351
|
Yuan C, Sato M, Lanier SM, Smrcka AV. Signaling by a non-dissociated complex of G protein βγ and α subunits stimulated by a receptor-independent activator of G protein signaling, AGS8. J Biol Chem 2007; 282:19938-47. [PMID: 17446173 DOI: 10.1074/jbc.m700396200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Accumulating evidence suggests that heterotrimeric G protein activation may not require G protein subunit dissociation. Results presented here provide evidence for a subunit dissociation-independent mechanism for G protein activation by a receptor-independent activator of G protein signaling, AGS8. AGS8 is a member of the AGS group III family of AGS proteins thought to activate G protein signaling primarily through interactions with Gbetagamma subunits. Results are presented demonstrating that AGS8 binds to the effector and alpha subunit binding "hot spot" on Gbetagamma yet does not interfere with Galpha subunit binding to Gbetagamma or phospholipase C beta2 activation. AGS8 stimulates activation of phospholipase C beta2 by heterotrimeric Galphabetagamma and forms a quaternary complex with Galpha(i1), Gbeta(1)gamma(2), and phospholipase C beta2. AGS8 rescued phospholipase C beta binding and regulation by an inactive beta subunit with a mutation in the hot spot (beta(1)(W99A)gamma(2)) that normally prevents binding and activation of phospholipase C beta2. This demonstrates that, in the presence of AGS8, the hot spot is not used for Gbetagamma interactions with phospholipase C beta2. Mutation of an alternate binding site for phospholipase C beta2 in the amino-terminal coiled-coil region of Gbetagamma prevented AGS8-dependent phospholipase C binding and activation. These data implicate a mechanism for AGS8, and potentially other Gbetagamma binding proteins, for directing Gbetagamma signaling through alternative effector activation sites on Gbetagamma in the absence of subunit dissociation.
Collapse
Affiliation(s)
- Chujun Yuan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
352
|
Zheng Y, Xu D, Gu X. Functional divergence after gene duplication and sequence-structure relationship: a case study of G-protein alpha subunits. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:85-96. [PMID: 17094082 DOI: 10.1002/jez.b.21140] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this article, we use animal G-protein alpha subunit family as an example to illustrate a comprehensive analytical pipeline for detecting different types of functional divergence of protein families, which is phylogeny-dependent, combined with ancestral sequence inference and available protein structure information. In particular, we focus on (i) Type-I functional divergence, or site-specific rate shift, as typically exemplified by amino acid residue highly conserved in a subset of homologous genes but highly variable in a different subset of homologous genes, and (ii) Type-II functional divergence, or the shift of cluster-specific amino acid property, as exemplified by a radical shift of amino acid property between duplicate genes, which is otherwise evolutionally conserved. We utilized the software DIVERGE2 to carry out these analyses. In the case of G-protein alpha subunit gene family, we have predicted amino acid residues that are related to either Type-I or Type-II functional divergence. The inferred ancestral sequences for these sites are helpful to explore the trends of functional divergence. Finally, these predicted residues are mapped to the protein structures to test whether these residues may have 3D structure or solvent accessibility preference.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Genetics, Development & Cell Biology, Center for Bioinformatics and Biological Statistics, Iowa State University, Iowa 50011, USA
| | | | | |
Collapse
|
353
|
Birnbaumer L. Expansion of signal transduction by G proteins. The second 15 years or so: from 3 to 16 alpha subunits plus betagamma dimers. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:772-93. [PMID: 17258171 PMCID: PMC1993906 DOI: 10.1016/j.bbamem.2006.12.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 12/02/2006] [Indexed: 10/23/2022]
Abstract
The first 15 years, or so, brought the realization that there existed a G protein coupled signal transduction mechanism by which hormone receptors regulate adenylyl cyclases and the light receptor rhodopsin activates visual phosphodiesterase. Three G proteins, Gs, Gi and transducin (T) had been characterized as alphabetagamma heterotrimers, and Gsalpha-GTP and Talpha-GTP had been identified as the sigaling arms of Gs and T. These discoveries were made using classical biochemical approaches, and culminated in the purification of these G proteins. The second 15 years, or so, are the subject of the present review. This time coincided with the advent of powerful recombinant DNA techniques. Combined with the classical approaches, the field expanded the repertoire of G proteins from 3 to 16, discovered the superfamily of seven transmembrane G protein coupled receptors (GPCRs) -- which is not addressed in this article -- and uncovered an amazing repertoire of effector functions regulated not only by alphaGTP complexes but also by betagamma dimers. Emphasis is placed in presenting how the field developed with the hope of conveying why many of the new findings were made.
