301
|
Cell-to-Cell Communication in Learning and Memory: From Neuro- and Glio-Transmission to Information Exchange Mediated by Extracellular Vesicles. Int J Mol Sci 2019; 21:ijms21010266. [PMID: 31906013 PMCID: PMC6982255 DOI: 10.3390/ijms21010266] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/14/2019] [Accepted: 12/28/2019] [Indexed: 02/06/2023] Open
Abstract
Most aspects of nervous system development and function rely on the continuous crosstalk between neurons and the variegated universe of non-neuronal cells surrounding them. The most extraordinary property of this cellular community is its ability to undergo adaptive modifications in response to environmental cues originating from inside or outside the body. Such ability, known as neuronal plasticity, allows long-lasting modifications of the strength, composition and efficacy of the connections between neurons, which constitutes the biochemical base for learning and memory. Nerve cells communicate with each other through both wiring (synaptic) and volume transmission of signals. It is by now clear that glial cells, and in particular astrocytes, also play critical roles in both modes by releasing different kinds of molecules (e.g., D-serine secreted by astrocytes). On the other hand, neurons produce factors that can regulate the activity of glial cells, including their ability to release regulatory molecules. In the last fifteen years it has been demonstrated that both neurons and glial cells release extracellular vesicles (EVs) of different kinds, both in physiologic and pathological conditions. Here we discuss the possible involvement of EVs in the events underlying learning and memory, in both physiologic and pathological conditions.
Collapse
|
302
|
Inflammation-induced behavioral changes is driven by alterations in Nrf2-dependent apoptosis and autophagy in mouse hippocampus: Role of fluoxetine. Cell Signal 2019; 68:109521. [PMID: 31881324 DOI: 10.1016/j.cellsig.2019.109521] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 12/13/2022]
Abstract
Inflammation has been associated with the progression of many neurological diseases. Peripheral inflammation has also been vaguely linked to depression-like symptoms in animal models, but the underlying pathways that orchestrate inflammation-induced behavioral or molecular changes in the brain are still elusive. We have recently shown that intraperitoneal injections of lipopolysaccharide (LPS) to Swiss albino mice triggers systemic inflammation, leading to an activated immune response along with changes in monoamine levels in the brain. Herein we pinpoint the fundamental pathways linking peripheral inflammation and depression-like behavior in a mouse model, thereby identifying suitable targets of intervention to combat the situation. We show that LPS-induced peripheral inflammation provoked a depression-like behavior in mice and a distinct pro-inflammatory bias in the hippocampus, as evident from increased microglial activation and elevated levels of pro-inflammatory cytokines IL-6 and TNF-α, and activation of NFκB-p65 pathway. Significant alterations in Nrf2-dependent cellular redox status, coupled with altered autophagy and increased apoptosis were noticed in the hippocampus of LPS-exposed mice. We and others have previously shown that, fluoxetine (an anti-depressant) has effective anti-inflammatory and antioxidant properties by virtue of its abilities to regulate NFκB and Nrf2 signaling. We observed that treatment with fluoxetine or the Nrf2 activator tBHQ (tert-butyl hydroquinone), could reverse depression-like-symptoms and mitigate alterations in autophagy and cell death pathways in the hippocampus by activating Nrf2-dependent gene expressions. Taken together, the data suggests that systemic inflammation potentiates Nrf2-dependent changes in cell death and autophagy pathway in the hippocampus, eventually leading to major pathologic sequelae associated with depression. Therefore, targeting Nrf2 could be a novel approach in combatting depression and ameliorating its associated pathogenesis.
Collapse
|
303
|
Angiopoietin-1 and ανβ3 integrin peptide promote the therapeutic effects of L-serine in an amyotrophic lateral sclerosis/Parkinsonism dementia complex model. Aging (Albany NY) 2019; 10:3507-3527. [PMID: 30476904 PMCID: PMC6286852 DOI: 10.18632/aging.101661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/15/2018] [Indexed: 01/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult disorder of neurodegeneration that manifests as the destruction of upper and lower motor neurons. Beta-N-methylamino-L-alanine (L-BMAA), an amino acid not present in proteins, was found to cause intraneuronal protein misfolding and to induce ALS/Parkinsonism dementia complex (PDC), which presents symptoms analogous to those of Alzheimer’s-like dementia and Parkinsonism. L-serine suppresses the erroneous incorporation of L-BMAA into proteins in the human nervous system. In this study, angiopoietin-1, an endothelial growth factor crucial for vascular development and angiogenesis, and the integrin αvβ3 binding peptide C16, which inhibits inflammatory cell infiltration, were utilized to improve the local microenvironment within the central nervous system of an ALS/PDC rodent model by minimizing inflammation. Our results revealed that L-serine application yielded better effects than C16+ angiopoietin-1 treatment alone for alleviating apoptotic and autophagic changes and improving cognition and electrophysiological dysfunction, but not for improving the inflammatory micro-environment in the central nerve system, while further advances in attenuating the functional disability and pathological impairment induced by L-BMAA could be achieved by co-treatment with C16 and angiopoietin-1 in addition to L-serine. Therefore, C16+ angiopoietin-1 could be beneficial as a supplement to promote the effects of L-serine treatment.
Collapse
|
304
|
Yakovlev AA, Druzhkova TA, Nikolaev RV, Kuznetsova VE, Gruzdev SK, Guekht AB, Gulyaeva NV. Elevated Levels of Serum Exosomes in Patients with Major Depressive Disorder. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419040044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
305
|
Lauritzen I, Bécot A, Bourgeois A, Pardossi-Piquard R, Biferi MG, Barkats M, Checler F. Targeting γ-secretase triggers the selective enrichment of oligomeric APP-CTFs in brain extracellular vesicles from Alzheimer cell and mouse models. Transl Neurodegener 2019; 8:35. [PMID: 31827783 PMCID: PMC6894230 DOI: 10.1186/s40035-019-0176-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We recently demonstrated an endolysosomal accumulation of the β-secretase-derived APP C-terminal fragment (CTF) C99 in brains of Alzheimer disease (AD) mouse models. Moreover, we showed that the treatment with the γ-secretase inhibitor (D6) led to further increased endolysosomal APP-CTF levels, but also revealed extracellular APP-CTF-associated immunostaining. We here hypothesized that this latter staining could reflect extracellular vesicle (EV)-associated APP-CTFs and aimed to characterize these γ-secretase inhibitor-induced APP-CTFs. METHODS EVs were purified from cell media or mouse brains from vehicle- or D6-treated C99 or APPswedish expressing cells/mice and analyzed for APP-CTFs by immunoblot. Combined pharmacological, immunological and genetic approaches (presenilin invalidation and C99 dimerization mutants (GXXXG)) were used to characterize vesicle-containing APP-CTFs. Subcellular APP-CTF localization was determined by immunocytochemistry. RESULTS Purified EVs from both AD cell or mouse models were enriched in APP-CTFs as compared to EVs from control cells/brains. Surprisingly, EVs from D6-treated cells not only displayed increased C99 and C99-derived C83 levels but also higher molecular weight (HMW) APP-CTF-immunoreactivities that were hardly detectable in whole cell extracts. Accordingly, the intracellular levels of HMW APP-CTFs were amplified by the exosomal inhibitor GW4869. By combined pharmacological, immunological and genetic approaches, we established that these HMW APP-CTFs correspond to oligomeric APP-CTFs composed of C99 and/or C83. Immunocytochemical analysis showed that monomers were localized mainly to the trans-Golgi network, whereas oligomers were confined to endosomes and lysosomes, thus providing an anatomical support for the selective recovery of HMW APP-CTFs in EVs. The D6-induced APP-CTF oligomerization and subcellular mislocalization was indeed due to γ-secretase blockade, since it similarly occurred in presenilin-deficient fibroblasts. Further, our data proposed that besides favoring APP-CTF oligomerization by preventing C99 proteolysis, γ-secretase inhibiton also led to a defective SorLA-mediated retrograde transport of HMW APP-CTFs from endosomal compartments to the TGN. CONCLUSIONS This is the first study to demonstrate the presence of oligomeric APP-CTFs in AD mouse models, the levels of which are selectively enriched in endolysosomal compartments including exosomes and amplified by γ-secretase inhibition. Future studies should evaluate the putative contribution of these exosome-associated APP-CTFs in AD onset, progression and spreading.
Collapse
Affiliation(s)
- Inger Lauritzen
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, team labeled «Fondation pour la Recherche Médicale» et «Laboratoire d’excellence Distalz», Université de Nice-Sophia-Antipolis, Sophia-Antipolis, France
| | - Anaïs Bécot
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, team labeled «Fondation pour la Recherche Médicale» et «Laboratoire d’excellence Distalz», Université de Nice-Sophia-Antipolis, Sophia-Antipolis, France
| | - Alexandre Bourgeois
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, team labeled «Fondation pour la Recherche Médicale» et «Laboratoire d’excellence Distalz», Université de Nice-Sophia-Antipolis, Sophia-Antipolis, France
| | - Raphaëlle Pardossi-Piquard
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, team labeled «Fondation pour la Recherche Médicale» et «Laboratoire d’excellence Distalz», Université de Nice-Sophia-Antipolis, Sophia-Antipolis, France
| | | | | | - Fréderic Checler
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, team labeled «Fondation pour la Recherche Médicale» et «Laboratoire d’excellence Distalz», Université de Nice-Sophia-Antipolis, Sophia-Antipolis, France
| |
Collapse
|
306
|
Dai J, Ding Z, Zhang J, Xu W, Guo Q, Zou W, Xiong Y, Weng Y, Yang Y, Chen S, Zhang JM, Song Z. Minocycline Relieves Depressive-Like Behaviors in Rats With Bone Cancer Pain by Inhibiting Microglia Activation in Hippocampus. Anesth Analg 2019; 129:1733-1741. [PMID: 31743195 DOI: 10.1213/ane.0000000000004063] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pain and depression are highly prevalent symptoms in cancer patients. They tend to occur simultaneously and affect each other and share biological pathways and neurotransmitters. In this study, we investigated the roles of microglia in the hippocampus in the comorbidity of bone cancer pain and depressive-like behaviors in an animal model of bone cancer pain. METHODS Bone cancer pain was induced by injection of Walker 256 mammary gland carcinoma cells into the tibia of rats. The effects of intracerebroventricular administration of microglia inhibitor minocycline were examined. RESULTS Carcinoma intratibia injection caused comorbidity of mechanical allodynia and depressive-like behaviors in rats and activation of microglia in the hippocampus. Both mechanical allodynia and depressive-like behaviors were attenuated by minocycline. Enzyme-linked immunosorbent assay analysis showed that the enhanced expressions of M1 microglia marker (CD 86) and the proinflammatory cytokines tumor necrosis factor-α and interleukin-1β in the hippocampus of cancer-bearing rats were decreased by minocycline. On the other hand, minocycline also increased the expressions of M2 microglia marker (MRC1) and anti-inflammatory cytokine interleukin-10. CONCLUSIONS The results suggest that the activation of microglia in the hippocampus plays an important role in the development of pain and depressive-like behaviors in bone cancer condition.
