Clin Sci (Lond) 2016; 131:169-180. [PMID: 27885052 DOI: 10.1042/cs20160475] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022]
Abstract
Streptococcus pneumoniae and influenza are the world's foremost bacterial and viral respiratory pathogens. We have previously described a γ-irradiated influenza A virus (γ-FLU) vaccine that provides cross-protective immunity against heterosubtypic infections. More recently, we reported a novel non-adjuvanted γ-irradiated S pneumoniae (γ-PN) vaccine that elicits serotype-independent protection. Considering the clinical synergism of both pathogens, combination of a serotype-independent pneumococcal vaccine with a broad-spectrum influenza vaccine to protect against both infections would have a considerable clinical impact. In the present study, we co-immunized C57BL/6 mice intranasally (IN) with a mixture of γ-PN (whole inactivated cells) and γ-FLU (whole inactivated virions) and examined protective efficacy. Co-immunization enhanced γ-PN vaccine efficacy against virulent pneumococcal challenge, which was dependent on CD4+ T-cell responses. In contrast, vaccination with γ-PN alone, co-immunization enhanced pneumococcal-specific effector T-helper 17 cell (Th17) and Th1 memory cell, promoted development of CD4+ tissue-resident memory (TRM) cells and enhanced Pneumococcus-specific antibody responses. Furthermore, co-immunization elicited significant protection against lethal influenza challenge, as well as against co-infection with both influenza and S pneumoniae. This is the first report showing the synergistic effect of combining whole cell and whole virion vaccines to both S pneumoniae and influenza as a single vaccine to protect against individual and co-infection, without compromising pathogen-specific immunity.
Collapse
|
319
|
Interactions of Respiratory Viruses and the Nasal Microbiota during the First Year of Life in Healthy Infants. mSphere 2016; 1:mSphere00312-16. [PMID: 27904883 PMCID: PMC5120172 DOI: 10.1128/msphere.00312-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/29/2016] [Indexed: 11/20/2022] Open
Abstract
Respiratory viral infections are very frequent in infancy and of importance in acute and chronic disease development. Infections with human rhinovirus (HRV) are, e.g., associated with the later development of asthma. We found that only symptomatic HRV infections were associated with acute changes in the nasal microbiota, mainly characterized by a loss of microbial diversity. Infants with more frequent symptomatic HRV infections had a lower bacterial diversity at the end of the first year of life. Whether the interaction between viruses and the microbiota is one pathway contributing to asthma development will be assessed in the follow-ups of these children. Independent of that, measurements of microbial diversity might represent a potential marker for risk of later lung disease or monitoring of early life interventions. Traditional culture techniques have shown that increased bacterial colonization is associated with viral colonization; however, the influence of viral colonization on the whole microbiota composition is less clear. We thus aimed to understand the interaction of viral infections and the nasal microbiota in early life to appraise their roles in disease development. Thirty-two healthy, unselected infants were included in this prospective longitudinal cohort study within the first year of life. Biweekly nasal swabs (n = 559) were taken, and the microbiota was analyzed by 16S rRNA pyrosequencing, and 10 different viruses and 2 atypical bacteria were characterized by real-time PCR (combination of seven duplex samples). In contrast to asymptomatic human rhinovirus (HRV) colonization, symptomatic HRV infections were associated with lower alpha diversity (Shannon diversity index [SDI]), higher bacterial density (PCR concentration), and a difference in beta diversities (Jaccard and Bray-Curtis index) of the microbiota. In addition, infants with more frequent HRV infections had a lower SDI at the end of the study period. Overall, changes in the microbiota associated with symptomatic HRV infections were characterized by a loss of microbial diversity. The interaction between HRV infections and the nasal microbiota in early life might be of importance for later disease development and indicate a potential approach for future interventions. IMPORTANCE Respiratory viral infections are very frequent in infancy and of importance in acute and chronic disease development. Infections with human rhinovirus (HRV) are, e.g., associated with the later development of asthma. We found that only symptomatic HRV infections were associated with acute changes in the nasal microbiota, mainly characterized by a loss of microbial diversity. Infants with more frequent symptomatic HRV infections had a lower bacterial diversity at the end of the first year of life. Whether the interaction between viruses and the microbiota is one pathway contributing to asthma development will be assessed in the follow-ups of these children. Independent of that, measurements of microbial diversity might represent a potential marker for risk of later lung disease or monitoring of early life interventions.
Collapse
|
320
|
Gardner JK, Herbst-Kralovetz MM. Three-Dimensional Rotating Wall Vessel-Derived Cell Culture Models for Studying Virus-Host Interactions. Viruses 2016; 8:v8110304. [PMID: 27834891 PMCID: PMC5127018 DOI: 10.3390/v8110304] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022] Open
Abstract
The key to better understanding complex virus-host interactions is the utilization of robust three-dimensional (3D) human cell cultures that effectively recapitulate native tissue architecture and model the microenvironment. A lack of physiologically-relevant animal models for many viruses has limited the elucidation of factors that influence viral pathogenesis and of complex host immune mechanisms. Conventional monolayer cell cultures may support viral infection, but are unable to form the tissue structures and complex microenvironments that mimic host physiology and, therefore, limiting their translational utility. The rotating wall vessel (RWV) bioreactor was designed by the National Aeronautics and Space Administration (NASA) to model microgravity and was later found to more accurately reproduce features of human tissue in vivo. Cells grown in RWV bioreactors develop in a low fluid-shear environment, which enables cells to form complex 3D tissue-like aggregates. A wide variety of human tissues (from neuronal to vaginal tissue) have been grown in RWV bioreactors and have been shown to support productive viral infection and physiological meaningful host responses. The in vivo-like characteristics and cellular features of the human 3D RWV-derived aggregates make them ideal model systems to effectively recapitulate pathophysiology and host responses necessary to conduct rigorous basic science, preclinical and translational studies.
Collapse
Affiliation(s)
- Jameson K Gardner
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| |
Collapse
|
321
|
Melvin JA, Bomberger JM. Compromised Defenses: Exploitation of Epithelial Responses During Viral-Bacterial Co-Infection of the Respiratory Tract. PLoS Pathog 2016; 12:e1005797. [PMID: 27631788 PMCID: PMC5025022 DOI: 10.1371/journal.ppat.1005797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Jeffrey A. Melvin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
322
|
Shima K, Coopmeiners J, Graspeuntner S, Dalhoff K, Rupp J. Impact of micro-environmental changes on respiratory tract infections with intracellular bacteria. FEBS Lett 2016; 590:3887-3904. [PMID: 27509029 DOI: 10.1002/1873-3468.12353] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 12/26/2022]
Abstract
Community-acquired pneumonia is caused by intra- and extracellular bacteria, with some of these bacteria also being linked to the pathogenesis of chronic lung diseases, including asthma and chronic obstructive pulmonary disease. Chlamydia pneumoniae is an obligate intracellular pathogen that is highly sensitive to micro-environmental conditions controlling both pathogen growth and host immune responses. The availability of nutrients, as well as changes in oxygen, pH and interferon-γ levels, have been shown to directly influence the chlamydial life cycle and clearance. Although the lung has been traditionally regarded as a sterile environment, sequencing approaches have enabled the identification of a large number of bacteria in healthy and diseased lungs. The influence of the lung microbiota on respiratory infections has not been extensively studied so far and data on chlamydial infections are currently unavailable. In the present study, we speculate on how lung microbiota might interfere with acute and chronic infections by focusing exemplarily on the obligate intracellular C. pneumoniae. Furthermore, we consider changes in the gut microbiota as an additional player in the control of lung infections, especially in view the increasing evidence suggesting the involvement of the gut microbiota in various immunological processes throughout the human body.