Collapse
Affiliation(s)
- Lutz Birnbaumer
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
354
|
Hippe HJ, Wieland T. High energy phosphate transfer by NDPK B/Gbetagammacomplexes--an alternative signaling pathway involved in the regulation of basal cAMP production. J Bioenerg Biomembr 2007; 38:197-203. [PMID: 16957986 DOI: 10.1007/s10863-006-9035-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The activation of heterotrimeric G proteins induced by G protein coupled receptors (GPCR) is generally believed to occur by a GDP/GTP exchange at the G protein alpha -subunit. Nevertheless, nucleoside diphosphate kinase (NDPK) and the beta-subunit of G proteins (Gbeta) participate in G protein activation by phosphate transfer reactions leading to the formation of GTP from GDP. Recent work elucidated the role of these reactions. Apparently, the NDPK isoform B (NDPK B) forms a complex with Gbetagamma dimers in which NDPK B acts as a histidine kinase phosphorylating Gbeta at His266. Out of this high energetic phosphoamidate bond the phosphate can be transferred specifically onto GDP. The formed GTP binds to the G protein alpha-subunit and thus activates the respective G protein. Evidence is presented, that this process occurs independent of the classical GPCR-induced GTP/GTP exchange und thus contributes, e.g. to the regulation of basal cAMP synthesis in cells.
Collapse
Affiliation(s)
- Hans-Joerg Hippe
- Universität Heidelberg, Innere Medizin III - Kardiologie, INF 410, D-69120, Heidelberg, Germany
| | | |
Collapse
|
355
|
Abstract
The class III PI3K (phosphoinositide 3-kinase), Vps34 (vacuolar protein sorting 34), was first identified as a regulator of vacuolar hydrolase sorting in yeast. Unlike other PI3Ks, the Vps34 lipid kinase specifically utilizes phosphatidylinositol as a substrate, producing the single lipid product PtdIns3P. While Vps34 has been studied for some time in the context of endocytosis and vesicular trafficking, it has more recently been implicated as an important regulator of autophagy, trimeric G-protein signalling, and the mTOR (mammalian target of rapamycin) nutrient-sensing pathway. The present paper will focus on studies that describe the regulation of hVps34 (human Vps34) intracellular targeting and enzymatic activity in yeast and mammalian cells.
Collapse
Affiliation(s)
- Y Yan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
356
|
Vrecl M, Drinovec L, Elling C, Heding A. Opsin oligomerization in a heterologous cell system. J Recept Signal Transduct Res 2007; 26:505-26. [PMID: 17118796 DOI: 10.1080/10799890600932253] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Using bioluminescence resonance energy transfer (BRET) we studied opsin oligomerization in heterologous expression systems and quantitatively assessed its oligomerization state. BRET2 saturation and competition experiments were performed with live COS-7 cells expressing Rluc-and GFP2-tagged receptor constructs. BRET2 saturation curves obtained were hyperbolic, and the calculated oligomerization state (N = 1 for dimers) suggested that opsin (N = 1.34 +/- 0.25) forms higher oligomers. Very high BRET2 values obtained for the opsin homo-dimer pair indicated a large energy transfer efficiency (E) and for cases where E >> 0.1 a modified saturation curve was proposed. The existence of homo-dimer complexes was additionally supported by competition assay results and was also observed in HEK-293 cells. Furthermore, evidence was provided for homo-and hetero-dimerization of family A (beta2-adrenergic) and B (gastric inhibitory polypeptide, GIP) receptors. In summary, these experiments demonstrate homo-and hetero-dimerization for opsin, beta 2-adrenergic, and GIP receptors.
Collapse
Affiliation(s)
- Milka Vrecl
- Institute of Anatomy, Histology and Embryology, University of Ljubljana, Veterinary Faculty, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
357
|
de Souza N, Vallier LG, Fares H, Greenwald I. SEL-2, theC. elegansneurobeachin/LRBA homolog, is a negative regulator oflin-12/Notchactivity and affects endosomal traffic in polarized epithelial cells. Development 2007; 134:691-702. [PMID: 17215302 DOI: 10.1242/dev.02767] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vulval precursor cells (VPCs) of Caenorhabditis elegans are polarized epithelial cells that adopt a precise pattern of fates through regulated activity of basolateral LET-23/EGF receptor and apical LIN-12/Notch. During VPC patterning, there is reciprocal modulation of endocytosis and trafficking of both LET-23 and LIN-12. We identified sel-2 as a negative regulator of lin-12/Notch activity in the VPCs, and found that SEL-2 is the homolog of two closely related human proteins, neurobeachin(also known as BCL8B) and LPS-responsive, beige-like anchor protein (LRBA). SEL-2, neurobeachin and LRBA belong to a distinct subfamily of BEACH-WD40 domain-containing proteins. Loss of sel-2 activity leads to basolateral mislocalization and increased accumulation of LIN-12 in VPCs in which LET-23 is not active, and to impaired downregulation of basolateral LET-23 in VPCs in which LIN-12 is active. Downregulation of apical LIN-12 in the VPC in which LET-23 is active is not affected. In addition, in sel-2 mutants, the polarized cells of the intestinal epithelium display an aberrant accumulation of the lipophilic dye FM4-64 when the dye is presented to the basolateral surface. Our observations indicate that SEL-2/neurobeachin/LRBA is involved in endosomal traffic and may be involved in efficient delivery of cell surface proteins to the lysosome. Our results also suggest that sel-2 activity may contribute to the appropriate steady-state level of LIN-12 or to trafficking events that affect receptor activation.
