301
|
Sulon SM, Benovic JL. Targeting G protein-coupled receptor kinases (GRKs) to G protein-coupled receptors. ACTA ACUST UNITED AC 2021; 16:56-65. [PMID: 33718657 DOI: 10.1016/j.coemr.2020.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
G protein-coupled receptors (GPCRs) interact with three protein families following agonist binding: heterotrimeric G proteins, G protein-coupled receptor kinases (GRKs) and arrestins. GRK-mediated phosphorylation of GPCRs promotes arrestin binding to uncouple the receptor from G protein, a process called desensitization, and for many GPCRs, arrestin binding also promotes receptor endocytosis and intracellular signaling. Thus, GRKs play a central role in modulating GPCR signaling and localization. Here we review recent advances in this field which include additional insight into how GRKs target GPCRs and bias signaling, and the development of specific inhibitors to dissect GRK function in model systems.
Collapse
Affiliation(s)
- Sarah M Sulon
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
302
|
Differential Involvement of ACKR3 C-Tail in β-Arrestin Recruitment, Trafficking and Internalization. Cells 2021; 10:cells10030618. [PMID: 33799570 PMCID: PMC8002179 DOI: 10.3390/cells10030618] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The atypical chemokine receptor 3 (ACKR3) belongs to the superfamily of G protein-coupled receptors (GPCRs). Unlike classical GPCRs, this receptor does not activate G proteins in most cell types but recruits β-arrestins upon activation. ACKR3 plays an important role in cancer and vascular diseases. As recruitment of β-arrestins is triggered by phosphorylation of the C-terminal tail of GPCRs, we studied the role of different potential phosphorylation sites within the ACKR3 C-tail to further delineate the molecular mechanism of internalization and trafficking of this GPCR. Methods: We used various bioluminescence and fluorescence resonance energy transfer-based sensors and techniques in Human Embryonic Kidney (HEK) 293T cells expressing WT or phosphorylation site mutants of ACKR3 to measure CXCL12-induced recruitment of β-arrestins and G-protein-coupled receptor kinases (GRKs), receptor internalization and trafficking. Results: Upon CXCL12 stimulation, ACKR3 recruits both β-arrestin 1 and 2 with equivalent kinetic profiles. We identified interactions with GRK2, 3 and 5, with GRK2 and 3 being important for β-arrestin recruitment. Upon activation, ACKR3 internalizes and recycles back to the cell membrane. We demonstrate that β-arrestin recruitment to the receptor is mainly determined by a single cluster of phosphorylated residues on the C-tail of ACKR3, and that residue T352 and in part S355 are important residues for β-arrestin1 recruitment. Phosphorylation of the C-tail appears essential for ligand-induced internalization and important for differential β-arrestin recruitment. GRK2 and 3 play a key role in receptor internalization. Moreover, ACKR3 can still internalize when β-arrestin recruitment is impaired or in the absence of β-arrestins, using alternative internalization pathways. Our data indicate that distinct residues within the C-tail of ACKR3 differentially regulate CXCL12-induced β-arrestin recruitment, ACKR3 trafficking and internalization.
Collapse
|
303
|
Kang XL, Li YX, Li YL, Wang JX, Zhao XF. The homotetramerization of a GPCR transmits the 20-hydroxyecdysone signal and increases its entry into cells for insect metamorphosis. Development 2021; 148:148/5/dev196667. [PMID: 33692089 DOI: 10.1242/dev.196667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/05/2021] [Indexed: 12/28/2022]
Abstract
Animal steroid hormones initiate signaling by passive diffusion into cells and binding to their nuclear receptors to regulate gene expression. Animal steroid hormones can initiate signaling via G protein-coupled receptors (GPCRs); however, the underlying mechanisms are unclear. Here, we show that a newly discovered ecdysone-responsive GPCR, ErGPCR-3, transmits the steroid hormone 20-hydroxyecdysone (20E) signal by binding 20E and promoting its entry into cells in the lepidopteran insect Helicoverpa armigera Knockdown of ErGPCR-3 in larvae caused delayed and abnormal pupation, inhibited remodeling of the larval midgut and fat body, and repressed 20E-induced gene expression. Also, 20E induced both the interaction of ErGPCR-3 with G proteins and rapid intracellular increase in calcium, cAMP and protein phosphorylation. ErGPCR-3 was endocytosed by GPCR kinase 2-mediated phosphorylation, and interacted with β-arrestin-1 and clathrin, to terminate 20E signaling under 20E induction. We found that 20E bound to ErGPCR-3 and induced the ErGPCR-3 homodimer to form a homotetramer, which increased 20E entry into cells. Our study revealed that homotetrameric ErGPCR-3 functions as a cell membrane receptor and increases 20E diffusion into cells to transmit the 20E signal and promote metamorphosis.
Collapse
Affiliation(s)
- Xin-Le Kang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yan-Li Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
304
|
Koretz KS, McGraw CE, Stradley S, Elbaradei A, Malmstadt N, Robinson AS. Characterization of binding kinetics of A 2AR to Gα s protein by surface plasmon resonance. Biophys J 2021; 120:1641-1649. [PMID: 33675761 DOI: 10.1016/j.bpj.2021.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 01/09/2023] Open
Abstract
Because of their surface localization, G protein-coupled receptors (GPCRs) are often pharmaceutical targets as they respond to a variety of extracellular stimuli (e.g., light, hormones, small molecules) that may activate or inhibit a downstream signaling response. The adenosine A2A receptor (A2AR) is a well-characterized GPCR that is expressed widely throughout the human body, with over 10 crystal structures determined. Truncation of the A2AR C-terminus is necessary for crystallization as this portion of the receptor is long and unstructured; however, previous work suggests shortening of the A2AR C-terminus from 412 to 316 amino acids (A2AΔ316R) ablates downstream signaling, as measured by cAMP production, to below that of constitutive full-length A2AR levels. As cAMP production is downstream of the first activation event-coupling of G protein to its receptor-investigating that first step in activation is important in understanding how the truncation effects native GPCR function. Here, using purified receptor and Gαs proteins, we characterize the association of A2AR and A2AΔ316R to Gαs with and without GDP or GTPγs using surface plasmon resonance (SPR). Gαs affinity for A2AR was greatest for apo-Gαs, moderately affected in the presence of GDP and nearly completely ablated by the addition of GTPγs. Truncation of the A2AR C-terminus (A2AΔ316R) decreased the affinity of the unliganded receptor for Gαs by ∼20%, suggesting small changes to binding can greatly impact downstream signaling.
Collapse
Affiliation(s)
- Kirsten S Koretz
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana; Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Claire E McGraw
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana
| | - Steven Stradley
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana
| | - Ahmed Elbaradei
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California
| | - Noah Malmstadt
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California
| | - Anne S Robinson
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana; Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
305
|
Yang M, Zhang CY. G protein-coupled receptors as potential targets for nonalcoholic fatty liver disease treatment. World J Gastroenterol 2021; 27:677-691. [PMID: 33716447 PMCID: PMC7934005 DOI: 10.3748/wjg.v27.i8.677] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/24/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a broad-spectrum disease, ranging from simple hepatic steatosis to nonalcoholic steatohepatitis, which can progress to cirrhosis and liver cancer. Abnormal hepatic lipid accumulation is the major manifestation of this disease, and lipotoxicity promotes NAFLD progression. In addition, intermediate metabolites such as succinate can stimulate the activation of hepatic stellate cells to produce extracellular matrix proteins, resulting in progression of NAFLD to fibrosis and even cirrhosis. G protein-coupled receptors (GPCRs) have been shown to play essential roles in metabolic disorders, such as NAFLD and obesity, through their function as receptors for bile acids and free fatty acids. In addition, GPCRs link gut microbiota-mediated connections in a variety of diseases, such as intestinal diseases, hepatic steatosis, diabetes, and cardiovascular diseases. The latest findings show that gut microbiota-derived acetate contributes to liver lipogenesis by converting dietary fructose into hepatic acetyl-CoA and fatty acids. GPCR agonists, including peptides and natural products like docosahexaenoic acid, have been applied to investigate their role in liver diseases. Therapies such as probiotics and GPCR agonists may be applied to modulate GPCR function to ameliorate liver metabolism syndrome. This review summarizes the current findings regarding the role of GPCRs in the development and progression of NAFLD and describes some preclinical and clinical studies of GPCR-mediated treatment. Overall, understanding GPCR-mediated signaling in liver disease may provide new therapeutic options for NAFLD.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
| | - Chun-Ye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
306
|
Targeting GRK5 for Treating Chronic Degenerative Diseases. Int J Mol Sci 2021; 22:ijms22041920. [PMID: 33671974 PMCID: PMC7919044 DOI: 10.3390/ijms22041920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors and they are responsible for the transduction of extracellular signals, regulating almost all aspects of mammalian physiology. These receptors are specifically regulated by a family of serine/threonine kinases, called GPCR kinases (GRKs). Given the biological role of GPCRs, it is not surprising that GRKs are also involved in several pathophysiological processes. Particular importance is emerging for GRK5, which is a multifunctional protein, expressed in different cell types, and it has been found located in single or multiple subcellular compartments. For instance, when anchored to the plasma membrane, GRK5 exerts its canonical function, regulating GPCRs. However, under certain conditions (e.g., pro-hypertrophic stimuli), GRK5 translocates to the nucleus of cells where it can interact with non-GPCR-related proteins as well as DNA itself to promote “non-canonical” signaling, including gene transcription. Importantly, due to these actions, several studies have demonstrated that GRK5 has a pivotal role in the pathogenesis of chronic-degenerative disorders. This is true in the cardiac cells, tumor cells, and neurons. For this reason, in this review article, we will inform the readers of the most recent evidence that supports the importance of targeting GRK5 to prevent the development or progression of cancer, cardiovascular, and neurological diseases.