Collapse
Affiliation(s)
- Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Jonas Coopmeiners
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Klaus Dalhoff
- Medical Clinic III, University-Hospital Schleswig-Holstein/Campus Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| |
Collapse
|
323
|
Parker MT. An Ecological Framework of the Human Virome Provides Classification of Current Knowledge and Identifies Areas of Forthcoming Discovery. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:339-351. [PMID: 27698618 PMCID: PMC5045143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent advances in sequencing technologies have opened the door for the classification of the human virome. While taxonomic classification can be applied to the viruses identified in such studies, this gives no information as to the type of interaction the virus has with the host. As follow-up studies are performed to address these questions, the description of these virus-host interactions would be greatly enriched by applying a standard set of definitions that typify them. This paper describes a framework with which all members of the human virome can be classified based on principles of ecology. The scaffold not only enables categorization of the human virome, but can also inform research aimed at identifying novel virus-host interactions.
Collapse
Affiliation(s)
- Michael T Parker
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
324
|
Hartwig SM, Ketterer M, Apicella MA, Varga SM. Non-typeable Haemophilus influenzae protects human airway epithelial cells from a subsequent respiratory syncytial virus challenge. Virology 2016; 498:128-135. [PMID: 27573069 DOI: 10.1016/j.virol.2016.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/27/2016] [Accepted: 08/19/2016] [Indexed: 02/03/2023]
Abstract
Respiratory syncytial virus (RSV) and the common commensal and opportunistic pathogen, non-typeable Haemophilus influenzae (NTHi) both serve as a frequent cause of respiratory infection in children. Although it is well established that some respiratory viruses can increase host susceptibility to secondary bacterial infections, few studies have examined how commensal bacteria could influence a secondary viral response. Here, we examined the impact of NTHi exposure on a subsequent RSV infection of human bronchial epithelial cells (16HBE14o-). Co-culture of 16HBE14o- cells with NTHi resulted in inhibition of viral gene expression following RSV infection. 16HBE14o- cells co-cultured with heat-killed NTHi failed to protect against an RSV infection, indicating that protection requires live bacteria. However, NTHi did not inhibit influenza A virus replication, indicating that NTHi-mediated protection was RSV-specific. Our data demonstrates that prior exposure to a commensal bacterium such as NTHi can elicit protection against a subsequent RSV infection.
Collapse
Affiliation(s)
- Stacey M Hartwig
- Department of Microbiology, University of Iowa, Iowa City, IA, United States
| | - Margaret Ketterer
- Department of Microbiology, University of Iowa, Iowa City, IA, United States
| | - Michael A Apicella
- Department of Microbiology, University of Iowa, Iowa City, IA, United States
| | - Steven M Varga
- Department of Microbiology, University of Iowa, Iowa City, IA, United States; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States; Department of Pathology, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
325
|
Kosikowska U, Rybojad P, Stępień-Pyśniak D, Żbikowska A, Malm A. Changes in the prevalence and biofilm formation of Haemophilus influenzae and Haemophilus parainfluenzae from the respiratory microbiota of patients with sarcoidosis. BMC Infect Dis 2016; 16:449. [PMID: 27562460 PMCID: PMC5000413 DOI: 10.1186/s12879-016-1793-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 08/21/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Healthy condition and chronic diseases may be associated with microbiota composition and its properties. The prevalence of respiratory haemophili with respect to their phenotypes including the ability to biofilm formation in patients with sarcoidosis was assayed. METHODS Nasopharynx and sputum specimens were taken in 31 patients with sarcoidosis (average age 42.6 ± 13), and nasopharynx specimens were taken in 37 healthy people (average age 44.6 ± 11.6). Haemophili were identified by API-NH microtest and by the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) system. Biofilm was visualised by crystal violet staining and confocal scanning laser microscopy (CSLM). The statistical analysis was performed with Statgraphics Plus for Windows. RESULTS In total, 30/31 patients with sarcoidosis and 31/37 healthy people were colonized by Haemophilus influenzae (6/30 vs. 1/31) and Haemophilus parainfluenzae (28/30 vs. 31/31) in the nasopharynx. The overall number of nasopharyngeal haemophili isolates was 59 in patients with sarcoidosis and 67 in healthy volunteers (H. influenzae 6/59 vs. 1/67, P = 0.05; H. parainfluenzae 47/59 vs. 65/67, P = 0.0032). Moreover, the decreased number of H. parainfluenzae biofilm-producing isolates was shown in nasopharyngeal samples in patients with sarcoidosis as compared to healthy people (19/31 vs. 57/65, P = 0.006), especially with respect to isolates classified as strong and very strong biofilm-producers (8/31 vs. 39/65, P = 0.002). CONCLUSIONS The obtained data suggest that the qualitative and quantitative changes within the respiratory microbiota concerning the overall prevalence of H. influenzae together with the decreased number of H. parainfluenzae strains and the decreased rate of H. parainfluenzae biofilm-producing isolates as compared to healthy people may be associated with sarcoidosis.
Collapse
Affiliation(s)
- Urszula Kosikowska
- Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Medical University of Lublin, Chodzki Str. 1, 20-093, Lublin, Poland.
| | - Paweł Rybojad
- Department of Thoracic Surgery, Medical University of Lublin, Lublin, Poland
| | - Dagmara Stępień-Pyśniak
- Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Anna Żbikowska
- Department of Food Technology, Faculty of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Medical University of Lublin, Chodzki Str. 1, 20-093, Lublin, Poland
| |
Collapse
|
326
|
Lewnard JA, Huppert A, Givon-Lavi N, Pettigrew MM, Regev-Yochay G, Dagan R, Weinberger DM. Density, Serotype Diversity, and Fitness of Streptococcus pneumoniae in Upper Respiratory Tract Cocolonization With Nontypeable Haemophilus influenzae. J Infect Dis 2016; 214:1411-1420. [PMID: 27540112 DOI: 10.1093/infdis/jiw381] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Coinfections by Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) are frequently implicated in complex otitis media. Whereas upper respiratory tract carriage precedes disease for both pathogens, interactions between species in cocolonized hosts are poorly understood. We compared colonization densities and the diversity and fitness of pneumococcal serotypes in single-species and mixed-species colonization. METHODS We analyzed nasopharyngeal pneumococcal carriage and nasopharyngeal and oropharyngeal NTHi carriage in 13 541 samples collected over 6909 study visits from 769 children 2-30 months old in a 7-valent pneumococcal conjugate vaccine dosing trial. We measured density associations between the species and compared pneumococcal serotype diversity during and in the absence of NTHi colonization. We used logistic regression to quantify associations between NTHi colonization and previously published pneumococcal serotype factors related to fitness. RESULTS Densities of the 2 species were positively associated when they co-occur in the nasopharynx. NTHi colonization was associated with reduced pneumococcal serotype diversity among children 2-18 months old and was more prevalent among children carrying pneumococcal serotypes with greater capsular thickness, neutrophil resistance, and metabolic efficiency. CONCLUSIONS Pneumococcal-NTHi cocolonization is associated with an elevated density of both species and with reduced diversity and increased fitness of pneumococcal serotypes. NTHi colonization may create a selective environment favoring pneumococci with immune-evasive phenotypes.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | | | - Noga Givon-Lavi
- Pediatric Infectious Disease Unit, Soroka University Medical Center.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | - Gili Regev-Yochay
- Section of Infectious Disease Epidemiology, Gertner Institute for Epidemiology and Health Policy Research.,Infectious Disease Unit, Sheba Medical Center, Ramat-Gan
| | - Ron Dagan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| |
Collapse
|
327
|
Host Physiologic Changes Induced by Influenza A Virus Lead to Staphylococcus aureus Biofilm Dispersion and Transition from Asymptomatic Colonization to Invasive Disease. mBio 2016; 7:mBio.01235-16. [PMID: 27507829 PMCID: PMC4981728 DOI: 10.1128/mbio.01235-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus is a ubiquitous opportunistic human pathogen and a major health concern worldwide, causing a wide variety of diseases from mild skin infections to systemic disease. S. aureus is a major source of severe secondary bacterial pneumonia after influenza A virus infection, which causes widespread morbidity and mortality. While the phenomenon of secondary bacterial pneumonia is well established, the mechanisms behind the transition from asymptomatic colonization to invasive staphylococcal disease following viral infection remains unknown. In this report, we have shown that S. aureus biofilms, grown on an upper respiratory epithelial substratum, disperse in response to host physiologic changes related to viral infection, such as febrile range temperatures, exogenous ATP, norepinephrine, and increased glucose. Mice that were colonized with S. aureus and subsequently exposed to these physiologic stimuli or influenza A virus coinfection developed pronounced pneumonia. This study provides novel insight into the transition from colonization to invasive disease, providing a better understanding of the events involved in the pathogenesis of secondary staphylococcal pneumonia. In this study, we have determined that host physiologic changes related to influenza A virus infection causes S. aureus to disperse from a biofilm state. Additionally, we report that these same host physiologic changes promote S. aureus dissemination from the nasal tissue to the lungs in an animal model. Furthermore, this study identifies important aspects involved in the transition of S. aureus from asymptomatic colonization to pneumonia.