Collapse
Affiliation(s)
- Natalie de Souza
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, 701 W. 168th Street, Hammer Health Sciences, New York, NY 10032, USA
| | | | | | | |
Collapse
|
358
|
Napetschnig J, Blobel G, Hoelz A. Crystal structure of the N-terminal domain of the human protooncogene Nup214/CAN. Proc Natl Acad Sci U S A 2007; 104:1783-8. [PMID: 17264208 PMCID: PMC1794303 DOI: 10.1073/pnas.0610828104] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Indexed: 12/31/2022] Open
Abstract
The mammalian nuclear pore complex (NPC) is an approximately 120-MDa proteinaceous assembly consisting of approximately 30 proteins and is the sole gate in the nuclear envelope. The human protooncogene Nup214 was first identified as a target for chromosomal translocation involved in leukemogenesis. Nup214 is located on the cytoplasmic face of the NPC and is implicated in anchoring the cytoplasmic filaments of the NPC and recruiting the RNA helicase Ddx19. Here, we present the crystal structure of the human Nup214 N-terminal domain at 1.65-A resolution. The structure reveals a seven-bladed beta-propeller followed by a 30-residue C-terminal extended peptide segment, which folds back onto the beta-propeller and binds to its bottom face. The beta-propeller repeats lack any recognizable sequence motif and are distinguished by extensive insertions between the canonical beta-strands. We propose a mechanism by which the C-terminal peptide extension is involved in NPC assembly.
Collapse
Affiliation(s)
- Johanna Napetschnig
- Laboratory of Cell Biology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Günter Blobel
- Laboratory of Cell Biology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - André Hoelz
- Laboratory of Cell Biology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| |
Collapse
|
359
|
Xie X, Wang Z, Chen Y. Association of LKB1 with a WD-repeat protein WDR6 is implicated in cell growth arrest and p27Kip1 induction. Mol Cell Biochem 2007; 301:115-22. [PMID: 17216128 DOI: 10.1007/s11010-006-9402-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
Germline mutations of the serine/threonine kinase LKB1 (also known as STK11) lead to Peutz-Jeghers syndrome (PJS) that is associated with increased incidence of malignant cancers. However, the tumor suppressor function of LKB1 has not been fully elucidated. We applied yeast two-hybrid screening and identified that a novel WD-repeat protein WDR6 was able to interact with LKB1. Immunofluorescence staining revealed that WDR6 was localized in cytoplasm, similar to the localization of LKB1. Expression of LKB1 was able to inhibit colony formation of Hela cells. Interestingly, coexpression of WDR6 with LKB1 enhanced the inhibitory effect of LKB1 on Hela cell proliferation. Consistently, WDR6 was able to synergize with LKB1 in cell cycle G1 arrest in Hela cells. Coexpression of WDR6 and LKB1 was able to induce a cyclin-dependent kinase (CDK) inhibitor p27(Kip1). Furthermore, the stimulatory effect of LKB1 on p27(Kip1) promoter activity was significantly elevated by coexpression with WDR6. Collectively, these results provided initial evidence that WDR6 is implicated in the cell growth inhibitory pathway of LKB1 via regulation of p27(Kip1).