Collapse
Affiliation(s)
- Jiajia Dai
- From the Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhuofeng Ding
- From the Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Zhang
- Department of Anesthesiology, The Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Wei Xu
- Department of Anesthesiology, The Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Qulian Guo
- From the Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wangyuan Zou
- From the Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunchuan Xiong
- From the Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingqi Weng
- From the Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Yang
- From the Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sisi Chen
- Department of Anesthesiology, University of Cincinnati, Pain Research Center, Cincinnati, Ohio
| | - Jun-Ming Zhang
- Department of Anesthesiology, University of Cincinnati, Pain Research Center, Cincinnati, Ohio
| | - Zongbin Song
- From the Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
307
|
Zhou T, Lin D, Chen Y, Peng S, Jing X, Lei M, Tao E, Liang Y. α-synuclein accumulation in SH-SY5Y cell impairs autophagy in microglia by exosomes overloading miR-19a-3p. Epigenomics 2019; 11:1661-1677. [PMID: 31646884 DOI: 10.2217/epi-2019-0222] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aims: To reveal whether miRNAs in exosomes from α-synuclein transgenic SH-SY5Y cells are able to regulate autophagy in recipient microglia. Materials & methods: Microarray analysis and experimental verification were adopted to assess the significance of autophagy-associated miRNAs in exosomes from neuronal model of α-synucleinopathies. Results: We found that miR-19a-3p increased remarkably in the exosomes from α-synuclein gene transgenic SH-SY5Y cells. Further study inferred that α-synuclein gene transgenic SH-SY5Y cell-derived exosomes and miR-19a-3p mimic consistently inhibited the expression of phosphatase and tensin homolog and increased the phosphorylation of AKT and mTOR, both of which ultimately lead to the dysfunction of autophagy in recipient microglia. Conclusion: The data suggested that enhanced expression of miR-19a-3p in exosomes suppress autophagy in recipient microglia by targeting the phosphatase and tensin homolog/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Tianen Zhou
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Danyu Lin
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, PR China
| | - Ying Chen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Sudan Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Xiuna Jing
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Ming Lei
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Enxiang Tao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Yanran Liang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| |
Collapse
|
308
|
Evidence of decreased gap junction coupling between astrocytes and oligodendrocytes in the anterior cingulate cortex of depressed suicides. Neuropsychopharmacology 2019; 44:2099-2111. [PMID: 31374562 PMCID: PMC6897926 DOI: 10.1038/s41386-019-0471-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
Glial dysfunction is a major pathophysiological feature of mood disorders. While altered astrocyte (AS) and oligodendrocyte-lineage (OL) functions have been associated with depression, the crosstalk between these glial cell types has never been assessed in that context. AS are potent regulators of myelination, in part through gap junction (GJ) channels formed by the heterotypic coupling of AS-specific (Cx30 and Cx43) and OL-specific (Cx32 and Cx47) connexins. This study therefore aimed at addressing the integrity of AS/OL coupling in the anterior cingulate cortex (ACC) of depressed suicides. Using immunofluorescence and confocal imaging, we characterized the distribution of Cx30 and mapped its expression onto OL somas, myelinated axons, and brain vasculature in postmortem brain samples from depressed suicides (N = 48) and matched controls (N = 23). Differential gene expression of key components of the GJ nexus was also screened through RNA-sequencing previously generated by our group, and validated by quantitative real-time PCR. We show that Cx30 expression localized onto OL cells and myelinated fibers is decreased in deep cortical layers of the ACC in male-depressed suicides. This effect was associated with decreased expression of OL-specific connexins, as well as the downregulation of major connexin-interacting proteins essential for the scaffolding, trafficking, and function of GJs. These results provide a first evidence of impaired AS/OL GJ-mediated communication in the ACC of individuals with mood disorders. These changes in glial coupling are likely to have significant impact on brain function, and may contribute to the altered OL function previously reported in this brain region.
Collapse
|
309
|
Nuzziello N, Liguori M. The MicroRNA Centrism in the Orchestration of Neuroinflammation in Neurodegenerative Diseases. Cells 2019; 8:cells8101193. [PMID: 31581723 PMCID: PMC6829202 DOI: 10.3390/cells8101193] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with a unique ability to regulate the transcriptomic profile by binding to complementary regulatory RNA sequences. The ability of miRNAs to enhance (proinflammatory miRNAs) or restrict (anti-inflammatory miRNAs) inflammatory signalling within the central nervous system is an area of ongoing research, particularly in the context of disorders that feature neuroinflammation, including neurodegenerative diseases (NDDs). Furthermore, the discovery of competing endogenous RNAs (ceRNAs) has led to an increase in the complexity of miRNA-mediated gene regulation, with a paradigm shift from a unidirectional to a bidirectional regulation, where miRNA acts as both a regulator and is regulated by ceRNAs. Increasing evidence has revealed that ceRNAs, including long non-coding RNAs, circular RNAs, and pseudogenes, can act as miRNA sponges to regulate neuroinflammation in NDDs within complex cross-talk regulatory machinery, which is referred to as ceRNA network (ceRNET). In this review, we discuss the role of miRNAs in neuroinflammatory regulation and the manner in which cellular and vesicular ceRNETs could influence neuroinflammatory dynamics in complex multifactorial diseases, such as NDDs.
Collapse
Affiliation(s)
- Nicoletta Nuzziello
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy.
| | - Maria Liguori
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy.
| |
Collapse
|
310
|
González-Castro TB, Martínez-Magaña JJ, Tovilla-Zárate CA, Juárez-Rojop IE, Sarmiento E, Genis-Mendoza AD, Nicolini H. Gene-level genome-wide association analysis of suicide attempt, a preliminary study in a psychiatric Mexican population. Mol Genet Genomic Med 2019; 7:e983. [PMID: 31578828 PMCID: PMC6900393 DOI: 10.1002/mgg3.983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Background Evidence suggests that liability for suicide behavior is heritable; additionally, suicide has been partly related to other psychiatric disorders. Nevertheless, most of the information reported so far address Caucasian and Asian individuals. Hence, our aim was to conduct a gene‐level association study in Mexican psychiatric individuals diagnosed with suicide attempt. Methods We recruited 192 individuals from two clinical centers in Mexico. All participants were born in Mexico and had Mexican parents and grandparents. Direct genotyping was performed using the commercial platform Infinium PsychArray BeadChip. A p‐value lower than 1e‐05 was considered as gene‐level significant and a p‐value lower than 1e‐04 was considered as gene‐level nominal significant. Results Our analyses showed that SCARA5 was associated to suicide intent at a gene‐level with statistical significance (p‐value = 1.12e‐6). Other genes were nominally associated with suicide attempt: GHSR (p‐value = 0.0004), RGS10 (p‐value = 5.13e‐5), and STK33 (p‐value = 3.62e‐5). Regarding gene variant analyses, the SNPs with a statistical association (p > .05) were rs561361616, rs1537577, rs11198999 for RGS10, and rs11041981, rs11041993, rs11041994, rs11041995, rs11041997, rs10840083, rs10769918 for STK33. For these genes, previous studies have associated SCARA5 with depression, GHSR with alcohol dependence and depression, and RGS10 with schizophrenia and depression. To date, STK33 has not been associated with any psychiatric disorder. Conclusion Our outcomes revealed that SCARA5, GHSR, RGS10 and STK33 could be considered as risk biomarkers for suicide attempt behavior in our Mexican psychiatric sample. We recommend to perform larger scale analyses to have conclusive results.
Collapse
Affiliation(s)
- Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Mexico City, Mexico.,División Académica Multidisciplinaria de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - José Jaime Martínez-Magaña
- División Académica Multidisciplinaria de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico.,Instituto Nacional de Medicina Genómica (INMEGEN), Secretaria de Salud, Mexico City, Mexico
| | | | - Isela Esther Juárez-Rojop
- División Académica Multidisciplinaria de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Emmanuel Sarmiento
- Hospital Psiquiátrico Infantil "Dr. Juan N. Navarro", Mexico City, Mexico
| | - Alma Delia Genis-Mendoza
- Instituto Nacional de Medicina Genómica (INMEGEN), Secretaria de Salud, Mexico City, Mexico.,Hospital Psiquiátrico Infantil "Dr. Juan N. Navarro", Mexico City, Mexico
| | - Humberto Nicolini
- Instituto Nacional de Medicina Genómica (INMEGEN), Secretaria de Salud, Mexico City, Mexico
| |
Collapse
|
311
|
Sforzini L, Nettis MA, Mondelli V, Pariante CM. Inflammation in cancer and depression: a starring role for the kynurenine pathway. Psychopharmacology (Berl) 2019; 236:2997-3011. [PMID: 30806743 PMCID: PMC6820591 DOI: 10.1007/s00213-019-05200-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Depression is a common comorbidity in cancer cases, but this is not only due to the emotional distress of having a life-threatening disease. A common biological mechanism, involving a dysregulated immune system, seems to underpin this comorbidity. In particular, the activation of the kynurenine pathway of tryptophan degradation due to inflammation may play a key role in the development and persistence of both diseases. As a consequence, targeting enzymes involved in this pathway offers a unique opportunity to develop new strategies to treat cancer and depression at once. In this work, we provide a systematic review of the evidence up to date on the kynurenine pathway role in linking depression and cancer and on clinical implications of this evidence. In particular, complications due to chemotherapy are discussed, as well as the potential antidepressant efficacy of novel immunotherapies for cancer.
Collapse
Affiliation(s)
- Luca Sforzini
- Psychiatry Unit, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli-Sacco University Hospital, Università di Milano, Milan, Italy
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| | - Maria Antonietta Nettis
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK.
- National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
| | - Valeria Mondelli
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
- National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Carmine Maria Pariante
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
- National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
312
|
Stress, sex hormones, inflammation, and major depressive disorder: Extending Social Signal Transduction Theory of Depression to account for sex differences in mood disorders. Psychopharmacology (Berl) 2019; 236:3063-3079. [PMID: 31359117 PMCID: PMC6821593 DOI: 10.1007/s00213-019-05326-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
Abstract
Social Signal Transduction Theory of Depression is a biologically plausible, multi-level theory that describes neural, physiologic, molecular, and genomic mechanisms that link experiences of social-environmental adversity with internal biological processes that drive depression pathogenesis, maintenance, and recurrence. Central to this theory is the hypothesis that interpersonal stressors involving social threat (e.g., social conflict, evaluation, rejection, isolation, and exclusion) upregulate inflammatory processes that can induce several depressive symptoms, including sad mood, anhedonia, fatigue, psychomotor retardation, and social-behavioral withdrawal. The original article describing this formulation (Psychol Bull 140:774-815, 2014) addressed critical questions involving depression onset and recurrence, as well as why depression is strongly predicted by early life stress and comorbid with anxiety disorders and certain physical disease conditions, such as asthma, rheumatoid arthritis, chronic pain, and cardiovascular disease. Here, we extend the theory to help explain sex differences in depression prevalence, which is a defining feature of this disorder. Central to this extension is research demonstrating that ovarian hormone fluctuations modulate women's susceptibility to stress, brain structure and function, and inflammatory activity and reactivity. These effects are evident at multiple levels and are highly context-dependent, varying as a function of several factors including sex, age, reproductive state, endogenous versus exogenous hormones, and hormone administration mode and dose. Together, these effects help explain why women are at greater risk for developing inflammation-related depressed mood and other neuropsychiatric, neurodevelopmental, and neurodegenerative disorders during the reproductive years, especially for those already at heightened risk for depression or in the midst of a hormonal transition period.
Collapse
|
313
|
Hazra B, Chakraborty S, Bhaskar M, Mukherjee S, Mahadevan A, Basu A. miR-301a Regulates Inflammatory Response to Japanese Encephalitis Virus Infection via Suppression of NKRF Activity. THE JOURNAL OF IMMUNOLOGY 2019; 203:2222-2238. [PMID: 31527198 DOI: 10.4049/jimmunol.1900003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Microglia being the resident macrophage of brain provides neuroprotection following diverse microbial infections. Japanese encephalitis virus (JEV) invades the CNS, resulting in neuroinflammation, which turns the neuroprotective role of microglia detrimental as characterized by increased microglial activation and neuronal death. Several host factors, including microRNAs, play vital roles in regulating virus-induced inflammation. In the current study, we demonstrate that the expression of miR-301a is increased in JEV-infected microglial cells and human brain. Overexpression of miR-301a augments the JEV-induced inflammatory response, whereas inhibition of miR-301a completely reverses the effects. Mechanistically, NF-κB-repressing factor (NKRF) functioning as inhibitor of NF-κB activation is identified as a potential target of miR-301a in JEV infection. Consequently, miR-301a-mediated inhibition of NKRF enhances nuclear translocation of NF-κB, which, in turn, resulted in amplified inflammatory response. Conversely, NKRF overexpression in miR-301a-inhibited condition restores nuclear accumulation of NF-κB to a basal level. We also observed that JEV infection induces classical activation (M1) of microglia that drives the production of proinflammatory cytokines while suppressing alternative activation (M2) that could serve to dampen the inflammatory response. Furthermore, in vivo neutralization of miR-301a in mouse brain restores NKRF expression, thereby reducing inflammatory response, microglial activation, and neuronal apoptosis. Thus, our study suggests that the JEV-induced expression of miR-301a positively regulates inflammatory response by suppressing NKRF production, which might be targeted to manage viral-induced neuroinflammation.