Collapse
|
328
|
Attachment of Actinobacillus suis H91-0380 and Its Isogenic Adhesin Mutants to Extracellular Matrix Components of the Tonsils of the Soft Palate of Swine. Infect Immun 2016; 84:2944-52. [PMID: 27481253 DOI: 10.1128/iai.00456-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/22/2016] [Indexed: 11/20/2022] Open
Abstract
Tonsils conduct immune surveillance of antigens entering the upper respiratory tract. Despite their immunological function, they are also sites of persistence and invasion of bacterial pathogens. Actinobacillus suis is a common resident of the tonsils of the soft palate in pigs, but under certain circumstances it can invade, causing septicemia and related sequelae. Twenty-four putative adhesins are predicted in the A. suis genome, but to date, little is known about how they might participate in colonization or invasion. To better understand these processes, swine tonsil lysates were characterized by mass spectrometry. Fifty-nine extracellular matrix (ECM) proteins were identified, including small leucine-rich proteoglycans, integrins, and other cell surface receptors. Additionally, attachment of the wild type and 3 adhesin mutants to 5 ECM components was evaluated. Exponential cultures of wild-type A. suis adhered significantly more than stationary cultures to all ECM components studied except collagen I. During exponential growth, the A. suis Δflp1 mutant attached less to collagen IV while the ΔompA mutant attached less to all ECMs. The ΔcomE1 strain attached less to collagen IV, fibronectin, and vitronectin during exponential growth and exhibited differential attachment to collagen I over short adherence time points. These results suggest that Flp1, OmpA, and ComE1 are important during early stages of attachment to ECM components found in tonsils, which supports the notion that other adhesins have compensatory effects during later stages of attachment.
Collapse
|
329
|
Koatz AM, Coe NA, Cicerán A, Alter AJ. Clinical and Immunological Benefits of OM-85 Bacterial Lysate in Patients with Allergic Rhinitis, Asthma, and COPD and Recurrent Respiratory Infections. Lung 2016; 194:687-97. [PMID: 27117798 PMCID: PMC7087659 DOI: 10.1007/s00408-016-9880-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/11/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE The aim of this study was to evaluate the efficacy of OM-85 in reducing the incidence of respiratory tract infections (RTIs) in patients with allergic rhinitis, asthma, or chronic obstructive pulmonary disease (COPD), and its effect on immunological parameters, namely serum and secretory IgA levels. METHODS This was an open-label, prospective, sequential study which included 84 consecutive patients aged 16-65 years, who presented with recurrent (three or more) respiratory infections during the year prior to study entry. In the first year of the study, patients received standard optimized care (SOC), according to their underlying disease condition (asthma, allergic rhinitis, or COPD). In the following year, patients received treatment with OM-85 oral bacterial lysate (one 7 mg capsule daily for ten consecutive days per month, for 3 months), with a 6-month follow-up. Medical history, clinical symptoms, serum, and secretory IgA levels, and the number of infections and exacerbations were evaluated before and after treatment. RESULTS There was a decrease in the total number of RTIs before the OM-85 treatment period (SOC only) compared to the year before the study start [69/266 (corresponding to a 74 % reduction)] and an additional decrease [38/69 (corresponding to a 45 % reduction)] after OM-85 treatment; p < 0.05. There was also a significant reduction in the total number of exacerbations related to the patients' underlying medical conditions, which decreased from 55 to 35 during OM-85 (+SOC) treatment, corresponding to a reduction of 36 %. In addition, an increase in serum and secretory IgA levels which coincided with the administration of OM-85 was observed. CONCLUSIONS Our results showed the clinical benefits of OM-85 in reducing RTIs and exacerbations of the underlying medical condition, in patients with allergic rhinitis, asthma, or COPD.
Collapse
Affiliation(s)
- Ana M Koatz
- Faculty of Medicine, University of Buenos Aires, Av. Medrano 367 - PB - Dto B - CABA, 1178, Buenos Aires, Argentina.
| | - Noemí A Coe
- Hospital Aleman Buenos Aires, Buenos Aires, Argentina
| | | | | |
Collapse
|
330
|
Wasik BR, Barnard KN, Parrish CR. Effects of Sialic Acid Modifications on Virus Binding and Infection. Trends Microbiol 2016; 24:991-1001. [PMID: 27491885 PMCID: PMC5123965 DOI: 10.1016/j.tim.2016.07.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/29/2022]
Abstract
Sialic acids (Sias) are abundantly displayed on the surfaces of vertebrate cells, and particularly on all mucosal surfaces. Sias interact with microbes of many types, and are the targets of specific recognition by many different viruses. They may mediate virus binding and infection of cells, or alternatively can act as decoy receptors that bind virions and block virus infection. These nine-carbon backbone monosaccharides naturally occur in many different modified forms, and are attached to underlying glycans through varied linkages, creating significant diversity in the pathogen receptor forms. Here we review the current knowledge regarding the distribution of modified Sias in different vertebrate hosts, tissues, and cells, their effects on viral pathogens where those have been examined, and outline unresolved questions. Sialic acids (Sias) are components of cell-surface glycoproteins and glycolipids, as well as secreted glycoproteins and milk oligosaccharides. Sias play important roles in cell signaling, development, and host–pathogen interactions. Cellular enzymes can modify Sias, yet how modifications vary between tissues and hosts has not been fully elucidated. Many viruses use Sias as receptors, with different modifications aiding or inhibiting virus infection. How modified Sias influence viral protein evolution and determine host/tissue tropism are poorly understood, and are important areas of research. New advances in molecular glycobiology using pathogen proteins to detect varied forms allows for improved study of modified Sias that have otherwise proven difficult to isolate. This opens new avenues of inquiry for virology, as well as host interactions with bacterial and eukaryotic pathogens.