Collapse
Affiliation(s)
- Xiaoduo Xie
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
360
|
Wieland T. Interaction of nucleoside diphosphate kinase B with heterotrimeric G protein betagamma dimers: consequences on G protein activation and stability. Naunyn Schmiedebergs Arch Pharmacol 2007; 374:373-83. [PMID: 17200862 DOI: 10.1007/s00210-006-0126-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 11/20/2006] [Indexed: 12/31/2022]
Abstract
It is generally accepted that G protein coupled receptors (GPCR) activate heterotrimeric G proteins by inducing a GDP/GTP exchange at the G protein alpha subunit. In addition, the transfer of high energetic phosphate by nucleoside diphosphate kinase (NDPK) and/or the beta subunit of G proteins (Gbeta) can induce G protein activation. Recent evidence suggests that the NDPK isoform B (NDPK B) forms a complex with Gbetagamma dimers. In this complex, NDPK B acts as a protein histidine kinase phosphorylating Gbeta at histidine residue 266 (His266). The high energetic phosphoamidate bond on His266 allows for a phosphate transfer specifically onto GDP and thus local formation of GTP, which binds to and thereby activates the respective G protein alpha subunit. Apparently, this process occurs independent of the classical GPCR-induced GDP/GTP exchange at least for members of the G(s) and G(i) subfamilies of heterotrimeric G proteins. By using a mutant of Gbeta(1) in which His266 was replaced by Leu, it was recently demonstrated that NDPK B/Gbetagamma-mediated G(s) activation contributes by about 50% to basal cAMP formation and contractility in rat cardiac myocytes. Besides its apparent role in G protein activation, the complex formation of NDPK B with Gbetagamma dimers might be essential for G protein stability. Depletion of either the NDPK B orthologue or Gbeta(1) isoforms in zebrafish embryos led to a similar phenotype displaying contractile dysfunction in the heart accompanied by a complete loss of heterotrimeric G protein expression. In conclusion, the interaction of NDKP B with Gbetagamma dimers might play an important role in signal transduction, and alterations in this novel pathway might be of pathophysiological importance.
Collapse
Affiliation(s)
- Thomas Wieland
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät Mannheim, Universität Heidelberg, Maybachstrasse 14, D-68169 Mannheim, Germany.
| |
Collapse
|
361
|
Sprang SR, Chen Z, Du X. Structural basis of effector regulation and signal termination in heterotrimeric Galpha proteins. ADVANCES IN PROTEIN CHEMISTRY 2007; 74:1-65. [PMID: 17854654 DOI: 10.1016/s0065-3233(07)74001-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter addresses, from a molecular structural perspective gained from examination of x-ray crystallographic and biochemical data, the mechanisms by which GTP-bound Galpha subunits of heterotrimeric G proteins recognize and regulate effectors. The mechanism of GTP hydrolysis by Galpha and rate acceleration by GAPs are also considered. The effector recognition site in all Galpha homologues is formed almost entirely of the residues extending from the C-terminal half of alpha2 (Switch II) together with the alpha3 helix and its junction with the beta5 strand. Effector binding does not induce substantial changes in the structure of Galpha*GTP. Effectors are structurally diverse. Different effectors may recognize distinct subsets of effector-binding residues of the same Galpha protein. Specificity may also be conferred by differences in the main chain conformation of effector-binding regions of Galpha subunits. Several Galpha regulatory mechanisms are operative. In the regulation of GMP phospodiesterase, Galphat sequesters an inhibitory subunit. Galphas is an allosteric activator and inhibitor of adenylyl cyclase, and Galphai is an allosteric inhibitor. Galphaq does not appear to regulate GRK, but is rather sequestered by it. GTP hydrolysis terminates the signaling state of Galpha. The binding energy of GTP that is used to stabilize the Galpha:effector complex is dissipated in this reaction. Chemical steps of GTP hydrolysis, specifically, formation of a dissociative transition state, is rate limiting in Ras, a model G protein GTPase, even in the presence of a GAP; however, the energy of enzyme reorganization to produce a catalytically active conformation appears to be substantial. It is possible that the collapse of the switch regions, associated with Galpha deactivation, also encounters a kinetic barrier, and is coupled to product (Pi) release or an event preceding formation of the GDP*Pi complex. Evidence for a catalytic intermediate, possibly metaphosphate, is discussed. Galpha GAPs, whether exogenous proteins or effector-linked domains, bind to a discrete locus of Galpha that is composed of Switch I and the N-terminus of Switch II. This site is immediately adjacent to, but does not substantially overlap, the Galpha effector binding site. Interactions of effectors and exogenous GAPs with Galpha proteins can be synergistic or antagonistic, mediated by allosteric interactions among the three molecules. Unlike GAPs for small GTPases, Galpha GAPs supply no catalytic residues, but rather appear to reduce the activation energy for catalytic activation of the Galpha catalytic site.