Collapse
Affiliation(s)
- Bibhabasu Hazra
- National Brain Research Centre, Manesar, Haryana 122052, India; and
| | | | | | | | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122052, India; and
| |
Collapse
|
314
|
Brown PJ, Brennan N, Ciarleglio A, Chen C, Garcia CM, Gomez S, Roose SP, Rutherford BR, Simonsick EM, Spencer RG, Ferrucci L. Declining Skeletal Muscle Mitochondrial Function Associated With Increased Risk of Depression in Later Life. Am J Geriatr Psychiatry 2019; 27:963-971. [PMID: 31104966 PMCID: PMC7388241 DOI: 10.1016/j.jagp.2019.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Late-life depression (LLD) is a chronic and heterogeneous disorder. Recent studies have implicated non-normative age-related processes in its pathogenesis. This investigation examined both cross-sectional and longitudinal associations between skeletal muscle mitochondrial function and LLD. METHODS Data from 603 men and women from the Baltimore Longitudinal Study on Aging were analyzed, of whom 167 provided data from a follow-up visit. Muscle bioenergetics was measured by postexercise recovery rate of phosphocreatine (PCr) using phosphorus magnetic resonance spectroscopy. Depressive symptoms were assessed using the Center for Epidemiologic Studies Depression (CES-D) Scale. RESULTS There was no cross-sectional association between baseline depression status and either the PCr recovery rate constant (kPCr; t = -0.553, df = 542; p = 0.580) or mitochondrial capacity largely independent of exercise intensity (adenosine triphosphate maximum [ATPmax]; t = 0.804, df = 553; p = 0.422). Covariate-adjusted Firth logistic regression models however showed that greater decreases in skeletal muscle mitochondrial function from baseline to follow-up were associated with higher odds of clinically significant depressive symptoms (CES-D ≥16) at follow-up (ΔATPmax: odds ratio = 2.63, χ2 = 5.62, df =1; p = 0.018; ΔkPCr: odds ratio = 2.32, χ2 = 5.79, df =1; p = 0.016). CONCLUSION Findings suggest that declining skeletal muscle mitochondrial function in older adults is associated with clinically significant depressive symptoms at follow-up, thereby providing preliminary support for the hypothesis that mitochondrial dysfunction may be a potential key pathophysiological mechanism in adults with LLD.
Collapse
Affiliation(s)
- Patrick J Brown
- Neurobiology and Therapeutics of Aging Division (PJB, SPR, BRR), Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York.
| | - Nicholas Brennan
- Intramural Research Program (NB, EMS, LF), National Institute on Aging, Bethesda, Maryland
| | - Adam Ciarleglio
- Milken Institute School of Public Health (AC), George Washington University, Washington DC
| | - Chen Chen
- Mailman School of Public Health (CC), Columbia University, New York State Psychiatric Institute, New York
| | | | - Stephanie Gomez
- New York State Psychiatric Institute (CMG, SG), New York, NY
| | - Steven P Roose
- Neurobiology and Therapeutics of Aging Division (PJB, SPR, BRR), Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York
| | - Bret R Rutherford
- Neurobiology and Therapeutics of Aging Division (PJB, SPR, BRR), Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York
| | - Eleanor M Simonsick
- Intramural Research Program (NB, EMS, LF), National Institute on Aging, Bethesda, Maryland
| | - Richard G Spencer
- Laboratory of Clinical Investigation (RGS), National Institute on Aging
| | - Luigi Ferrucci
- Intramural Research Program (NB, EMS, LF), National Institute on Aging, Bethesda, Maryland
| |
Collapse
|
315
|
Zhang JJ, Gao TT, Wang Y, Wang JL, Guan W, Wang YJ, Wang CN, Liu JF, Jiang B. Andrographolide Exerts Significant Antidepressant-Like Effects Involving the Hippocampal BDNF System in Mice. Int J Neuropsychopharmacol 2019; 22:585-600. [PMID: 31181145 PMCID: PMC6754737 DOI: 10.1093/ijnp/pyz032] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Major depressive disorder is a worldwide neuropsychiatric disorder associated with various symptoms, but current antidepressants used in clinical practice have various side effects and high failure rates. Andrographolide is the main bioactive ingredient of Andrographis paniculata and exhibits numerous pharmacological actions. This study aimed to evaluate the antidepressant-like effects of andrographolide in male C57BL/6J mice. METHODS The antidepressant-like effects of andrographolide in mice were explored in a forced swim test, tail suspension test, and chronic unpredictable mild stress model of depression. Western blotting and immunofluorescence were further performed to assess the effects of chronic unpredictable mild stress and andrographolide on the brain-derived neurotrophic factor signalling cascade and hippocampal neurogenesis. Moreover, a pharmacological inhibitor (K252a) and a lentiviral-short hairpin RNA (LV-TrkB-shRNA) were used to clarify the antidepressant-like mechanism of andrographolide. RESULTS Andrographolide exhibited antidepressant-like potential in the forced swim test and tail suspension test without influencing the locomotor activity of mice. Repeated andrographolide treatment not only produced significant antidepressant-like effects in the chronic unpredictable mild stress model but also prevented the decreasing effects of chronic unpredictable mild stress on hippocampal brain-derived neurotrophic factor signalling and neurogenesis in mice. Importantly, blockade of the hippocampal brain-derived neurotrophic factor system by K252a and TrkB-shRNA fully abolished the antidepressant-like effects of andrographolide in mice. CONCLUSIONS Andrographolide exerts antidepressant-like effects in mice via promoting the hippocampal brain-derived neurotrophic factor signalling cascade.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ting-Ting Gao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Yuan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Jin-Liang Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ying-Jie Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Jian-Feng Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| |
Collapse
|
316
|
Prevalence of HIV-1 Infection in an elderly rural population and associations with neurocognitive impairment. AIDS 2019; 33:1765-1771. [PMID: 31361273 DOI: 10.1097/qad.0000000000002257] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE We explored the prevalence of HIV infection in older rural South Africans and its associations, as well as the point prevalence of dementia and its associations with HIV and aging. DESIGN We utilized a cross-sectional analytic design. METHODS Using the brief Community Screening Instrument for Dementia together with a rapid HIV test, we conducted a home-based screening survey among 1150 older South Africans. We explored the prevalence of HIV and dementia, and their associations using descriptive statistics and logistic regression analysis. RESULTS The HIV prevalence was 4.78%. Overall, participants were on average 71.3 years old, with nearly 70% having no primary school education. HIV+ participants were significantly younger, more likely to be single and had lower BMI. The overall dementia prevalence was 11.04%. HIV+ participants had higher rates of dementia compared with HIV- participants (18.18 vs. 10.68%) but the difference was NS. In adjusted analysis, screened dementia was associated with older age, the presence of self-reported depression and HIV+ status. Participants were also more likely to self-report cognitive impairment if they were older, depressed and had objective evidence of dementia. CONCLUSION Infection with HIV in rural older South Africans is a prevalent problem, and together with older age, is a significant contributor to cognitive impairment. It is possible that HIV infection contributes to dementia on the basis of an acceleration of degeneration - because our HIV-infected participants were younger - AND an accentuation of aging - because of the higher rates of impairment for similar age groups.
Collapse
|
317
|
Feng X, Zhao Y, Yang T, Song M, Wang C, Yao Y, Fan H. Glucocorticoid-Driven NLRP3 Inflammasome Activation in Hippocampal Microglia Mediates Chronic Stress-Induced Depressive-Like Behaviors. Front Mol Neurosci 2019; 12:210. [PMID: 31555091 PMCID: PMC6727781 DOI: 10.3389/fnmol.2019.00210] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic stress is a key risk factor for depression, and microglia have been implicated in the pathogenesis of the disease. Recent studies show that the Nod-like receptor protein 3 (NLRP3) inflammasome is expressed in microglia and may play a crucial role in depression. However, the mechanism of NLRP3 inflammasome activation in hippocampal microglia and its role in depressive-like behaviors remain poorly understood. In this study, rats were subjected to 6 h of restraint stress per day for 21 days to produce a model of stress-induced depression. Behavioral tests and serum corticosterone were used to assess the success of the model. Furthermore, HAPI cells were pretreated with dexamethasone (5 × 10-7 M) to assess stress-induced changes in microglial cells in culture. The microglial marker Iba-1, reactive oxygen species (ROS), nuclear factor kappa B (NF-κB) and key components of the NLRP3 inflammasome and its downstream inflammatory effectors (IL-1β and IL-18) were measured. Chronic stress induced depressive-like behavior, increased serum corticosterone levels and produced hippocampal structural changes. Chronic stress and dexamethasone both increased Iba-1 expression and ROS formation and also elevated levels of NF-κB, NLRP3, cleaved caspase-1, IL-1β and IL-18. After use of the NF-κB inhibitor BAY 117082 and knocked out NLRP3 in vitro decreased ROS formation and the expression of Iba-1, NF-κB and NLRP3 as well as levels of cleaved caspase-1, IL-1β and IL-18. These findings suggest that activation of the glucocorticoid receptor-NF-κB-NLRP3 pathway in hippocampal microglia mediates chronic stress-induced hippocampal neuroinflammation and depression-like behavior.
Collapse
Affiliation(s)
- Xiujing Feng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianyuan Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Manyu Song
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chaoran Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yujie Yao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
318
|
Strategies for the use of Extracellular Vesicles for the Delivery of Therapeutics. J Neuroimmune Pharmacol 2019; 15:422-442. [PMID: 31456107 DOI: 10.1007/s11481-019-09873-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) are nanosized, membrane-bound vesicles released from eukaryotic and prokaryotic cells that can transport cargo containing DNA, RNA, lipids and proteins, between cells as a means of intercellular communication. Although EVs were initially considered to be cellular debris deprived of any essential biological functions, emerging literature highlights the critical roles of EVs in the context of intercellular signaling, maintenance of tissue homeostasis, modulation of immune responses, inflammation, cancer progression, angiogenesis, and coagulation under both physiological and pathological states. Based on the ability of EVs to shuttle proteins, lipids, carbohydrates, mRNAs, long non-coding RNAs (lncRNAs), microRNAs, chromosomal DNA, and mitochondrial DNA into target cells, the presence and content of EVs in biofluids have been exploited for biomarker research in the context of diagnosis, prognosis and treatment strategies. Additionally, owing to the characteristics of EVs such as stability in circulation, biocompatibility as well as low immunogenicity and toxicity, these vesicles have become attractive systems for the delivery of therapeutics. More recently, EVs are increasingly being exploited as conduits for delivery of therapeutics for anticancer strategies, immunomodulation, targeted drug delivery, tissue regeneration, and vaccination. In this review, we highlight and discuss the multiple strategies that are employed for the use of EVs as delivery vehicles for therapeutic agents, including the potential advantages and challenges involved. Graphical abstract.
Collapse
|
319
|
Gu X, Liu Q, Deng F, Wang X, Lin H, Guo X, Wu S. Association between particulate matter air pollution and risk of depression and suicide: systematic review and meta-analysis. Br J Psychiatry 2019; 215:456-467. [PMID: 30719959 DOI: 10.1192/bjp.2018.295] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Some recent studies examined the effect of ambient particulate matter (PM) pollution on depression and suicide. However, the results have been inconclusive.AimsTo determine the overall relationship between PM exposure and depression/suicide in the general population. METHOD We conducted a systematic review and meta-analysis of case-crossover and cohort studies to assess the association between PM2.5 (particles with an aerodynamic diameter of 2.5 µm or less) or PM10 (particles with an aerodynamic diameter between 2.5 and 10 µm) exposure and depression/suicide. RESULTS A total of 14 articles (7 for depression and 7 for suicide) with data from 684 859 participants were included in the meta-analysis. With a 10 µg/m3 increase in PM2.5 we found a 19% (odds ratio [95% CI] 1.19 [1.07, 1.33]) increased risk of depression and a marginally increased risk of suicide (odds ratio [95% CI] 1.05 [0.99, 1.11]) in the general population. We did not observe any significant associations between increasing exposure to PM10 and depression/suicide. Sensitivity and subgroup analyses were used to determine the robustness of results. The strongest estimated effect of depression associated with PM2.5 appeared in a long-term lag pattern (odds ratio [95% CI] 1.25 [1.07, 1.45], P < 0.01) and cumulative lag pattern (odds ratio [95% CI] 1.26 [1.07, 1.48], P < 0.01). CONCLUSIONS The meta-analysis suggested that an increase in ambient PM2.5 concentration was strongly associated with increased depression risk in the general population, and the association appeared stronger at long-term lag and cumulative lag patterns, suggesting a potential cumulative exposure effect over time.Declaration of interestNone.