Collapse
Affiliation(s)
- Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Karen N Barnard
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
331
|
Coleman S. The association between varicella (chickenpox) and group A streptococcus infections in historical perspective. SAGE Open Med 2016; 4:2050312116658909. [PMID: 27504182 PMCID: PMC4962521 DOI: 10.1177/2050312116658909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES The aim of the research is to investigate the historical relationship between varicella and Streptococcus pyogenes infections. In the past few decades, varicella has been identified as a risk factor for invasive group A streptococcus infections. The question is whether this relationship also existed between varicella and scarlet fever in the historical era. METHODS The analysis begins with a search of historical medical reports on the relationship between varicella and scarlet fever epidemics in the late 19th and early 20th century, as well as in more recent empirical studies. Correlations and cross-correlations between varicella and scarlet fever are analyzed using weekly public health case reports from 1924 to 1932 for Boston, Chicago, New York City, and Philadelphia. Regression models are used to estimate the relationship between varicella and scarlet fever after controlling for seasonal forcing. RESULTS Historical records give limited support for a causal relationship between varicella and scarlet fever but indicate that these diseases often occurred close in time to each other. Likewise, statistical analysis shows that varicella and scarlet fever epidemics are closely aligned with each other, and varicella has a strong relationship with scarlet fever. The relationship is stronger than reported in any previous research on the two diseases. CONCLUSION The close correspondence of the two diseases likely depends on multiple factors, including seasonal forcing, a causal relationship, and co-infections. The results raise questions about whether this close relationship might have had a synergistic effect or a role in the evolution of S. pyogenes from the virulent, high incidence epidemics of the 19th century to the relatively benign scarlet fever of the 1950s.
Collapse
Affiliation(s)
- Stephen Coleman
- Metropolitan State University (Retired), Minneapolis, MN, USA
| |
Collapse
|
332
|
Pettigrew MM, Gent JF, Kong Y, Wade M, Gansebom S, Bramley AM, Jain S, Arnold SLR, McCullers JA. Association of sputum microbiota profiles with severity of community-acquired pneumonia in children. BMC Infect Dis 2016; 16:317. [PMID: 27391033 PMCID: PMC4939047 DOI: 10.1186/s12879-016-1670-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/09/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Competitive interactions among bacteria in the respiratory tract microbiota influence which species can colonize and potentially contribute to pathogenesis of community-acquired pneumonia (CAP). However, understanding of the role of respiratory tract microbiota in the clinical course of pediatric CAP is limited. METHODS We sought to compare microbiota profiles in induced sputum and nasopharyngeal/oropharyngeal (NP/OP) samples from children and to identify microbiota profiles associated with CAP severity. We used 16S ribosomal RNA sequencing and several measures of microbiota profiles, including principal component analysis (PCA), to describe the respiratory microbiota in 383 children, 6 months to <18 years, hospitalized with CAP. We examined associations between induced sputum and NP/OP microbiota profiles and CAP severity (hospital length of stay and intensive care unit admission) using logistic regression. RESULTS Relative abundance of bacterial taxa differed in induced sputum and NP/OP samples. In children 6 months to < 5 years, the sputum PCA factor with high relative abundance of Actinomyces, Veillonella, Rothia, and Lactobacillales was associated with decreased odds of length of stay ≥ 4 days [adjusted odds ratio (aOR) 0.69; 95 % confidence interval (CI) 0.48-0.99]. The sputum factor with high relative abundance of Haemophilus and Pasteurellaceae was associated with increased odds of intensive care unit admission [aOR 1.52; 95 % CI 1.02-2.26]. In children 5 to < 18 years, the sputum factor with high relative abundance of Porphyromonadaceae, Bacteriodales, Lactobacillales, and Prevotella was associated with increased odds of length of stay ≥ 4 days [aOR 1.52; 95 % CI 1.02-2.26]. Taxa in NP/OP samples were not associated with CAP severity. CONCLUSION Certain taxa in the respiratory microbiota, which were detected in induced sputum samples, are associated with the clinical course of CAP.
Collapse
Affiliation(s)
- Melinda M Pettigrew
- Yale School of Public Health, New Haven, CT, USA.
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, LEPH 720, New Haven, CT, 06515, USA.
| | | | - Yong Kong
- Yale School of Medicine, New Haven, CT, USA
| | - Martina Wade
- Yale School of Public Health, New Haven, CT, USA
| | | | - Anna M Bramley
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Seema Jain
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Jonathan A McCullers
- St. Jude Children's Research Hospital, Memphis, TN, USA
- University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
333
|
Kim GH, Klochkova TA, Lee DJ, Im SH. Chloroplast virus causes green-spot disease in cultivated Pyropia of Korea. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
334
|
Santee CA, Nagalingam NA, Faruqi AA, DeMuri GP, Gern JE, Wald ER, Lynch SV. Nasopharyngeal microbiota composition of children is related to the frequency of upper respiratory infection and acute sinusitis. MICROBIOME 2016; 4:34. [PMID: 27364497 PMCID: PMC4929776 DOI: 10.1186/s40168-016-0179-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/13/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Upper respiratory infections (URI) and their complications are a major healthcare burden for pediatric populations. Although the microbiology of the nasopharynx is an important determinant of the complications of URI, little is known of the nasopharyngeal (NP) microbiota of children, the factors that affect its composition, and its precise relationship with URI. RESULTS Healthy children (n = 47) aged 49-84 months from a prospective cohort study based in Wisconsin, USA, were examined. Demographic and clinical data and NP swab samples were obtained from participants upon entry to the study. All NP samples were profiled for bacterial microbiota using a phylogenetic microarray, and these data were related to demographic characteristics and upper respiratory health outcomes. The composition of the NP bacterial community of children was significantly related prior to the history of acute sinusitis (R (2) = 0.070, P < 0.009). History of acute sinusitis was associated with significant depletion in relative abundance of taxa including Faecalibacterium prausnitzii and Akkermansia spp. and enrichment of Moraxella nonliquefaciens. Enrichment of M. nonliquefaciens was also a characteristic of baseline NP samples of children who subsequently developed acute sinusitis over the 1-year study period. Time to develop URI was significantly positively correlated with NP diversity, and children who experienced more frequent URIs exhibited significantly diminished NP microbiota diversity (P ≤ 0.05). CONCLUSIONS These preliminary data suggest that previous history of acute sinusitis influences the composition of the NP microbiota, characterized by a depletion in relative abundance of specific taxa. Diminished diversity was associated with more frequent URIs.
Collapse
Affiliation(s)
- Clark A Santee
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Nabeetha A Nagalingam
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Present address: Janssen Prevention Center, 2 Royal College Street, London, NW1 0TU, UK
| | - Ali A Faruqi
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Gregory P DeMuri
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ellen R Wald
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Susan V Lynch
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
335
|
Lima SF, Teixeira AGV, Higgins CH, Lima FS, Bicalho RC. The upper respiratory tract microbiome and its potential role in bovine respiratory disease and otitis media. Sci Rep 2016; 6:29050. [PMID: 27363739 PMCID: PMC4929571 DOI: 10.1038/srep29050] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022] Open
Abstract
The upper respiratory tract (URT) hosts a complex microbial community of commensal microorganisms and potential pathogens. Analyzing the composition and nature of the healthy URT microbiota and how it changes over time will contribute to a better understanding of the pathogenesis of pneumonia and otitis. A longitudinal study was conducted including 174 Holstein calves that were divided in four groups: healthy calves, calves diagnosed with pneumonia, otitis or both diseases. Deep pharyngeal swabs were collected on days 3, 14, 28, and 35 of life, and next-generation sequencing of the 16S rRNA gene as well as quantitative PCR was performed. The URT of Holstein dairy calves aged 3 to 35 days revealed to host a highly diverse bacterial community. The relative abundances of the bacterial genera Mannheimia, Moraxella, and Mycoplasma were significantly higher in diseased versus healthy animals, and the total bacterial load of newborn calves at day 3 was higher for animals that developed pneumonia than for healthy animals. Our results corroborate the existing knowledge that species of Mannheimia and Mycoplasma are important pathogens in pneumonia and otitis. Furthermore, they suggest that species of Moraxella can potentially cause the same disorders (pneumonia and otitis), and that high neonatal bacterial load is a key contributor to the development of pneumonia.
