301
|
Sher YP, Chai KM, Chen WC, Shen KY, Chen IH, Lee MH, Chiu FF, Liu SJ. A Polypeptide of Tumor-Associated Antigen L6 with Intrinsic Adjuvant Activity Enhances Antitumor Immunity. Vaccines (Basel) 2020; 8:vaccines8040620. [PMID: 33096846 PMCID: PMC7711899 DOI: 10.3390/vaccines8040620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 12/03/2022] Open
Abstract
Peptide vaccines are safe, and aim to elicit and expand tumor-specific immunity so as to eradicate tumors. However, achieving strong and long-lasting anti-tumor immunity with peptide vaccines for the antigen-specific treatment of cancer is challenging, in part because their efficacy depends on strong adjuvants or immunomodulators. We approached this problem by conjugating an epitope-based cancer vaccine with a lipidated sequence (an immunomodulator) to elicit a strong immune response. Lipidated and non-lipidated polyepitope proteins were generated that contained the universal T helper cell epitope (pan-DR), B cell epitopes, and the extended loop sequence of extracellular domain 2 of tumor-associated antigen L6 (TAL6). We show that the lipidated polyepitope cancer vaccine can activate bone marrow-derived dendritic cells, and trigger effective antigen-specific antibody and T helper cell responses, more effectively than the non-lipidated vaccine. Moreover, potent T cell immune responses were elicited in mice inoculated with the lipidated polyepitope cancer vaccine, providing protective antitumor immunity in mice bearing TAL6 tumors. Our study demonstrates that a lipidated polyepitope cancer vaccine could be employed to generate potent anti-tumor immune responses, including humoral and cellular immunity, which could be beneficial in the treatment of TAL6+ cancer.
Collapse
Affiliation(s)
- Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung 404, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Kit Man Chai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan
| | - Wen-Ching Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan
| | - Kuan-Yin Shen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan
| | - I-Hua Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan
| | - Ming-Hui Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan
| | - Fang-Feng Chiu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan
| | - Shih-Jen Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
302
|
Becker NS, Rollins RE, Nosenko K, Paulus A, Martin S, Krebs S, Takano A, Sato K, Kovalev SY, Kawabata H, Fingerle V, Margos G. High conservation combined with high plasticity: genomics and evolution of Borrelia bavariensis. BMC Genomics 2020; 21:702. [PMID: 33032522 PMCID: PMC7542741 DOI: 10.1186/s12864-020-07054-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/06/2020] [Indexed: 12/28/2022] Open
Abstract
Background Borrelia bavariensis is one of the agents of Lyme Borreliosis (or Lyme disease) in Eurasia. The genome of the Borrelia burgdorferi sensu lato species complex, that includes B. bavariensis, is known to be very complex and fragmented making the assembly of whole genomes with next-generation sequencing data a challenge. Results We present a genome reconstruction for 33 B. bavariensis isolates from Eurasia based on long-read (Pacific Bioscience, for three isolates) and short-read (Illumina) data. We show that the combination of both sequencing techniques allows proper genome reconstruction of all plasmids in most cases but use of a very close reference is necessary when only short-read sequencing data is available. B. bavariensis genomes combine a high degree of genetic conservation with high plasticity: all isolates share the main chromosome and five plasmids, but the repertoire of other plasmids is highly variable. In addition to plasmid losses and gains through horizontal transfer, we also observe several fusions between plasmids. Although European isolates of B. bavariensis have little diversity in genome content, there is some geographic structure to this variation. In contrast, each Asian isolate has a unique plasmid repertoire and we observe no geographically based differences between Japanese and Russian isolates. Comparing the genomes of Asian and European populations of B. bavariensis suggests that some genes which are markedly different between the two populations may be good candidates for adaptation to the tick vector, (Ixodes ricinus in Europe and I. persulcatus in Asia). Conclusions We present the characterization of genomes of a large sample of B. bavariensis isolates and show that their plasmid content is highly variable. This study opens the way for genomic studies seeking to understand host and vector adaptation as well as human pathogenicity in Eurasian Lyme Borreliosis agents.
Collapse
Affiliation(s)
- Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany.
| | - Robert E Rollins
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Kateryna Nosenko
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Alexander Paulus
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Samantha Martin
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany.,University of Helsinki, Biomedicum Helsinki, PO Box 63, Haartmaninkatu 8, FIN-00014, Helsinki, Finland
| | - Stefan Krebs
- Gene Center, Laboratory for Functional Genome Analysis, LMU Munich, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Ai Takano
- Department of Veterinary Epidemiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Kozue Sato
- Department of Bacteriology-I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Sergey Y Kovalev
- Laboratory of Molecular Genetics, Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin Avenue 51, Yekaterinburg, 620000, Russia
| | - Hiroki Kawabata
- Department of Bacteriology-I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Volker Fingerle
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr 2, 85764, Oberschleissheim, Germany
| | - Gabriele Margos
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr 2, 85764, Oberschleissheim, Germany
| |
Collapse
|
303
|
Abstract
Molecular mechanisms by which sex steroids interact with P. aeruginosa to modulate its virulence have yet to be reported. Our work provides the first characterization of a steroid-induced membrane stress mechanism promoting P. aeruginosa virulence, which includes the release of proinflammatory outer membrane vesicles, resulting in inflammation, host tissue damage, and reduced bacterial clearance. We further demonstrate that at nanomolar (physiological) concentrations, male and female sex steroids promote virulence in clinical strains of P. aeruginosa based on their dynamic membrane fluidic properties. This work provides, for the first-time, mechanistic insight to better understand and predict the P. aeruginosa related response to sex steroids and explain the interindividual patient variability observed in respiratory diseases such as cystic fibrosis that are complicated by gender differences and chronic P. aeruginosa infection. Estrogen, a major female sex steroid hormone, has been shown to promote the selection of mucoid Pseudomonas aeruginosa in the airways of patients with chronic respiratory diseases, including cystic fibrosis. This results in long-term persistence, poorer clinical outcomes, and limited therapeutic options. In this study, we demonstrate that at physiological concentrations, sex steroids, including testosterone and estriol, induce membrane stress responses in P. aeruginosa. This is characterized by increased virulence and consequent inflammation and release of proinflammatory outer membrane vesicles promoting in vivo persistence of the bacteria. The steroid-induced P. aeruginosa response correlates with the molecular polarity of the hormones and membrane fluidic properties of the bacteria. This novel mechanism of interaction between sex steroids and P. aeruginosa explicates the reported increased disease severity observed in females with cystic fibrosis and provides evidence for the therapeutic potential of the modulation of sex steroids to achieve better clinical outcomes in patients with hormone-responsive strains.
Collapse
|
304
|
Mei C, Sun AH, Blackall PJ, Xian H, Li SF, Gong YM, Wang HJ. Component Identification and Functional Analysis of Outer Membrane Vesicles Released by Avibacterium paragallinarum. Front Microbiol 2020; 11:518060. [PMID: 33101220 PMCID: PMC7545073 DOI: 10.3389/fmicb.2020.518060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/27/2020] [Indexed: 11/16/2022] Open
Abstract
Avibacterium paragallinarum, the causative agent of infectious coryza, is known to release outer membrane vesicles (OMVs). In the present study, we investigated the composition, bioactivities, and functional properties of the OMVs of A. paragallinarum. Following extraction and purification, the OMVs were observed to be spherical in shape, with diameters ranging from 20 to 300 nm. The vesicles contained endotoxin as well as genomic DNA. The molecular weights of the OMV-contained protein fragments were mostly concentrated at 65 and 15 kDa. The components of the OMV proteins were mainly various functional enzymes (e.g., ATP-dependent RNA helicase), structural components (e.g., streptomycin B receptor and membrane protein), and some hypothetical proteins with unknown functions. The expression levels of inflammation-related factors, such as interleukin (IL)-2, IL-6, IL-1β, IL-10, and inducible nitric oxide synthase (iNOs), were significantly upregulated in chicken macrophage cells HD11 incubated with OMVs. Serum IgG antibodies were measured after two intramuscular injections of an OMV-based vaccine into specific pathogen-free (SPF) chickens. The vaccinated chickens were then challenged by A. paragallinarum of homologous and heterologous serovars. It was noted that the vaccinated chickens produced immunoglobulin G (IgG) antibodies against A. paragallinarum. The OMVs conferred an acceptable level of protection (70%), defined as an absence of colonization and of clinical signs, against the homologous strain (serovar A), while the cross-protection against heterologous challenge with serovars B and C was much weaker. However, the OMVS did provide significant protection against clinical signs for all three serovars. Overall, this study laid a foundation for further unraveling the functional roles of OMVs released by A. paragallinarum.
Collapse
Affiliation(s)
- Chen Mei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Ai-Hua Sun
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Hong Xian
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Shu-Fang Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Yu-Mei Gong
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Hong-Jun Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| |
Collapse
|
305
|
Begić M, Josić D. Biofilm formation and extracellular microvesicles-The way of foodborne pathogens toward resistance. Electrophoresis 2020; 41:1718-1739. [PMID: 32901923 DOI: 10.1002/elps.202000106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
Almost all known foodborne pathogens are able to form biofilms as one of the strategies for survival under harsh living conditions, to ward off the inhibition and the disinfection during food production, transport and storage, as well as during cleaning and sanitation of corresponding facilities. Biofilms are communities where microbial cells live under constant intracellular interaction and communication. Members of the biofilm community are embedded into extracellular matrix that contains polysaccharides, DNA, lipids, proteins, and small molecules that protect microorganisms and enable their intercellular communication under stress conditions. Membrane vesicles (MVs) are produced by both Gram positive and Gram negative bacteria. These lipid membrane-enveloped nanoparticles play an important role in biofilm genesis and in communication between different biofilm members. Furthermore, MVs are involved in other important steps of bacterial life like cell wall modeling, cellular division, and intercellular communication. They also carry toxins and virulence factors, as well as nucleic acids and different metabolites, and play a key role in host infections. After entering host cells, MVs can start many pathologic processes and cause serious harm and cell death. Prevention and inhibition of both biofilm formation and shedding of MVs by foodborne pathogens has a very important role in food production, storage, and food safety in general. Better knowledge of biofilm formation and maintaining, as well as the role of microbial vesicles in this process and in the process of host cells' infection is essential for food safety and prevention of both food spoilage and host infection.