Collapse
|
307
|
Jóźwiak K, Płazińska A. Structural Insights into Ligand-Receptor Interactions Involved in Biased Agonism of G-Protein Coupled Receptors. Molecules 2021; 26:molecules26040851. [PMID: 33561962 PMCID: PMC7915493 DOI: 10.3390/molecules26040851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are versatile signaling proteins that mediate complex cellular responses to hormones and neurotransmitters. Ligand directed signaling is observed when agonists, upon binding to the same receptor, trigger significantly different configuration of intracellular events. The current work reviews the structurally defined ligand – receptor interactions that can be related to specific molecular mechanisms of ligand directed signaling across different receptors belonging to class A of GPCRs. Recent advances in GPCR structural biology allow for mapping receptors’ binding sites with residues particularly important in recognition of ligands’ structural features that are responsible for biased signaling. Various studies show particular role of specific residues lining the extended ligand binding domains, biased agonists may alternatively affect their interhelical interactions and flexibility what can be translated into intracellular loop rearrangements. Studies on opioid and angiotensin receptors indicate importance of residues located deeper within the binding cavity and direct interactions with receptor residues linking the ortosteric ligand binding site with the intracellular transducer binding domain. Collection of results across different receptors may suggest elements of common molecular mechanisms which are responsible for passing alternative signals from biased agonists.
Collapse
|
308
|
A set of common movements within GPCR-G-protein complexes from variability analysis of cryo-EM datasets. J Struct Biol 2021; 213:107699. [PMID: 33545352 DOI: 10.1016/j.jsb.2021.107699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
G-protein coupled receptors (GPCRs) are among the most versatile signal transducers in the cell. Once activated, GPCRs sample a large conformational space and couple to G-proteins to initiate distinct signaling pathways. The dynamical behavior of GPCR-G-protein complexes is difficult characterize structurally, and it might hinder obtaining routine high-resolution density maps in single-particle reconstructions. Here, we used variability analysis on the rhodopsin-Gi-Fab16 complex cryo-EM dataset, and the results provide insights into the dynamic nature of the receptor-complex interaction. We compare the outcome of this analysis with recent results obtained on the cannabinoid-Gi- and secretin-Gs-receptor complexes. Despite differences related to the biochemical compositions of the three samples, a set of consensus movements emerges. We anticipate that systematic variability analysis on GPCR-G-protein complexes may provide useful information not only at the biological level, but also for improving the preparation of more stable samples for cryo-EM single-particle analysis.
Collapse
|
309
|
Manchanda Y, Bitsi S, Kang Y, Jones B, Tomas A. Spatiotemporal control of GLP-1 receptor activity. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.coemr.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
310
|
Sok V, Jacinto AZ, Peng N, Eldemerdash M, Le L, Tran PD, Feng LF, Patel JR, Gi M, Ammon JC, So CH. G protein coupled receptor kinase 5 modifies the nucleolar stress response activated by actinomycin D. Biochem Cell Biol 2021; 99:508-518. [PMID: 33507833 DOI: 10.1139/bcb-2020-0480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein coupled receptor kinase 5 (GRK5) is localized within the nucleus and moderates functions such as DNA transcription, in addition to its localization at the plasma membrane. In this report, we show that GRK5 modifies the nucleolar stress response activated by the DNA polymerase inhibitor, actinomycin D (ActD). We show an increased sensitivity to the apoptotic effects of ActD on cervical HeLa cells and the breast cancer cell line MDA MB 231 with reduced protein expression of GRK5. We also tested two types of breast cancer cells (MDA MB 231 and MCF7 cells) and found that the rate of response to ActD varied between them because they have innate differences in the protein expression of GRK5. We also found that GRK5 phosphorylates nucleophosmin (NPM1) at T199 before and during the early stages of ActD treatment. Phosphorylation at T199 increases the ability of NPM1 to interact with p14ARF in vitro, which may affect the protein expression levels of p14ARF. We found that the expression levels of p14ARF were lower in the cells transfected with the control shRNA, but higher in cells transfected with GRK5 shRNA. Collectively, this suggests that GRK5 modifies the nucleolar stress response associated with ActD.
Collapse
Affiliation(s)
- Vanessa Sok
- Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA.,Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA
| | - Alec Z Jacinto
- Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA.,Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA
| | - Natalie Peng
- Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA.,Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA
| | - Mohamed Eldemerdash
- Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA.,Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA
| | - Lysa Le
- Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA.,Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA
| | - Philip D Tran
- Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA.,Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA
| | - Li Feng Feng
- Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA.,Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA
| | - Jigisha R Patel
- Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA.,Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA
| | - Michael Gi
- Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA.,Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA
| | - Jane C Ammon
- Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA.,Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA
| | - Christopher H So
- Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA.,Roseman University of Health Sciences, School of Pharmacy, Henderson, NV 89014, USA
| |
Collapse
|
311
|
Smith JS, Pack TF, Inoue A, Lee C, Zheng K, Choi I, Eiger DS, Warman A, Xiong X, Ma Z, Viswanathan G, Levitan IM, Rochelle LK, Staus DP, Snyder JC, Kahsai AW, Caron MG, Rajagopal S. Noncanonical scaffolding of G αi and β-arrestin by G protein-coupled receptors. Science 2021; 371:science.aay1833. [PMID: 33479120 DOI: 10.1126/science.aay1833] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 04/29/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) are common drug targets and canonically couple to specific Gα protein subtypes and β-arrestin adaptor proteins. G protein-mediated signaling and β-arrestin-mediated signaling have been considered separable. We show here that GPCRs promote a direct interaction between Gαi protein subtype family members and β-arrestins regardless of their canonical Gα protein subtype coupling. Gαi:β-arrestin complexes bound extracellular signal-regulated kinase (ERK), and their disruption impaired both ERK activation and cell migration, which is consistent with β-arrestins requiring a functional interaction with Gαi for certain signaling events. These results introduce a GPCR signaling mechanism distinct from canonical G protein activation in which GPCRs cause the formation of Gαi:β-arrestin signaling complexes.
Collapse
Affiliation(s)
- Jeffrey S Smith
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas F Pack
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Asuka Inoue
- Department of Pharmaceutical Sciences, Tohoku University, Japan
| | - Claudia Lee
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Kevin Zheng
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Issac Choi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Dylan S Eiger
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Anmol Warman
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Xinyu Xiong
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Zhiyuan Ma
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Gayathri Viswanathan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Ian M Levitan
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lauren K Rochelle
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Dean P Staus
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Joshua C Snyder
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Alem W Kahsai
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Marc G Caron
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA. .,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
312
|
Dissecting the structural features of β-arrestins as multifunctional proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140603. [PMID: 33421644 DOI: 10.1016/j.bbapap.2021.140603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023]
Abstract
β-arrestins bind active G protein-coupled receptors (GPCRs) and play a crucial role in receptor desensitization and internalization. The classical paradigm of arrestin function has been expanded with the identification of many non-receptor-binding partners, which indicated the multifunctional role of β-arrestins in cellular functions. To elucidate the molecular mechanism of β-arrestin-mediated signaling, the structural features of β-arrestins were investigated using X-ray crystallography and cryogenic electron microscopy (cryo-EM). However, the intrinsic conformational flexibility of β-arrestins hampers the elucidation of structural interactions between β-arrestins and their binding partners using conventional structure determination tools. Therefore, structural information obtained using complementary structure analysis techniques would be necessary in combination with X-ray crystallography and cryo-EM data. In this review, we describe how β-arrestins interact with their binding partners from a structural point of view, as elucidated by both traditional methods (X-ray crystallography and cryo-EM) and complementary structure analysis techniques.
Collapse
|
313
|
Thapaliya M, Chompunud Na Ayudhya C, Amponnawarat A, Roy S, Ali H. Mast Cell-Specific MRGPRX2: a Key Modulator of Neuro-Immune Interaction in Allergic Diseases. Curr Allergy Asthma Rep 2021; 21:3. [PMID: 33398613 DOI: 10.1007/s11882-020-00979-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Atopic dermatitis (AD) and allergic asthma are complex disorders with significant public health burden. This review provides an overview of the recent developments on Mas-related G protein-coupled receptor-X2 (MRGPRX2; mouse counterpart MrgprB2) as a potential candidate to target neuro-immune interaction in AD and allergic asthma. RECENT FINDINGS Domestic allergens directly activate sensory neurons to release substance P (SP), which induces mast cell degranulation via MrgprB2 and drives type 2 skin inflammation in AD. MRGPRX2 expression is upregulated in human lung mast cells and serum of asthmatic patients. Both SP and hemokinin-1 (HK-1 generated from macrophages, bronchial cells, and mast cells) cause degranulation of human mast cells via MRGPRX2. MrgprB2 contributes to mast cell-nerve interaction in the pathogenesis of AD. Furthermore, asthma severity is associated with increased MRGPRX2 expression in mast cells. Thus, MRGPRX2 could serve as a novel target for modulating AD and asthma.
Collapse
Affiliation(s)
- Monica Thapaliya
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Chalatip Chompunud Na Ayudhya
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Aetas Amponnawarat
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Saptarshi Roy
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Hydar Ali
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
314
|
Turu G, Soltész-Katona E, Tóth AD, Juhász C, Cserző M, Misák Á, Balla A, Caron MG, Hunyady L. Biased Coupling to β-Arrestin of Two Common Variants of the CB 2 Cannabinoid Receptor. Front Endocrinol (Lausanne) 2021; 12:714561. [PMID: 34484125 PMCID: PMC8415483 DOI: 10.3389/fendo.2021.714561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 01/14/2023] Open
Abstract
β-arrestins are partners of the G protein-coupled receptors (GPCRs), regulating their intracellular trafficking and signaling. Development of biased GPCR agonists, selectively targeting either G protein or β-arrestin pathways, are in the focus of interest due to their therapeutic potential in different pathological conditions. The CB2 cannabinoid receptor (CB2R) is a GPCR involved in various functions in the periphery and the central nervous system. Two common occurring variants of CB2R, harboring Q63R or L133I missense mutations, have been implicated in the development of a diverse set of disorders. To evaluate the effect of these mutations, we characterized the binding profile of these mutant CB2 receptors to G proteins and β-arrestin2. Although their ability to inhibit cAMP signaling was similar, the Q63R mutant had increased, whereas the L133I mutant receptor had decreased β-arrestin2 binding. In line with these observations, the variants also had altered intracellular trafficking. Our results show that two common variants of the CB2 receptor have biased signaling properties, which may contribute to the pathogenesis of the associated disorders and may offer CB2R as a target for further development of biased receptor activation strategies.