Collapse
Affiliation(s)
- Svetlana F Lima
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Andre Gustavo V Teixeira
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Catherine H Higgins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Fabio S Lima
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Rodrigo C Bicalho
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
336
|
Zou S, Caler L, Colombini-Hatch S, Glynn S, Srinivas P. Research on the human virome: where are we and what is next. MICROBIOME 2016; 4:32. [PMID: 27341799 PMCID: PMC4919837 DOI: 10.1186/s40168-016-0177-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
The National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health convened a Working Group on the Microbiome in Cardiovascular, Pulmonary and Hematologic Health and Diseases from June 25, 2014, to June 26, 2014. The Working Group's central goal was to define what major microbiome research areas warranted additional study in the context of heart, lung, and blood (HLB) diseases. The Working Group identified studies of the human virome a key priority.
Collapse
Affiliation(s)
- Shimian Zou
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6701, Rockledge Drive, Room 9144, Bethesda, MD 20892-7950 USA
| | - Lis Caler
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6701, Rockledge Drive, Room 9144, Bethesda, MD 20892-7950 USA
| | - Sandra Colombini-Hatch
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6701, Rockledge Drive, Room 9144, Bethesda, MD 20892-7950 USA
| | - Simone Glynn
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6701, Rockledge Drive, Room 9144, Bethesda, MD 20892-7950 USA
| | - Pothur Srinivas
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6701, Rockledge Drive, Room 9144, Bethesda, MD 20892-7950 USA
| |
Collapse
|
337
|
Association of RSV-A ON1 genotype with Increased Pediatric Acute Lower Respiratory Tract Infection in Vietnam. Sci Rep 2016; 6:27856. [PMID: 27306333 PMCID: PMC4910061 DOI: 10.1038/srep27856] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/26/2016] [Indexed: 12/26/2022] Open
Abstract
Since the initial discovery of RSV-A ON1 in Canada in 2010, ON1 has been reported worldwide, yet information regarding its clinical impact and severity has been controversial. To investigate the clinical relevance of RSV-A ON1,acute respiratory infection (ARI) cases enrolled to our population-based prospective pediatric ARI surveillance at Khanh Hoa General Hospital, Central Vietnam from January 2010 through December 2012 were studied. Clinical-epidemiological information and nasopharyngeal samples were collected. Multiplex PCR assays were performed for screening 13 respiratory viruses. RSV-positive samples were further tested for subgroups (A/B) and genotypes information by sequencing the G-glycoprotein 2nd hypervariable region. Statistical analysis was performed to evaluate the clinical-epidemiological characteristics of RSV-A ON1. A total of 1854 ARI cases were enrolled and 426 (23.0%) of them were RSV-positive. During the study period, RSV-A and B had been co-circulating. NA1 was the predominant RSV-A genotype until the appearance of ON1 in 2012. RSV-related ARI hospitalization incidence significantly increased after the emergence of ON1. Moreover, multivariate analysis revealed that risk of lower respiratory tract infection was 2.26 (95% CI: 1.37-3.72) times, and radiologically-confirmed pneumonia was 1.98 (95% CI: 1.01-3.87) times greater in ON1 compared to NA1 cases. Our result suggested that ON1 ARI cases were clinically more severe than NA1.
Collapse
|
338
|
van Driel ML, Morgan S, Tapley A, McArthur L, McElduff P, Yardley L, Dallas A, Deckx L, Mulquiney K, Davis JS, Davey A, Henderson K, Little P, Magin PJ. Changing the Antibiotic Prescribing of general practice registrars: the ChAP study protocol for a prospective controlled study of a multimodal educational intervention. BMC FAMILY PRACTICE 2016; 17:67. [PMID: 27267983 PMCID: PMC4895975 DOI: 10.1186/s12875-016-0470-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/02/2016] [Indexed: 11/10/2022]
Abstract
Background Australian General Practitioners (GPs) are generous prescribers of antibiotics, prompting concerns including increasing antimicrobial resistance in the community. Recent data show that GPs in vocational training have prescribing patterns comparable with the high prescribing rate of their established GP supervisors. Evidence-based guidelines consistently advise that antibiotics are not indicated for uncomplicated upper respiratory tract infections (URTI) and are rarely indicated for acute bronchitis. A number of interventions have been trialled to promote rational antibiotic prescribing by established GPs (with variable effectiveness), but the impact of such interventions in a training setting is unclear. We hypothesise that intervening while early-career GPs are still developing their practice patterns and prescribing habits will result in better adherence to evidence-based guidelines as manifested by lower antibiotic prescribing rates for URTIs and acute bronchitis. Methods/design The intervention consists of two online modules, a face-to-face workshop for GP trainees, a face-to-face workshop for their supervisors and encouragement for the trainee-supervisor dyad to include a case-based discussion of evidence-based antibiotic prescribing in their weekly one-on-one teaching meetings. We will use a non-randomised, non-equivalent control group design to assess the impact on antibiotic prescribing for acute upper respiratory infections and acute bronchitis by GP trainees in vocational training. Discussion Early-career GPs who are still developing their clinical practice and prescribing habits are an underutilized target-group for interventions to curb the growth of antimicrobial resistance in the community. Interventions that are embedded into existing training programs or are linked to continuing professional development have potential to increase the impact of existing interventions at limited additional cost. Trial registration Australian New Zealand Clinical Trials Registry, ACTRN12614001209684 (registered 17/11/2014). Electronic supplementary material The online version of this article (doi:10.1186/s12875-016-0470-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mieke L van Driel
- Discipline of General Practice, School of Medicine, the University of Queensland, L8 Health Sciences Building 16/910, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia.