Collapse
Affiliation(s)
- Marija Begić
- Faculty of Medicine, Juraj Dobrila University, Pula, Croatia
| | - Djuro Josić
- Faculty of Medicine, Juraj Dobrila University, Pula, Croatia.,Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
306
|
Peng Y, Gao M, Liu Y, Qiu X, Cheng X, Yang X, Chen F, Wang E. Bacterial outer membrane vesicles induce disseminated intravascular coagulation through the caspase-11-gasdermin D pathway. Thromb Res 2020; 196:159-166. [PMID: 32882448 DOI: 10.1016/j.thromres.2020.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/18/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Disseminated intravascular coagulation (DIC), a severe complication of sepsis, promotes multiple organ dysfunctions and lethality. Bacterial infection is the most common cause of sepsis. We previously show an important role of bacteria-released outer membrane vesicles (OMVs) in bacterial infection-induced DIC. In the light of recent advance that activation of caspase-11 and its enzymatic substrate gasdermin D (GSDMD) is able to trigger coagulation, we postulate that OMVs might induce DIC through the caspase-11-GSDMD pathway. METHODS Caspase-11- or GSDMD-deficient mice and their wild-type (WT) controls were injected with purified Escherichia coli-derived OMVs. Blood samples were then collected. The development of DIC was assessed in terms of the occurrence of coagulopathy, the organ injuries and the lethality. Peritoneal macrophages derived from WT, Caspase-11- or GSDMD-deficient mice were stimulated with OMVs. Then the cell surface tissue factor (TF) activity and thrombin generation were assessed. RESULTS Genetic deletion of Caspase-11 or GSDMD or pharmacological inhibition of caspase-11 markedly attenuated OMVs-induced coagulopathy, multiple organ injuries and mortality. Caspase-11- or GSDMD-deficient macrophages exhibited markedly reduced TF activity after OMVs stimulation. CONCLUSION OMVs induce DIC through the caspase-11-GSDMD pathway. These findings might open a new avenue to prevent or treat bacterial infection-induced DIC.
Collapse
Affiliation(s)
- Yue Peng
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Min Gao
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yukun Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xianhui Qiu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xiaoye Cheng
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xinyu Yang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Fangping Chen
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Erhua Wang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
307
|
Kuerban K, Gao X, Zhang H, Liu J, Dong M, Wu L, Ye R, Feng M, Ye L. Doxorubicin-loaded bacterial outer-membrane vesicles exert enhanced anti-tumor efficacy in non-small-cell lung cancer. Acta Pharm Sin B 2020; 10:1534-1548. [PMID: 32963948 PMCID: PMC7488491 DOI: 10.1016/j.apsb.2020.02.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 01/05/2023] Open
Abstract
More efficient drug delivery system and formulation with less adverse effects are needed for the clinical application of broad-spectrum antineoplastic agent doxorubicin (DOX). Here we obtained outer-membrane vesicles (OMVs), a nano-sized proteoliposomes naturally released by Gram-negative bacteria, from attenuated Klebsiella pneumonia and prepared doxorubicin-loaded O0MVs (DOX-OMV). Confocal microscopy and in vivo distribution study observed that DOX encapsulated in OMVs was efficiently transported into NSCLC A549 cells. DOX-OMV resulted in intensive cytotoxic effects and cell apoptosis in vitro as evident from MTT assay, Western blotting and flow cytometry due to the rapid cellular uptake of DOX. In A549 tumor-bearing BALB/c nude mice, DOX-OMV presented a substantial tumor growth inhibition with favorable tolerability and pharmacokinetic profile, and TUNEL assay and H&E staining displayed extensive apoptotic cells and necrosis in tumor tissues. More importantly, OMVs’ appropriate immunogenicity enabled the recruitment of macrophages in tumor microenvironment which might synergize with their cargo DOX in vivo. Our results suggest that OMVs can not only function as biological nanocarriers for chemotherapeutic agents but also elicit suitable immune responses, thus having a great potential for the tumor chemoimmunotherapy.
Collapse
|
308
|
Shi J, Ma Z, Pan H, Liu Y, Chu Y, Wang J, Chen L. Biofilm-encapsulated nano drug delivery system for the treatment of colon cancer. J Microencapsul 2020; 37:481-491. [DOI: 10.1080/02652048.2020.1797914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jinyan Shi
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Zhiwei Ma
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Hao Pan
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Yang Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Yuqi Chu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Jinglei Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Lijiang Chen
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| |
Collapse
|
309
|
Ahmadi Badi S, Bruno SP, Moshiri A, Tarashi S, Siadat SD, Masotti A. Small RNAs in Outer Membrane Vesicles and Their Function in Host-Microbe Interactions. Front Microbiol 2020; 11:1209. [PMID: 32670219 PMCID: PMC7327240 DOI: 10.3389/fmicb.2020.01209] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/12/2020] [Indexed: 01/18/2023] Open
Affiliation(s)
- Sara Ahmadi Badi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Arfa Moshiri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Tarashi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Andrea Masotti
- Research Laboratories, Children's Hospital Bambino Gesù-IRCCS, Rome, Italy
| |
Collapse
|
310
|
Song Z, Li B, Zhang Y, Li R, Ruan H, Wu J, Liu Q. Outer Membrane Vesicles of Helicobacter pylori 7.13 as Adjuvants Promote Protective Efficacy Against Helicobacter pylori Infection. Front Microbiol 2020; 11:1340. [PMID: 32733396 PMCID: PMC7358646 DOI: 10.3389/fmicb.2020.01340] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori(H. pylori), a gram-negative bacterium in the human stomach with global prevalence, is relevant to chronic gastrointestinal diseases. Due to its increasing drug resistance and the low protective efficacy of some anti-H. pylori vaccines, it is necessary to find a suitable adjuvant to improve antigen efficiency. In our previous study, we determined that outer membrane vesicles (OMVs), a multicomponent secretion generated by gram-negative bacteria, of H. pylori were safe and could induce long-term and robust immune responses against H. pylori in mice. In this study, we employed two common vaccines, outer membrane proteins (OMPs) and whole cell vaccine (WCV) to assess the adjuvanticity of OMVs in mice. A standard adjuvant, cholera toxin (CT), was used as a control. Purified H. pylori OMVs used as adjuvants generated lasting anti-H. pylori resistance for 12 weeks. Additionally, both systematic and gastric mucosal immunity, as well as humoral immunity, of mice immunized with vaccine and OMVs combinations were significantly enhanced. Moreover, OMVs efficiently promoted Th1 immune response, but the response was skewed toward Th2 and Th17 immunity when compared with that induced by the CT adjuvant. Most importantly, OMVs as adjuvants enhanced the eradication of H. pylori. Thus, OMVs have potential applications as adjuvants in the development of a new generation of vaccines to treat H. pylori infection.
Collapse
Affiliation(s)
- Zifan Song
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Biaoxian Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yingxuan Zhang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Ruizhen Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Huan Ruan
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Jing Wu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
311
|
Badi SA, Motahhary A, Bahramali G, Masoumi M, Khalili SFS, Ebrahimzadeh N, Nouri P, Rahimi A, Masotti A, Moshiri A, Siadat SD. The regulation of Niemann-Pick C1-Like 1 (NPC1L1) gene expression in opposite direction by Bacteroides spp. and related outer membrane vesicles in Caco-2 cell line. J Diabetes Metab Disord 2020; 19:415-422. [PMID: 32550192 DOI: 10.1007/s40200-020-00522-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/24/2020] [Indexed: 11/28/2022]
Abstract
Purpose The intestine has substantial role in cholesterol homeostasis due to the presence of various cholesterol transporters and gut microbiota. Bacteroides spp. are important members of gut microbiota that employ outer membrane vesicles (OMVs) to interact with host. In this regard, we evaluated the effect of Bacteroides fragilis, Bacteroides thetaiotaomicron and related OMVs on the gene expression of important cholesterol transporters, Niemann-Pick C1-Like 1 (NPC1L1), ATP-binding cassette (ABCA1), and liver X receptors (LXRs) in Caco-2 cells. Methods OMVs were isolated from overnight brain heart infusion (BHI) broth of bacterial standard strains using deoxycholate and assessed by Scanning electron microscopy (SEM). The relative change in genes expression was assessed by Quantitative reverse transcription PCR (RT-qPCR) based on SYBR Green and 2-∆∆ct method in Caco-2 cells that were treated with bacteria and OMVs. Data were statistically analyzed with GraphPad Prism software. Finally, pathway enrichment based on the studied genes was performed using Cytoscape plugin ClueGO. Results B. fragilis (P value = 0.002) and B. thetaiotaomicron (P value = 0.001) significantly reduced NPC1L1 gene expression in Caco-2 cells. Interestingly, NPC1L1 transcripts were significantly increased by both OMVs(P value = 0.04) (P value = 0.01). Also, LXRβ was significantly down regulated by B. thetaiotaomicron (P value = 0.02). ClueGO analysis on the studied genes demonstrated several functional groups which involve in lipid and cholesterol metabolism. Conclusion The opposite effect of B. fragilis, B. thetaiotaomicron and related OMVs on the NPC1L1 gene expression was observed in Caco-2 cells. Interestingly, these effects partially were in line with the alternation of LXRs expression. However, based on pathway enrichment analysis, further molecular investigations are required to elaborate in details the specific association between Bacteroides spp. and OMVs with regulation of cholesterol signaling pathways including cholesterol transport, lipid storage, lipid homeostasis and cholesterol homeostasis.
Collapse
Affiliation(s)
- Sara Ahmadi Badi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Atiyyeh Motahhary
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Golnaz Bahramali
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Masoumi
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Nayereh Ebrahimzadeh
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Pegah Nouri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ayoub Rahimi
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, Rome, Italy
| | - Arfa Moshiri
- Cancer Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran.,Endocrinologyand Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
312
|
Dineshkumar K, Aparna V, Wu L, Wan J, Abdelaziz MH, Su Z, Wang S, Xu H. Bacterial bug-out bags: outer membrane vesicles and their proteins and functions. J Microbiol 2020; 58:531-542. [DOI: 10.1007/s12275-020-0026-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023]
|
313
|
Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2020; 12:toxins12060373. [PMID: 32512916 PMCID: PMC7354503 DOI: 10.3390/toxins12060373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia.