Collapse
Affiliation(s)
- Xuelin Gu
- MSc Student, Department of Occupational and Environmental Health Sciences,School of Public Health,Peking University,China
| | - Qisijing Liu
- PhD Student, Department of Occupational and Environmental Health Sciences,School of Public Health,Peking University,China
| | - Furong Deng
- Professor,Department of Occupational and Environmental Health Sciences,School of Public Health,Peking University,China
| | - Xueqin Wang
- Associate Professor,Peking University Sixth Hospital, Peking University Institute of Mental Health,Key Laboratory of Mental Health,Ministry of Health (Peking University),National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital),China
| | - Hualiang Lin
- Associate Professor,Department of Medical Statistics and Epidemiology,School of Public Health,Sun Yat-sen University,China
| | - Xinbiao Guo
- Professor,Department of Occupational and Environmental Health Sciences,School of Public Health,Peking University,China
| | - Shaowei Wu
- Associate Professor,Department of Occupational and Environmental Health Sciences,School of Public Health,Peking University;Key Laboratory of Molecular Cardiovascular Sciences,Peking University,Ministry of Education,China
| |
Collapse
|
320
|
Gruzdev SK, Yakovlev AA, Druzhkova TA, Guekht AB, Gulyaeva NV. The Missing Link: How Exosomes and miRNAs can Help in Bridging Psychiatry and Molecular Biology in the Context of Depression, Bipolar Disorder and Schizophrenia. Cell Mol Neurobiol 2019; 39:729-750. [PMID: 31089834 PMCID: PMC11462851 DOI: 10.1007/s10571-019-00684-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) only recently have been recognized as promising molecules for both fundamental and clinical neuroscience. We provide a literature review of miRNA biomarker studies in three most prominent psychiatric disorders (depression, bipolar disorder and schizophrenia) with the particular focus on depression due to its social and healthcare importance. Our search resulted in 191 unique miRNAs across 35 human studies measuring miRNA levels in blood, serum or plasma. 30 miRNAs replicated in more than one study. Most miRNAs targeted neuroplasticity and neurodevelopment pathways. Various limitations do not allow us to make firm conclusions on clinical potential of studied miRNAs. Based on our results we discuss the rationale for future research investigations of exosomal mechanisms to overcome methodological caveats both in studying etiology and pathogenesis, and providing an objective back-up for clinical decisions.
Collapse
Affiliation(s)
- S K Gruzdev
- Institute of Medicine, RUDN University, Miklukho-Maklaya Str. 6, Moscow, Russia, 117198.
| | - A A Yakovlev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Str., 5A, Moscow, Russia, 117485
- Moscow Research & Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Donskaya Str., 43, Moscow, Russia, 115419
| | - T A Druzhkova
- Moscow Research & Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Donskaya Str., 43, Moscow, Russia, 115419
| | - A B Guekht
- Moscow Research & Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Donskaya Str., 43, Moscow, Russia, 115419
- Russian National Research Medical University, Ostrovitianov Str. 1, Moscow, Russia, 117997
| | - N V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Str., 5A, Moscow, Russia, 117485
- Moscow Research & Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Donskaya Str., 43, Moscow, Russia, 115419
| |
Collapse
|
321
|
Ibáñez F, Montesinos J, Ureña-Peralta JR, Guerri C, Pascual M. TLR4 participates in the transmission of ethanol-induced neuroinflammation via astrocyte-derived extracellular vesicles. J Neuroinflammation 2019; 16:136. [PMID: 31272469 PMCID: PMC6610989 DOI: 10.1186/s12974-019-1529-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current evidence indicates that extracellular vesicles (EVs) participate in intercellular signaling, and in the regulation and amplification of neuroinflammation. We have previously shown that ethanol activates glial cells through Toll-like receptor 4 (TLR4) by triggering neuroinflammation. Here, we evaluate if ethanol and the TLR4 response change the release and inflammatory content of astrocyte-derived EVs, and whether these vesicles are capable of communicating with neurons by spreading neuroinflammation. METHODS Cortical neurons and astrocytes in culture were used. EVs were isolated from the extracellular medium of the primary culture of the WT and TLR4-KO astrocytes treated with or without ethanol (40 mM) for 24 h. Flow cytometry, nanoparticle tracking analysis technology, combined with exosomal molecular markers (tetraspanins) along with electron microscopy, were used to characterize and quantify EVs. The content of EVs in inflammatory proteins, mRNA, and miRNAs was analyzed by Western blot and RT-PCR in both astrocyte-derived EVs and the neurons incubated or not with these EVs. Functional analyses of miRNAs were also performed. RESULTS We show that ethanol increases the number of secreted nanovesicles and their content by raising the levels of both inflammatory-related proteins (TLR4, NFκB-p65, IL-1R, caspase-1, NLRP3) and by changing miRNAs (mir-146a, mir-182, and mir-200b) in the EVs from the WT-astrocytes compared with those from the untreated WT cells. No changes were observed in either the number of isolated EVs or their content between the untreated and ethanol-treated TLR4-KO astrocytes. We also show that astrocyte-derived EVs could be internalized by naïve cortical neurons to increase the neuronal levels of inflammatory protein (COX-2) and miRNAs (e.g., mir-146a) and to compromise their survival. The functional analysis of miRNAs revealed the regulatory role of the expressed miRNAs in some genes involved in several inflammatory pathways. CONCLUSIONS These results suggest that astrocyte-derived EVs could act as cellular transmitters of inflammation signaling by spreading and amplifying the neuroinflammatory response induced by ethanol through TLR4 activation.
Collapse
Affiliation(s)
- Francesc Ibáñez
- Department of Molecular and Cellular Pathology of Alcohol, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Jorge Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain.,Department of Neurology, Columbia University Medical Center, New York, USA
| | - Juan R Ureña-Peralta
- Department of Molecular and Cellular Pathology of Alcohol, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
| | - María Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain. .,Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46012, Valencia, Spain.
| |
Collapse
|
322
|
Lee JS, Kim WY, Jeon YJ, Lee SB, Lee DS, Son CG. Antidepressant-Like Activity of Myelophil via Attenuation of Microglial-Mediated Neuroinflammation in Mice Undergoing Unpredictable Chronic Mild Stress. Front Pharmacol 2019; 10:683. [PMID: 31263417 PMCID: PMC6585390 DOI: 10.3389/fphar.2019.00683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/27/2019] [Indexed: 12/30/2022] Open
Abstract
Myelophil, a 30% ethanol extract that has an equal rate in both Astragali Radix and Salviae Radix, is a remedy for the treatment of fatigue-linked disorders in traditional Oriental medicine. The majority of patients with chronic fatigue have a risk of comorbidity with depression symptoms. To evaluate the anti-depressant activity of Myelophil, mice were subjected to unpredictable chronic mild stress (UCMS, eight different stresses) for 3 weeks with daily administration of distilled water, Myelophil (25, 50, or 100 mg/kg), or n-acetyl-l-cysteine (NAC) (100 mg/kg). After the final stress exposure, three behavioral tests, including the open field test (OFT), forced swimming test (FST), and tail suspension test (TST), and stress-derived alterations of the serotonergic signal and inflammatory response in the hippocampus were measured. UCMS notably induced depressive behaviors, whereas these behavioral alterations were significantly reversed by the administration of Myelophil in regard to the OFT, FST, and TST results. Myelophil also significantly attenuated the over-activation of microglial cells and the inflammatory response in the hippocampal region (TNF-α, tumor necrosis factor-alpha; IL-1β, interleukin-1beta; and caspase-1). Furthermore, Myelophil significantly restored the distortions of serotonergic function in the dorsal raphe nuclei and neurogenesis in the subgranular zone of the hippocampus. These results support the clinical relevance of the anti-depressant activity of Myelophil, specifically by modulating serotonergic function and the neuroinflammatory response.
Collapse
Affiliation(s)
- Jin-Seok Lee
- Institute of Traditional Medicine and Bioscience, Dunsan Hospital of Daejeon University, Daejeon, South Korea
| | - Won-Young Kim
- Institute of Traditional Medicine and Bioscience, Dunsan Hospital of Daejeon University, Daejeon, South Korea
| | - Yoo-Jin Jeon
- Institute of Traditional Medicine and Bioscience, Dunsan Hospital of Daejeon University, Daejeon, South Korea
| | - Sung-Bae Lee
- Institute of Traditional Medicine and Bioscience, Dunsan Hospital of Daejeon University, Daejeon, South Korea
| | - Dong-Soo Lee
- Department of Internal Medicine, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Daejeon, South Korea
| | - Chang-Gue Son
- Institute of Traditional Medicine and Bioscience, Dunsan Hospital of Daejeon University, Daejeon, South Korea
| |
Collapse
|
323
|
Ha Sen Ta Na, Nuo M, Meng QT, Xia ZY. The Pathway of Let-7a-1/2-3p and HMGB1 Mediated Dexmedetomidine Inhibiting Microglia Activation in Spinal Cord Ischemia-Reperfusion Injury Mice. J Mol Neurosci 2019; 69:106-114. [PMID: 31190218 DOI: 10.1007/s12031-019-01338-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
Microglial cell activation after spinal cord ischemia-reperfusion injury (SCIRI) commonly causes the secondary nerve motion function injury. This study aims to study the mechanism by which the drug dexmedetomidine (DEX) inhibits microglial cell activation and improves motion function of SCIRI mice. Mice SCIRI model was established, and microglia from spinal cord were isolated and cultured for subsequent molecule analysis of let-7a-1-3p, let-7a-2-3p, HMGB1, TNF-α, and IL-6. DEX was given by intraperitoneal injection. Mice motion function was evaluated by Basso mouse score. In vitro microglial cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R) to imitate ischemia-reperfusion injury stimulation. DEX injection improves the mouse motion function in SCIRI model and upregulates let-7a-1/2-3p expression in the isolated activated microglia from SCIRI mice. In OGD/R-stimulated microglia, DEX treatment also caused the inactivation of cells, the upregulation of let-7a-1/2-3p expression, and the downregulation of HMGB1 expression. While the co-silencing of let-7a-1/2-3p in microglia in addition to DEX treatment restored the activation of microglia. HMGB1 is a targeted gene for let-7a-1/2-3p and negatively regulated by them. HMGB1 knockdown abrogates the pro-activation impact on microglial cell by let-7a-1/2-3p silencing. DEX inhibits the activation of microglial cell in the spinal cord of SCIRI mice, mediated by the let-7a-1/2-3p/HMGB1 pathway.
Collapse
Affiliation(s)
- Ha Sen Ta Na
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Ming Nuo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
324
|
Plasma microRNA miR-26b as a potential diagnostic biomarker of degenerative myelopathy in Pembroke welsh corgis. BMC Vet Res 2019; 15:192. [PMID: 31182094 PMCID: PMC6558770 DOI: 10.1186/s12917-019-1944-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Degenerative myelopathy (DM) is a progressive neurodegenerative disease frequently found in Pembroke Welsh Corgis (PWCs). Most DM-affected PWCs are homozygous for the mutant superoxide dismutase 1 (SOD1) allele; however, the genetic examination for the SOD1 mutation does not exclusively detect symptomatic dogs. In order to identify novel biomarkers, the plasma microRNA (miRNA) profiles of PWCs with DM were investigated. RESULTS Quantification of the plasma levels of 277 miRNAs by an RT-qPCR array identified 11 up-regulated miRNAs and 7 down-regulated miRNAs in DM-affected PWCs from those in wild-type SOD1 PWCs. A pathway analysis identified 3 miRNAs: miR-26b, miR-181a, and miR-196a, which potentially regulate several genes associated with SOD1. In order to validate the diagnostic accuracy of the candidate miRNAs in the aged PWC population, candidate miRNAs in plasma were measured by RT-qPCR and a receiver operating characteristic (ROC) curve analysis was performed. miR-26b had the largest area under the ROC curve for distinguishing DM PWCs from healthy PWCs (sensitivity, 66.7%; specificity, 87.0%). The plasma level of miR-26b was significantly higher in the DM group than in the healthy control group. A positive correlation was observed between increases in the plasma level of miR-26b and disease progression. CONCLUSIONS These results suggest that plasma miR-26b is a potential novel diagnostic biomarker of DM.