| | - Simon Morgan
- Elermore Vale General Practice, Shop 10-13, Croudace Rd, Elermore Vale, NSW, 2287, Australia
| | - Amanda Tapley
- GP Synergy NSW & ACT Research and Evaluation Unit, 17 Bolton St, Newcastle, NSW, 2300, Australia
| | - Lawrie McArthur
- Rural Clinical School, The University of Adelaide, 122 Frome Street, Adelaide, SA, 5005, Australia
| | - Patrick McElduff
- School of Medicine and Public Health, University of Newcastle, Newbolds Building, Corner Frith andGavey Streets, Mayfield, NSW, 2304, Australia
| | - Lucy Yardley
- Department of Psychology, University of Southampton, Shakleton Building, Highfield, Southampton, SO17 1BJ, UK
| | - Anthea Dallas
- School of Medicine, University of Notre Dame Australia, 160 Oxford St, Darlinghurst, NSW, 2010, Australia
| | - Laura Deckx
- Discipline of General Practice, School of Medicine, the University of Queensland, L8 Health Sciences Building 16/910, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia
| | - Katie Mulquiney
- GP Synergy NSW & ACT Research and Evaluation Unit, 17 Bolton St, Newcastle, NSW, 2300, Australia
| | - Joshua S Davis
- School of Medicine and Public Health, University of Newcastle, Newbolds Building, Corner Frith andGavey Streets, Mayfield, NSW, 2304, Australia.,Department of Infectious Diseases, John Hunter Hospital, Lookout Rd, New Lambton Heights, NSW, 2305, Australia.,Global and Tropical Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT, 0811, Australia
| | - Andrew Davey
- Discipline of General Practice, School of Medicine and Public Health, University of Newcastle, Newbolds Building, Corner Frith and Gavey Streets, Mayfield, NSW, 2304, Australia
| | - Kim Henderson
- GP Synergy NSW & ACT Research and Evaluation Unit, 17 Bolton St, Newcastle, NSW, 2300, Australia
| | - Paul Little
- Primary Care and Population Sciences Division, University of Southampton, Aldermoor Health Centre, Aldermoor Close Southampton SO16 5ST, Southampton, UK
| | - Parker J Magin
- GP Synergy NSW & ACT Research and Evaluation Unit, 17 Bolton St, Newcastle, NSW, 2300, Australia.,Discipline of General Practice, School of Medicine and Public Health, University of Newcastle, Newbolds Building, Corner Frith and Gavey Streets, Mayfield, NSW, 2304, Australia
| |
Collapse
|
339
|
Mansbach JM, Hasegawa K, Henke DM, Ajami NJ, Petrosino JF, Shaw CA, Piedra PA, Sullivan AF, Espinola JA, Camargo CA. Respiratory syncytial virus and rhinovirus severe bronchiolitis are associated with distinct nasopharyngeal microbiota. J Allergy Clin Immunol 2016; 137:1909-1913.e4. [PMID: 27061249 PMCID: PMC4899255 DOI: 10.1016/j.jaci.2016.01.036] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/21/2015] [Accepted: 01/13/2016] [Indexed: 11/22/2022]
Affiliation(s)
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Mass
| | - David M Henke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Nadim J Ajami
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Tex
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Tex
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Tex; Department of Molecular Virology and Microbiology and Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Ashley F Sullivan
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Mass
| | - Janice A Espinola
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Mass
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Mass; Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| |
Collapse
|
340
|
Advances in RSV vaccine research and development – A global agenda. Vaccine 2016; 34:2870-2875. [DOI: 10.1016/j.vaccine.2016.03.109] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 03/24/2016] [Indexed: 12/22/2022]
|
341
|
Novel Strategy To Protect against Influenza Virus-Induced Pneumococcal Disease without Interfering with Commensal Colonization. Infect Immun 2016; 84:1693-1703. [PMID: 27001538 DOI: 10.1128/iai.01478-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/13/2016] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pneumoniae commonly inhabits the nasopharynx as a member of the commensal biofilm. Infection with respiratory viruses, such as influenza A virus, induces commensal S. pneumoniae to disseminate beyond the nasopharynx and to elicit severe infections of the middle ears, lungs, and blood that are associated with high rates of morbidity and mortality. Current preventive strategies, including the polysaccharide conjugate vaccines, aim to eliminate asymptomatic carriage with vaccine-type pneumococci. However, this has resulted in serotype replacement with, so far, less fit pneumococcal strains, which has changed the nasopharyngeal flora, opening the niche for entry of other virulent pathogens (e.g., Streptococcus pyogenes, Staphylococcus aureus, and potentially Haemophilus influenzae). The long-term effects of these changes are unknown. Here, we present an attractive, alternative preventive approach where we subvert virus-induced pneumococcal disease without interfering with commensal colonization, thus specifically targeting disease-causing organisms. In that regard, pneumococcal surface protein A (PspA), a major surface protein of pneumococci, is a promising vaccine target. Intradermal (i.d.) immunization of mice with recombinant PspA in combination with LT-IIb(T13I), a novel i.d. adjuvant of the type II heat-labile enterotoxin family, elicited strong systemic PspA-specific IgG responses without inducing mucosal anti-PspA IgA responses. This response protected mice from otitis media, pneumonia, and septicemia and averted the cytokine storm associated with septic infection but had no effect on asymptomatic colonization. Our results firmly demonstrated that this immunization strategy against virally induced pneumococcal disease can be conferred without disturbing the desirable preexisting commensal colonization of the nasopharynx.
Collapse
|
342
|
Abstract
BACKGROUND The Aetiology of Neonatal Infection in South Asia (ANISA) study takes advantage of text messaging technology to record information required for randomizing the study population into a control subcohort. The text message system is also used for monitoring various study activities. METHODS When a child-health worker registers a newborn in the study, she sends a text message to a database server containing the study identification number and newborn's age at the time of registration. For each possible serious bacterial infection case, a study physician also sends a text message to the same server with the age of the young infant at the time of illness assessment. Using this information, a computer-based algorithm randomizes the newborn into a control subcohort. Text messages are also sent to alert the study physicians and study supervisors of a possible serious bacterial infection case being referred to health-care facilities. Phlebotomists working at remote specimen collection sites send text messages to the site laboratory personnel before sending the specimens through porters. DISCUSSION Real-time data entry and monitoring are challenging for any population-based study conducted in remote areas. Our text messaging system provides an opportunity to overcome this barrier where availability of data entry facilities is limited.
Collapse
|
343
|
Dignan FL, Clark A, Aitken C, Gilleece M, Jayakar V, Krishnamurthy P, Pagliuca A, Potter MN, Shaw B, Skinner R, Turner A, Wynn RF, Coyle P. BCSH/BSBMT/UK clinical virology network guideline: diagnosis and management of common respiratory viral infections in patients undergoing treatment for haematological malignancies or stem cell transplantation. Br J Haematol 2016; 173:380-93. [PMID: 27060988 PMCID: PMC7161808 DOI: 10.1111/bjh.14027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 12/21/2022]
Abstract
A joint working group established by the Haemato-oncology subgroup of the British Committee for Standards in Haematology, the British Society for Bone Marrow Transplantation and the UK Clinical Virology Network has reviewed the available literature and made recommendations for the diagnosis and management of respiratory viral infections in patients with haematological malignancies or those undergoing haematopoietic stem cell transplantation. This guideline includes recommendations for the diagnosis, prevention and treatment of respiratory viral infections in adults and children. The suggestions and recommendations are primarily intended for physicians practising in the United Kingdom.
Collapse
Affiliation(s)
- Fiona L Dignan
- Department of Haematology, Central Manchester NHS Foundation Trust, Manchester, UK
| | - Andrew Clark
- Bone Marrow Transplant Unit, Beatson Oncology Centre, Gartnavel Hospital, Glasgow, UK
| | - Celia Aitken
- West of Scotland Specialist Virology Centre, Glasgow Royal Infirmary, Glasgow, UK
| | - Maria Gilleece
- Department of Haematology, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Vishal Jayakar
- Department of Haematology, Kingston Hospital NHS Trust, Kingston upon Thames, London, UK
| | | | - Antonio Pagliuca
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Michael N Potter
- Section of Haemato-oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Bronwen Shaw
- Section of Haemato-oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Roderick Skinner
- Department of Paediatric and Adolescent Haematology/Oncology, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Andrew Turner
- Department of Virology, Central Manchester NHS Foundation Trust, Manchester, UK
| | - Robert F Wynn
- Royal Manchester Children's Hospital, Manchester, UK
| | - Peter Coyle
- Regional Virus Laboratory, Department of Microbiology, Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
344
|
Cebey-López M, Herberg J, Pardo-Seco J, Gómez-Carballa A, Martinón-Torres N, Salas A, Martinón-Sánchez JM, Justicia A, Rivero-Calle I, Sumner E, Fink C, Martinón-Torres F. Does Viral Co-Infection Influence the Severity of Acute Respiratory Infection in Children? PLoS One 2016; 11:e0152481. [PMID: 27096199 PMCID: PMC4838299 DOI: 10.1371/journal.pone.0152481] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/15/2016] [Indexed: 12/28/2022] Open
Abstract
Background Multiple viruses are often detected in children with respiratory infection but the significance of co-infection in pathogenesis, severity and outcome is unclear. Objectives To correlate the presence of viral co-infection with clinical phenotype in children admitted with acute respiratory infections (ARI). Methods We collected detailed clinical information on severity for children admitted with ARI as part of a Spanish prospective multicenter study (GENDRES network) between 2011–2013. A nested polymerase chain reaction (PCR) approach was used to detect respiratory viruses in respiratory secretions. Findings were compared to an independent cohort collected in the UK. Results 204 children were recruited in the main cohort and 97 in the replication cohort. The number of detected viruses did not correlate with any markers of severity. However, bacterial superinfection was associated with increased severity (OR: 4.356; P-value = 0.005), PICU admission (OR: 3.342; P-value = 0.006), higher clinical score (1.988; P-value = 0.002) respiratory support requirement (OR: 7.484; P-value < 0.001) and longer hospital length of stay (OR: 1.468; P-value < 0.001). In addition, pneumococcal vaccination was found to be a protective factor in terms of degree of respiratory distress (OR: 2.917; P-value = 0.035), PICU admission (OR: 0.301; P-value = 0.011), lower clinical score (-1.499; P-value = 0.021) respiratory support requirement (OR: 0.324; P-value = 0.016) and oxygen necessity (OR: 0.328; P-value = 0.001). All these findings were replicated in the UK cohort. Conclusion The presence of more than one virus in hospitalized children with ARI is very frequent but it does not seem to have a major clinical impact in terms of severity. However bacterial superinfection increases the severity of the disease course. On the contrary, pneumococcal vaccination plays a protective role.