Collapse
|
314
|
Hu R, Li J, Zhao Y, Lin H, Liang L, Wang M, Liu H, Min Y, Gao Y, Yang M. Exploiting bacterial outer membrane vesicles as a cross-protective vaccine candidate against avian pathogenic Escherichia coli (APEC). Microb Cell Fact 2020; 19:119. [PMID: 32493405 PMCID: PMC7268718 DOI: 10.1186/s12934-020-01372-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background The well-known fact that avian pathogenic Escherichia coli (APEC) is harder to prevent due to its numerous serogroups has promoted the development of biological immunostimulatory materials as new vaccine candidates in poultry farms. Bacterial outer membrane vesicles (OMVs), known as spherical nanovesicles enriched with various immunostimulants, are naturally secreted by Gram-negative bacteria, and have gained much attention for developing effective vaccine candidates. Recent report has demonstrated that OMVs of APEC O78 can induce protective immunity in chickens. Here, a novel multi-serogroup OMVs (MOMVs) vaccine was developed to achieve cross-protection against APEC infection in broiler chickens. Results In this study, OMVs produced by three APEC strains were isolated, purified and prepared into MOMVs by mixing these three OMVs. By using SDS-PAGE and LC–MS/MS, 159 proteins were identified in MOMVs and the subcellular location and biological functions of 20 most abundant proteins were analyzed. The immunogenicity of MOMVs was evaluated, and the results showed that MOMVs could elicit innate immune responses, including internalization by chicken macrophage and production of immunomodulatory cytokines. Vaccination with MOMVs induced specific broad-spectrum antibodies as well as Th1 and Th17 immune responses. The animal experiment has confirmed that immunization with an appropriate dose of MOMVs could not cause any adverse effect and was able to reduce bacteria loads and pro-inflammatory cytokines production, thus providing effective cross-protection against lethal infections induced by multi-serogroup APEC strains in chickens. Further experiments indicated that, although vesicular proteins were able to induce stronger protective efficiency than lipopolysaccharide, both vesicular proteins and lipopolysaccharide are crucial in MOMVs-mediated protection. Conclusions The multi-serogroup nanovesicles produced by APEC strains will open up a new way for the development of next generation vaccines with low toxicity and broad protection in the treatment and control of APEC infection.
Collapse
Affiliation(s)
- Rujiu Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Li
- Department of Animal Engineering, Yangling Vocation and Technical College, Yangling, 712100, Shaanxi, China
| | - Yuezhen Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hua Lin
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Liu Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mimi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haojing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yupeng Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Mingming Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
315
|
Narra HP, Sahni A, Walker DH, Sahni SK. Recent research milestones in the pathogenesis of human rickettsioses and opportunities ahead. Future Microbiol 2020; 15:753-765. [PMID: 32691620 PMCID: PMC7787141 DOI: 10.2217/fmb-2019-0266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
Abstract
Infections caused by pathogenic Rickettsia species continue to scourge human health across the globe. From the point of entry at the site of transmission by arthropod vectors, hematogenous dissemination of rickettsiae occurs to diverse host tissues leading to 'rickettsial vasculitis' as the salient feature of pathogenesis. This perspective article accentuates recent breakthrough developments in the context of host-pathogen-vector interactions during rickettsial infections. The subtopics include potential exploitation of circulating macrophages for spread, identification of new entry mechanisms and regulators of actin-based motility, appreciation of metabolites acquired from and effectors delivered into the host, importance of the toxin-antitoxin module in host-cell interactions, effects of the vector microbiome on rickettsial transmission, and niche-specific riboregulation and adaptation. Further research on these aspects will advance our understanding of the biology of rickettsiae as intracellular pathogens and should enable design and development of new approaches to counter rickettsioses in humans and other hosts.
Collapse
Affiliation(s)
- Hema P Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
316
|
Cheng K, Kang Q, Zhao X. Biogenic nanoparticles as immunomodulator for tumor treatment. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1646. [DOI: 10.1002/wnan.1646] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing China
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province College of Materials, Xiamen University Xiamen Fujian China
| | - Qinglin Kang
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Queensland Australia
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing China
| |
Collapse
|
317
|
Effect of Borrelia burgdorferi Outer Membrane Vesicles on Host Oxidative Stress Response. Antibiotics (Basel) 2020; 9:antibiotics9050275. [PMID: 32466166 PMCID: PMC7277464 DOI: 10.3390/antibiotics9050275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Outer membrane vesicles (OMVs) are spherical bodies containing proteins and nucleic acids that are released by Gram-negative bacteria, including Borrelia burgdorferi, the causative agent of Lyme disease. The functional relationship between B. burgdorferi OMVs and host neuron homeostasis is not well understood. The objective of this study was to examine how B. burgdorferi OMVs impact the host cell environment. First, an in vitro model was established by co-culturing human BE2C neuroblastoma cells with B. burgdorferi B31. B. burgdorferi was able to invade BE2C cells within 24 h. Despite internalization, BE2C cell viability and levels of apoptosis remained unchanged, but resulted in dramatically increased production of MCP-1 and MCP-2 cytokines. Elevated secretion of MCP-1 has previously been associated with changes in oxidative stress. BE2C cell mitochondrial superoxides were reduced as early as 30 min after exposure to B. burgdorferi and OMVs. To rule out whether BE2C cell antioxidant response is the cause of decline in superoxides, superoxide dismutase 2 (SOD2) gene expression was assessed. SOD2 expression was reduced upon exposure to B. burgdorferi, suggesting that B. burgdorferi might be responsible for superoxide reduction. These results suggest that B. burgdorferi modulates cell antioxidant defense and immune system reaction in response to the bacterial infection. In summary, these results show that B. burgdorferi OMVs serve to directly counter superoxide production in BE2C neurons, thereby 'priming' the host environment to support B. burgdorferi colonization.
Collapse
|
318
|
Zamora CY, Ward EM, Kester JC, Chen WLK, Velazquez JG, Griffith LG, Imperiali B. Application of a gut-immune co-culture system for the study of N-glycan-dependent host-pathogen interactions of Campylobacter jejuni. Glycobiology 2020; 30:374-381. [PMID: 31965157 PMCID: PMC7234929 DOI: 10.1093/glycob/cwz105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
An in vitro gut-immune co-culture model with apical and basal accessibility, designed to more closely resemble a human intestinal microenvironment, was employed to study the role of the N-linked protein glycosylation pathway in Campylobacter jejuni pathogenicity. The gut-immune co-culture (GIC) was developed to model important aspects of the human small intestine by the inclusion of mucin-producing goblet cells, human enterocytes and dendritic cells, bringing together a mucus-containing epithelial monolayer with elements of the innate immune system. The utility of the system was demonstrated by characterizing host-pathogen interactions facilitated by N-linked glycosylation, such as host epithelial barrier functions, bacterial invasion and immunogenicity. Changes in human intestinal barrier functions in the presence of 11168 C. jejuni (wildtype) strains were quantified using GICs. The glycosylation-impaired strain 11168 ΔpglE was 100-fold less capable of adhering to and invading this intestinal model in cell infectivity assays. Quantification of inflammatory signaling revealed that 11168ΔpglE differentially modulated inflammatory responses in different intestinal microenvironments, suppressive in some but activating in others. Virulence-associated outer membrane vesicles produced by wildtype and 11168ΔpglE C. jejuni were shown to have differential composition and function, with both leading to immune system activation when provided to the gut-immune co-culture model. This analysis of aspects of C. jejuni infectivity in the presence and absence of its N-linked glycome is enabled by application of the gut-immune model, and we anticipate that this system will be applicable to further studies of C. jejuni and other enteropathogens of interest.
Collapse
Affiliation(s)
- Cristina Y Zamora
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Elizabeth M Ward
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
| | - Jemila C Kester
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St, Cambridge, MA 02142, USA
| | - Wen Li Kelly Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St, Cambridge, MA 02142, USA
| | - Jason G Velazquez
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St, Cambridge, MA 02142, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St, Cambridge, MA 02142, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 33 Massachusetts Ave, Cambridge, 02139, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
319
|
Thoma J, Burmann BM. High-Resolution In Situ NMR Spectroscopy of Bacterial Envelope Proteins in Outer Membrane Vesicles. Biochemistry 2020; 59:1656-1660. [PMID: 32233422 PMCID: PMC7310948 DOI: 10.1021/acs.biochem.9b01123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/27/2020] [Indexed: 11/28/2022]
Abstract
The cell envelope of Gram-negative bacteria is an elaborate cellular environment, consisting of two lipid membranes separated by the aqueous periplasm. So far, efforts to mimic this environment under laboratory conditions have been limited by the complexity of the asymmetric bacterial outer membrane. To evade this impasse, we recently established a method to modify the protein composition of bacterial outer membrane vesicles (OMVs) released from Escherichia coli as a platform for biophysical studies of outer membrane proteins in their native membrane environment. Here, we apply protein-enriched OMVs to characterize the structure of three envelope proteins from E. coli using nuclear magnetic resonance (NMR) spectroscopy and expand the methodology to soluble periplasmic proteins. We obtain high-resolution in situ NMR spectra of the transmembrane protein OmpA as well as the periplasmic proteins CpxP and MalE. We find that our approach facilitates structural investigations of membrane-attached protein domains and is especially suited for soluble proteins within their native periplasmic environment. Thereby, the use of OMVs in solution NMR methods allows in situ analysis of the structure and dynamics of proteins twice the size compared to the current in-cell NMR methodology. We therefore expect our work to pave the way for more complex NMR studies of bacterial envelope proteins in the native environment of OMVs in the future.
Collapse
Affiliation(s)
- Johannes Thoma
- Wallenberg
Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Göteborg, Sweden
| | - Björn M. Burmann
- Wallenberg
Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Göteborg, Sweden
| |
Collapse
|
320
|
Batista JH, Leal FC, Fukuda TTH, Alcoforado Diniz J, Almeida F, Pupo MT, da Silva Neto JF. Interplay between two quorum sensing-regulated pathways, violacein biosynthesis and VacJ/Yrb, dictates outer membrane vesicle biogenesis in Chromobacterium violaceum. Environ Microbiol 2020; 22:2432-2442. [PMID: 32329144 DOI: 10.1111/1462-2920.15033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Outer membrane vesicles (OMVs) are lipid nanoparticles released by Gram-negative bacteria, which play multiple roles in bacterial physiology and adaptation to diverse environments. In this work, we demonstrate that OMVs released by the environmental pathogen Chromobacterium violaceum deliver the antimicrobial compound violacein to competitor bacteria, mediating its toxicity in vivo at a long distance. OMVs purified by ultracentrifugation from the wild-type strain, but not from a violacein-abrogated mutant ΔvioABCDE, contained violacein and inhibited several Gram-positive bacteria. Competition tests using co-culture and transwell assays indicated that the C. violaceum wild-type strain killed Staphylococcus aureus better than the ΔvioABCDE mutant strain. We found that C. violaceum achieves growth phase-dependent OMV release by the concerted expression of two quorum sensing (QS)-regulated pathways, namely violacein biosynthesis and VacJ/Yrb system. Although both pathways were activated at high cell density in a QS-dependent manner, the effect on vesiculation was the opposite. While the ΔvioABCDE mutant produced twofold fewer vesicles than the wild-type strain, indicating that violacein induces OMV biogenesis for its own delivery, the ΔvacJ and ΔyrbE mutants were hypervesiculating strains. Our findings uncovered QS-regulated pathways involved in OMV biogenesis used by C. violaceum to package violacein into OMVs for interbacterial competition.