Collapse
|
325
|
Cota-Coronado A, Díaz-Martínez NF, Padilla-Camberos E, Díaz-Martínez NE. Editing the Central Nervous System Through CRISPR/Cas9 Systems. Front Mol Neurosci 2019; 12:110. [PMID: 31191241 PMCID: PMC6546027 DOI: 10.3389/fnmol.2019.00110] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/15/2019] [Indexed: 12/26/2022] Open
Abstract
The translational gap to treatments based on gene therapy has been reduced in recent years because of improvements in gene editing tools, such as the CRISPR/Cas9 system and its variations. This has allowed the development of more precise therapies for neurodegenerative diseases, where access is privileged. As a result, engineering of complexes that can access the central nervous system (CNS) with the least potential inconvenience is fundamental. In this review article, we describe current alternatives to generate systems based on CRISPR/Cas9 that can cross the blood-brain barrier (BBB) and may be used further clinically to improve treatment for neurodegeneration in Parkinson's and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Agustin Cota-Coronado
- Biotecnología Médica y Farmacéutica CONACYT, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | | | - Eduardo Padilla-Camberos
- Biotecnología Médica y Farmacéutica CONACYT, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - N Emmanuel Díaz-Martínez
- Biotecnología Médica y Farmacéutica CONACYT, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| |
Collapse
|
326
|
Yang J, Liu R, Lu F, Xu F, Zheng J, Li Z, Cui W, Wang C, Zhang J, Xu S, Zhou W, Wang Q, Chen J, Chen X. Fast Green FCF Attenuates Lipopolysaccharide-Induced Depressive-Like Behavior and Downregulates TLR4/Myd88/NF-κB Signal Pathway in the Mouse Hippocampus. Front Pharmacol 2019; 10:501. [PMID: 31139084 PMCID: PMC6519320 DOI: 10.3389/fphar.2019.00501] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/23/2019] [Indexed: 01/09/2023] Open
Abstract
Depression is a common neuropsychiatric disorder and new anti-depressive treatments are still in urgent demand. Fast Green FCF, a safe biocompatible color additive, has been suggested to mitigate chronic pain. However, Fast green FCF’s effect on depression is unknown. We aimed to investigate Fast green FCF’s effect on lipopolysaccharide (LPS)-induced depressive-like behavior and the underlying mechanisms. Pretreatment of Fast green FCF (100 mg/kg, i.p. daily for 7 days) alleviated depressive-like behavior in LPS-treated mice. Fast green FCF suppressed the LPS-induced microglial and astrocyte activation in the hippocampus. Fast green FCF decreased the mRNA and protein levels of Toll-like receptor 4 (TLR4) and Myeloid differentiation primary response 88 (Myd88) and suppressed the phosphorylation of nuclear factor-κB (NF-κB) in the hippocampus of LPS-treated mice. Fast green FCF also downregulated hippocampal tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, but did not alter the level of the brain-derived neurotrophic factor (BDNF) in the hippocampus of LPS-treated mice. The molecular docking simulation predicts that Fast green FCF may interact with TLR4 and interrupt the formation of the TLR4-MD2 complex. In conclusion, the anti-depressive action of Fast green FCF in LPS-treated mice may involve the suppression of neuroinflammation and the downregulation of TLR4/Myd88/NF-κB signal pathway in mouse hippocampus. Our findings indicate the potential of Fast green FCF for controlling depressive symptoms.
Collapse
Affiliation(s)
- Jing Yang
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Rongjun Liu
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Fan Lu
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Fang Xu
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Jinwei Zheng
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Zhao Li
- Department of Anesthesiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Cui
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Chuang Wang
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Junfang Zhang
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Shujun Xu
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Wenhua Zhou
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Qinwen Wang
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Junping Chen
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Xiaowei Chen
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
327
|
Algarve TD, Assmann CE, Cadoná FC, Machado AK, Manica-Cattani MF, Sato-Miyata Y, Asano T, Duarte MMMF, Ribeiro EE, Aigaki T, da Cruz IBM. Guarana improves behavior and inflammatory alterations triggered by methylmercury exposure: an in vivo fruit fly and in vitro neural cells study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15069-15083. [PMID: 30915696 DOI: 10.1007/s11356-019-04881-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Methylmercury (MeHg) is a well-known environmental pollutant associated with neurological and developmental deficits in animals and humans. However, epidemiological data showed that people living in the Amazon region although exposed to MeHg do not present these effects probably due to the protective effect of certain foods. We hypothesized here if guarana, a highly caffeinated fruit and consumed on a daily basis by Amazon people, could have some protective effect against MeHg toxicity using two complementary approaches. To assess locomotor impairment and sleep disruption, we used fruit fly (Drosophila melanogaster) model, and to evaluate neuroinflammation, we used human SH-SY5Y neural cells by measuring inflammatory cytokines levels. Results showed that guarana had a protective effect on the locomotor activity of male fruit flies reducing the excessive sleepiness caused by MeHg and increasing daily activity. Also, guarana increased the viability of flies and attenuated neural cells mortality. In addition, guarana reduced all pro-inflammatory cytokines levels increased by MeHg, along with caspase-1, caspase -3, caspase-8, and 8-dOHG levels, whereas increased the anti-inflammatory (IL-10) cytokine levels, which was decreased by MeHg. Our study provides new insights on the protective effects of guarana on the viability, locomotor activity, sleep, and activity patterns in vivo and the in vitro neuronal anti-inflammatory effect against MeHg toxicity.
Collapse
Affiliation(s)
- Thaís Doeler Algarve
- Tokyo Metropolitan University, Hachioji, Tokyo, Japan
- Graduate Program in Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Av., Building 19, Room 3101, Santa Maria, RS, 97105900, Brazil
| | - Charles Elias Assmann
- Graduate Program in Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Av., Building 19, Room 3101, Santa Maria, RS, 97105900, Brazil
| | - Francine Carla Cadoná
- Graduate Program in Biosciences and Health, University of the West of Santa Catarina, Joaçaba, Brazil
| | | | | | | | - Tsunaki Asano
- Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | | | | | | | - Ivana Beatrice Mânica da Cruz
- Graduate Program in Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Av., Building 19, Room 3101, Santa Maria, RS, 97105900, Brazil.
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
328
|
Kovaleva TF, Maksimova NS, Zhukov IY, Pershin VI, Mukhina IV, Gainullin MR. Cofilin: Molecular and Cellular Functions and Its Role in the Functioning of the Nervous System. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
329
|
Chai HH, Fu XC, Ma L, Sun HT, Chen GZ, Song MY, Chen WX, Chen YS, Tan MX, Guo YW, Li SP. The chemokine CXCL1 and its receptor CXCR2 contribute to chronic stress-induced depression in mice. FASEB J 2019; 33:8853-8864. [PMID: 31034777 DOI: 10.1096/fj.201802359rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Depression is increasingly recognized as an inflammatory disease, with inflammatory crosstalk in the brain contributing its pathogenesis. Life stresses may up-regulate inflammatory processes and promote depression. Although cytokines are central to stress-related immune responses, their contribution to stress-induced depression remains unclear. Here, we used unpredictable chronic mild stress (UCMS) to induce depression-like behaviors in mice, as assessed through a suite of behavioral tests. C-X-C motif chemokine ligand 1 (CXCL1)-related molecular networks responsible for depression-like behaviors were assessed through intrahippocampal microinjection of lenti-CXCL1, the antidepressant fluoxetine, the C-X-C motif chemokine receptor 2 (CXCR2) inhibitor SB265610, and the glycogen synthase kinase-3β (GSK3β) inhibitor AR-A014418. Modulation of apoptosis-related pathways and neuronal plasticity were assessed via quantification of cleaved caspase-3, B-cell lymphoma 2-associated X protein, cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF) protein expression. CXCL1/CXCL2 expression was correlated with depression-like behaviors in response to chronic stress or antidepressant treatment in the UCMS depression model. Intrahippocampal microinjection of lenti-CXCL1 increased depression-like behaviors, activated GSK3β, increased apoptosis pathways, suppressed CREB activation, and decreased BDNF. Administration of the selective GSK3β inhibitor AR-A014418 abolished the effects of lenti-CXCL1, and the CXCR2 inhibitor SB265610 prevented chronic stress-induced depression-like behaviors, inhibited GSK3β activity, blocked apoptosis pathways, and restored BDNF expression. The CXCL1/CXCR2 axis appears to play a critical role in stress-induced depression, and CXCR2 is a potential novel therapeutic target for patients with depression.-Chai, H.-H., Fu, X.-C., Ma, L., Sun, H.-T., Chen, G.-Z., Song, M.-Y., Chen, W.-X., Chen, Y.-S., Tan, M.-X., Guo, Y.-W., Li, S.-P. The chemokine CXCL1 and its receptor CXCR2 contribute to chronic stress-induced depression in mice.
Collapse
Affiliation(s)
- Hui-Hui Chai
- Department of Neurosurgery, Dongguan People's Hospital, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, China
| | - Xiao-Chun Fu
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Liang Ma
- Department of Gastroenterology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Suzhou University, Changzhou, China
| | - Hai-Tao Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gui-Zeng Chen
- Department of Neurosurgery, Dongguan People's Hospital, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, China
| | - Min-Ying Song
- Department of Neurosurgery, Dongguan People's Hospital, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, China
| | - Wei-Xuan Chen
- Department of Neurosurgery, Dongguan People's Hospital, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, China
| | - Yong-Sheng Chen
- Department of Neurosurgery, Dongguan People's Hospital, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, China
| | - Min-Xuan Tan
- Department of Neurosurgery, Dongguan People's Hospital, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, China
| | - Yan-Wu Guo
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shao-Peng Li
- Department of Neurosurgery, Dongguan People's Hospital, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, China
| |
Collapse
|
330
|
Crenshaw BJ, Kumar S, Bell CR, Jones LB, Williams SD, Saldanha SN, Joshi S, Sahu R, Sims B, Matthews QL. Alcohol Modulates the Biogenesis and Composition of Microglia-Derived Exosomes. BIOLOGY 2019; 8:biology8020025. [PMID: 31035566 PMCID: PMC6627924 DOI: 10.3390/biology8020025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Exosomes are small extracellular vesicles that have emerged as an important tool for intercellular communication. In the central nervous system, exosomes can mediate glia and neuronal communication. Once released from the donor cell, exosomes can act as discrete vesicles and travel to distant and proximal recipient cells to alter cellular function. Microglia cells secrete exosomes due to stress stimuli of alcohol abuse. The goal of this study was to investigate the effects of alcohol exposure on the biogenesis and composition of exosomes derived from microglia cell line BV-2. The BV-2 cells were cultured in exosome-free media and were either mock treated (control) or treated with 50 mM or 100 mM of alcohol for 48 and 72 h. Our results demonstrated that alcohol significantly impacted BV-2 cell morphology, viability, and protein content. Most importantly, our studies revealed that exosome biogenesis and composition was affected by alcohol treatment.
Collapse
Affiliation(s)
- Brennetta J Crenshaw
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Sanjay Kumar
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Courtnee' R Bell
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Leandra B Jones
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Sparkle D Williams
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Sabita N Saldanha
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Sameer Joshi
- Center for Nanobiotechnology Research (CNBR), Alabama State University, Montgomery, AL 36104, USA.
| | - Rajnish Sahu
- Center for Nanobiotechnology Research (CNBR), Alabama State University, Montgomery, AL 36104, USA.
| | - Brian Sims
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Qiana L Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| |
Collapse
|
331
|
Zinc inhibited LPS-induced inflammatory responses by upregulating A20 expression in microglia BV2 cells. J Affect Disord 2019; 249:136-142. [PMID: 30772740 DOI: 10.1016/j.jad.2019.02.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Our previous studies have proved that zinc supplement effectively alleviate depression symptoms in mice, but the mechanisms are still uncertain. Neuroinflammation is considered as an important aspect in pathogenesis of depression. To elucidate the role of zinc on neuroinflammation, in this study, we investigated effects of zinc on lipopolysaccharide (LPS)-induced inflammation in BV2 microglia cells, a kind of innate immune cells in central nervous system. METHODS BV2 cells were treated by 100 ng/ml LPS to induce inflammatory responses and the effects of zinc sulfate (ZnSO4) addition on LPS-induced inflammation were observed. Besides, through culturing HT-22 hippocampus cells by using medium transferred from zinc-intervened BV2 cells, the protective roles of zinc on hippocampus cells were identified. RESULTS LPS treatment up-regulated expressions of CD11b, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) and level of reactive oxygen species (ROS). Meaningfully, zinc was capable of blocking ROS generation and reducing expressions of the above inflammatory cytokines at both 10 μM and 30 μM. In addition, it was proved that zinc intervention to BV2 cells could increase the viabilities of hippocampal HT-22 cells cultured by medium of BV2 cells. Furthermore, the zinc-finger protein A20, an anti-inflammation factor, was increased by zinc supplement, while levels of p65, p-IκB and p-p65 were significantly decreased. LIMITATIONS More compelling proofs were needed to ensure roles of A20 in anti-inflammatory effects of zinc. CONCLUSIONS The present results suggested that zinc inhibits inflammatory responses mediated by microglia cells via upregulation of zinc-finger A20. It was proposed that this anti-inflammatory action might be underlying mechanism of previously observed anti-depressive effects of zinc.