Collapse
Affiliation(s)
- Stephen R Sprang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
362
|
Fowler CE, Aryal P, Suen KF, Slesinger PA. Evidence for association of GABA(B) receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins. J Physiol 2006; 580:51-65. [PMID: 17185339 PMCID: PMC2075413 DOI: 10.1113/jphysiol.2006.123216] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many neurotransmitters and hormones signal by stimulating G protein-coupled neurotransmitter receptors (GPCRs), which activate G proteins and their downstream effectors. Whether these signalling proteins diffuse freely within the plasma membrane is not well understood. Recent studies have suggested that direct protein-protein interactions exist between GPCRs, G proteins and G protein-gated inwardly rectifying potassium (GIRK or Kir3) channels. Here, we used fluorescence resonance energy transfer (FRET) combined with total internal reflection fluorescence microscopy to investigate whether proteins within this signalling pathway move within 100 A of each other in the plasma membrane of living cells. GABA(B) R1 and R2 receptors, Kir3 channels, Galphao subunits and regulators of G protein signalling (RGS4) proteins were each fused to cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP) and first assessed for functional expression in HEK293 cells. The presence of the fluorophore did not significantly alter the signalling properties of these proteins. Possible FRET was then investigated for different protein pair combinations. As a positive control, FRET was measured between tagged GABA(B) R1 and R2 subunits ( approximately 12% FRET), which are known to form heterodimers. We measured significant FRET between tagged RGS4 and GABA(B) R1 or R2 subunits ( approximately 13% FRET), and between Galphao and GABA(B) R1 or R2 subunits ( approximately 10% FRET). Surprisingly, FRET also occurred between tagged Kir3.2a/Kir3.4 channels and GABA(B) R1 or R2 subunits ( approximately 10% FRET). FRET was not detected between Kir3.2a and RGS4 nor between Kir3.2a and Galphao. These data are discussed in terms of a model in which GABA(B) receptors, G proteins, RGS4 proteins and Kir3 channels are closely associated in a signalling complex.
Collapse
Affiliation(s)
- Catherine E Fowler
- The Salk Institute, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
363
|
Anderson MA, Ogbay B, Kisselev OG, Cistola DP, Marshall GR. Alternate Binding Mode of C-terminal Phenethylamine Analogs of Gt?(340?350) to Photoactivated Rhodopsin. Chem Biol Drug Des 2006; 68:295-307. [PMID: 17177891 DOI: 10.1111/j.1747-0285.2006.00460.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The C-terminus of the Galpha-subunit of transducin plays an important role in receptor recognition. Synthetic peptides corresponding to the last 11 residues of the subunit have been shown to stabilize the photoactivated form of rhodopsin, Rh*. The Rh*-bound structure of the G(t)alpha(340-350) peptide has been determined using transferred nuclear overhauser effect NMR. In that structure, we observed two interactions between Lys341 and Phe350, a cation-pi interaction between the epsilon-amine and the aromatic ring of Phe350 and a salt-bridge between the epsilon-amine and the C-terminal carboxylate. A series of C-terminal phenethylamine analogs of the G(t)alpha(340-350) peptide were synthesized, lacking the C-terminal carboxylate group, to investigate the forces that contribute to the stability of the Rh*-bound conformation of the peptide. Rh*-stabilization assay data suggest that the C-terminal carboxylate is not necessary to maintain binding affinity. Transferred nuclear overhauser effect NMR experiments reveal that these C-terminal phenethylamine peptides adopt an Rh*-bound structure that is similar overall, but lacking some of the intramolecular interactions observed in the native Rh*-bound G(t)alpha(340-350) structure. These studies suggest that the binding site for G(t)alpha(340-350) on Rh* is adaptable, and we propose that the charged carboxylate of Phe350 does not play a significant role in the interaction with Rh*, but helps stabilize the Rh*-bound confirmation of the native peptide.
Collapse
Affiliation(s)
- Matthew A Anderson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
364
|
Zhong S, Moix JM, Quirk S, Hernandez R. Dihedral-angle information entropy as a gauge of secondary structure propensity. Biophys J 2006; 91:4014-23. [PMID: 16980371 PMCID: PMC1635691 DOI: 10.1529/biophysj.106.089243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 08/29/2006] [Indexed: 11/18/2022] Open
Abstract
Protein structural information can be uncovered using an information-theory-based entropy and auxiliary functions by taking advantage of high-quality correlation plots between the dihedral angles around a residue and those between sequential residues. A standard information entropy for a primary sequence has been defined using the values of the probabilities of the most likely dihedral angles along the sequence. The distribution of entropy differences relative to the standard for each protein in a reference set--a sublibrary of the Protein Data Bank at the 90% sequence redundancy level--appears to be nearly Gaussian. It gives rise to an auxiliary checking function whose value signals the extent to which the dihedral angle propensities differ from typical structures. Such deviations can arise either because of incorrect dihedral angle assignments or secondary structural propensities that are atypical of the structures in the reference set. This auxiliary checking function can be readily calculated at the public website, (http://www.d2check.gatech.edu). Its utility is demonstrated here in an analysis displaying differences between experimentally and theoretically derived structures, and in the analysis of structures derived by homology modeling. A comparison of the new measure, D(2)Check, to other checking functions based on backbone conformation-namely, PROCHECK and WHAT_CHECK--is also provided.