Collapse
Affiliation(s)
- Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Cell Biology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, United States
- *Correspondence: Gábor Turu, ; László Hunyady,
| | - Eszter Soltész-Katona
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - András Dávid Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Cintia Juhász
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Miklós Cserző
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Ádám Misák
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, United States
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- *Correspondence: Gábor Turu, ; László Hunyady,
| |
Collapse
|
315
|
Kaimachnikov NP, Kotova PD, Kochkina EN, Rogachevskaja OA, Khokhlov AA, Bystrova MF, Kolesnikov SS. Modeling of Ca2+ transients initiated by GPCR agonists in mesenchymal stromal cells. BBA ADVANCES 2021; 1:100012. [PMID: 37082025 PMCID: PMC10074909 DOI: 10.1016/j.bbadva.2021.100012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022] Open
Abstract
The integrative study that included experimentation and mathematical modeling was carried out to analyze dynamic aspects of transient Ca2+ signaling induced by brief pulses of GPCR agonists in mesenchymal stromal cells from the human adipose tissue (AD-MSCs). The experimental findings argued for IP3/Ca2+-regulated Ca2+ release via IP3 receptors (IP3Rs) as a key mechanism mediating agonist-dependent Ca2+ transients. The consistent signaling circuit was proposed to formalize coupling of agonist binding to Ca2+ mobilization for mathematical modeling. The model properly simulated the basic phenomenology of agonist transduction in AD-MSCs, which mostly produced single Ca2+ spikes upon brief stimulation. The spike-like responses were almost invariantly shaped at different agonist doses above a threshold, while response lag markedly decreased with stimulus strength. In AD-MSCs, agonists and IP3 uncaging elicited similar Ca2+ transients but IP3 pulses released Ca2+ without pronounced delay. This suggested that IP3 production was rate-limiting in agonist transduction. In a subpopulation of AD-MSCs, brief agonist pulses elicited Ca2+ bursts crowned by damped oscillations. With properly adjusted parameters of IP3R inhibition by cytosolic Ca2+, the model reproduced such oscillatory Ca2+ responses as well. GEM-GECO1 and R-CEPIA1er, the genetically encoded sensors of cytosolic and reticular Ca2+, respectively, were co-expressed in HEK-293 cells that also responded to agonists in an "all-or-nothing" manner. The experimentally observed Ca2+ signals triggered by ACh in both compartments were properly simulated with the suggested signaling circuit. Thus, the performed modeling of the transduction process provides sufficient theoretical basis for deeper interpretation of experimental findings on agonist-induced Ca2+ signaling in AD-MSCs.
Collapse
|
316
|
Ma X, Leurs R, Vischer HF. NanoLuc-Based Methods to Measure β-Arrestin2 Recruitment to G Protein-Coupled Receptors. Methods Mol Biol 2021; 2268:233-248. [PMID: 34085273 DOI: 10.1007/978-1-0716-1221-7_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cytosolic β-arrestins are key regulators of G protein-coupled receptors (GPCRs) by sterically uncoupling G protein activation, facilitating receptor internalization, and/or acting as G protein-independent signaling scaffolds. The current awareness that GPCR ligands may display bias toward G protein signaling or β-arrestin recruitment makes β-arrestin recruitment assays important additions to the drug discovery toolbox. This chapter describes two NanoLuc-based methods to monitor β-arrestin2 recruitment to the human histamine H1 receptor by measuring bioluminescence resonance energy transfer and enzyme-fragment complementation in real-time on living cells with reasonable high throughput. In addition to the detection of agonism, both assay formats can be used to qualitatively evaluate the binding kinetics of antihistamines on the human histamine H1 receptor.
Collapse
Affiliation(s)
- Xiaoyuan Ma
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
317
|
Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev 2021; 73:120-151. [PMID: 33268549 PMCID: PMC7736832 DOI: 10.1124/pharmrev.120.000082] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family comprising >800 signaling receptors that regulate numerous cellular and physiologic responses. GPCRs have been implicated in numerous diseases and represent the largest class of drug targets. Although advances in GPCR structure and pharmacology have improved drug discovery, the regulation of GPCR function by diverse post-translational modifications (PTMs) has received minimal attention. Over 200 PTMs are known to exist in mammalian cells, yet only a few have been reported for GPCRs. Early studies revealed phosphorylation as a major regulator of GPCR signaling, whereas later reports implicated a function for ubiquitination, glycosylation, and palmitoylation in GPCR biology. Although our knowledge of GPCR phosphorylation is extensive, our knowledge of the modifying enzymes, regulation, and function of other GPCR PTMs is limited. In this review we provide a comprehensive overview of GPCR post-translational modifications with a greater focus on new discoveries. We discuss the subcellular location and regulatory mechanisms that control post-translational modifications of GPCRs. The functional implications of newly discovered GPCR PTMs on receptor folding, biosynthesis, endocytic trafficking, dimerization, compartmentalized signaling, and biased signaling are also provided. Methods to detect and study GPCR PTMs as well as PTM crosstalk are further highlighted. Finally, we conclude with a discussion of the implications of GPCR PTMs in human disease and their importance for drug discovery. SIGNIFICANCE STATEMENT: Post-translational modification of G protein-coupled receptors (GPCRs) controls all aspects of receptor function; however, the detection and study of diverse types of GPCR modifications are limited. A thorough understanding of the role and mechanisms by which diverse post-translational modifications regulate GPCR signaling and trafficking is essential for understanding dysregulated mechanisms in disease and for improving and refining drug development for GPCRs.
Collapse
Affiliation(s)
- Anand Patwardhan
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - Norton Cheng
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - JoAnn Trejo
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
318
|
Split-Tobacco Etch Virus (Split-TEV) Method in G Protein-Coupled Receptor Interacting Proteins. Methods Mol Biol 2021; 2268:223-232. [PMID: 34085272 DOI: 10.1007/978-1-0716-1221-7_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Split-TEV assay enables the identification of protein-protein interaction in mammalian cells. This method is based on the split of tobacco etch virus (TEV) protease in two fragments, where each fragment is fused to the candidate proteins predicted to interact. If there is indeed an interaction between both proteins, TEV protease reconstitutes its proteolytic activity and this activity is used to induce the expression of some reporter genes. However, some studies have detected unspecific interaction between membrane proteins due to its higher tendency to aggregate. Here we describe a variation of the Split-TEV method developed with the aim to increase the specificity in the study of G protein-coupled receptor (GPCR) interacting proteins. This approach for monitoring interactions between GPCRs is an easy and robust assay and offers good perspectives in drug discovery.
Collapse
|
319
|
DeNies MS, Smrcka AV, Schnell S, Liu AP. β-arrestin mediates communication between plasma membrane and intracellular GPCRs to regulate signaling. Commun Biol 2020; 3:789. [PMID: 33339901 PMCID: PMC7749148 DOI: 10.1038/s42003-020-01510-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/16/2020] [Indexed: 01/14/2023] Open
Abstract
It has become increasingly apparent that G protein-coupled receptor (GPCR) localization is a master regulator of cell signaling. However, the molecular mechanisms involved in this process are not well understood. To date, observations of intracellular GPCR activation can be organized into two categories: a dependence on OCT3 cationic channel-permeable ligands or the necessity of endocytic trafficking. Using CXC chemokine receptor 4 (CXCR4) as a model, we identified a third mechanism of intracellular GPCR signaling. We show that independent of membrane permeable ligands and endocytosis, upon stimulation, plasma membrane and internal pools of CXCR4 are post-translationally modified and collectively regulate EGR1 transcription. We found that β-arrestin-1 (arrestin 2) is necessary to mediate communication between plasma membrane and internal pools of CXCR4. Notably, these observations may explain that while CXCR4 overexpression is highly correlated with cancer metastasis and mortality, plasma membrane localization is not. Together these data support a model where a small initial pool of plasma membrane-localized GPCRs are capable of activating internal receptor-dependent signaling events. DeNies et al. identify a new mechanism of intracellular GPCR signalling. Using CXC chemokine receptor 4 (CXCR4) as a model, they show that upon stimulation with receptor agonists that not only plasma membrane-localized receptors, but also intracellular CXCR4 molecules are post-translationally modified and regulate transcription. This study suggests that a small pool of plasma membrane-localized GPCRs can activate internal receptor-dependent signaling, and that β-arrestin-1 mediates this activation.
Collapse
Affiliation(s)
- Maxwell S DeNies
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Santiago Schnell
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Allen P Liu
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA. .,Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
320
|
Yang A, Yu G, Wu Y, Wang H. Role of β2-adrenergic receptors in chronic obstructive pulmonary disease. Life Sci 2020; 265:118864. [PMID: 33301808 DOI: 10.1016/j.lfs.2020.118864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 01/14/2023]
Abstract
Beta-2 adrenergic receptors (β2-ARs) have important roles in the pathogenesis and treatment of chronic obstructive pulmonary disease (COPD). In recent years, progress has been made in the study of β2-ARs. Here, we introduce the basic concepts of β2-ARs, related pathways, as well as application of blockers/agonists of β2-ARs, and β2-AR autoantibodies in COPD. Drugs targeting the β2-AR are being developed rapidly, and we expect them to improve the symptoms and prognosis of COPD patients in the future.
Collapse
Affiliation(s)
- Ailin Yang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing 100050, China
| | - Ganggang Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing 100050, China
| | - Yanjun Wu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing 100050, China.