Collapse
|
332
|
Vaz AR, Pinto S, Ezequiel C, Cunha C, Carvalho LA, Moreira R, Brites D. Phenotypic Effects of Wild-Type and Mutant SOD1 Expression in N9 Murine Microglia at Steady State, Inflammatory and Immunomodulatory Conditions. Front Cell Neurosci 2019; 13:109. [PMID: 31024256 PMCID: PMC6465643 DOI: 10.3389/fncel.2019.00109] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
Accumulation of mutated superoxide dismutase 1 (mSOD1) in amyotrophic lateral sclerosis (ALS) involves injury to motor neurons (MNs), activation of glial cells and immune unbalance. However, neuroinflammation, besides its detrimental effects, also plays beneficial roles in ALS pathophysiology. Therefore, the targeting of microglia to modulate the release of inflammatory neurotoxic mediators and their exosomal dissemination, while strengthening cell neuroprotective properties, has gained growing interest. We used the N9 microglia cell line to identify phenotype diversity upon the overexpression of wild-type (WT; hSOD1WT) and mutated G93A (hSOD1G93A) protein. To investigate how each transduced cell respond to an inflammatory stimulus, N9 microglia were treated with lipopolysaccharide (LPS). Glycoursodeoxycholic acid (GUDCA) and dipeptidyl vinyl sulfone (VS), known to exert neuroprotective properties, were tested for their immunoregulatory properties. Reduced Fizz1, IL-10 and TLR4 mRNAs were observed in both transduced cells. However, in contrast with hSOD1WT-induced decreased of inflammatory markers, microglia transduced with hSOD1G93A showed upregulation of pro-inflammatory (TNF-α/IL-1β/HMGB1/S100B/iNOS) and membrane receptors (MFG-E8/RAGE). Importantly, their derived exosomes were enriched in HMGB1 and SOD1. When inflammatory-associated miRNAs were evaluated, increased miR-146a in cells with overexpressed hSOD1WT was not recapitulated in their exosomes, whereas hSOD1G93A triggered elevated exosomal miR-155/miR-146a, but no changes in cells. LPS stimulus increased M1/M2 associated markers in the naïve microglia, including MFG-E8, miR-155 and miR-146a, whose expression was decreased in both hSOD1WT and hSOD1G93A cells treated with LPS. Treatment with GUDCA or VS led to a decrease of TNF-α, IL-1β, HMGB1, S100B and miR-155 in hSOD1G93A microglia. Only GUDCA was able to increase cellular IL-10, RAGE and TLR4, together with miR-21, while decreased exosomal miR-155 cargo. Conversely, VS reduced MMP-2/MMP-9 activation, as well as upregulated MFG-E8 and miR-146a, while producing miR-21 shuttling into exosomes. The current study supports the powerful role of overexpressed hSOD1WT in attenuating M1/M2 activation, and that of hSOD1G93A in switching microglia from the steady state into a reactive phenotype with low responsiveness to stimuli. This work further reveals GUDCA and VS as promising modulators of microglia immune response by eliciting common and compound-specific molecular mechanisms that may promote neuroregeneration.
Collapse
Affiliation(s)
- Ana Rita Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Sara Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Catarina Ezequiel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Carolina Cunha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Luís A. Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
333
|
Tang CZ, Zhang DF, Yang JT, Liu QH, Wang YR, Wang WS. Overexpression of microRNA-301b accelerates hippocampal microglia activation and cognitive impairment in mice with depressive-like behavior through the NF-κB signaling pathway. Cell Death Dis 2019; 10:316. [PMID: 30962417 PMCID: PMC6453902 DOI: 10.1038/s41419-019-1522-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/19/2019] [Accepted: 03/13/2019] [Indexed: 12/30/2022]
Abstract
Depression is a condition with a complex etiological pattern, whose effective treatments are highly limited. MicroRNAs (miRNAs) have been investigated in intensive studies owing to their involvement in pathophysiology of mood disorders. The current study aimed to elucidate the role of miR-301b in hippocampus in mouse models of depressive-like behavior. Microarray-based prediction identified the differentially expressed gene neuronal pentraxin II (NPTX2) related to mental depression. Next, the putative miR-301b binding sites on the 3'UTR of NPTX2 were verified. Then the effect of miR-301b on cognitive function of mice with depressive-like behavior was analyzed using the Morris water maze test. In addition, the regulation of miR-301b to NPTX2 and activation of NF-κB signaling pathway was assessed. Following that, the microglia activation and inflammation in hippocampus were evaluated, with the expressions of inflammatory factors being examined. At last, microglia were flow cytometrically sorted and the inflammatory reaction was also assessed in vitro. The obtained findings revealed that miR-301b targeted and negatively regulated NPTX2. Moreover, overexpressed miR-301b activated the NF-κB signaling pathway, as reflected by increasing protein expressions of p-NF-κB. Upregulated miR-301b accelerated cognitive impairment in mice with depressive-like behavior. In addition, overexpression of miR-301b activated microglia and stimulated inflammation in hippocampus, accompanied by enhanced release of tumor necrosis factor-α (TNF-α), interleukin-Iβ (IL-Iβ) and cyclooxygenase-2(COX-2). Taken together, the evidence provided by the current study indicated that overexpression of miR-301b augmented hippocampal microglia activation, thus exacerbating cognitive impairment and inflammation in mice with depressive-like behavior by activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chao-Zhi Tang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China
| | - Dong-Fang Zhang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China
| | - Jun-Tang Yang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China
| | - Qing-Hui Liu
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China
| | - Ya-Ru Wang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China
| | - Wen-Sheng Wang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China.
| |
Collapse
|
334
|
Liu X, Hong L, Peng W, Jiang J, Peng Z, Yang J. The Neuroprotective Effect of miR-181a After Oxygen-Glucose Deprivation/Reperfusion and the Associated Mechanism. J Mol Neurosci 2019; 68:261-274. [PMID: 30949956 DOI: 10.1007/s12031-019-01300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/12/2019] [Indexed: 11/26/2022]
Abstract
The level of miR-181a decreases rapidly in N2a cells following oxygen-glucose deprivation/reperfusion, but its role in this process is unclear. Reelin, a regulator of neuronal migration and synaptogenesis, is a predicted target of miR-181a. We hypothesized that miR-181a reduces neuronal apoptosis and protects neurons by targeting reelin. Second mitochondria-derived activator of caspases (Smac) is a protein located in mitochondria that regulates apoptosis. The pro-apoptotic effect of Smac is achieved by reversing the effects of apoptosis-inhibiting proteins (IAPs), particularly X-linked inhibitor of apoptosis (XIAP). We also evaluated the effect of miR-181a on the Smac/IAP signaling pathway after oxygen-glucose deprivation and reperfusion in N2a cells. The miR-181a level, apoptosis rate, and the levels of reelin mRNA and protein, Smac, and XIAP were assessed in N2a cells subjected to oxygen-glucose deprivation for 4 h and reperfusion for 0, 4, 12, or 24 h with/without an miR-181a mimic, or mismatched control. Direct targeting of reelin by miR-181a was assessed in vitro by dual luciferase assay and immunoblotting. Pre-treatment with miR-181a mimicked the increase in the miR-181a level in N2a cells after oxygen-glucose deprivation/reperfusion, resulting in a significant decrease in the apoptosis rate. Changes in the miR-181a level in N2a cells were inversely correlated with reelin protein expression. Direct targeting of the reelin 3' untranslated region by miR-181a was verified by dual luciferase assay, which showed that miR-181a significantly inhibited luciferase activity. The Smac level was significantly lower in the miR-181a mimics than the normal control and mimics-cont groups (P < 0.01), whereas the level of XIAP was increased slightly. These findings suggest that miR-181a protects neurons from apoptosis by inhibiting reelin expression and regulating the Smac/IAP signaling pathway after oxygen-glucose deprivation/reperfusion injury.
Collapse
Affiliation(s)
- Xiangyu Liu
- Department of Neurology, Hunan Provincial People's Hospital, Nanhua University, No.61 Jiefang west road, Changsha, 410005, Hunan, China
| | - Lou Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wenjuan Peng
- Department of Neurology, Hunan Provincial People's Hospital, Nanhua University, No.61 Jiefang west road, Changsha, 410005, Hunan, China
| | - Jun Jiang
- Department of Neurology, Hunan Provincial People's Hospital, Nanhua University, No.61 Jiefang west road, Changsha, 410005, Hunan, China
| | - Zhe Peng
- Department of Neurology, Hunan Provincial People's Hospital, Nanhua University, No.61 Jiefang west road, Changsha, 410005, Hunan, China
| | - Jianwen Yang
- Department of Neurology, Hunan Provincial People's Hospital, Nanhua University, No.61 Jiefang west road, Changsha, 410005, Hunan, China.
| |
Collapse
|
335
|
Ma K, Zhang H, Wei G, Dong Z, Zhao H, Han X, Song X, Zhang H, Zong X, Baloch Z, Wang S. Identification of key genes, pathways, and miRNA/mRNA regulatory networks of CUMS-induced depression in nucleus accumbens by integrated bioinformatics analysis. Neuropsychiatr Dis Treat 2019; 15:685-700. [PMID: 30936699 PMCID: PMC6421879 DOI: 10.2147/ndt.s200264] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) is a recurrent, devastating mental disorder, which affects >350 million people worldwide, and exerts substantial public health and financial costs to society. Thus, there is a significant need to discover innovative therapeutics to treat depression efficiently. Stress-induced dysfunction in the subtype of neuronal cells and the change of synaptic plasticity and structural plasticity of nucleus accumbens (NAc) are implicated in depression symptomology. However, the molecular and epigenetic mechanisms and stresses to the NAc pathological changes in depression remain elusive. MATERIALS AND METHODS In this study, treatment group mice were treated continually with the chronic unpredictable mild stress (CUMS) until expression of depression-like behaviors were found. Depression was confirmed with sucrose preference, novelty-suppressed feeding, forced swimming, and tail suspension tests. We applied high-throughput RNA sequencing to assess microRNA expression and transcriptional profiles in the NAc tissue from depression-like behaviors mice and control mice. The regulatory network of miRNAs/mRNAs was constructed based on the high-throughput RNA sequence and bioinformatics software predictions. RESULTS A total of 17 miRNAs and 10 mRNAs were significantly upregulated in the NAc of CUMS-induced mice with depression-like behaviors, and 12 miRNAs and 29 mRNAs were downregulated. A series of bioinformatics analyses showed that these altered miRNAs predicted target mRNA and differentially expressed mRNAs were significantly enriched in the MAPK signaling pathway, GABAergic synapse, dopaminergic synapse, cytokine-cytokine receptor interaction, axon guidance, regulation of autophagy, and so on. Furthermore, dual luciferase report assay and qRT-PCR results validated the miRNA/mRNA regulatory network. CONCLUSION The deteriorations of GABAergic synapses, dopaminergic synapses, neurotransmitter synthesis, as well as autophagy-associated apoptotic pathway are associated with the molecular pathological mechanism of CUMS-induced depression.
Collapse
Affiliation(s)
- Ke Ma
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| | - Hongxiu Zhang
- Institute of Virology, Jinan Center for Disease Control and Prevention, Jinan 250021, People's Republic of China
| | - Guohui Wei
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| | - Zhenfei Dong
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| | - Haijun Zhao
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| | - Xiaochun Han
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| | - Xiaobin Song
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| | - Huiling Zhang
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| | - Xin Zong
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| | - Zulqarnain Baloch
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China,
| | - Shijun Wang
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| |
Collapse
|
336
|
Raber J, Yamazaki J, Torres ERS, Kirchoff N, Stagaman K, Sharpton T, Turker MS, Kronenberg A. Combined Effects of Three High-Energy Charged Particle Beams Important for Space Flight on Brain, Behavioral and Cognitive Endpoints in B6D2F1 Female and Male Mice. Front Physiol 2019; 10:179. [PMID: 30914962 PMCID: PMC6422905 DOI: 10.3389/fphys.2019.00179] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022] Open
Abstract
The radiation environment in deep space includes the galactic cosmic radiation with different proportions of all naturally occurring ions from protons to uranium. Most experimental animal studies for assessing the biological effects of charged particles have involved acute dose delivery for single ions and/or fractionated exposure protocols. Here, we assessed the behavioral and cognitive performance of female and male C57BL/6J × DBA2/J F1 (B6D2F1) mice 2 months following rapidly delivered, sequential irradiation with protons (1 GeV, 60%), 16O (250 MeV/n, 20%), and 28Si (263 MeV/n, 20%) at 0, 25, 50, or 200 cGy at 4-6 months of age. Cortical BDNF, CD68, and MAP-2 levels were analyzed 3 months after irradiation or sham irradiation. During the dark period, male mice irradiated with 50 cGy showed higher activity levels in the home cage than sham-irradiated mice. Mice irradiated with 50 cGy also showed increased depressive behavior in the forced swim test. When cognitive performance was assessed, sham-irradiated mice of both sexes and mice irradiated with 25 cGy showed normal responses to object recognition and novel object exploration. However, object recognition was impaired in female and male mice irradiated with 50 or 200 cGy. For cortical levels of the neurotrophic factor BDNF and the marker of microglial activation CD68, there were sex × radiation interactions. In females, but not males, there were increased CD68 levels following irradiation. In males, but not females, there were reduced BDNF levels following irradiation. A significant positive correlation between BDNF and CD68 levels was observed, suggesting a role for activated microglia in the alterations in BDNF levels. Finally, sequential beam irradiation impacted the diversity and composition of the gut microbiome. These included dose-dependent impacts and alterations to the relative abundance of several gut genera, such as Butyricicoccus and Lachnospiraceae. Thus, exposure to rapidly delivered sequential proton, 16O ion, and 28Si ion irradiation significantly affects behavioral and cognitive performance, cortical levels of CD68 and BDNF in a sex-dependent fashion, and the gut microbiome.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Department of Neurology, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, United States.,Department of Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, United States
| | - Joy Yamazaki
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Eileen Ruth S Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Nicole Kirchoff
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Keaton Stagaman
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Thomas Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, United States.,Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Mitchell S Turker
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, United States.,Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
337
|
Prell T, Witte OW, Grosskreutz J. Biomarkers for Dementia, Fatigue, and Depression in Parkinson's Disease. Front Neurol 2019; 10:195. [PMID: 30906277 PMCID: PMC6418014 DOI: 10.3389/fneur.2019.00195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/15/2019] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease is a common multisystem neurodegenerative disorder characterized by typical motor and non-motor symptoms. There is an urgent need for biomarkers for assessment of disease severity, complications and prognosis. In addition, biomarkers reporting the underlying pathophysiology assist in understanding the disease and developing neuroprotective therapies. Ultimately, biomarkers could be used to develop a more efficient personalized approach for clinical trials and treatment strategies. With the goal to improve quality of life in Parkinson's disease it is essential to understand and objectively monitor non-motor symptoms. This narrative review provides an overview of recent developments of biomarkers (biofluid samples and imaging) for three common neuropsychological syndromes in Parkinson's disease: dementia, fatigue, and depression.