Collapse
Affiliation(s)
- Juliana H Batista
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda C Leal
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Taise T H Fukuda
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Alcoforado Diniz
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fausto Almeida
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mônica T Pupo
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José F da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
321
|
Uddin MJ, Dawan J, Jeon G, Yu T, He X, Ahn J. The Role of Bacterial Membrane Vesicles in the Dissemination of Antibiotic Resistance and as Promising Carriers for Therapeutic Agent Delivery. Microorganisms 2020; 8:E670. [PMID: 32380740 PMCID: PMC7284617 DOI: 10.3390/microorganisms8050670] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
The rapid emergence and spread of antibiotic-resistant bacteria continues to be an issue difficult to deal with, especially in the clinical, animal husbandry, and food fields. The occurrence of multidrug-resistant bacteria renders treatment with antibiotics ineffective. Therefore, the development of new therapeutic methods is a worthwhile research endeavor in treating infections caused by antibiotic-resistant bacteria. Recently, bacterial membrane vesicles (BMVs) have been investigated as a possible approach to drug delivery and vaccine development. The BMVs are released by both pathogenic and non-pathogenic Gram-positive and Gram-negative bacteria, containing various components originating from the cytoplasm and the cell envelope. The BMVs are able to transform bacteria with genes that encode enzymes such as proteases, glycosidases, and peptidases, resulting in the enhanced antibiotic resistance in bacteria. The BMVs can increase the resistance of bacteria to antibiotics. However, the biogenesis and functions of BMVs are not fully understood in association with the bacterial pathogenesis. Therefore, this review aims to discuss BMV-associated antibiotic resistance and BMV-based therapeutic interventions.
Collapse
Affiliation(s)
- Md Jalal Uddin
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Jirapat Dawan
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Gibeom Jeon
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Tao Yu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272033, China;
| | - Xinlong He
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| |
Collapse
|
322
|
Abstract
IMPACT STATEMENT The number of commensal bacteria in the body surpasses the number of actual human cells. Thus, various interactions between microbes and human cells constitute an inevitable phenomenon. Recent evidence has led to bacterial extracellular RNAs (exRNAs) being proposed as good candidates for microbe-host inter-kingdom communication tools as they can modulate the expression of host genes. However, research findings on the relevance of interactions between extracellular RNA and human diseases are still in their infancy. Nevertheless, substantial data suggest that microbial exRNAs are implicated in various human diseases both at local and distant sites. By exploring various scenarios for the involvement of microbial exRNAs in human diseases, we may better understand the role of exRNAs as "communication signals" for diseases and thereby develop novel therapeutic strategies by using them and their carrier extracellular vesicles.
Collapse
Affiliation(s)
- Heon-Jin Lee
- Department of Microbiology and Immunology, Kyungpook National University School of Dentistry, Daegu 41940, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41940, Korea
| |
Collapse
|
323
|
Echeverría-Bugueño M, Espinosa-Lemunao R, Irgang R, Avendaño-Herrera R. Identification and characterization of outer membrane vesicles from the fish pathogen Vibrio ordalii. JOURNAL OF FISH DISEASES 2020; 43:621-629. [PMID: 32293041 DOI: 10.1111/jfd.13159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
Vibriosis outbreaks due to Vibrio ordalii occur globally, but Chilean salmon aquaculture, in particular, has suffered significant monetary losses in the last 15 years. Little is known about the virulence mechanisms employed by V. ordalii. However, most Vibrio pathogens (e.g., Vibrio anguillarum, a very close taxonomic species) present outer membrane vesicles (OMVs) that are released extracellularly and implicated in the delivery of virulence factors to host cells. This study provides the first reported evidence of the fish pathogen V. ordalii producing and releasing OMVs under normal growth conditions. Analyses were conducted with the V. ordalii strain Vo-LM-18 and the type strain ATCC 33509T . For comparative purposes, the reference strain V. anguillarum ATCC 43307 was employed. The average size for the three Vibrio strains was 0.215 ± 0.6 µm (via scanning electron microscopy) or between 0.19 and 1.8 µm (via dynamic light scattering), with each bacterium presenting a wide range. SDS-PAGE revealed similarities in OMV patterns, but neither total nor external proteins were identical. Comparing V. ordalii ATCC 33509T and Vo-LM-18, bands were most evident in the total proteins, and the greatest degree of similarity in OMV profiles was between 37 and 50 kDa. The purified OMVs demonstrated haemolytic enzyme activity, which could play a role during V. ordalii infection. These data represent an initial step towards gaining new insights into this virulence factor, of which a lot is known in other pathogenic microorganisms.
Collapse
Affiliation(s)
- Macarena Echeverría-Bugueño
- Grupo de Espectroscopia Vibracional y Materiales Moleculares, Instituto de Química, Pontificia Universidad Católica De Valparaíso, Valparaíso, Chile
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuicola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Rodrigo Espinosa-Lemunao
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuicola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Rute Irgang
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuicola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuicola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| |
Collapse
|
324
|
Baró A, Mora I, Montesinos L, Montesinos E. Differential Susceptibility of Xylella fastidiosa Strains to Synthetic Bactericidal Peptides. PHYTOPATHOLOGY 2020; 110:1018-1026. [PMID: 31985337 DOI: 10.1094/phyto-12-19-0477-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The kinetics of cell inactivation and the susceptibility of Xylella fastidiosa subspecies fastidiosa, multiplex, and pauca to synthetic antimicrobial peptides from two libraries (CECMEL11 and CYCLO10) were studied. The bactericidal effect was dependent on the relative concentrations of peptide and bacterial cells, and was influenced by the diluent, either buffer or sap. The most bactericidal and lytic peptide was BP178, an enlarged derivative of the amphipathic cationic linear undecapeptide BP100. The maximum reduction in survivors after BP178 treatment occurred within the first 10 to 20 min of contact and at micromolar concentrations (<10 μM), resulting in pore formation in cell membranes, abundant production of outer membrane vesicles, and lysis. A threshold ratio of 109 molecules of peptide per bacterial cell was estimated to be necessary to initiate cell inactivation. There was a differential susceptibility to BP178 among strains, with DD1 being the most resistant and CFBP 8173 the most susceptible. Moreover, strains showed a proportion of cells under the viable but nonculturable state, which was highly variable among strains. These findings may have implications for managing the diseases caused by X. fastidiosa.
Collapse
Affiliation(s)
- Aina Baró
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| | - Isabel Mora
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| | - Laura Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| |
Collapse
|
325
|
Bacterial outer membrane vesicles as a platform for biomedical applications: An update. J Control Release 2020; 323:253-268. [PMID: 32333919 DOI: 10.1016/j.jconrel.2020.04.031] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/02/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
Outer membrane vesicles (OMVs) are produced by Gram-negative bacteria both in vitro and in vivo. OMVs are nano-sized spherical vehicles formed by lipid bilayer membranes and contain multiple parent bacteria-derived components. Based on the presence of bacterial antigens, pathogen-associated molecular patterns (PAMPs), adhesins, various proteins and the vesicle structure, OMVs have been developed for biomedical applications as bacterial vaccines, adjuvants, cancer immunotherapy agents, drug delivery vehicles, and anti-bacteria adhesion agents. In this review, we analyze the contributions of the structure and composition of OMVs to their applications, summarize the methods used to isolate and characterize OMVs, and highlight recent progress and future perspectives of OMVs in biomedical applications.
Collapse
|
326
|
Abstract
Brucella spp. are Gram negative intracellular bacteria responsible for brucellosis, a worldwide distributed zoonosis. A prominent aspect of the Brucella life cycle is its ability to invade, survive and multiply within host cells. Comprehensive approaches, such as proteomics, have aided in unravelling the molecular mechanisms underlying Brucella pathogenesis. Technological and methodological advancements such as increased instrument performance and multiplexed quantification have broadened the range of proteome studies, enabling new and improved analyses, providing deeper and more accurate proteome coverage. Indeed, proteomics has demonstrated its contribution to key research questions in Brucella biology, i.e., immunodominant proteins, host-cell interaction, stress response, antibiotic targets and resistance, protein secretion. Here, we review the proteomics of Brucella with a focus on more recent works and novel findings, ranging from reconfiguration of the intracellular bacterial proteome and studies on proteomic profiles of Brucella infected tissues, to the identification of Brucella extracellular proteins with putative roles in cell signaling and pathogenesis. In conclusion, proteomics has yielded copious new candidates and hypotheses that require future verification. It is expected that proteomics will continue to be an invaluable tool for Brucella and applications will further extend to the currently ill-explored aspects including, among others, protein processing and post-translational modification.
Collapse
|
327
|
Oral spirochetes: Pathogenic mechanisms in periodontal disease. Microb Pathog 2020; 144:104193. [PMID: 32304795 DOI: 10.1016/j.micpath.2020.104193] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
Periodontitis is an infectious inflammatory disease resulting from infection of biofilm forming bacteria. Several bacterial factors regulate inflammatory response and cause to tissue damage and loss of connection between gingival and tooth. Since bacterial virulence factors and also host immune responses have role, understanding of periodontal disease is complex, in overall we can say that in this disease epithelium is deleted by bacteria. Oral spirochetes are related to periodontitis, among them, Treponema denticola, have been associated with periodontal diseases such as early-onset periodontitis, necrotizing ulcerative gingivitis, and acute pericoronitis. This review will analyse mechanisms of pathogenesis of spirochetes in periodontitis. Microorganisms cause destruction of gingival tissue by two mechanisms. In one, damage results from the direct action of bacterial enzymes and cytotoxic products of bacterial metabolism. In the other, only bacterial components have role, and tissue destruction is the inevitable side effect of a subverted and exaggerated host inflammatory response to plaque antigens.