Collapse
Affiliation(s)
- Miriam Cebey-López
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría, Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
- Translational Pediatrics and Infectious Diseases section, Department of Pediatrics, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Galicia, Spain
- * E-mail:
| | - Jethro Herberg
- Section of Paediatrics, Division of Infectious Disease, Imperial College of London, South Kensington Campus, London, United Kingdom
| | - Jacobo Pardo-Seco
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría, Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
- Translational Pediatrics and Infectious Diseases section, Department of Pediatrics, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Grupo de Medicina Xenómica (GMX), Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Alberto Gómez-Carballa
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría, Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
- Translational Pediatrics and Infectious Diseases section, Department of Pediatrics, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Grupo de Medicina Xenómica (GMX), Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Nazareth Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría, Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
- Translational Pediatrics and Infectious Diseases section, Department of Pediatrics, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Galicia, Spain
| | - Antonio Salas
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría, Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Grupo de Medicina Xenómica (GMX), Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - José María Martinón-Sánchez
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría, Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
- Translational Pediatrics and Infectious Diseases section, Department of Pediatrics, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Galicia, Spain
| | - Antonio Justicia
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría, Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
- Translational Pediatrics and Infectious Diseases section, Department of Pediatrics, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Galicia, Spain
| | - Irene Rivero-Calle
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría, Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
- Translational Pediatrics and Infectious Diseases section, Department of Pediatrics, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Galicia, Spain
| | - Edward Sumner
- Micropathology Ltd., University of Warwick Science Park, Coventry, United Kingdom
| | - Colin Fink
- Micropathology Ltd., University of Warwick Science Park, Coventry, United Kingdom
| | - Federico Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría, Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
- Translational Pediatrics and Infectious Diseases section, Department of Pediatrics, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Galicia, Spain
| | | |
Collapse
|
345
|
Streptococcus pneumoniae Colonization Disrupts the Microbial Community within the Upper Respiratory Tract of Aging Mice. Infect Immun 2016; 84:906-16. [PMID: 26787714 DOI: 10.1128/iai.01275-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/06/2016] [Indexed: 12/21/2022] Open
Abstract
Nasopharyngeal colonization by the Gram-positive bacterium Streptococcus pneumonia is a prerequisite for pneumonia and invasive pneumococcal diseases. Colonization is asymptomatic, involving dynamic and complex interplay between commensals, the host immune system, and environmental factors. The elderly are at an increased risk of developing pneumonia, which might be due to changes in the respiratory microbiota that would impact bacterial colonization and persistence within this niche. We hypothesized that the composition of the upper respiratory tract (URT) microbiota changes with age and subsequently can contribute to sustained colonization and inefficient clearance of S. pneumoniae To test this, we used a mouse model of pneumococcal colonization to compare the composition of the URT microbiota in young, middle-aged, and old mice in the naive state and during the course of colonization using nasal pharyngeal washes. Sequencing of variable region 3 (V3) of the 16S rRNA gene was used to identify changes occurring with age and throughout the course of S. pneumonia colonization. We discovered that age affects the composition of the URT microbiota and that colonization with S. pneumoniae is more disruptive of preexisting communities in older mice. We have further shown that host-pathogen interactions followingS. pneumonia colonization can impact the populations of resident microbes, including Staphylococcus and Haemophilus. Together, our findings indicate alterations to the URT microbiota could be detrimental to the elderly, resulting in increased colonization of S. pneumonia and decreased efficiency in its clearance.
Collapse
|
346
|
McCombs JE, Kohler JJ. Pneumococcal Neuraminidase Substrates Identified through Comparative Proteomics Enabled by Chemoselective Labeling. Bioconjug Chem 2016; 27:1013-22. [PMID: 26954852 DOI: 10.1021/acs.bioconjchem.6b00050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuraminidases (sialidases) are enzymes that hydrolytically remove sialic acid from sialylated proteins and lipids. Neuraminidases are encoded by a range of human pathogens, including bacteria, viruses, fungi, and protozoa. Many pathogen neuraminidases are virulence factors, indicating that desialylation of host glycoconjugates can be a critical step in infection. Specifically, desialylation of host cell surface glycoproteins can enable these molecules to function as pathogen receptors or can alter signaling through the plasma membrane. Despite these critical effects, no unbiased approaches exist to identify glycoprotein substrates of neuraminidases. Here, we combine previously reported glycoproteomics methods with quantitative proteomics analysis to identify glycoproteins whose sialylation changes in response to neuraminidase treatment. The two glycoproteomics methods-periodate oxidation and aniline-catalyzed oxime ligation (PAL) and galactose oxidase and aniline-catalyzed oxime ligation (GAL)-rely on chemoselective labeling of sialylated and nonsialylated glycoproteins, respectively. We demonstrated the utility of the combined approaches by identifying substrates of two pneumococcal neuraminidases in a human cell line that models the blood-brain barrier. The methods deliver complementary lists of neuraminidase substrates, with GAL identifying a larger number of substrates than PAL (77 versus 17). Putative neuraminidase substrates were confirmed by other methods, establishing the validity of the approach. Among the identified substrates were host glycoproteins known to function in bacteria adherence and infection. Functional assays suggest that multiple desialylated cell surface glycoproteins may act together as pneumococcus receptors. Overall, this method will provide a powerful approach to identify glycoproteins that are desialylated by both purified neuraminidases and intact pathogens.