Collapse
Affiliation(s)
- Tino Prell
- Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| |
Collapse
|
338
|
Kumar A, Henry RJ, Stoica BA, Loane DJ, Abulwerdi G, Bhat SA, Faden AI. Neutral Sphingomyelinase Inhibition Alleviates LPS-Induced Microglia Activation and Neuroinflammation after Experimental Traumatic Brain Injury. J Pharmacol Exp Ther 2019; 368:338-352. [PMID: 30563941 PMCID: PMC6367691 DOI: 10.1124/jpet.118.253955] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation is one of the key secondary injury mechanisms triggered by traumatic brain injury (TBI). Microglial activation, a hallmark of brain neuroinflammation, plays a critical role in regulating immune responses after TBI and contributes to progressive neurodegeneration and neurologic deficits following brain trauma. Here we evaluated the role of neutral sphingomyelinase (nSMase) in microglial activation by examining the effects of the nSMase inhibitors altenusin and GW4869 in vitro (using BV2 microglia cells and primary microglia), as well as in a controlled cortical injury (CCI) model in adult male C57BL/6 mice. Pretreatment of altenusin or GW4869 prior to lipopolysaccharide (LPS) stimulation for 4 or 24 hours, significantly downregulated gene expression of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, iNOS, and CCL2 in microglia and reduced the release of nitric oxide and TNF-α These nSMase inhibitors also attenuated the release of microparticles and phosphorylation of p38 MAPK and ERK1/2. In addition, altenusin pretreatment also reduced the gene expression of multiple inflammatory markers associated with microglial activation after experimental TBI, including TNF-α, IL-1β, IL-6, iNOS, CCL2, CD68, NOX2, and p22phox Overall, our data demonstrate that nSMase inhibitors attenuate multiple inflammatory pathways associated with microglial activation in vitro and after experimental TBI. Thus, nSMase inhibitors may represent promising therapeutics agents targeting neuroinflammation.
Collapse
Affiliation(s)
- Asit Kumar
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gelareh Abulwerdi
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shahnawaz A Bhat
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
339
|
Schwitzer T, Schwan R, Angioi-Duprez K, Lalanne L, Giersch A, Laprevote V. Cannabis use and human retina: The path for the study of brain synaptic transmission dysfunctions in cannabis users. Neurosci Biobehav Rev 2019; 106:11-22. [PMID: 30773228 DOI: 10.1016/j.neubiorev.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/08/2018] [Accepted: 12/02/2018] [Indexed: 01/01/2023]
Abstract
Owing to the difficulty of obtaining direct access to the functioning brain, new approaches are needed for the indirect exploration of brain disorders in neuroscience research. Due to its embryonic origin, the retina is part of the central nervous system and is well suited to the investigation of neurological functions in psychiatric and addictive disorders. In this review, we focus on cannabis use, which is a crucial public health challenge, since cannabis is one of the most widely used addictive drugs in industrialized countries. We first explain why studying retinal function is relevant when exploring the effects of cannabis use on brain function. Next, we describe both the retinal electrophysiological measurements and retinal dysfunctions observed after acute and regular cannabis use. We then discuss how these retinal dysfunctions may inform brain synaptic transmission abnormalities. Finally, we present various directions for future research on the neurotoxic effects of cannabis use.
Collapse
Affiliation(s)
- Thomas Schwitzer
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France.
| | - Raymund Schwan
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; Maison des Addictions, CHRU Nancy, Nancy, France
| | | | - Laurence Lalanne
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; Pôle de Psychiatrie Santé Mentale et Addictologie, Fédération de Médecine Translationnelle de Strasbourg, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Anne Giersch
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Vincent Laprevote
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| |
Collapse
|
340
|
Brymer KJ, Romay-Tallon R, Allen J, Caruncho HJ, Kalynchuk LE. Exploring the Potential Antidepressant Mechanisms of TNFα Antagonists. Front Neurosci 2019; 13:98. [PMID: 30804748 PMCID: PMC6378555 DOI: 10.3389/fnins.2019.00098] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Human and animal studies suggest an intriguing relationship between the immune system and the development of depression. Some peripherally produced cytokines, such as TNF-α, can cross the blood brain barrier and result in activation of brain microglia which produces additional TNF-α and fosters a cascade of events including decreases in markers of synaptic plasticity and increases in neurodegenerative events. This is exemplified by preclinical studies, which show that peripheral administration of pro-inflammatory cytokines can elicit depression-like behavior. Importantly, this depression-like behavior can be ameliorated by anti-cytokine therapies. Work in our laboratory suggests that TNF-α is particularly important for the development of a depressive phenotype and that TNF-α antagonists might have promise as novel antidepressant drugs. Future research should examine rates of inflammation at baseline in depressed patients and whether anti-inflammatory agents could be included as part of the treatment regimen for depressive disorders.
Collapse
Affiliation(s)
- Kyle J Brymer
- Department of Psychology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Josh Allen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
341
|
Ponnusamy V, Yip PK. The role of microRNAs in newborn brain development and hypoxic ischaemic encephalopathy. Neuropharmacology 2019; 149:55-65. [PMID: 30716413 DOI: 10.1016/j.neuropharm.2018.11.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 02/08/2023]
Abstract
Neonates can develop hypoxic-ischaemic encephalopathy (HIE) due to lack of blood supply or oxygen, resulting in a major cause of death and disability among term newborns. However, current definitive treatment of therapeutic hypothermia, will only benefit one out of nine babies. Furthermore, the mechanisms of HIE and therapeutic hypothermia are not fully understood. Recently, microRNAs (miRNAs) have become of interest to many researchers due to their important role in post-transcriptional control and deep evolutionary history. Despite this, role of miRNAs in newborns with HIE remains largely unknown due to limited research in this field. Therefore, this review aims to understand the role of miRNAs in normal brain development and HIE pathophysiology with reliance on extrapolated data from other diseases, ages and species due to current limited data. This will provide us with an overview of how miRNAs in normal brain development changes after HIE. Furthermore, it will indicate how miRNAs are affected specifically or globally by the various pathophysiological events. In addition, we discuss about how drugs and commercially available agents can specifically target certain miRNAs as a mechanism of action and potential safety issue with off-target effects. Improving our understanding of the role of miRNAs on the cellular response after HIE would enhance the success of effective diagnosis, prognosis, and treatment of newborns with HIE.
Collapse
Affiliation(s)
- Vennila Ponnusamy
- Centre of Genomics and Child Health, Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, UK; Neonatal Intensive Care Unit, Ashford and St. Peter's Hospitals NHS Trust, Chertsey, UK.
| | - Ping K Yip
- Center of Neuroscience, Surgery and Trauma, Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, UK.
| |
Collapse
|
342
|
Reis DJ, Casteen EJ, Ilardi SS. The antidepressant impact of minocycline in rodents: A systematic review and meta-analysis. Sci Rep 2019; 9:261. [PMID: 30670723 PMCID: PMC6342970 DOI: 10.1038/s41598-018-36507-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022] Open
Abstract
Evidence from recent animal studies suggest that minocycline, a broad-spectrum antibiotic capable of regulating immune processes, may possess antidepressant properties. These studies, however, have yet to be comprehensively reviewed. Accordingly, this systematic review and meta-analysis summarizes the extant literature examining the effect of minocycline on depressive-like behavior in rodent models. PubMed, PsycINFO, and Web of Science databases were systematically searched for articles that met prespecified inclusion and exclusion criteria, and standardized mean differences (SMDs) were calculated for each continuous measure of depressive-like behavior. The overall effect of minocycline on depressive-like behavior was estimated using robust variance estimation meta-analysis. Separate subgroup analyses were conducted on diseased vs healthy animal models, different rodent species, and immobility-based vs anhedonia-based measures of depressive-like behavior. A total of 22 preclinical studies (816 animals) were included. Overall, minocycline reduced depressive-like behavior in rodents (SMD = -1.07, 95% CI -1.41--0.74, p < 0.001). Subgroup analyses revealed that minocycline reduced depressive-like behavior in diseased, but not healthy, animal models. Finally, minocycline was found to reduce both immobility-based and anhedonia-based outcomes. These findings suggest that minocycline may be an effective treatment of core depressive symptoms, and that further investigation of minocycline treatment for clinically relevant depression in humans is warranted.
Collapse
Affiliation(s)
- Daniel J Reis
- University of Kansas, Department of Psychology, Lawrence, KS, 66045, USA.
| | - Emily J Casteen
- University of Kansas, Department of Psychology, Lawrence, KS, 66045, USA
| | - Stephen S Ilardi
- University of Kansas, Department of Psychology, Lawrence, KS, 66045, USA
| |
Collapse
|
343
|
Kabe Y, Sakamoto S, Hatakeyama M, Yamaguchi Y, Suematsu M, Itonaga M, Handa H. Application of high-performance magnetic nanobeads to biological sensing devices. Anal Bioanal Chem 2019; 411:1825-1837. [PMID: 30627798 PMCID: PMC6453870 DOI: 10.1007/s00216-018-1548-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/01/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Nanomaterials have extensive applications in the life sciences and in clinical diagnosis. We have developed magnetic nanoparticles with high dispersibility and extremely low nonspecific binding to biomolecules and have demonstrated their application in chemical biology (e.g., for the screening of drug receptor proteins). Recently, the excellent properties of nanobeads have made possible the development of novel rapid immunoassay systems and high-precision technologies for exosome detection. For immunoassays, we developed a technology to encapsulate a fluorescent substance in magnetic nanobeads. The fluorescent nanobeads allow the rapid detection of a specific antigen in solution or in tissue specimens. Exosomes, which are released into the blood, are expected to become markers for several diseases, including cancer, but techniques for measuring the absolute quantity of exosomes in biological fluids are lacking. By integrating magnetic nanobead technology with an optical disc system, we developed a novel method for precisely quantifying exosomes in human serum with high sensitivity and high linearity without requiring enrichment procedures. This review focuses on the properties of our magnetic nanobeads, the development of novel biosensors using these nanobeads, and their broad practical applications. Graphical abstract ![]()
Collapse
Affiliation(s)
- Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, 35 Shinnanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Tokyo, 200-0004, Japan.
| | - Satoshi Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Mamoru Hatakeyama
- FG Beads Development Section, Biotronics Laboratory, Tamagawa Seiki Co. Ltd, Ohyasumi, Iida, Nagano, 395-8515, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinnanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Makoto Itonaga
- Healthcare Business Division, JVCKENWOOD Corporation, 3-12 Moriya-cho, Kanagawa-ku, Yokohama, Kanagawa, 221-0022, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, 6-2-2 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| |
Collapse
|
344
|
PI3K/Akt/NF-κB signaling pathway regulates behaviors in adolescent female rats following with neonatal maternal deprivation and chronic mild stress. Behav Brain Res 2019; 362:199-207. [PMID: 30630016 DOI: 10.1016/j.bbr.2019.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
The early-life aversive experiences are associated with the increased risk for adolescent neuropsychiatric disorders and neuroinflammation. So, we used neonatal maternal deprivation (NMD) and chronic mild stress (CMS) to build adolescent depression model and investigate the role of microglia activation, PI3K/Akt/NF-κB pathway in female rats. Pups in NMD group were separated from mothers for 3 h each day from postnatal day (PND) 2 to PND 21 and rats in CMS group were subjected to one mild stressor each day from PND 22 to PND 42. Sucrose preference test (SPT), open field test (OFT), novel objective recognition test (NORT), Elevated-plus maze (EPM), marble burying test (MBT) and forced swimming test (FST) were performed from PND 42 to PND 50. Iba-1, pPI3K/PI3K, pAkt/Akt, and NF-κB expressions in the prefrontal cortex (PFC) and hippocampus (HIP) were detected by Western-Blot. Contents of IL-6, IL-1β and TNF-α were detected by ELISA method. It was found NMD + CMS increased the immobility time, buried marble number, inflammatory cytokines release and reduced the sucrose consumption ratio, time ratio and distance ratio in open arm, crossing times, rearing times. Furthermore, it decreased the discrimination ratio (DR) and discrimination index (DI) in T2 phase. NMD + CMS upregulated the expression of Iba-1, pPI3K/PI3K, pacts/Akt, and NF-κB in PFC and HIP. NMD or CMS solely didn't affect all these behaviors in rats. Sertraline treatment reversed these changes after NMD + CMS. In view of our findings we propose the NMD + CMS procedure as a potentially useful animal model to analyze developmental emotional behaviors and cognitive dysfunction in adolescent female rats, which may be related with microglial activation and PI3k/Akt/NF-κB pathway upregulation.