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing 100050, China.
| |
Collapse
|
321
|
Patel M, Finlay DB, Glass M. Biased agonism at the cannabinoid receptors - Evidence from synthetic cannabinoid receptor agonists. Cell Signal 2020; 78:109865. [PMID: 33259937 DOI: 10.1016/j.cellsig.2020.109865] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 01/14/2023]
Abstract
The type 1 and type 2 cannabinoid receptors are G protein-coupled receptors implicated in a variety of physiological processes and diseases. Synthetic cannabinoid receptor agonists (SCRAs) were originally developed to explore the therapeutic benefits of cannabinoid receptor activation, although more recently, these compounds have been diverted to the recreational drug market and are increasingly associated with incidences of toxicity. A prominent concept in contemporary pharmacology is functional selectivity or biased agonism, which describes the ability of ligands to elicit differential activation of signalling pathways through stabilisation of distinct receptor conformations. Biased agonists may maximise drug effectiveness by reducing on-target adverse effects if they are mediated by signalling pathways distinct from those that drive the therapeutic effects. For the cannabinoid receptors, it remains unclear as to which signalling pathways mediate desirable and adverse effects. However, given their structural diversity and potential to induce a plethora of signalling effects, SCRAs provide the most promising prospect for detecting and studying bias at the cannabinoid receptors. This review summarises the emerging evidence of SCRA bias at the cannabinoid receptors.
Collapse
Affiliation(s)
- Monica Patel
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - David B Finlay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
322
|
Wang X, Tu J, Jiang J, Zhang Q, Liu Q, Körner H, Wu J, Wu H, Wei W. Angiotensin II Type 2 Receptor Modulates Synovial Macrophage Polarization by Inhibiting GRK2 Membrane Translocation in a Rat Model of Collagen-Induced Arthritis. THE JOURNAL OF IMMUNOLOGY 2020; 205:3141-3153. [PMID: 33148713 DOI: 10.4049/jimmunol.2000561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/23/2020] [Indexed: 01/15/2023]
Abstract
The chronic inflammatory autoimmune disease rheumatoid arthritis (RA) is characterized by an infiltration of activated proinflammatory immune cells into the joint that is accompanied by an overproduction of various mediators, leading to destruction of cartilage and bone erosion. Angiotensin II type 2 receptor (AT2R) is involved in antioxidative, anti-inflammatory, and antifibrotic responses. Synovial macrophages (SMs) are a type of tissue macrophages that are derived from bone marrow cells. SMs plays a central role in synovial regional immunization, which is significantly increased in both collagen-induced mice with arthritis mice and RA patients. AT2R activation caused a reversal of the polarization of SMs in the joint from the proinflammatory M1 SM to the tolerogenic, benign M2 SM. In consequence, this switch resulted in an attenuated form of the joint pathology in a rat model of collagen-induced arthritis. These results were mechanistically linked to the observation that GRK2 was translocated into cytoplasm, and ERK1/2 and NF-κB activation were inhibited. These findings open the way to a new therapeutic approach using an activation of AT2R to subvert joint inflammation in RA.
Collapse
Affiliation(s)
- Xinming Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and.,Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and
| | - Ji Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and
| | - Qiaolin Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and
| | - Qi Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and
| | - Heinrich Körner
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and
| | - Jingjing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and
| | - Huaxun Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China; and
| |
Collapse
|
323
|
GRKs as Key Modulators of Opioid Receptor Function. Cells 2020; 9:cells9112400. [PMID: 33147802 PMCID: PMC7692057 DOI: 10.3390/cells9112400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding the link between agonist-induced phosphorylation of the mu-opioid receptor (MOR) and the associated physiological effects is critical for the development of novel analgesic drugs and is particularly important for understanding the mechanisms responsible for opioid-induced tolerance and addiction. The family of G protein receptor kinases (GRKs) play a pivotal role in such processes, mediating phosphorylation of residues at the C-tail of opioid receptors. Numerous strategies, such as phosphosite specific antibodies and mass spectrometry have allowed the detection of phosphorylated residues and the use of mutant knock-in mice have shed light on the role of GRK regulation in opioid receptor physiology. Here we review our current understanding on the role of GRKs in the actions of opioid receptors, with a particular focus on the MOR, the target of most commonly used opioid analgesics such as morphine or fentanyl.
Collapse
|
324
|
Avsar SY, Kapinos LE, Schoenenberger CA, Schertler GFX, Mühle J, Meger B, Lim RYH, Ostermaier MK, Lesca E, Palivan CG. Immobilization of arrestin-3 on different biosensor platforms for evaluating GPCR binding. Phys Chem Chem Phys 2020; 22:24086-24096. [PMID: 33079118 DOI: 10.1039/d0cp01464h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large and ubiquitous family of membrane receptors of great pharmacological interest. Cell-based assays are the primary tool for assessing GPCR interactions and activation but their design and intrinsic complexity limit their application. Biosensor-based assays that directly and specifically report GPCR-protein binding (e.g. arrestin or G protein) could provide a good alternative. We present an approach based on the stable immobilization of different arrestin-3 proteins (wild type, and two mutants, mutant X (arrestin-3 I386A) and mutant Y (arrestin-3 R393E)) via histidine tags on NTA(Ni2+)-coated sensors in a defined orientation. Using biolayer interferometry (BLI), surface plasmon resonance (SPR), and quartz crystal microbalance with dissipation (QCM-D), we were able to follow the interaction between the different arrestin-3 proteins and a representative GPCR, jumping spider rhodopsin-1 (JSR1), in a label-free manner in real-time. The interactions were quantified as binding affinity, association and dissociation rate constants. The combination of surface-based biosensing methods indicated that JSR1 showed the strongest binding to arrestin mutant Y. Taken together, this work introduces direct label-free, biosensor-based screening approaches that can be easily adapted for testing interactions of proteins and other compounds with different GPCRs.
Collapse
Affiliation(s)
- Saziye Yorulmaz Avsar
- Department of Chemistry and the Swiss Nanoscience Institute, University of Basel, 4002 Basel, Switzerland.
| | - Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry and the Swiss Nanoscience Institute, University of Basel, 4002 Basel, Switzerland.
| | - Gebhard F X Schertler
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland. and Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Jonas Mühle
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland.
| | - Benoit Meger
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland.
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | | | - Elena Lesca
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland. and Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry and the Swiss Nanoscience Institute, University of Basel, 4002 Basel, Switzerland.
| |
Collapse
|
325
|
Hernandez-Olmos V, Heering J, Planz V, Liu T, Kaps A, Rajkumar R, Gramzow M, Kaiser A, Schubert-Zsilavecz M, Parnham MJ, Windbergs M, Steinhilber D, Proschak E. First Structure-Activity Relationship Study of Potent BLT2 Agonists as Potential Wound-Healing Promoters. J Med Chem 2020; 63:11548-11572. [PMID: 32946232 DOI: 10.1021/acs.jmedchem.0c00588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first potent leukotriene B4 (LTB4) receptor type 2 (BLT2) agonists, endogenous 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT), and synthetic CAY10583 (CAY) have been recently described to accelerate wound healing by enhanced keratinocyte migration and indirect stimulation of fibroblast activity in diabetic rats. CAY represents a very valuable starting point for the development of novel wound-healing promoters. In this work, the first structure-activity relationship study for CAY scaffold-based BLT2 agonists is presented. The newly prepared derivatives showed promising in vitro wound-healing activity.
Collapse
Affiliation(s)
- Victor Hernandez-Olmos
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Jan Heering
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Viktoria Planz
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Ting Liu
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Alexander Kaps
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Rinusha Rajkumar
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Matthias Gramzow
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Michael J Parnham
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Dieter Steinhilber
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Ewgenij Proschak
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
326
|
Masi I, Caprara V, Bagnato A, Rosanò L. Tumor Cellular and Microenvironmental Cues Controlling Invadopodia Formation. Front Cell Dev Biol 2020; 8:584181. [PMID: 33178698 PMCID: PMC7593604 DOI: 10.3389/fcell.2020.584181] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
During the metastatic progression, invading cells might achieve degradation and subsequent invasion into the extracellular matrix (ECM) and the underlying vasculature using invadopodia, F-actin-based and force-supporting protrusive membrane structures, operating focalized proteolysis. Their formation is a dynamic process requiring the combined and synergistic activity of ECM-modifying proteins with cellular receptors, and the interplay with factors from the tumor microenvironment (TME). Significant advances have been made in understanding how invadopodia are assembled and how they progress in degradative protrusions, as well as their disassembly, and the cooperation between cellular signals and ECM conditions governing invadopodia formation and activity, holding promise to translation into the identification of molecular targets for therapeutic interventions. These findings have revealed the existence of biochemical and mechanical interactions not only between the actin cores of invadopodia and specific intracellular structures, including the cell nucleus, the microtubular network, and vesicular trafficking players, but also with elements of the TME, such as stromal cells, ECM components, mechanical forces, and metabolic conditions. These interactions reflect the complexity and intricate regulation of invadopodia and suggest that many aspects of their formation and function remain to be determined. In this review, we will provide a brief description of invadopodia and tackle the most recent findings on their regulation by cellular signaling as well as by inputs from the TME. The identification and interplay between these inputs will offer a deeper mechanistic understanding of cell invasion during the metastatic process and will help the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Ilenia Masi
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.,Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| |
Collapse
|
327
|
Birdsong WT, Williams JT. Recent Progress in Opioid Research from an Electrophysiological Perspective. Mol Pharmacol 2020; 98:401-409. [PMID: 32198208 PMCID: PMC7562972 DOI: 10.1124/mol.119.119040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Electrophysiological approaches provide powerful tools to further our understanding of how different opioids affect signaling through opioid receptors; how opioid receptors modulate circuitry involved in processes such as pain, respiration, addiction, and feeding; and how receptor signaling and circuits are altered by physiologic challenges, such as injury, stress, and chronic opioid treatment. The use of genetic manipulations to alter or remove μ-opioid receptors (MORs) with anatomic and cell type specificity and the ability to activate or inhibit specific circuits through opto- or chemogenetic approaches are being used in combination with electrophysiological, pharmacological, and systems-level physiology experiments to expand our understanding of the beneficial and maladaptive roles of opioids and opioid receptor signaling. New approaches for studying endogenous opioid peptide signaling and release and the dynamics of these systems in response to chronic opioid use, pain, and stress will add another layer to our understanding of the intricacies of opioid modulation of brain circuits. This understanding may lead to new targets or approaches for drug development or treatment regimens that may affect both acute and long-term effects of manipulating the activity of circuits involved in opioid-mediated physiology and behaviors. This review will discuss recent advancements in our understanding of the role of phosphorylation in regulating MOR signaling, as well as our understanding of circuits and signaling pathways mediating physiologic behaviors such as respiratory control, and discuss how electrophysiological tools combined with new technologies have and will continue to advance the field of opioid research. SIGNIFICANCE STATEMENT: This review discusses recent advancements in our understanding of μ-opioid receptor (MOR) function and regulation and the role of electrophysiological approaches combined with new technologies in pushing the field of opioid research forward. This covers regulation of MOR at the receptor level, adaptations induced by chronic opioid treatment, sites of action of MOR modulation of specific brain circuits, and the role of the endogenous opioid system in driving physiology and behavior through modulation of these brain circuits.