Collapse
Affiliation(s)
- Janet E McCombs
- Department of Biochemistry, The University of Texas Southwestern Medical Center , Dallas, Texas 75390-9038, United States
| | - Jennifer J Kohler
- Department of Biochemistry, The University of Texas Southwestern Medical Center , Dallas, Texas 75390-9038, United States
| |
Collapse
|
347
|
Heinrich A, Haarmann H, Zahradnik S, Frenzel K, Schreiber F, Klassert TE, Heyl KA, Endres AS, Schmidtke M, Hofmann J, Slevogt H. Moraxella catarrhalis decreases antiviral innate immune responses by down-regulation of TLR3 via inhibition of p53 in human bronchial epithelial cells. FASEB J 2016; 30:2426-34. [PMID: 26979086 DOI: 10.1096/fj.201500172r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/01/2016] [Indexed: 12/11/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is complicated by infectious exacerbations with acute worsening of respiratory symptoms. Coinfections of bacterial and viral pathogens are associated with more severe exacerbations. Moraxella catarrhalis is one of the most frequent lower respiratory tract pathogens detected in COPD. We therefore studied the impact of M. catarrhalis on the antiviral innate immune response that is mediated via TLR3 and p53. Molecular interactions between M. catarrhalis and normal human bronchial epithelial (NHBE) cells as well as Beas-2B cells were studied using flow cytometry, quantitative PCR analysis, chromatin immunoprecipitation, RNA interference, and ELISA. M. catarrhalis induces a significant down-regulation of TLR3 in human bronchial epithelial cells. In M. catarrhalis-infected cells, expression of p53 was decreased. We detected a reduced binding of p53 to the tlr3 promoter, resulting in reduced TLR3 gene transcription. M. catarrhalis diminished the TLR3-dependent secretion of IFN-β, IFN-λ, and chemokine (C-X-C motif) ligand 8. In addition in M. catarrhalis infected cells, expression of rhinovirus type 1A RNA was increased compared with uninfected cells. M. catarrhalis reduces antiviral defense functions of bronchial epithelial cells, which may increase susceptibility to viral infections.-Heinrich, A., Haarmann, H., Zahradnik, S., Frenzel, K., Schreiber, F., Klassert, T. E., Heyl, K. A., Endres, A.-S., Schmidtke, M., Hofmann, J., Slevogt, H. Moraxella catarrhalis decreases antiviral innate immune responses by down-regulation of TLR3 via inhibition of p53 in human bronchial epithelial cells.
Collapse
Affiliation(s)
- Annina Heinrich
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Helge Haarmann
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Sabrina Zahradnik
- Institute of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Frenzel
- Institute of Medical Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Frauke Schreiber
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | | | - Kerstin A Heyl
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | | | - Michaela Schmidtke
- Department of Virology and Antiviral Therapy, School of Medicine, Jena University Hospital, Jena, Germany
| | - Jörg Hofmann
- Institute of Medical Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hortense Slevogt
- Septomics Research Center, Jena University Hospital, Jena, Germany;
| |
Collapse
|
348
|
Abstract
BACKGROUND Kingella kingae outbreaks occur sporadically in childcare centers but remain poorly understood and difficult to identify. METHODS To provide the basis of a better knowledge of K. kingae outbreaks patterns that may help to guide identification and management strategies, we collected epidemiological, clinical and laboratory data from all reported K. kingae outbreaks, and those from 2 new Israel outbreaks in 2014. RESULTS Nine outbreaks were identified in the USA, Israel and France from 2003 to 2014. Twenty-seven children with a median age of 14 ± 4.1 months were affected, male:female ratio of 1.4:1. Outbreaks demonstrated seasonal patterns from the 10th to the 45th weeks, a mean duration of 13.1 ± 8.4 days, a mean attack rate of 17.3 ± 5.1% and a case-fatality rate of 3.7% (1/27). Seventy-four percentage of children had fever (20/27), and the mean values of white blood cell count and C-reactive protein level were 14.6 ± 4.5 × 10/L and 23.8 ± 24.1 mg/L, respectively. Osteoarticular infections accounted for 88.9% of cases (24/27), bacteremia 7.4% (2/27), endocarditis 3.7% (1/27) and meningitis 3.7% (1/27). Specific real-time polymerase chain reaction demonstrated higher performance than culture methods in the diagnosis of case patients and investigations of oropharyngeal K. kingae carriage among close contacts, and multilocus sequence typing methods revealed that ST-6 and ST-25 invasive strains were responsible for multiple country-dependent outbreaks. Coviral infections were identified in the majority of K. kingae outbreaks, notably those causing oral ulcers. CONCLUSIONS K. kingae outbreaks displayed severe K. kingae diseases that were poorly confirmed with culture methods. We argue for the use of genomic technologies to investigate further K. kingae outbreaks.
Collapse
|
349
|
Rampelli S, Soverini M, Turroni S, Quercia S, Biagi E, Brigidi P, Candela M. ViromeScan: a new tool for metagenomic viral community profiling. BMC Genomics 2016; 17:165. [PMID: 26932765 DOI: 10.1186/s12864-016-2446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/08/2016] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Bioinformatics tools available for metagenomic sequencing analysis are principally devoted to the identification of microorganisms populating an ecological niche, but they usually do not consider viruses. Only some software have been designed to profile the viral sequences, however they are not efficient in the characterization of viruses in the context of complex communities, like the intestinal microbiota, containing bacteria, archeabacteria, eukaryotic microorganisms and viruses. In any case, a comprehensive description of the host-microbiota interactions can not ignore the profile of eukaryotic viruses within the virome, as viruses are definitely critical for the regulation of the host immunophenotype. RESULTS ViromeScan is an innovative metagenomic analysis tool that characterizes the taxonomy of the virome directly from raw data of next-generation sequencing. The tool uses hierarchical databases for eukaryotic viruses to unambiguously assign reads to viral species more accurately and >1000 fold faster than other existing approaches. We validated ViromeScan on synthetic microbial communities and applied it on metagenomic samples of the Human Microbiome Project, providing a sensitive eukaryotic virome profiling of different human body sites. CONCLUSIONS ViromeScan allows the user to explore and taxonomically characterize the virome from metagenomic reads, efficiently denoising samples from reads of other microorganisms. This implies that users can fully characterize the microbiome, including bacteria and viruses, by shotgun metagenomic sequencing followed by different bioinformatic pipelines.
Collapse
Affiliation(s)
- Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, 40126, Italy.
| | - Matteo Soverini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, 40126, Italy.
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, 40126, Italy.
| | - Sara Quercia
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, 40126, Italy.
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, 40126, Italy.
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, 40126, Italy.
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, 40126, Italy.
| |
Collapse
|
350
|
Rampelli S, Soverini M, Turroni S, Quercia S, Biagi E, Brigidi P, Candela M. ViromeScan: a new tool for metagenomic viral community profiling. BMC Genomics 2016; 17:165. [PMID: 26932765 PMCID: PMC4774116 DOI: 10.1186/s12864-016-2446-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bioinformatics tools available for metagenomic sequencing analysis are principally devoted to the identification of microorganisms populating an ecological niche, but they usually do not consider viruses. Only some software have been designed to profile the viral sequences, however they are not efficient in the characterization of viruses in the context of complex communities, like the intestinal microbiota, containing bacteria, archeabacteria, eukaryotic microorganisms and viruses. In any case, a comprehensive description of the host-microbiota interactions can not ignore the profile of eukaryotic viruses within the virome, as viruses are definitely critical for the regulation of the host immunophenotype. RESULTS ViromeScan is an innovative metagenomic analysis tool that characterizes the taxonomy of the virome directly from raw data of next-generation sequencing. The tool uses hierarchical databases for eukaryotic viruses to unambiguously assign reads to viral species more accurately and >1000 fold faster than other existing approaches. We validated ViromeScan on synthetic microbial communities and applied it on metagenomic samples of the Human Microbiome Project, providing a sensitive eukaryotic virome profiling of different human body sites. CONCLUSIONS ViromeScan allows the user to explore and taxonomically characterize the virome from metagenomic reads, efficiently denoising samples from reads of other microorganisms. This implies that users can fully characterize the microbiome, including bacteria and viruses, by shotgun metagenomic sequencing followed by different bioinformatic pipelines.
Collapse
Affiliation(s)
- Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, 40126, Italy.
| | - Matteo Soverini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, 40126, Italy.
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, 40126, Italy.
| | - Sara Quercia
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, 40126, Italy.
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, 40126, Italy.
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, 40126, Italy.
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, 40126, Italy.
| |
Collapse
|