Collapse
|
328
|
Lindholm M, Metsäniitty M, Granström E, Oscarsson J. Outer membrane vesicle-mediated serum protection in Aggregatibacter actinomycetemcomitans. J Oral Microbiol 2020; 12:1747857. [PMID: 32363008 PMCID: PMC7178816 DOI: 10.1080/20002297.2020.1747857] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/23/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans belongs to the HACEK group of fastidious Gram-negative organisms, a recognized cause of infective endocarditis. A. actinomycetemcomitans is also implicated in periodontitis, with rapid progress in adolescents. We recently demonstrated that the major outer membrane protein, OmpA1 was critical for serum survival of the A. actinomycetemcomitans serotype a model strain, D7SS, and that the paralogue, OmpA2 could operate as a functional homologue to OmpA1 in mediating serum resistance. In the present work, an essentially serum-sensitive ompA1 ompA2 double mutant A. actinomycetemcomitans strain derivative was exploited to elucidate if A. actinomycetemcomitans OMVs can contribute to bacterial serum resistance. Indeed, supplementation of OMVs resulted in a dose-dependent increase of the survival of the serum-sensitive strain in incubations in 50% normal human serum (NHS). Whereas neither OmpA1 nor OmpA2 was required for the OMV-mediated serum protection, OMVs and LPS from an A. actinomycetemcomitans strain lacking the LPS O-antigen polysaccharide part were significantly impaired in protecting D7SS ompA1 ompA2. Our results using a complement system screen assay support a model where A. actinomycetemcomitans OMVs can act as a decoy, which can trigger complement activation in an LPS-dependent manner, and consume complement components to protect serum-susceptible bacterial cells.
Collapse
Affiliation(s)
- Mark Lindholm
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Marjut Metsäniitty
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| |
Collapse
|
329
|
Outer membrane vesicles catabolize lignin-derived aromatic compounds in Pseudomonas putida KT2440. Proc Natl Acad Sci U S A 2020; 117:9302-9310. [PMID: 32245809 DOI: 10.1073/pnas.1921073117] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lignin is an abundant and recalcitrant component of plant cell walls. While lignin degradation in nature is typically attributed to fungi, growing evidence suggests that bacteria also catabolize this complex biopolymer. However, the spatiotemporal mechanisms for lignin catabolism remain unclear. Improved understanding of this biological process would aid in our collective knowledge of both carbon cycling and microbial strategies to valorize lignin to value-added compounds. Here, we examine lignin modifications and the exoproteome of three aromatic-catabolic bacteria: Pseudomonas putida KT2440, Rhodoccocus jostii RHA1, and Amycolatopsis sp. ATCC 39116. P. putida cultivation in lignin-rich media is characterized by an abundant exoproteome that is dynamically and selectively packaged into outer membrane vesicles (OMVs). Interestingly, many enzymes known to exhibit activity toward lignin-derived aromatic compounds are enriched in OMVs from early to late stationary phase, corresponding to the shift from bioavailable carbon to oligomeric lignin as a carbon source. In vivo and in vitro experiments demonstrate that enzymes contained in the OMVs are active and catabolize aromatic compounds. Taken together, this work supports OMV-mediated catabolism of lignin-derived aromatic compounds as an extracellular strategy for nutrient acquisition by soil bacteria and suggests that OMVs could potentially be useful tools for synthetic biology and biotechnological applications.
Collapse
|
330
|
Kamasaka K, Kawamoto J, Chen C, Yokoyama F, Imai T, Ogawa T, Kurihara T. Genetic characterization and functional implications of the gene cluster for selective protein transport to extracellular membrane vesicles of Shewanella vesiculosa HM13. Biochem Biophys Res Commun 2020; 526:525-531. [PMID: 32245618 DOI: 10.1016/j.bbrc.2020.03.125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/21/2020] [Indexed: 10/24/2022]
Abstract
A hyper-vesiculating Gram-negative bacterium, Shewanella vesiculosa HM13, secretes a protein of unknown function (P49) as a major cargo of the extracellular membrane vesicles (EMVs). Here, we analyzed the transport mechanism of P49 to EMVs. The P49 gene is found in a gene cluster containing the genes encoding homologs of surface glycolipid biosynthesis proteins (Wza, WecA, LptA, and Wzx), components of type II secretion system (T2SS), glycerophosphodiester phosphodiesterase (GdpD), and nitroreductase (NfnB). We disrupted the genes in this cluster and analyzed the productivity and morphology of EMVs and the localization of P49. EMV production and morphology were only moderately affected by gene disruption, demonstrating that these gene products are not essential for EMV synthesis. In contrast, the localization of P49 was significantly affected by gene disruption. The lack of homologs of the T2SS components resulted in deficiency in secretion of P49. When gdpD, wzx, lptA, and nfnB were disrupted, P49 was released to the extracellular space without being loaded to the EMVs. These results suggest that P49 is translocated across the outer membrane through the T2SS-like machinery and subsequently loaded onto EMVs through interaction with surface glycolipids of EMVs.
Collapse
Affiliation(s)
- Kouhei Kamasaka
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Chen Chen
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Fumiaki Yokoyama
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Tomoya Imai
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Takuya Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
331
|
Caruana JC, Walper SA. Bacterial Membrane Vesicles as Mediators of Microbe - Microbe and Microbe - Host Community Interactions. Front Microbiol 2020; 11:432. [PMID: 32265873 PMCID: PMC7105600 DOI: 10.3389/fmicb.2020.00432] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/02/2020] [Indexed: 01/18/2023] Open
Abstract
Bacterial membrane vesicles are proteoliposomal nanoparticles produced by both Gram-negative and Gram-positive bacteria. As they originate from the outer surface of the bacteria, their composition and content is generally similar to the parent bacterium’s membrane and cytoplasm. However, there is ample evidence that preferential packaging of proteins, metabolites, and toxins into vesicles does occur. Incorporation into vesicles imparts a number of benefits to the cargo, including protection from degradation by other bacteria, the host organism, or environmental factors, maintenance of a favorable microenvironment for enzymatic activity, and increased potential for long-distance movement. This enables vesicles to serve specialized functions tailored to changing or challenging environments, particularly in regard to microbial community interactions including quorum sensing, biofilm formation, antibiotic resistance, antimicrobial peptide expression and deployment, and nutrient acquisition. Additionally, based on their contents, vesicles play crucial roles in host-microbe interactions as carriers of virulence factors and other modulators of host cell function. Here, we discuss recent advances in our understanding of how vesicles function as signals both within microbial communities and between pathogenic or commensal microbes and their mammalian hosts. We also highlight a few areas that are currently ripe for additional research, including the mechanisms of selective cargo packaging into membrane vesicles and of cargo processing once it enters mammalian host cells, the function of vesicles in transfer of nucleic acids among bacteria, and the possibility of engineering commensal bacteria to deliver cargo of interest to mammalian hosts in a controlled manner.
Collapse
Affiliation(s)
- Julie C Caruana
- American Society for Engineering Education, Washington, DC, United States
| | - Scott A Walper
- US Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC, United States
| |
Collapse
|
332
|
Rueter C, Bielaszewska M. Secretion and Delivery of Intestinal Pathogenic Escherichia coli Virulence Factors via Outer Membrane Vesicles. Front Cell Infect Microbiol 2020; 10:91. [PMID: 32211344 PMCID: PMC7068151 DOI: 10.3389/fcimb.2020.00091] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Outer membrane vesicles (OMVs) are nanoscale proteoliposomes secreted from the cell envelope of all Gram-negative bacteria. Originally considered as an artifact of the cell wall, OMVs are now recognized as a general secretion system, which serves to improve the fitness of bacteria and facilitate bacterial interactions in polymicrobial communities as well as interactions between the microbe and the host. In general, OMVs are released in increased amounts from pathogenic bacteria and have been found to harbor much of the contents of the parental bacterium. They mainly encompass components of the outer membrane and the periplasm including various virulence factors such as toxins, adhesins, and immunomodulatory molecules. Numerous studies have clearly shown that the delivery of toxins and other virulence factors via OMVs essentially influences their interactions with host cells. Here, we review the OMV-mediated intracellular deployment of toxins and other virulence factors with a special focus on intestinal pathogenic Escherichia coli. Especially, OMVs ubiquitously produced and secreted by enterohemorrhagic E. coli (EHEC) appear as a highly advanced mechanism for secretion and simultaneous, coordinated and direct delivery of bacterial virulence factors into host cells. OMV-associated virulence factors are not only stabilized by the association with OMVs, but can also often target previously unknown target structures and perform novel activities. The toxins are released by OMVs in their active forms and are transported via cell sorting processes to their specific cell compartments, where they can develop their detrimental effects. OMVs can be considered as bacterial "long distance weapons" that attack host tissues and help bacterial pathogens to establish the colonization of their biological niche(s), impair host cell function, and modulate the defense of the host. Thus, OMVs contribute significantly to the virulence of the pathogenic bacteria.
Collapse
Affiliation(s)
- Christian Rueter
- Center for Molecular Biology of Inflammation (ZMBE), Institute of Infectiology, University of Muenster, Münster, Germany
| | - Martina Bielaszewska
- National Institute of Public Health, Reference Laboratory for E. coli and Shigellae, Prague, Czechia
- Institute for Hygiene, University Hospital of Muenster, University of Muenster, Münster, Germany
| |
Collapse
|
333
|
Lécrivain AL, Beckmann BM. Bacterial RNA in extracellular vesicles: A new regulator of host-pathogen interactions? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194519. [PMID: 32142907 DOI: 10.1016/j.bbagrm.2020.194519] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 01/26/2023]
Abstract
Extracellular vesicles (EVs) are released by cells from all kingdoms and represent one form of cell-cell interaction. This universal system of communication blurs cells type boundaries, offering an new avenue for pathogens to infect their hosts. EVs carry with them an arsenal of virulence factors that have been the focus of numerous studies. During the last years, the RNA content of EVs has also gained increasing attention, particularly in the context of infection. Secreted RNA in EVs (evRNA) from several bacterial pathogens have been characterised but the exact mechanisms promoting pathogenicity remain elusive. In this review, we evaluate the potential of such transcripts to directly interact with targets in infected cells and, by this, represent a novel angle of host cell manipulation during bacterial infection. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
|
334
|
Malekan M, Siadat SD, Aghasadeghi M, Shahrokhi N, Afrough P, Behrouzi A, Ahmadi K, Mousavi SF. Evaluation of protective immunity responses against pneumococcal PhtD and its C-terminal in combination with outer-membrane vesicles as adjuvants. J Med Microbiol 2020; 69:465-477. [DOI: 10.1099/jmm.0.001103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Introduction.