Collapse
Affiliation(s)
- William T Birdsong
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.) and Vollum Institute, Oregon Health & Science University, Portland, Oregon (J.T.W.)
| | - John T Williams
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.) and Vollum Institute, Oregon Health & Science University, Portland, Oregon (J.T.W.)
| |
Collapse
|
328
|
Leff ER, Arttamangkul S, Williams JT. Chronic Treatment with Morphine Disrupts Acute Kinase-Dependent Desensitization of GPCRs. Mol Pharmacol 2020; 98:497-507. [PMID: 32362586 PMCID: PMC7562982 DOI: 10.1124/mol.119.119362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/24/2020] [Indexed: 11/22/2022] Open
Abstract
Based on studies using mutations of the µ-opioid receptor (MOR), phosphorylation of multiple sites on the C-terminus has been recognized as a critical step underlying acute desensitization and the development of cellular tolerance. The aim of this study is to explore which kinases mediate desensitization of MOR in brain slices from drug-naïve and morphine-treated animals. Whole-cell recordings from locus coeruleus neurons were made, and the agonist-induced increase in potassium conductance was measured. In slices from naïve animals, pharmacological inhibition of G-protein receptor kinase (GRK2/3) with compound 101 blocked acute desensitization. Following chronic treatment with morphine, compound 101 was less effective at blocking acute desensitization. Compound 101 blocked receptor internalization in tissue from both naïve and morphine-treated animals, suggesting that GRK2/3 remained active. Kinase inhibitors aimed at blocking protein kinase C and c-Jun N-terminal kinase had no effect on desensitization in tissue taken from naïve animals. However, in slices taken from morphine-treated animals, the combination of these blockers along with compound 101 was required to block acute desensitization. Acute desensitization of the potassium conductance induced by the somatostatin receptor was also blocked by compound 101 in slices from naïve but not morphine-treated animals. As was observed with MOR, it was necessary to use the combination of kinase inhibitors to block desensitization of the somatostatin receptor in slices from morphine-treated animals. The results show that chronic treatment with morphine results in a surprising and heterologous adaptation in kinase-dependent desensitization. SIGNIFICANCE STATEMENT: The results show that chronic treatment with morphine induced heterologous adaptations in kinase regulation of G protein coupled receptor (GPCR) desensitization. Although the canonical mechanism for acute desensitization through phosphorylation by G protein-coupled receptor kinase is supported in tissue taken from naïve animals, following chronic treatment with morphine, the acute kinase-dependent desensitization of GPCRs is disrupted such that additional kinases, including protein kinase C and c-Jun N-terminal kinase, contribute to desensitization.
Collapse
Affiliation(s)
- Emily R Leff
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | | | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
329
|
GRK4-mediated adiponectin receptor-1 phosphorylative desensitization as a novel mechanism of reduced renal sodium excretion in hypertension. Clin Sci (Lond) 2020; 134:2453-2467. [PMID: 32940654 DOI: 10.1042/cs20200671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Hypertensive patients have impaired sodium excretion. However, the mechanisms are incompletely understood. Despite the established association between obesity/excess adiposity and hypertension, whether and how adiponectin, one of the adipokines, contributes to impaired sodium excretion in hypertension has not been previously investigated. The current study tested the hypothesis that adiponectin promotes natriuresis and diuresis in the normotensive state. However, impaired adiponectin-mediated natriuresis and diuresis are involved in pathogenesis of hypertension. We found that sodium excretion was reduced in adiponectin knockout (Adipo-/-) mice; intrarenal arterial infusion of adiponectin-induced natriuresis and diuresis in Wistar-Kyoto (WKY) rats. However, the natriuretic and diuretic effects of adiponectin were impaired in spontaneously hypertensive rats (SHRs), which were ascribed to the hyperphosphorylation of adiponectin receptor and subsequent uncoupling from Gαi. Inhibition of adiponectin receptor phosphorylation by a specific point mutation restored its coupling with Gαi and the adiponectin-mediated inhibition of Na+-K+-ATPase activity in renal proximal tubule (RPT) cells from SHRs. Finally, we identified G protein-coupled receptor kinase 4 (GRK4) as a mediator of adiponectin receptor hyperphosphorylation; mice transgenic for a hyperphosphorylating variant of GRK4 replicated the abnormal adiponectin function observed in SHRs, whereas down-regulation of GRK4 by renal ultrasound-directed small interfering RNA (siRNA) restored the adiponectin-mediated sodium excretion and reduced the blood pressure in SHRs. We conclude that the stimulatory effect of adiponectin on sodium excretion is impaired in hypertension, which is ascribed to the increased renal GRK4 expression and activity. Targeting GRK4 restores impaired adiponectin-mediated sodium excretion in hypertension, thus representing a novel strategy against hypertension.
Collapse
|
330
|
Naider F, Becker JM. A Paradigm for Peptide Hormone-GPCR Analyses. Molecules 2020; 25:E4272. [PMID: 32961885 PMCID: PMC7570734 DOI: 10.3390/molecules25184272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/14/2023] Open
Abstract
Work from our laboratories over the last 35 years that has focused on Ste2p, a G protein-coupled receptor (GPCR), and its tridecapeptide ligand α-factor is reviewed. Our work utilized the yeast Saccharomyces cerevisiae as a model system for understanding peptide-GPCR interactions. It explored the structure and function of synthetic α-factor analogs and biosynthetic receptor domains, as well as designed mutations of Ste2p. The results and conclusions are described using the nuclear magnetic resonance interrogation of synthetic Ste2p transmembrane domains (TMs), the fluorescence interrogation of agonist and antagonist binding, the biochemical crosslinking of peptide analogs to Ste2p, and the phenotypes of receptor mutants. We identified the ligand-binding domain in Ste2p, the functional assemblies of TMs, unexpected and interesting ligand analogs; gained insights into the bound α-factor structure; and unraveled the function and structures of various Ste2p domains, including the N-terminus, TMs, loops connecting the TMs, and the C-terminus. Our studies showed interactions between specific residues of Ste2p in an active state, but not resting state, and the effect of ligand activation on the dimerization of Ste2p. We show that, using a battery of different biochemical and genetic approaches, deep insight can be gained into the structure and conformational dynamics of GPCR-peptide interactions in the absence of a crystal structure.
Collapse
Affiliation(s)
- Fred Naider
- Department of Chemistry, College of Staten Island, CUNY, 2800 Victory Blvd, Staten Island, NY 10314, USA
| | - Jeffrey M. Becker
- Department of Microbiology, University of Tennessee, 610 Ken and Blaire Mossman Building, 1311 Cumberland Avenue, Knoxville, TN 37996, USA
| |
Collapse
|
331
|
Abstract
The endocannabinoid system (ECS) is a highly versatile signaling system within the nervous system. Despite its widespread localization, its functions within the context of distinct neural processes are very well discernable and specific. This is remarkable, and the question remains as to how such specificity is achieved. One key player in the ECS is the cannabinoid type 1 receptor (CB1), a G protein-coupled receptor characterized by the complexity of its cell-specific expression, cellular and subcellular localization, and its adaptable regulation of intracellular signaling cascades. CB1 receptors are involved in different synaptic and cellular plasticity processes and in the brain's bioenergetics in a context-specific manner. CB2 receptors are also important in several processes in neurons, glial cells, and immune cells of the brain. As polymorphisms in ECS components, as well as external impacts such as stress and metabolic challenges, can both lead to dysregulated ECS activity and subsequently to possible neuropsychiatric disorders, pharmacological intervention targeting the ECS is a promising therapeutic approach. Understanding the neurobiology of cannabinoid receptor signaling in depth will aid optimal design of therapeutic interventions, minimizing unwanted side effects.
.
Collapse
Affiliation(s)
- Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
332
|
Anwar M, Mehta D. Post-translational modifications of S1PR1 and endothelial barrier regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158760. [PMID: 32585303 PMCID: PMC7409382 DOI: 10.1016/j.bbalip.2020.158760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
Sphingosine-1-phosphate receptor-1 (S1PR1), a G-protein coupled receptor that is expressed in endothelium and activated upon ligation by the bioactive lipid sphingosine-1-phosphate (S1P), is an important vascular-barrier protective mechanism at the level of adherens junctions (AJ). Loss of endothelial barrier function is a central factor in the pathogenesis of various inflammatory conditions characterized by protein-rich lung edema formation, such as acute respiratory distress syndrome (ARDS). While several S1PR1 agonists are available, the challenge of arresting the progression of protein-rich edema formation remains to be met. In this review, we discuss the role of S1PRs, especially S1PR1, in regulating endothelial barrier function. We review recent findings showing that replenishment of the pool of cell-surface S1PR1 may be crucial to the effectiveness of S1P in repairing the endothelial barrier. In this context, we discuss the S1P generating machinery and mechanisms that regulate S1PR1 at the cell surface and their impact on endothelial barrier function.