Collapse
Affiliation(s)
- Shi Zhong
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400., USA
| | | | | | | |
Collapse
|
365
|
Ridge KD, Marino JP, Ngo T, Ramon E, Brabazon DM, Abdulaev NG. NMR analysis of rhodopsin–transducin interactions. Vision Res 2006; 46:4482-92. [PMID: 16979691 DOI: 10.1016/j.visres.2006.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/22/2006] [Accepted: 07/26/2006] [Indexed: 12/20/2022]
Abstract
Heterotrimeric G-protein activation by an agonist-stimulated G-protein coupled receptor (R*) requires the propagation of structural signals from the receptor interacting surfaces to the guanine nucleotide-binding pocket. Employing high-resolution NMR methods, we are probing heterotrimer-associated and rhodopsin-stimulated changes in an isotope-labeled G-protein alpha-subunit (G(alpha)). A key aspect of the work involves the trapping and interrogation of discrete R*-bound conformations of G(alpha). Our results demonstrate that functionally important changes in G(alpha) structure and dynamics can be detected and characterized by NMR, enabling the generation of robust models for the global and local structural changes accompanying signal transfer from R* to the G-protein.
Collapse
Affiliation(s)
- K D Ridge
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
366
|
Abstract
The regulation of presynaptic, voltage-gated calcium channels by activation of heptahelical G protein-coupled receptors exerts a crucial influence on presynaptic calcium entry and hence on neurotransmitter release. Receptor activation subjects presynaptic N- and P/Q-type calcium channels to a rapid, membrane-delimited inhibition-mediated by direct, voltage-dependent interactions between G protein betagamma subunits and the channels-and to a slower, voltage-independent modulation involving soluble second messenger molecules. In turn, the direct inhibition of the channels is regulated as a function of many factors, including channel subtype, ancillary calcium channel subunits, and the types of G proteins and G protein regulatory factors involved. Twenty-five years after this mode of physiological regulation was first described, we review the investigations that have led to our current understanding of its molecular mechanisms.
Collapse
Affiliation(s)
- H William Tedford
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Canada
| | | |
Collapse
|
367
|
Blumer JB, Smrcka AV, Lanier S. Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling. Pharmacol Ther 2006; 113:488-506. [PMID: 17240454 PMCID: PMC1978177 DOI: 10.1016/j.pharmthera.2006.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/10/2006] [Indexed: 01/14/2023]
Abstract
Signal processing via heterotrimeric G-proteins in response to cell surface receptors is a central and much investigated aspect of how cells integrate cellular stimuli to produce coordinated biological responses. The system is a target of numerous therapeutic agents and plays an important role in adaptive processes of organs; aberrant processing of signals through these transducing systems is a component of various disease states. In addition to G-protein coupled receptor (GPCR)-mediated activation of G-protein signaling, nature has evolved creative ways to manipulate and utilize the Galphabetagamma heterotrimer or Galpha and Gbetagamma subunits independent of the cell surface receptor stimuli. In such situations, the G-protein subunits (Galpha and Gbetagamma) may actually be complexed with alternative binding partners independent of the typical heterotrimeric Galphabetagamma. Such regulatory accessory proteins include the family of regulator of G-protein signaling (RGS) proteins that accelerate the GTPase activity of Galpha and various entities that influence nucleotide binding properties and/or subunit interaction. The latter group of proteins includes receptor-independent activators of G-protein signaling (AGS) proteins that play surprising roles in signal processing. This review provides an overview of our current knowledge regarding AGS proteins. AGS proteins are indicative of a growing number of accessory proteins that influence signal propagation, facilitate cross talk between various types of signaling pathways, and provide a platform for diverse functions of both the heterotrimeric Galphabetagamma and the individual Galpha and Gbetagamma subunits.