Streptococcus pneumoniae
is a significant bacterial pathogen in humans. Currently, there are two types of pneumococcal vaccines, but there are concerns regarding their application.
Aim. Since many pneumococcal proteins are serotype-independent, polyhistidine triad protein D (PhtD) has been selected as a vaccine candidate.
Methodology. We prepared recombinant PhtD and its C-terminal fragment (PhtD-C) using alum and outer-membrane vesicles (OMVs) as adjuvants. The combinations were injected intraperitoneally into mice, and then total immunoglobulin G (IgG) and specific IgG, IgG1 and IgG2a were measured. A serum bactericidal assay and opsonophagocytosis were also performed as complementary tests. Meningococcal OMVs were used as an adjuvant.
Results. The levels of specific IgG and IgG1 against combinations of PhtD and its C-terminal with OMVs and alum as adjuvants increased at the time of the third mouse immunization on day 35. Forty per cent and 60% of
S. pneumoniae
ATCC 6303 (serotype 3) as a virulent pneumococcal strain, respectively, were killed in the opsonophagocytosis test and these results could also be observed in the serum bactericidal assay. Mice mmunized iwith PhtD and its C-terminal with OMVs and alum as adjuvants survived after 10 days of pneumococcal challenge.
Conclusion. The combination of PhtD and PhtD-C with alum produced optimal results, but the combination of PhtD and PhtD-C with OMVs produced minimal results by comparison. The survival rates were also measured, and these corresponded with the results of the immunological assessments. Our findings showed that mice receiving PhtD and PhtD-C plus OMV and alum had higher survival rates than the mice in the other groups.
Collapse
Affiliation(s)
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Nader Shahrokhi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Afrough
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Khadijeh Ahmadi
- Department of Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
335
|
Li M, Li S, Zhou H, Tang X, Wu Y, Jiang W, Tian Z, Zhou X, Yang X, Wang Y. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nat Commun 2020; 11:1126. [PMID: 32111847 PMCID: PMC7048836 DOI: 10.1038/s41467-020-14963-0] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
The efficacy of nano-mediated drug delivery has been impeded by multiple biological barriers such as the mononuclear phagocyte system (MPS), as well as vascular and interstitial barriers. To overcome the abovementioned obstacles, we report a nano-pathogenoid (NPN) system that can in situ hitchhike circulating neutrophils and supplement photothermal therapy (PTT). Cloaked with bacteria-secreted outer membrane vesicles inheriting pathogen-associated molecular patterns of native bacteria, NPNs are effectively recognized and internalized by neutrophils. The neutrophils migrate towards inflamed tumors, extravasate across the blood vessels, and penetrate through the tumors. Then NPNs are rapidly released from neutrophils in response to inflammatory stimuli and subsequently taken up by tumor cells to exert anticancer effects. Strikingly, due to the excellent targeting efficacy, cisplatin-loaded NPNs combined with PTT completely eradicate tumors in all treated mice. Such a nano-platform represents an efficient and generalizable strategy towards in situ cell hitchhiking as well as enhanced tumor targeted delivery. The presence of several biological barriers impede the efficacy of nano-mediated drug delivery for solid cancer therapy. Here, the authors develop a nano-pathogenoid system that targets circulating neutrophils and show that it overcomes these biological barriers and improves tumour targeting and efficacy.
Collapse
Affiliation(s)
- Min Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, 230027, Hefei, Anhui, China.,Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.,College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, Guangdong, China
| | - Shuya Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Han Zhou
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Xinfeng Tang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Yi Wu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Wei Jiang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Zhigang Tian
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, Guangdong, China
| | - Xianzhu Yang
- Institutes for Life Sciences, School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, 510006, Guangzhou, China
| | - Yucai Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, 230027, Hefei, Anhui, China. .,Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
| |
Collapse
|
336
|
Diallo I, Provost P. RNA-Sequencing Analyses of Small Bacterial RNAs and their Emergence as Virulence Factors in Host-Pathogen Interactions. Int J Mol Sci 2020; 21:E1627. [PMID: 32120885 PMCID: PMC7084465 DOI: 10.3390/ijms21051627] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Proteins have long been considered to be the most prominent factors regulating so-called invasive genes involved in host-pathogen interactions. The possible role of small non-coding RNAs (sRNAs), either intracellular, secreted or packaged in outer membrane vesicles (OMVs), remained unclear until recently. The advent of high-throughput RNA-sequencing (RNA-seq) techniques has accelerated sRNA discovery. RNA-seq radically changed the paradigm on bacterial virulence and pathogenicity to the point that sRNAs are emerging as an important, distinct class of virulence factors in both gram-positive and gram-negative bacteria. The potential of OMVs, as protectors and carriers of these functional, gene regulatory sRNAs between cells, has also provided an additional layer of complexity to the dynamic host-pathogen relationship. Using a non-exhaustive approach and through examples, this review aims to discuss the involvement of sRNAs, either free or loaded in OMVs, in the mechanisms of virulence and pathogenicity during bacterial infection. We provide a brief overview of sRNA origin and importance, and describe the classical and more recent methods of identification that have enabled their discovery, with an emphasis on the theoretical lower limit of RNA sizes considered for RNA sequencing and bioinformatics analyses.
Collapse
Affiliation(s)
| | - Patrick Provost
- CHUQ Research Center/CHUL, Department of Microbiology-Infectious Disease and Immunity, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada;
| |
Collapse
|
337
|
Karthikeyan R, Gayathri P, Gunasekaran P, Jagannadham MV, Rajendhran J. Functional analysis of membrane vesicles of Listeria monocytogenes suggests a possible role in virulence and physiological stress response. Microb Pathog 2020; 142:104076. [PMID: 32084577 DOI: 10.1016/j.micpath.2020.104076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/01/2020] [Accepted: 02/17/2020] [Indexed: 11/29/2022]
Abstract
Membrane vesicles (MVs) are naturally secreted by many pathogenic organisms and have various functions that include the release of microbial virulence factors that contributes to pathogenesis. However, very little is known regarding the function of Gram-positive bacteria membrane vesicles. Here, we investigated the functional role of membrane vesicles of Listeria monocytogenes. We found that L. monocytogenes secreted MVs are spherical and diameter size around 192.3 nm. Here, we investigated the role of L. monocytogenes membrane vesicles in interbacterial communication to cope with antibiotic stress. We found that MVs are protecting the bacteria against the antibiotics trimethoprim and streptomycin. These MVs enabled streptomycin-susceptible L. monocytogenes 1143 to survive in the presence of streptomycin. The zeta potential, dynamic light scattering (DLS) and 1-Nphenylnapthylamine (NPN)-uptake assay reveals that MVs protect the bacterium from active antibiotics by different strategies. Exposure to environmental stressors was shown to increase the level of MV production in L. monocytogenes. The biological activity of MV-associated listeriolysin O, internalin B, and phosphatidylinositol-specific phospholipase C (PI-PLC) was investigated using epithelial cell cytotoxicity. The reduced cytotoxicity was observed in Δhly MVs on Caco-2 cells suggesting that MVs are biologically active. It is shown that a potent toxin LLO contributes to the MV mediated pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Raman Karthikeyan
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Pratapa Gayathri
- CSIR - Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad, 500007, India
| | | | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
338
|
Jugder BE, Watnick PI. Vibrio cholerae Sheds Its Coat to Make Itself Comfortable in the Gut. Cell Host Microbe 2020; 27:161-163. [PMID: 32053783 DOI: 10.1016/j.chom.2020.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Invertebrates molt, furry mammals shed, and human skin exfoliates. In this issue of Cell Host & Microbe, Zingl et al. describe a virulence mechanism in which the bacterial pathogen Vibrio cholerae jettisons outer membrane proteins and lipids in vesicles as it enters the mammalian intestine.
Collapse
Affiliation(s)
- Bat-Erdene Jugder
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
339
|
Kesavan D, Vasudevan A, Wu L, Chen J, Su Z, Wang S, Xu H. Integrative analysis of outer membrane vesicles proteomics and whole-cell transcriptome analysis of eravacycline induced Acinetobacter baumannii strains. BMC Microbiol 2020; 20:31. [PMID: 32046644 PMCID: PMC7014627 DOI: 10.1186/s12866-020-1722-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/06/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii is a multidrug-resistant (MDR) hazardous bacterium with very high antimicrobial resistance profiles. Outer membrane vesicles (OMVs) help directly and/or indirectly towards antibiotic resistance in these organisms. The present study aims to look on the proteomic profile of OMV as well as on the bacterial transcriptome upon exposure and induction with eravacycline, a new synthetic fluorocycline. RNA sequencing analysis of whole-cell and LC-MS/MS proteomic profiling of OMV proteome abundance were done to identify the differential expression among the eravacycline-induced A. baumannii ATCC 19606 and A. baumannii clinical strain JU0126. RESULTS The differentially expressed genes from the RNA sequencing were analysed using R package and bioinformatics software and tools. Genes encoding drug efflux and membrane transport were upregulated among the DEGs from both ATCC 19606 and JU0126 strains. As evident with the induction of eravacycline resistance, ribosomal proteins were upregulated in both the strains in the transcriptome profiles and also resistance pumps, such as MFS, RND, MATE and ABC transporters. High expression of stress and survival proteins were predominant in the OMVs proteome with ribosomal proteins, chaperons, OMPs OmpA, Omp38 upregulated in ATCC 19606 strain and ribosomal proteins, toluene tolerance protein, siderophore receptor and peptidases in the JU0126 strain. The induction of resistance to eravacycline was supported by the presence of upregulation of ribosomal proteins, resistance-conferring factors and stress proteins in both the strains of A. baumannii ATCC 19606 and JU0126, with the whole-cell gene transcriptome towards both resistance and stress genes while the OMVs proteome enriched more with survival proteins. CONCLUSION The induction of resistance to eravacycline in the strains were evident with the increased expression of ribosomal and transcription related genes/proteins. Apart from this resistance-conferring efflux pumps, outer membrane proteins and stress-related proteins were also an essential part of the upregulated DEGs. However, the expression profiles of OMVs proteome in the study was independent with respect to the whole-cell RNA expression profiles with low to no correlation. This indicates the possible role of OMVs to be more of back-up additional protection to the existing bacterial cell defence during the antibacterial stress.