Collapse
Affiliation(s)
- Mumtaz Anwar
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago Chicago, IL 60612, United States of America
| | - Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago Chicago, IL 60612, United States of America.
| |
Collapse
|
333
|
Wingler LM, Lefkowitz RJ. Conformational Basis of G Protein-Coupled Receptor Signaling Versatility. Trends Cell Biol 2020; 30:736-747. [PMID: 32622699 PMCID: PMC7483927 DOI: 10.1016/j.tcb.2020.06.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are privileged structural scaffolds in biology that have the versatility to regulate diverse physiological processes. Interestingly, many GPCR ligands exhibit significant 'bias' - the ability to preferentially activate subsets of the many cellular pathways downstream of these receptors. Recently, complementary information from structural and spectroscopic approaches has made significant inroads into understanding the mechanisms of these biased ligands. The consistently emerging theme is that GPCRs are highly dynamic proteins, and ligands with varying pharmacological properties differentially modulate the equilibrium among multiple conformations. Biased signaling and other recently appreciated complexities of GPCR signaling thus appear to be a natural consequence of the conformational heterogeneity of GPCRs and GPCR-transducer complexes.
Collapse
Affiliation(s)
- Laura M Wingler
- Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | - Robert J Lefkowitz
- Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
334
|
The constitutive activity of the viral-encoded G protein-coupled receptor US28 supports a complex signalling network contributing to cancer development. Biochem Soc Trans 2020; 48:1493-1504. [PMID: 32779712 PMCID: PMC7458396 DOI: 10.1042/bst20190988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/05/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022]
Abstract
US28 is a viral G protein-coupled receptor (GPCR) encoded by the human cytomegalovirus (HCMV). This receptor, expressed both during lytic replication and viral latency, is required for latency. US28 is binding to a wide variety of chemokines but also exhibits a particularly high constitutive activity robustly modulating a wide network of cellular pathways altering the host cell environment to benefit HCMV infection. Several studies suggest that US28-mediated signalling may contribute to cancer progression. In this review, we discuss the unique structural characteristics that US28 acquired through evolution that confer a robust constitutive activity to this viral receptor. We also describe the wide downstream signalling network activated by this constitutive activation of US28 and discuss how these signalling pathways may promote and support important cellular aspects of cancer.
Collapse
|
335
|
Thibeault PE, Ramachandran R. Biased signaling in platelet G-protein coupled receptors. Can J Physiol Pharmacol 2020; 99:255-269. [PMID: 32846106 DOI: 10.1139/cjpp-2020-0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets are small megakaryocyte-derived, anucleate, disk-like structures that play an outsized role in human health and disease. Both a decrease in the number of platelets and a variety of platelet function disorders result in petechiae or bleeding that can be life threatening. Conversely, the inappropriate activation of platelets, within diseased blood vessels, remains the leading cause of death and morbidity by affecting heart attacks and stroke. The fine balance of the platelet state in healthy individuals is controlled by a number of receptor-mediated signaling pathways that allow the platelet to rapidly respond and maintain haemostasis. G-protein coupled receptors (GPCRs) are particularly important regulators of platelet function. Here we focus on the major platelet-expressed GPCRs and discuss the roles of downstream signaling pathways (e.g., different G-protein subtypes or β-arrestin) in regulating the different phases of the platelet activation. Further, we consider the potential for selectively targeting signaling pathways that may contribute to platelet responses in disease through development of biased agonists. Such selective targeting of GPCR-mediated signaling pathways by drugs, often referred to as biased signaling, holds promise in delivering therapeutic interventions that do not present significant side effects, especially in finely balanced physiological systems such as platelet activation in haemostasis.
Collapse
Affiliation(s)
- Pierre E Thibeault
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada
| |
Collapse
|
336
|
Borovac JA, D'Amario D, Bozic J, Glavas D. Sympathetic nervous system activation and heart failure: Current state of evidence and the pathophysiology in the light of novel biomarkers. World J Cardiol 2020; 12:373-408. [PMID: 32879702 PMCID: PMC7439452 DOI: 10.4330/wjc.v12.i8.373] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/19/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome characterized by the activation of at least several neurohumoral pathways that have a common role in maintaining cardiac output and adequate perfusion pressure of target organs and tissues. The sympathetic nervous system (SNS) is upregulated in HF as evident in dysfunctional baroreceptor and chemoreceptor reflexes, circulating and neuronal catecholamine spillover, attenuated parasympathetic response, and augmented sympathetic outflow to the heart, kidneys and skeletal muscles. When these sympathoexcitatory effects on the cardiovascular system are sustained chronically they initiate the vicious circle of HF progression and become associated with cardiomyocyte apoptosis, maladaptive ventricular and vascular remodeling, arrhythmogenesis, and poor prognosis in patients with HF. These detrimental effects of SNS activity on outcomes in HF warrant adequate diagnostic and treatment modalities. Therefore, this review summarizes basic physiological concepts about the interaction of SNS with the cardiovascular system and highlights key pathophysiological mechanisms of SNS derangement in HF. Finally, special emphasis in this review is placed on the integrative and up-to-date overview of diagnostic modalities such as SNS imaging methods and novel laboratory biomarkers that could aid in the assessment of the degree of SNS activation and provide reliable prognostic information among patients with HF.
Collapse
Affiliation(s)
- Josip Anđelo Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Working Group on Heart Failure of Croatian Cardiac Society, Zagreb 10000, Croatia
| | - Domenico D'Amario
- Department of Cardiovascular and Thoracic Sciences, IRCCS Fondazione Policlinico A. Gemelli, Universita Cattolica Sacro Cuore, Rome 00168, Italy
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Duska Glavas
- Working Group on Heart Failure of Croatian Cardiac Society, Zagreb 10000, Croatia
- Clinic for Cardiovascular Diseases, University Hospital of Split, Split 21000, Croatia
| |
Collapse
|
337
|
Azevedo Neto J, Costanzini A, De Giorgio R, Lambert DG, Ruzza C, Calò G. Biased versus Partial Agonism in the Search for Safer Opioid Analgesics. Molecules 2020; 25:molecules25173870. [PMID: 32854452 PMCID: PMC7504468 DOI: 10.3390/molecules25173870] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023] Open
Abstract
Opioids such as morphine—acting at the mu opioid receptor—are the mainstay for treatment of moderate to severe pain and have good efficacy in these indications. However, these drugs produce a plethora of unwanted adverse effects including respiratory depression, constipation, immune suppression and with prolonged treatment, tolerance, dependence and abuse liability. Studies in β-arrestin 2 gene knockout (βarr2(−/−)) animals indicate that morphine analgesia is potentiated while side effects are reduced, suggesting that drugs biased away from arrestin may manifest with a reduced-side-effect profile. However, there is controversy in this area with improvement of morphine-induced constipation and reduced respiratory effects in βarr2(−/−) mice. Moreover, studies performed with mice genetically engineered with G-protein-biased mu receptors suggested increased sensitivity of these animals to both analgesic actions and side effects of opioid drugs. Several new molecules have been identified as mu receptor G-protein-biased agonists, including oliceridine (TRV130), PZM21 and SR–17018. These compounds have provided preclinical data with apparent support for bias toward G proteins and the genetic premise of effective and safer analgesics. There are clinical data for oliceridine that have been very recently approved for short term intravenous use in hospitals and other controlled settings. While these data are compelling and provide a potential new pathway-based target for drug discovery, a simpler explanation for the behavior of these biased agonists revolves around differences in intrinsic activity. A highly detailed study comparing oliceridine, PZM21 and SR–17018 (among others) in a range of assays showed that these molecules behave as partial agonists. Moreover, there was a correlation between their therapeutic indices and their efficacies, but not their bias factors. If there is amplification of G-protein, but not arrestin pathways, then agonists with reduced efficacy would show high levels of activity at G-protein and low or absent activity at arrestin; offering analgesia with reduced side effects or ‘apparent bias’. Overall, the current data suggests—and we support—caution in ascribing biased agonism to reduced-side-effect profiles for mu-agonist analgesics.
Collapse
Affiliation(s)
- Joaquim Azevedo Neto
- Department of Biomedical and Specialty Surgical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (J.A.N.); (G.C.)
| | - Anna Costanzini
- Department of Morphology, Surgery, Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (R.D.G.)
| | - Roberto De Giorgio
- Department of Morphology, Surgery, Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (R.D.G.)
| | - David G. Lambert
- Department of Cardiovascular Sciences, Anesthesia, Critical Care and Pain Management, University of Leicester, Leicester LE1 7RH, UK;
| | - Chiara Ruzza
- Department of Biomedical and Specialty Surgical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (J.A.N.); (G.C.)
- Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, 44122 Ferrara, Italy
- Correspondence:
| | - Girolamo Calò
- Department of Biomedical and Specialty Surgical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (J.A.N.); (G.C.)
| |
Collapse
|
338
|
Cai X, Wang H, Wang M, Wang D, Zhang Z, Wei R, Gao X, Zhang R, Wang C, Chen J. A novel phosphorylation site on orexin receptor 1 regulating orexinA-induced GRK2-biased signaling. Cell Signal 2020; 75:109743. [PMID: 32827691 DOI: 10.1016/j.cellsig.2020.109743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/24/2022]
Abstract
Drug discovery efforts targeting G protein-coupled receptors (GPCRs) have succeeded in developing multiple medications for treating various human diseases including cancer, metabolic disorders, and inflammatory disorders. These medications are broadly classified as either agonists or antagonists that respectively promote or inhibit receptor activation by endogenous stimuli. However, there has been a growing appreciation that GPCR biased signaling between G protein- and β-arrestin-dependent signaling in particular is a promising method for improving drug efficacy and therapy. Orexin receptor 1 (OX1R), a member of the GPCRs, is an important drug target in the central nervous system. In this study, we identified a novel regulatory phosphorylation site (Ser-262) on OX1R that abolished its capability to interact with GRK2, but did not affect its interaction with G proteins, GRK5, or β-arrestin1/2 activation, indicating that Ser-262 is a key amino acid for OX1R internalization that contributes to induction of GRK2-dependent biased signaling via orexin A. Our findings could potentially lead to the development of new drug targets for the prevention and treatment of insomnia, narcolepsy, and substance abuse, with fewer side effects than existing therapies.