Collapse
Affiliation(s)
| | - Alan V. Smrcka
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY 14642-8711
| | - S.M. Lanier
- ** Corresponding Author, Stephen M. Lanier, Ph.D., Department of Pharmacology, Medical University of South Carolina, Colcock Hall, 2nd Floor, PO Box 250002, 179 Ashley Avenue, Charleston, SC 29425, 843-792-0442, E-mail:
| |
Collapse
|
368
|
Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 2006; 443:590-3. [PMID: 16964240 DOI: 10.1038/nature05175] [Citation(s) in RCA: 537] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 08/17/2006] [Indexed: 11/08/2022]
Abstract
Protein ubiquitination is a common form of post-translational modification that regulates a broad spectrum of protein substrates in diverse cellular pathways. Through a three-enzyme (E1-E2-E3) cascade, the attachment of ubiquitin to proteins is catalysed by the E3 ubiquitin ligase, which is best represented by the superfamily of the cullin-RING complexes. Conserved from yeast to human, the DDB1-CUL4-ROC1 complex is a recently identified cullin-RING ubiquitin ligase, which regulates DNA repair, DNA replication and transcription, and can also be subverted by pathogenic viruses to benefit viral infection. Lacking a canonical SKP1-like cullin adaptor and a defined substrate recruitment module, how the DDB1-CUL4-ROC1 E3 apparatus is assembled for ubiquitinating various substrates remains unclear. Here we present crystallographic analyses of the virally hijacked form of the human DDB1-CUL4A-ROC1 machinery, which show that DDB1 uses one beta-propeller domain for cullin scaffold binding and a variably attached separate double-beta-propeller fold for substrate presentation. Through tandem-affinity purification of human DDB1 and CUL4A complexes followed by mass spectrometry analysis, we then identify a novel family of WD40-repeat proteins, which directly bind to the double-propeller fold of DDB1 and serve as the substrate-recruiting module of the E3. Together, our structural and proteomic results reveal the structural mechanisms and molecular logic underlying the assembly and versatility of a new family of cullin-RING E3 complexes.
Collapse
Affiliation(s)
- Stephane Angers
- Howard Hughes Medical Institute, University of Washington, School of Medicine, Box 357280, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
369
|
Van Eps N, Oldham WM, Hamm HE, Hubbell WL. Structural and dynamical changes in an alpha-subunit of a heterotrimeric G protein along the activation pathway. Proc Natl Acad Sci U S A 2006; 103:16194-9. [PMID: 17053066 PMCID: PMC1637559 DOI: 10.1073/pnas.0607972103] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Galpha subunits of heterotrimeric G proteins (Galphabetagamma) mediate signal transduction via activation by receptors and subsequent interaction with downstream effectors. Crystal structures indicate that conformational changes in "switch" sequences of Galpha, controlled by the identity of the bound nucleotide (GDP and GTP), modulate binding affinities to the Gbetagamma subunits, receptor, and effector proteins. To investigate the solution structure and dynamics of Galphai1 through the G protein cycle, nitroxide side chains (R1) were introduced at sites in switch II and at a site in helix alpha4, a putative effector binding region. In the inactive Galphai1(GDP) state, the EPR spectra are compatible with conformational polymorphism in switch II. Upon complex formation with Gbetagamma, motions of R1 are highly constrained, reflecting direct contact interactions at the Galphai1-Gbeta interface; remarkably, the presence of R1 at the sites investigated does not substantially affect the binding affinity. Complex formation between the heterotrimer and activated rhodopsin leads to a dramatic change in R1 motion at residue 217 in the receptor-binding alpha2/beta4 loop and smaller allosteric changes at the Galphai1-Gbetagamma interface distant from the receptor binding surface. Upon addition of GTPgammaS, the activated Galphai1(GTP) subunit dissociates from the complex, and switch II is transformed to a unique conformation similar to that in crystal structures but with a flexible backbone. A previously unreported activation-dependent change in alpha4, distant from the interaction surface, supports a role for this helix in effector binding.
Collapse
Affiliation(s)
- Ned Van Eps
- Jules Stein Eye Institute, Departments of Ophthalmology and Chemistry and Biochemistry, University of California, Los Angeles, CA 90095; and
| | - William M. Oldham
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6600
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6600
| | - Wayne L. Hubbell
- Jules Stein Eye Institute, Departments of Ophthalmology and Chemistry and Biochemistry, University of California, Los Angeles, CA 90095; and
| |
Collapse
|
370
|
Mukai S, Fujiki Y. Molecular mechanisms of import of peroxisome-targeting signal type 2 (PTS2) proteins by PTS2 receptor Pex7p and PTS1 receptor Pex5pL. J Biol Chem 2006; 281:37311-20. [PMID: 17040904 DOI: 10.1074/jbc.m607178200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, we investigated molecular mechanisms underlying the import of peroxisome-targeting signal type 2 (PTS2) proteins into peroxisomes. Purified Chinese hamster Pex7p that had been expressed in an Sf9/baculovirus system was biologically active in several assays such as those for PTS2 binding and assessing the restoration of the impaired PTS2 protein import in Chinese hamster ovary (CHO) pex7 mutant ZPG207. Pex7p was eluted as a monomer in gel filtration chromatography. Moreover, the mutation of the highly conserved cysteine residue suggested to be involved in the dimer formation did not affect the complementing activity in ZPG207 cells. Together, Pex7p more likely functions as a monomer. Together with PTS1 protein, the Pex7p-PTS2 protein complex was bound to Pex5pL, the longer form of Pex5p, which was prerequisite for the translocation of Pex7p-PTS2 protein complexes. Pex5pL-(Pex7p-PTS2 protein) complexes were detectable in wild-type CHO-K1 cells and were apparently more stable in pex14 CHO cells deficient in the entry site of the matrix proteins, whereas only the Pex7p-PTS2 protein complex was discernible in a Pex5pL-defective pex5 CHO mutant. Pex7p-PTS2 proteins bound to Pex14p via Pex5pL. In contrast, PTS2 protein-bound Pex7p as well as Pex7p directly and equally interacted with Pex13p, implying that the PTS2 cargo may be released at Pex13p. Furthermore, we detected the Pex13p complexes likewise formed with Pex5pL-bound Pex7p-PTS2 proteins. Thus, the Pex7p-mediated PTS2 protein import shares most of the steps with the Pex5p-dependent PTS1 import machinery but is likely distinct at the cargo-releasing stage.