Collapse
Affiliation(s)
- DineshKumar Kesavan
- International Genomics Research Centre (IGRC), Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Aparna Vasudevan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Liang Wu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jianguo Chen
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212001, China
| | - Zhaoliang Su
- International Genomics Research Centre (IGRC), Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Huaxi Xu
- International Genomics Research Centre (IGRC), Jiangsu University, Zhenjiang, 212013, China. .,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
340
|
Jones EJ, Booth C, Fonseca S, Parker A, Cross K, Miquel-Clopés A, Hautefort I, Mayer U, Wileman T, Stentz R, Carding SR. The Uptake, Trafficking, and Biodistribution of Bacteroides thetaiotaomicron Generated Outer Membrane Vesicles. Front Microbiol 2020; 11:57. [PMID: 32117106 PMCID: PMC7015872 DOI: 10.3389/fmicb.2020.00057] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
Gram-negative bacteria ubiquitously produce and release nano-size, non-replicative outer membrane vesicles (OMVs). In the gastrointestinal (GI-) tract, OMVs generated by members of the intestinal microbiota are believed to contribute to maintaining the intestinal microbial ecosystem and mediating bacteria-host interactions, including the delivery of bacterial effector molecules to host cells to modulate their physiology. Bacterial OMVs have also been found in the bloodstream although their origin and fate are unclear. Here we have investigated the interactions between OMVs produced by the major human gut commensal bacterium, Bacteroides thetaiotaomicron (Bt), with cells of the GI-tract. Using a combination of in vitro culture systems including intestinal epithelial organoids and in vivo imaging we show that intestinal epithelial cells principally acquire Bt OMVs via dynamin-dependent endocytosis followed by intracellular trafficking to LAMP-1 expressing endo-lysosomal vesicles and co-localization with the perinuclear membrane. We observed that Bt OMVs can also transmigrate through epithelial cells via a paracellular route with in vivo imaging demonstrating that within hours of oral administration Bt OMVs can be detected in systemic tissues and in particular, the liver. Our findings raise the intriguing possibility that OMVs may act as a long-distance microbiota-host communication system.
Collapse
Affiliation(s)
- Emily J. Jones
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Catherine Booth
- Core Science Resources, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Sonia Fonseca
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Aimee Parker
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Kathryn Cross
- Core Science Resources, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Ariadna Miquel-Clopés
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | | | - Ulrike Mayer
- Biomedical Research Centre, University of East Anglia, Norwich, United Kingdom
| | - Tom Wileman
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Régis Stentz
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
341
|
Nagakubo T, Nomura N, Toyofuku M. Cracking Open Bacterial Membrane Vesicles. Front Microbiol 2020; 10:3026. [PMID: 32038523 PMCID: PMC6988826 DOI: 10.3389/fmicb.2019.03026] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Membrane vesicles (MVs) are nanoparticles composed of lipid membranes that are produced by both Gram-negative and Gram-positive bacteria. MVs have been assigned diverse biological functions, and they show great potential for applications in various fields. However, the mechanisms underlying their functions and biogenesis are not completely understood. Accumulating evidence shows that MVs are heterogenous, and different types of MVs with different compositions are released from the same species. To understand the origin and function of these MVs, determining the biochemical properties of MVs is important. In this review, we will discuss recent progress in understanding the biochemical composition and properties of MVs.
Collapse
Affiliation(s)
- Toshiki Nagakubo
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiko Nomura
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Masanori Toyofuku
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
342
|
Zingl FG, Kohl P, Cakar F, Leitner DR, Mitterer F, Bonnington KE, Rechberger GN, Kuehn MJ, Guan Z, Reidl J, Schild S. Outer Membrane Vesiculation Facilitates Surface Exchange and In Vivo Adaptation of Vibrio cholerae. Cell Host Microbe 2019; 27:225-237.e8. [PMID: 31901519 DOI: 10.1016/j.chom.2019.12.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/25/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Gram-negative bacteria release outer membrane vesicles into the external milieu to deliver effector molecules that alter the host and facilitate virulence. Vesicle formation is driven by phospholipid accumulation in the outer membrane and regulated by the phospholipid transporter VacJ/Yrb. We use the facultative human pathogen Vibrio cholerae to show that VacJ/Yrb is silenced early during mammalian infection, which stimulates vesiculation that expedites bacterial surface exchange and adaptation to the host environment. Hypervesiculating strains rapidly alter their bacterial membrane composition and exhibit enhanced intestinal colonization fitness. This adaptation is exemplified by faster accumulation of glycine-modified lipopolysaccharide (LPS) and depletion of outer membrane porin OmpT, which confers resistance to host-derived antimicrobial peptides and bile, respectively. The competitive advantage of hypervesiculation is lost upon pre-adaptation to bile and antimicrobial peptides, indicating the importance of these adaptive processes. Thus, bacteria use outer membrane vesiculation to exchange cell surface components, thereby increasing survival during mammalian infection.
Collapse
Affiliation(s)
- Franz G Zingl
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Paul Kohl
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Fatih Cakar
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Deborah R Leitner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Fabian Mitterer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | - Gerald N Rechberger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; Center for Explorative Lipidomics, BioTechMed Graz, 8010 Graz, Austria
| | - Meta J Kuehn
- Duke University Medical Center, Durham, NC 27710, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria.
| |
Collapse
|
343
|
The sensor kinase BfmS controls production of outer membrane vesicles in Acinetobacter baumannii. BMC Microbiol 2019; 19:301. [PMID: 31864291 PMCID: PMC6925498 DOI: 10.1186/s12866-019-1679-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/11/2019] [Indexed: 01/01/2023] Open
Abstract
Background Acinetobacter baumannii is an important opportunistic pathogen responsible for various nosocomial infections. The BfmRS two-component system plays a role in pathogenesis and antimicrobial resistance of A. baumannii via regulation of bacterial envelope structures. This study investigated the role of the sensor kinase, BfmS, in localization of outer membrane protein A (OmpA) in the outer membrane and production of outer membrane vesicles (OMVs) using wild-type A. baumannii ATCC 17978, ΔbfmS mutant, and bfmS-complemented strains. Results The ΔbfmS mutant showed hypermucoid phenotype in the culture plates, growth retardation under static culture conditions, and reduced susceptibility to aztreonam and colistin compared to the wild-type strain. The ΔbfmS mutant produced less OmpA in the outer membrane but released more OmpA via OMVs than the wild-type strain, even though expression of ompA and its protein production were not different between the two strains. The ΔbfmS mutant produced 2.35 times more OMV particles and 4.46 times more OMV proteins than the wild-type stain. The ΔbfmS mutant OMVs were more cytotoxic towards A549 cells than wild-type strain OMVs. Conclusions The present study demonstrates that BfmS controls production of OMVs in A. baumannii. Moreover, BfmS negatively regulates antimicrobial resistance of A. baumannii and OMV-mediated host cell cytotoxicity. Our results indicate that BfmS negatively controls the pathogenic traits of A. baumannii via cell envelope structures and OMV production.
Collapse
|
344
|
Safari F, Sharifi M, Farajnia S, Akbari B, Karimi Baba Ahmadi M, Negahdaripour M, Ghasemi Y. The interaction of phages and bacteria: the co-evolutionary arms race. Crit Rev Biotechnol 2019; 40:119-137. [PMID: 31793351 DOI: 10.1080/07388551.2019.1674774] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the dawn of life, bacteria and phages are locked in a constant battle and both are perpetually changing their tactics to overcome each other. Bacteria use various strategies to overcome the invading phages, including adsorption inhibition, restriction-modification (R/E) systems, CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) systems, abortive infection (Abi), etc. To counteract, phages employ intelligent tactics for the nullification of bacterial defense systems, such as accessing host receptors, evading R/E systems, and anti-CRISPR proteins. Intense knowledge about the details of these defense pathways is the basis for their broad utilities in various fields of research from microbiology to biotechnology. Hence, in this review, we discuss some strategies used by bacteria to inhibit phage infections as well as phage tactics to circumvent bacterial defense systems. In addition, the application of these strategies will be described as a lesson learned from bacteria and phage combats. The ecological factors that affect the evolution of bacterial immune systems is the other issue represented in this review.
Collapse
Affiliation(s)
- Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Sharifi
- Department of Emergency Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
345
|
Araiza-Villanueva M, Avila-Calderón ED, Flores-Romo L, Calderón-Amador J, Sriranganathan N, Qublan HA, Witonsky S, Aguilera-Arreola MG, Ruiz-Palma MDS, Ruiz EA, Suárez-Güemes F, Gómez-Lunar Z, Contreras-Rodríguez A. Proteomic Analysis of Membrane Blebs of Brucella abortus 2308 and RB51 and Their Evaluation as an Acellular Vaccine. Front Microbiol 2019; 10:2714. [PMID: 31849872 PMCID: PMC6895012 DOI: 10.3389/fmicb.2019.02714] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/08/2019] [Indexed: 01/18/2023] Open
Abstract
Membrane blebs are released from Gram-negative bacteria, however, little is known about Brucella blebs. This work pursued two objectives, the first was to determine and identify the proteins in the membrane blebs by proteomics and in silico analysis. The second aim was to evaluate the use of membrane blebs of Brucella abortus 2308 and B. abortus RB51 as an acellular vaccine in vivo and in vitro. To achieve these aims, membrane blebs from B. abortus 2308 and RB51 were obtained and then analyzed by liquid chromatography coupled to mass spectrometry. Brucella membrane blebs were used as a "vaccine" to induce an immune response in BALB/c mice, using the strain B. abortus RB51 as a positive vaccine control. After subsequent challenge with B. abortus 2308, CFUs in spleens were determined; and immunoglobulins IgG1 and IgG2a were measured in murine serum by ELISA. Also, activation and costimulatory molecules induced by membrane blebs were analyzed in splenocytes by flow cytometry. Two hundred and twenty eight proteins were identified in 2308 membrane blebs and 171 in RB51 blebs, some of them are well-known Brucella immunogens such as SodC, Omp2b, Omp2a, Omp10, Omp16, and Omp19. Mice immunized with membrane blebs from rough or smooth B. abortus induced similar protective immune responses as well as the vaccine B. abortus RB51 after the challenge with virulent strain B. abortus 2308 (P < 0.05). The levels of IgG2a in mice vaccinated with 2308 membrane blebs were higher than those vaccinated with RB51 membrane blebs or B. abortus RB51 post-boosting. Moreover, mice immunized with 2308 blebs increased the percentage of activated B cells (CD19+CD69+) in vitro. Therefore, membrane blebs are potential candidates for the development of an acellular vaccine against brucellosis, especially those derived from the rough strains so that serological diagnostic is not affected.