Collapse
Affiliation(s)
- Xin Cai
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261042, PR China
| | - Huannan Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067, PR China; School of Pharmacy, Jining Medical University, Rizhao, Shandong, 276800, PR China
| | - Maochang Wang
- Shouguang Agricultural Development Group Co., Ltd,Shouguang, Shandong, 262700, PR China
| | - Dexiu Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261042, PR China
| | - Zhen Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, 276800, PR China
| | - Ruotong Wei
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261042, PR China
| | - Xiang Gao
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261042, PR China
| | - Rumin Zhang
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067, PR China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
339
|
Mechanisms and Regulation of Neuronal GABA B Receptor-Dependent Signaling. Curr Top Behav Neurosci 2020; 52:39-79. [PMID: 32808092 DOI: 10.1007/7854_2020_129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
γ-Aminobutyric acid B receptors (GABABRs) are broadly expressed throughout the central nervous system where they play an important role in regulating neuronal excitability and synaptic transmission. GABABRs are G protein-coupled receptors that mediate slow and sustained inhibitory actions via modulation of several downstream effector enzymes and ion channels. GABABRs are obligate heterodimers that associate with diverse arrays of proteins to form modular complexes that carry out distinct physiological functions. GABABR-dependent signaling is fine-tuned and regulated through a multitude of mechanisms that are relevant to physiological and pathophysiological states. This review summarizes the current knowledge on GABABR signal transduction and discusses key factors that influence the strength and sensitivity of GABABR-dependent signaling in neurons.
Collapse
|
340
|
Birch CA, Molinar-Inglis O, Trejo J. Subcellular hot spots of GPCR signaling promote vascular inflammation. ACTA ACUST UNITED AC 2020; 16:37-42. [PMID: 32838054 PMCID: PMC7431397 DOI: 10.1016/j.coemr.2020.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
G-coupled protein receptors (GPCRs) comprise the largest class of druggable targets. Signaling by GPCRs is initiated from subcellular hot spots including the plasma membrane, signalosomes, and endosomes to contribute to vascular inflammation. GPCR-G protein signaling at the plasma membrane causes endothelial barrier disruption and also cross-talks with growth factor receptors to promote proinflammatory signaling. A second surge of GPCR signaling is initiated by cytoplasmic NFκB activation mediated by β-arrestins and CARMA-BCL10-MALT1 signalosomes. Once internalized, ubiquitinated GPCRs initiate signaling from endosomes via assembly of the transforming growth factor-β-activated kinase binding protein-1 (TAB1)-TAB2-p38 MAPK complex to promote vascular inflammation. Understanding the complexities of GPCR signaling is critical for development of new strategies to treat vascular inflammation such as that associated with COVID-19.
Collapse
Key Words
- Arrestins
- B-cell lymphoma protein 10, (BCL10)
- COVID-19
- Endosomes
- Endothelial
- G protein-coupled receptor, GPCR
- JAK-STAT
- Janus kinase, JAK
- MALT1
- NFκB
- adherens junctions, AJ
- angiotensin II type 1 receptor, AT1
- angiotensin converting enzyme-2, ACE2
- caspase recruitment domain-containing protein, CARMA
- coronavirus disease of 2019, COVID-19
- fibroblast-growth-factor, FGF
- inhibitor of NFκB kinase, IKK
- mitogen-activated protein kinase, MAPK
- mucosa-associated lymphoid tissue lymphoma translocation protein 1, (MALT1)
- neural precursor cell expressed developmentally downregulated protein 4, NEDD4
- nuclear factor kappa-light-chain-enhancer of activated B cells, NFκB
- p38 MAPK
- platelet activating factor, PAF
- protease-activated receptor-1, PAR1
- severe acute respiratory syndrome coronavirus 2, SARS-CoV-2
- signal transducer and activator of transcription, STAT
- transforming growth factor-α-activated kinase binding protein-1, TAB1
Collapse
Affiliation(s)
- Cierra A Birch
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Olivia Molinar-Inglis
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
341
|
Al-Sabah S, Adi L, Bünemann M, Krasel C. The Effect of Cell Surface Expression and Linker Sequence on the Recruitment of Arrestin to the GIP Receptor. Front Pharmacol 2020; 11:1271. [PMID: 32903502 PMCID: PMC7438548 DOI: 10.3389/fphar.2020.01271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/31/2020] [Indexed: 01/28/2023] Open
Abstract
The glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide-1 (GLP-1) receptor are important targets in the treatment of both type 2 diabetes mellitus (T2DM) and obesity. Originally identified for their role in desensitization, internalization and recycling of G protein-coupled receptors (GPCRs), arrestins have since been shown to act as scaffolding proteins that allow GPCRs to signal in a G protein-independent manner. While GLP-1R has been reported to interact with arrestins, this aspect of cell signaling remains controversial for GIPR. Using a (FRET)-based assay we have previously shown that yellow fluorescent protein (YFP)-labeled GIPR does not recruit arrestin. This GIPR-YFP construct contained a 10 amino acid linker between the receptor and a XbaI restriction site upstream of the YFP. This linker was not present in the modified GIPR-SYFP2 used in subsequent FRET and bioluminescence resonance energy transfer (BRET) assays. However, its removal results in the introduction of a serine residue adjacent to the end of GIPR’s C-terminal tail which could potentially be a phosphorylation site. The resulting receptor was indeed able to recruit arrestin. To find out whether the serine/arginine (SR) coded by the XbaI site was indeed the source of the problem, it was substituted with glycine/glycine (GG) by site-directed mutagenesis. This substitution abolished arrestin recruitment in the BRET assay but only significantly reduced it in the FRET assay. In addition, we show that the presence of a N-terminal FLAG epitope and influenza hemagglutinin signal peptide were also required to detect arrestin recruitment to the GIPR, most likely by increasing receptor cell surface expression. These results demonstrate how arrestin recruitment assay configuration can dramatically alter the result. This becomes relevant when drug discovery programs aim to identify ligands with “biased agonist” properties.
Collapse
Affiliation(s)
- Suleiman Al-Sabah
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Lobna Adi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Moritz Bünemann
- School of Pharmacy, Institute for Pharmacology and Toxicology, The Philipps University of Marburg, Marburg, Germany
| | - Cornelius Krasel
- School of Pharmacy, Institute for Pharmacology and Toxicology, The Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
342
|
Cao Y, Kumar S, Namkung Y, Gagnon L, Cho A, Laporte SA. Angiotensin II type 1 receptor variants alter endosomal receptor-β-arrestin complex stability and MAPK activation. J Biol Chem 2020; 295:13169-13180. [PMID: 32703898 DOI: 10.1074/jbc.ra120.014330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Indexed: 01/14/2023] Open
Abstract
The angiotensin II (AngII) type 1 receptor (AT1R), a member of the G protein-coupled receptor (GPCR) family, signals through G proteins and β-arrestins, which act as adaptors to regulate AT1R internalization and mitogen-activated protein kinase (MAPK) ERK1/2 activation. β-arrestin-dependent ERK1/2 regulation is the subject of important studies because its spatiotemporal control remains poorly understood for many GPCRs, including AT1R. To study the link between β-arrestin-dependent trafficking and ERK1/2 signaling, we investigated three naturally occurring AT1R variants that show distinct receptor-β-arrestin interactions: A163T, T282M, and C289W. Using bioluminescence resonance energy transfer (BRET)-based and conformational fluorescein arsenical hairpin-BRET sensors coupled with high-resolution fluorescence microscopy, we show that all AT1R variants form complexes with β-arrestin2 at the plasma membrane and efficiently internalize into endosomes upon AngII stimulation. However, mutant receptors imposed distinct conformations in β-arrestin2 and differentially impacted endosomal trafficking and MAPK signaling. Notably, T282M accumulated in endosomes, but its ability to form stable complexes following internalization was reduced, markedly impairing its ability to co-traffic with β-arrestin2. We also found that despite β-arrestin2 overexpression, T282M's and C289W's residency with β-arrestin2 in endosomes was greatly reduced, leading to decreased β-arrestin-dependent ERK1/2 activation, faster recycling of receptors to the plasma membrane, and impaired AngII-mediated proliferation. Our findings reveal that naturally occurring AT1R variants alter the patterns of receptor/β-arrestin2 trafficking and suggest conformationally dependent β-arrestin-mediated MAPK activation as well as endosomal receptor-β-arrestin complex stabilization in the mitogenic response of AT1R.
Collapse
Affiliation(s)
- Yubo Cao
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Sahil Kumar
- Department of Medicine, McGill University Health Center, McGill University, Montréal, Québec, Canada
| | - Yoon Namkung
- Department of Medicine, McGill University Health Center, McGill University, Montréal, Québec, Canada
| | - Laurence Gagnon
- Department of Medicine, McGill University Health Center, McGill University, Montréal, Québec, Canada
| | - Aaron Cho
- Department of Medicine, McGill University Health Center, McGill University, Montréal, Québec, Canada
| | - Stéphane A Laporte
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University Health Center, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
343
|
Smith SJ, Hawrylycz M, Rossier J, Sümbül U. New light on cortical neuropeptides and synaptic network plasticity. Curr Opin Neurobiol 2020; 63:176-188. [PMID: 32679509 DOI: 10.1016/j.conb.2020.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 01/14/2023]
Abstract
Neuropeptides, members of a large and evolutionarily ancient family of proteinaceous cell-cell signaling molecules, are widely recognized as extremely potent regulators of brain function and behavior. At the cellular level, neuropeptides are known to act mainly via modulation of ion channel and synapse function, but functional impacts emerging at the level of complex cortical synaptic networks have resisted mechanistic analysis. New findings from single-cell RNA-seq transcriptomics now illuminate intricate patterns of cortical neuropeptide signaling gene expression and new tools now offer powerful molecular access to cortical neuropeptide signaling. Here we highlight some of these new findings and tools, focusing especially on prospects for experimental and theoretical exploration of peptidergic and synaptic networks interactions underlying cortical function and plasticity.