Collapse
|
345
|
Abdel-Haq R, Schlachetzki JCM, Glass CK, Mazmanian SK. Microbiome-microglia connections via the gut-brain axis. J Exp Med 2019; 216:41-59. [PMID: 30385457 PMCID: PMC6314531 DOI: 10.1084/jem.20180794] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/08/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia, the resident immune cells in the brain, are essential for modulating neurogenesis, influencing synaptic remodeling, and regulating neuroinflammation by surveying the brain microenvironment. Microglial dysfunction has been implicated in the onset and progression of several neurodevelopmental and neurodegenerative diseases; however, the multitude of factors and signals influencing microglial activity have not been fully elucidated. Microglia not only respond to local signals within the brain but also receive input from the periphery, including the gastrointestinal (GI) tract. Recent preclinical findings suggest that the gut microbiome plays a pivotal role in regulating microglial maturation and function, and altered microbial community composition has been reported in neurological disorders with known microglial involvement in humans. Collectively, these findings suggest that bidirectional crosstalk between the gut and the brain may influence disease pathogenesis. Herein, we discuss recent studies showing a role for the gut microbiome in modulating microglial development and function in homeostatic and disease conditions and highlight possible future research to develop novel microbial treatments for disorders of the brain.
Collapse
Affiliation(s)
- Reem Abdel-Haq
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | | | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
346
|
Basic Concept of Microglia Biology and Neuroinflammation in Relation to Psychiatry. Curr Top Behav Neurosci 2019; 44:9-34. [PMID: 30739307 DOI: 10.1007/7854_2018_83] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hypothesis that the neuroimmune system plays a role in the pathogenesis of different psychiatric disorders, including schizophrenia, depression, and bipolar disease, has attained increasing interest over the past years. Previously thought to have the sole purpose of protecting the central nervous system (CNS) from harmful stimuli, it is now known that the central immune system is critically involved in regulating physiological processes including neurodevelopment, synaptic plasticity, and circuit maintenance. Hence, alterations in microglia - the main immune cell of the CNS - and/or inflammatory factors do not unequivocally connote ongoing neuroinflammation or neuroinflammatory processes per se but rather might signify changes in brain homoeostasis. Despite this, psychiatric research tends to equate functional changes in microglia or alterations in other immune mediators with neuroinflammation. It is the main impetus of this chapter to overcome some of the current misconceptions and possible oversimplifications with respect to neuroinflammation and microglia activity in psychiatry. In order to do so, we will first provide an overview of the basic concepts of neuroinflammation and neuroinflammatory processes. We will then focus on microglia with respect to their ontogeny and immunological and non-immunological functions presenting novel insights on how microglia communicate with other cell types of the central nervous system to ensure proper brain functioning. And lastly, we will delineate the non-immunological functions of inflammatory cytokines in order to address the possible misconception of equating alterations in central cytokine levels with ongoing central inflammation. We hereby hope to help unravel the functional relevance of neuroimmune dysfunctions in psychiatric illnesses and provide future research directions in the field of psychoneuroimmunology.
Collapse
|
347
|
Hatami M, Abdolahi M, Soveyd N, Djalali M, Togha M, Honarvar NM. Molecular Mechanisms of Curcumin in Neuroinflammatory Disorders: A Mini Review of Current Evidences. Endocr Metab Immune Disord Drug Targets 2019; 19:247-258. [PMID: 30488803 DOI: 10.2174/1871530319666181129103056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Neuroinflammatory disease is a general term used to denote the progressive loss of neuronal function or structure. Many neuroinflammatory diseases, including Alzheimer's, Parkinson's, and multiple sclerosis (MS), occur due to neuroinflammation. Neuroinflammation increases nuclear factor-κB (NF-κB) levels, cyclooxygenase-2 enzymes and inducible nitric oxide synthase, resulting in the release of inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). It could also lead to cellular deterioration and symptoms of neuroinflammatory diseases. Recent studies have suggested that curcumin (the active ingredient in turmeric) could alleviate the process of neuroinflammatory disease. Thus, the present mini-review was conducted to summarize studies regarding cellular and molecular targets of curcumin relevant to neuroinflammatory disorders. METHODS A literature search strategy was conducted for all English-language literature. Studies that assessed the various properties of curcuminoids in respect of neuroinflammatory disorders were included in this review. RESULTS The studies have suggested that curcuminoids have significant anti- neuroinflammatory, antioxidant and neuroprotective properties that could attenuate the development and symptom of neuroinflammatory disorders. Curcumin can alleviate neurodegeneration and neuroinflammation through multiple mechanisms, by reducing inflammatory mediators (such as TNF-α, IL-1β, nitric oxide and NF-κB gene expression), and affect mitochondrial dynamics and even epigenetic changes. CONCLUSION It is a promising subject of study in the prevention and management of the neuroinflammatory disease. However, controlled, randomized clinical trials are needed to fully evaluate its clinical potential.
Collapse
Affiliation(s)
- Mahsa Hatami
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abdolahi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Amir Alam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Soveyd
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Togha
- Iranian Center of Neurological Research, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Niyaz Mohammadzadeh Honarvar
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
348
|
Rodrigues FTS, de Souza MRM, Lima CNDC, da Silva FER, Costa DVDS, Dos Santos CC, Miyajima F, de Sousa FCF, Vasconcelos SMM, Barichello T, Quevedo J, Maes M, de Lucena DF, Macedo D. Major depression model induced by repeated and intermittent lipopolysaccharide administration: Long-lasting behavioral, neuroimmune and neuroprogressive alterations. J Psychiatr Res 2018; 107:57-67. [PMID: 30326340 DOI: 10.1016/j.jpsychires.2018.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/14/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
Major depressed patients show increased bacterial translocation with elevated plasma levels of lipopolysaccharide (LPS), which may trigger immune-inflammatory and neuro-oxidative responses. Recently, an animal model based on chronic LPS administration was developed which was associated with long-lasting depressive-like and neuro-oxidative alterations in female mice. The aim of the current study was to investigate behavioral, neuroimmune and neuroprogressive alterations in female mice 6 weeks after LPS chronic exposure. Female mice received increasing doses of LPS during 5 days at one-month intervals repeated for 4 consecutive months. Six weeks after the last LPS-exposure, we assessed behavioral despair and anhedonia, microglial activation, alterations in tryptophan, 5-HT, kynurenine, quinolinic acid (QUIN) levels and spermidine/spermine N1-acetyltransferase (SAT1) expression in the hippocampus, both with and without fluoxetine administration. Our results show that six weeks post-LPS, mice present behavioral despair and anhedonia in association with increased IBA1 expression (a microglia activation marker), NF-kB p65 and IL-1β levels, indoleamine 2,3-dioxygenase (IDO1) mRNA expression, kynurenine, QUIN levels and QUIN/tryptophan ratio, and lowered tryptophan, 5-HT levels and SAT1 mRNA expression. Fluoxetine reversed the behavioral and neuroimmune alterations but had no effect in the reversal of IDO1 increased expression, QUIN levels and QUIN/tryptophan ratio. In conclusion, our results support the validity of the chronic LPS model of major depression and additionally shows its translational relevance with respect to neuroimmune and neuroprogressive pathways.
Collapse
Affiliation(s)
- Francisca Taciana Sousa Rodrigues
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | - Marcos Romário Matos de Souza
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | - Camila Nayane de Carvalho Lima
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | - Francisco Eliclécio Rodrigues da Silva
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | | | - Cláudio Costa Dos Santos
- Universidade Federal do Semiárido, Centro de Engenharias, Departamento de Engenharia e Tecnologia, Mossoró, RN, Brazil.
| | - Fábio Miyajima
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Fundação Oswaldo Cruz - FIOCRUZ-CE, Fortaleza, Ceará, Brazil.
| | - Francisca Cléa F de Sousa
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | - Tatiana Barichello
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Michael Maes
- Impact Strategic Research Center, Deakin University, Geelong, Australia; Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - David F de Lucena
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | - Danielle Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil.
| |
Collapse
|
349
|
Yu H, Wang X, Kang F, Chen Z, Meng Y, Dai M. Propofol attenuates inflammatory damage on neurons following cerebral infarction by inhibiting excessive activation of microglia. Int J Mol Med 2018; 43:452-460. [PMID: 30431058 DOI: 10.3892/ijmm.2018.3974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/02/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hang Yu
- Intensive Care Unit, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Xiaozhi Wang
- Intensive Care Unit, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Fuxin Kang
- Intensive Care Unit, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Zhile Chen
- Intensive Care Unit, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Yunxia Meng
- Intensive Care Unit, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Mingming Dai
- Department of Internal Neurology, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
350
|
Kuwano N, Kato TA, Mitsuhashi M, Sato-Kasai M, Shimokawa N, Hayakawa K, Ohgidani M, Sagata N, Kubo H, Sakurai T, Kanba S. Neuron-related blood inflammatory markers as an objective evaluation tool for major depressive disorder: An exploratory pilot case-control study. J Affect Disord 2018; 240:88-98. [PMID: 30059939 DOI: 10.1016/j.jad.2018.07.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/31/2018] [Accepted: 07/14/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Neuroinflammation is suggested to be a crucial factor in the pathophysiology of major depressive disorder (MDD). Analysis of neuron-derived exosomes (NDE) in peripheral blood has recently been highlighted to reveal the pathophysiology of brain diseases without using brain biopsy. Currently, human NDE studies require a considerable amount of peripheral blood to measure multiple substances inside exosomes. Previously, NDE-based clinical studies focusing on MDD have not been reported. METHODS As an exploratory pilot case-control study between healthy controls (HC) and drug-free MDD patients (each; N = 34), we searched for NDE-related blood biomarkers with a small amount of peripheral blood using a novel sandwich immunoassay between anti-neuron antibody and antibodies against CD81 (an exosome marker) and against other proteins related to neuroinflammation and synaptic functions. RESULTS Most neuron-related blood biomarkers had moderately to strongly positive correlation with CD81 (NDE), thus we normalized the above biomarkers by CD81 (quantity of each biomarker/CD81) to predict NDE-related blood substances. Interleukin 34 (IL34)/CD81 levels were significantly higher in MDD group compared to HC group. Synaptophysin (SYP), SYP/CD81, and tumor necrosis factor receptor 1 (TNFR1)/CD81 were positively correlated with severities of depression and/or various sub-symptoms. LIMITATIONS We did not actually extract NDE from peripheral blood. CONCLUSIONS Using a small amount of peripheral blood, we have successfully detected possible NDE-related blood biomarkers. This is the first study to suggest that not only SYP and TNFR1 but also IL34 are important blood biomarkers for patients with MDD. Further studies are warranted to evaluate the present study.
Collapse
Affiliation(s)
- Nobuki Kuwano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | - Mina Sato-Kasai
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Norihiro Shimokawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kohei Hayakawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroaki Kubo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Sakurai
- Faculty of Medicine/International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|