Collapse
Affiliation(s)
- Minerva Araiza-Villanueva
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eric Daniel Avila-Calderón
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City, Mexico
| | - Leopoldo Flores-Romo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City, Mexico
| | - Juana Calderón-Amador
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City, Mexico
| | - Nammalwar Sriranganathan
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Hamzeh Al Qublan
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sharon Witonsky
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Ma. Guadalupe Aguilera-Arreola
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - María del Socorro Ruiz-Palma
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- División Químico-Biológicas, Universidad Tecnológica de Tecámac, Tecámac, Mexico
| | - Enrico A. Ruiz
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisco Suárez-Güemes
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Zulema Gómez-Lunar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
346
|
Human pleural fluid triggers global changes in the transcriptional landscape of Acinetobacter baumannii as an adaptive response to stress. Sci Rep 2019; 9:17251. [PMID: 31754169 PMCID: PMC6872806 DOI: 10.1038/s41598-019-53847-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter baumannii is a feared, drug-resistant pathogen, characterized by its ability to resist extreme environmental and nutrient-deprived conditions. Previously, we showed that human serum albumin (HSA) can increase foreign DNA acquisition specifically and alter the expression of genes associated with pathogenicity. Moreover, in a recent genome-wide transcriptomic study, we observed that pleural fluid (PF), an HSA-containing fluid, increases DNA acquisition, can modulate cytotoxicity, and control immune responses by eliciting changes in the A. baumannii metabolic profile. In the present work, using more stringent criteria and focusing on the analysis of genes related to pathogenicity and response to stress, we analyzed our previous RNA-seq data and performed phenotypic assays to further explore the impact of PF on A. baumannii's microbial behavior and the strategies used to overcome environmental stress. We observed that PF triggered differential expression of genes associated with motility, efflux pumps, antimicrobial resistance, biofilm formation, two-component systems (TCSs), capsule synthesis, osmotic stress, and DNA-damage response, among other categories. Phenotypic assays of A. baumannii A118 and two other clinical A. baumannii strains, revealed differences in their responses to PF in motility, biofilm formation, antibiotic susceptibility, osmotic stress, and outer membrane vesicle (OMV) production, suggesting that these changes are strain specific. We conclude that A. baumannii's pathoadaptive responses is induced by HSA-containing fluids and must be part of this bacterium armamentarium to persist in hostile environments.
Collapse
|
347
|
Woith E, Fuhrmann G, Melzig MF. Extracellular Vesicles-Connecting Kingdoms. Int J Mol Sci 2019; 20:E5695. [PMID: 31739393 PMCID: PMC6888613 DOI: 10.3390/ijms20225695] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
It is known that extracellular vesicles (EVs) are shed from cells of almost every type of cell or organism, showing their ubiquity in all empires of life. EVs are defined as naturally released particles from cells, delimited by a lipid bilayer, and cannot replicate. These nano- to micrometer scaled spheres shuttle a set of bioactive molecules. EVs are of great interest as vehicles for drug targeting and in fundamental biological research, but in vitro culture of animal cells usually achieves only small yields. The exploration of other biological kingdoms promises comprehensive knowledge on EVs broadening the opportunities for basic understanding and therapeutic use. Thus, plants might be sustainable biofactories producing nontoxic and highly specific nanovectors, whereas bacterial and fungal EVs are promising vaccines for the prevention of infectious diseases. Importantly, EVs from different eukaryotic and prokaryotic kingdoms are involved in many processes including host-pathogen interactions, spreading of resistances, and plant diseases. More extensive knowledge of inter-species and interkingdom regulation could provide advantages for preventing and treating pests and pathogens. In this review, we present a comprehensive overview of EVs derived from eukaryota and prokaryota and we discuss how better understanding of their intercommunication role provides opportunities for both fundamental and applied biology.
Collapse
Affiliation(s)
- Eric Woith
- Institute of Pharmacy, Pharmaceutical Biology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| | - Gregor Fuhrmann
- Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Matthias F. Melzig
- Institute of Pharmacy, Pharmaceutical Biology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| |
Collapse
|
348
|
Roszkowiak J, Jajor P, Guła G, Gubernator J, Żak A, Drulis-Kawa Z, Augustyniak D. Interspecies Outer Membrane Vesicles (OMVs) Modulate the Sensitivity of Pathogenic Bacteria and Pathogenic Yeasts to Cationic Peptides and Serum Complement. Int J Mol Sci 2019; 20:ijms20225577. [PMID: 31717311 PMCID: PMC6888958 DOI: 10.3390/ijms20225577] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022] Open
Abstract
The virulence of bacterial outer membrane vesicles (OMVs) contributes to innate microbial defense. Limited data report their role in interspecies reactions. There are no data about the relevance of OMVs in bacterial-yeast communication. We hypothesized that model Moraxella catarrhalis OMVs may orchestrate the susceptibility of pathogenic bacteria and yeasts to cationic peptides (polymyxin B) and serum complement. Using growth kinetic curve and time-kill assay we found that OMVs protect Candida albicans against polymyxin B-dependent fungicidal action in combination with fluconazole. We showed that OMVs preserve the virulent filamentous phenotype of yeasts in the presence of both antifungal drugs. We demonstrated that bacteria including Haemophilus influenza, Acinetobacter baumannii, and Pseudomonas aeruginosa coincubated with OMVs are protected against membrane targeting agents. The high susceptibility of OMV-associated bacteria to polymyxin B excluded the direct way of protection, suggesting rather the fusion mechanisms. High-performance liquid chromatography-ultraviolet spectroscopy (HPLC-UV) and zeta-potential measurement revealed a high sequestration capacity (up to 95%) of OMVs against model cationic peptide accompanied by an increase in surface electrical charge. We presented the first experimental evidence that bacterial OMVs by sequestering of cationic peptides may protect pathogenic yeast against combined action of antifungal drugs. Our findings identify OMVs as important inter-kingdom players.
Collapse
Affiliation(s)
- Justyna Roszkowiak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland; (J.R.); (G.G.); (Z.D.-K.)
| | - Paweł Jajor
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Grzegorz Guła
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland; (J.R.); (G.G.); (Z.D.-K.)
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| | - Andrzej Żak
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, 53-114 Wroclaw, Poland;
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland; (J.R.); (G.G.); (Z.D.-K.)
| | - Daria Augustyniak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland; (J.R.); (G.G.); (Z.D.-K.)
- Correspondence: ; Tel.: +48-71-375-6296
| |
Collapse
|
349
|
Thakur M, Medintz IL, Walper SA. Enzymatic Bioremediation of Organophosphate Compounds-Progress and Remaining Challenges. Front Bioeng Biotechnol 2019; 7:289. [PMID: 31781549 PMCID: PMC6856225 DOI: 10.3389/fbioe.2019.00289] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Organophosphate compounds are ubiquitously employed as agricultural pesticides and maintained as chemical warfare agents by several nations. These compounds are highly toxic, show environmental persistence and accumulation, and contribute to numerous cases of poisoning and death each year. While their use as weapons of mass destruction is rare, these never fully disappear into obscurity as they continue to be tools of fear and control by governments and terrorist organizations. Beyond weaponization, their wide-scale dissemination as agricultural products has led to environmental accumulation and intoxication of soil and water across the globe. Therefore, there is a dire need for rapid and safe agents for environmental bioremediation, personal decontamination, and as therapeutic detoxicants. Organophosphate hydrolyzing enzymes are emerging as appealing targets to satisfy decontamination needs owing to their ability to hydrolyze both pesticides and nerve agents using biologically-derived materials safe for both the environment and the individual. As the release of genetically modified organisms is not widely accepted practice, researchers are exploring alternative strategies of organophosphate bioremediation that focus on cell-free enzyme systems. In this review, we first discuss several of the more prevalent organophosphorus hydrolyzing enzymes along with research and engineering efforts that have led to an enhancement in their activity, substrate tolerance, and stability. In the later half we focus on advances achieved through research focusing on enhancing the catalytic activity and stability of phosphotriesterase, a model organophosphate hydrolase, using various approaches such as nanoparticle display, DNA scaffolding, and outer membrane vesicle encapsulation.
Collapse
Affiliation(s)
- Meghna Thakur
- College of Science, George Mason University, Fairfax, VA, United States
| | - Igor L Medintz
- Center for Bio/Molecular Sciences, U.S. Naval Research Laboratory, Washington, DC, United States
| | - Scott A Walper
- Center for Bio/Molecular Sciences, U.S. Naval Research Laboratory, Washington, DC, United States
| |
Collapse
|
350
|
Wei S, Peng W, Mai Y, Li K, Wei W, Hu L, Zhu S, Zhou H, Jie W, Wei Z, Kang C, Li R, Liu Z, Zhao B, Cai Z. Outer membrane vesicles enhance tau phosphorylation and contribute to cognitive impairment. J Cell Physiol 2019; 235:4843-4855. [PMID: 31663118 DOI: 10.1002/jcp.29362] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/07/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Shouchao Wei
- Department of Neurology, Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral Diseases, Institute of Neurology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Wanjuan Peng
- Department of Neurology, Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral Diseases, Institute of Neurology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Yingren Mai
- Department of Neurology, Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral Diseases, Institute of Neurology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Kanglan Li
- Department of Neurology, Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral Diseases, Institute of Neurology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Wei Wei
- Health Department, Gaomi People's Hospital Weifang Medical University Gaomi China
| | - Li Hu
- Department of Neurology, Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral Diseases, Institute of Neurology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Shaoping Zhu
- Department of Neurology, Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral Diseases, Institute of Neurology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Haihong Zhou
- Department of Neurology, Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral Diseases, Institute of Neurology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Wanxin Jie
- Department of Neurology, Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral Diseases, Institute of Neurology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Zhuangsheng Wei
- Department of Neurology, Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral Diseases, Institute of Neurology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Chenyao Kang
- Department of Neurology, Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral Diseases, Institute of Neurology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Ruikai Li
- Department of Neurology, Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral Diseases, Institute of Neurology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Zhou Liu
- Department of Neurology, Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral Diseases, Institute of Neurology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Bin Zhao
- Department of Neurology, Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral Diseases, Institute of Neurology Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Zhiyou Cai
- Department of Neurology, Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing General Hospital University of Chinese Academy of Sciences Chongqing China
| |
Collapse
|