Collapse
Affiliation(s)
- Stephen J Smith
- Allen Institute for Brain Science, 615 Westlake Ave N, Seattle WA, USA.
| | - Michael Hawrylycz
- Allen Institute for Brain Science, 615 Westlake Ave N, Seattle WA, USA
| | - Jean Rossier
- Neuroscience Paris Seine, Sorbonne Université, Paris, France
| | - Uygar Sümbül
- Allen Institute for Brain Science, 615 Westlake Ave N, Seattle WA, USA
| |
Collapse
|
344
|
Liu Q, Fan W, He H, Huang F. The role of peripheral opioid receptors in orofacial pain. Oral Dis 2020; 27:1106-1114. [PMID: 32437594 DOI: 10.1111/odi.13435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Opioid receptors are widely distributed in the central and peripheral nervous systems and non-neuronal tissues. Numerous researchers have noted the pivotal role of peripheral opioid receptors (PORs) in analgesia. Accumulating evidence has shown the existence of PORs in the trigeminal nerve system, indicating that PORs may be involved in the modulation of orofacial pain. In this review, we summarise the recent evidence for the role of PORs in orofacial pain and discuss the possible cellular mechanisms.
Collapse
Affiliation(s)
- Qing Liu
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
345
|
Rehman A, Baloch NUA, Morrow JP, Pacher P, Haskó G. Targeting of G-protein coupled receptors in sepsis. Pharmacol Ther 2020; 211:107529. [PMID: 32197794 PMCID: PMC7388546 DOI: 10.1016/j.pharmthera.2020.107529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
The Third International Consensus Definitions (Sepsis-3) define sepsis as life-threatening multi-organ dysfunction caused by a dysregulated host response to infection. Sepsis can progress to septic shock-an even more lethal condition associated with profound circulatory, cellular and metabolic abnormalities. Septic shock remains a leading cause of death in intensive care units and carries a mortality of almost 25%. Despite significant advances in our understanding of the pathobiology of sepsis, therapeutic interventions have not translated into tangible differences in the overall outcome for patients. Clinical trials of antagonists of various pro-inflammatory mediators in sepsis have been largely unsuccessful in the past. Given the diverse physiologic roles played by G-protein coupled receptors (GPCR), modulation of GPCR signaling for the treatment of sepsis has also been explored. Traditional pharmacologic approaches have mainly focused on ligands targeting the extracellular domains of GPCR. However, novel techniques aimed at modulating GPCR intracellularly through aptamers, pepducins and intrabodies have opened a fresh avenue of therapeutic possibilities. In this review, we summarize the diverse roles played by various subfamilies of GPCR in the pathogenesis of sepsis and identify potential targets for pharmacotherapy through these novel approaches.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Noor Ul-Ain Baloch
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - John P Morrow
- Department of Medicine, Columbia University, New York City, NY, United States
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York City, NY, United States.
| |
Collapse
|
346
|
Design of substrates and inhibitors of G protein-coupled receptor kinase 2 (GRK2) based on its phosphorylation reaction. Amino Acids 2020; 52:863-870. [PMID: 32577910 DOI: 10.1007/s00726-020-02864-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/19/2020] [Indexed: 01/05/2023]
Abstract
The G protein-coupled receptor kinase (GRK) family consists of seven cytosolic serine/threonine (Ser/Thr) protein kinases, and among them, GRK2 is involved in the regulation of an enormous range of both G protein-coupled receptors (GPCRs) and non-GPCR substrates that participate in or regulate many critical cellular processes. GRK2 dysfunction is associated with multiple diseases, including cancers, brain diseases, cardiovascular and metabolic diseases, and therefore GRK2-specific substrates/inhibitors are needed not only for studies of GRK2-mediated cellular functions but also for GRK2-targeted drug development. Here, we first review the structure, regulation and functions of GRK2, and its synthetic substrates and inhibitors. We then highlight recent work on synthetic peptide substrates/inhibitors as promising tools for fundamental studies of the physiological functions of GRK2, and as candidates for applications in clinical diagnostics.
Collapse
|
347
|
Bouley RA, Weinberg ZY, Waldschmidt HV, Yen YC, Larsen SD, Puthenveedu MA, Tesmer JJG. A New Paroxetine-Based GRK2 Inhibitor Reduces Internalization of the μ-Opioid Receptor. Mol Pharmacol 2020; 97:392-401. [PMID: 32234810 PMCID: PMC7237867 DOI: 10.1124/mol.119.118661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in terminating signals initiated by agonist-bound GPCRs. However, chronic stimulation of GPCRs, such as that which occurs during heart failure, leads to the overexpression of GRKs and maladaptive downregulation of GPCRs on the cell surface. We previously reported the discovery of potent and selective families of GRK inhibitors based on either the paroxetine or GSK180736A scaffold. A new inhibitor, CCG258747, which is based on paroxetine, demonstrates increased potency against the GRK2 subfamily and favorable pharmacokinetic parameters in mice. CCG258747 and the closely related compound CCG258208 also showed high selectivity for the GRK2 subfamily in a kinome panel of 104 kinases. We developed a cell-based assay to screen the ability of CCG258747 and 10 other inhibitors with different GRK subfamily selectivities and with either the paroxetine or GSK180736A scaffold to block internalization of the μ-opioid receptor (MOR). CCG258747 showed the best efficacy in blocking MOR internalization among the compounds tested. Furthermore, we show that compounds based on paroxetine had much better cell permeability than those based on GSK180736A, which explains why GSK180736A-based inhibitors, although being potent in vitro, do not always show efficacy in cell-based assays. This study validates the paroxetine scaffold as the most effective for GRK inhibition in living cells, confirming that GRK2 predominantly drives internalization of MOR in the cell lines we tested and underscores the utility of high-resolution cell-based assays for assessment of compound efficacy. SIGNIFICANCE STATEMENT: G protein-coupled receptor kinases (GRKs) are attractive targets for developing therapeutics for heart failure. We have synthesized a new GRK2 subfamily-selective inhibitor, CCG258747, which has nanomolar potency against GRK2 and excellent selectivity over other kinases. A live-cell receptor internalization assay was used to test the ability of GRK2 inhibitors to impart efficacy on a GRK-dependent process in cells. Our data indicate that CCG258747 blocked the internalization of the μ-opioid receptor most efficaciously because it has the ability to cross cell membranes.
Collapse
Affiliation(s)
- Renee A Bouley
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Zara Y Weinberg
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Helen V Waldschmidt
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Yu-Chen Yen
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Scott D Larsen
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Manojkumar A Puthenveedu
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - John J G Tesmer
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| |
Collapse
|
348
|
Lemos Duarte M, Devi LA. Post-translational Modifications of Opioid Receptors. Trends Neurosci 2020; 43:417-432. [PMID: 32459993 PMCID: PMC7323054 DOI: 10.1016/j.tins.2020.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Post-translational modifications (PTMs) are key events in signal transduction since they affect protein function by regulating their abundance and/or activity. PTMs involve the covalent attachment of functional groups to specific amino acids. Since they tend to be generally reversible, PTMs serve as regulators of signal transduction pathways. G-protein-coupled receptors (GPCRs) are major signaling proteins that undergo multiple types of PTMs. In this Review, we focus on the opioid receptors, members of GPCR family A, and highlight recent advances in the field that have underscored the importance of PTMs in the functional regulation of these receptors. Since opioid receptor activity plays a central role in the development of tolerance and addiction to morphine and other drugs of abuse, understanding the molecular mechanisms regulating receptor activity is of fundamental importance.
Collapse
Affiliation(s)
- Mariana Lemos Duarte
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
349
|
Allostery in membrane proteins. Curr Opin Struct Biol 2020; 62:197-204. [DOI: 10.1016/j.sbi.2020.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
|
350
|
Miranda CJ, Fernandez N, Kamel N, Turner D, Benzenhafer D, Bolch SN, Andring JT, McKenna R, Smith WC. An arrestin-1 surface opposite of its interface with photoactivated rhodopsin engages with enolase-1. J Biol Chem 2020; 295:6498-6508. [PMID: 32238431 PMCID: PMC7212649 DOI: 10.1074/jbc.ra120.013043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/30/2020] [Indexed: 01/14/2023] Open
Abstract
Arrestin-1 is the arrestin family member responsible for inactivation of the G protein–coupled receptor rhodopsin in photoreceptors. Arrestin-1 is also well-known to interact with additional protein partners and to affect other signaling cascades beyond phototransduction. In this study, we investigated one of these alternative arrestin-1 binding partners, the glycolysis enzyme enolase-1, to map the molecular contact sites between these two proteins and investigate how the binding of arrestin-1 affects the catalytic activity of enolase-1. Using fluorescence quench protection of strategically placed fluorophores on the arrestin-1 surface, we observed that arrestin-1 primarily engages enolase-1 along a surface that is opposite of the side of arrestin-1 that binds photoactivated rhodopsin. Using this information, we developed a molecular model of the arrestin-1–enolase-1 complex, which was validated by targeted substitutions of charge-pair interactions. Finally, we identified the likely source of arrestin's modulation of enolase-1 catalysis, showing that selective substitution of two amino acids in arrestin-1 can completely remove its effect on enolase-1 activity while still remaining bound to enolase-1. These findings open up opportunities for examining the functional effects of arrestin-1 on enolase-1 activity in photoreceptors and their surrounding cells.
Collapse
Affiliation(s)
| | - Nicole Fernandez
- Department of Ophthalmology, University of Florida, Gainesville, Florida 32610
| | - Nader Kamel
- Department of Ophthalmology, University of Florida, Gainesville, Florida 32610
| | - Daniel Turner
- Department of Ophthalmology, University of Florida, Gainesville, Florida 32610
| | - Del Benzenhafer
- Department of Ophthalmology, University of Florida, Gainesville, Florida 32610
| | - Susan N Bolch
- Department of Ophthalmology, University of Florida, Gainesville, Florida 32610
| | - Jacob T Andring
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - W Clay Smith
- Department of Ophthalmology, University of Florida, Gainesville, Florida 32610
| |
Collapse
|