Collapse
Affiliation(s)
- Satoru Mukai
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan.
| | | |
Collapse
|
371
|
Herrmann R, Heck M, Henklein P, Hofmann KP, Ernst OP. Signal Transfer from GPCRs to G Proteins. J Biol Chem 2006; 281:30234-41. [PMID: 16847064 DOI: 10.1074/jbc.m600797200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catalysis of nucleotide exchange in heterotrimeric G proteins (Galphabetagamma) is a key step in cellular signal transduction mediated by G protein-coupled receptors. The Galpha N terminus with its helical stretch is thought to be crucial for G protein/activated receptor (R(*)) interaction. The N-terminal fatty acylation of Galpha is important for membrane targeting of G proteins. By applying biophysical techniques to the rhodopsin/transducin model system, we studied the effect of N-terminal truncations in Galpha. In Galphabetagamma, lack of the fatty acid and Galpha truncations up to 33 amino acids had little effect on R(*) binding and R(*)-catalyzed nucleotide exchange, implying that this region is not mandatory for R(*)/Galphabetagamma interaction. However, when the other hydrophobic modification of Galphabetagamma, the Ggamma C-terminal farnesyl moiety, is lacking, R(*) interaction requires the fatty acylated Galpha N terminus. This suggests that the two hydrophobic extensions can replace each other in the interaction of Galphabetagamma with R(*). We propose that in native Galphabetagamma, these two terminal regions are functionally redundant and form a microdomain that serves both to anchor the G protein to the membrane and to establish an initial docking complex with R(*). Accordingly, we find that the native fatty acylated Galpha is competent to interact with R(*) even in the absence of Gbetagamma, whereas nonacylated Galpha requires Gbetagamma for interaction. Experiments with N-terminally truncated Galpha subunits suggest that in the second step of the catalytic process, the receptor binds to the alphaN/beta1-loop region of Galpha to reduce nucleotide affinity and to make the Galpha C terminus available for subsequent interaction with R(*).
Collapse
Affiliation(s)
- Rolf Herrmann
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Schumannstrasse 20/21, D-10098 Berlin, Germany
| | | | | | | | | |
Collapse
|
372
|
Herrmann R, Heck M, Henklein P, Kleuss C, Wray V, Hofmann KP, Ernst OP. Rhodopsin-transducin coupling: role of the Galpha C-terminus in nucleotide exchange catalysis. Vision Res 2006; 46:4582-93. [PMID: 17011013 DOI: 10.1016/j.visres.2006.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 07/26/2006] [Accepted: 07/26/2006] [Indexed: 11/21/2022]
Abstract
In the early steps of visual signal transduction, light-activated rhodopsin (R*) catalyzes GDP/GTP exchange in the heterotrimeric G protein (Galphabetagamma) transducin. We recently reported that the catalytic interaction involves two sequential steps. An initial docking between R* and Gbetagamma leads to conformational changes which make the C-terminus of Galpha (CTalpha) available for binding to R*. Binding of CTalpha by R* then triggers GDP/GTP exchange in the Galpha subunit. To further study this two-step mechanism, we investigated different single amino acid substitutions within CTalpha and discuss the effects of high affinity mutations on nucleotide exchange catalysis.
Collapse
Affiliation(s)
- Rolf Herrmann
- Institut für medizinische Physik und Biophysik (CCM), Charité-Universitätsmedizin Berlin, Schumannstr. 20/21, 10098 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
373
|
Riven I, Iwanir S, Reuveny E. GIRK Channel Activation Involves a Local Rearrangement of a Preformed G Protein Channel Complex. Neuron 2006; 51:561-73. [PMID: 16950155 DOI: 10.1016/j.neuron.2006.08.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 06/19/2006] [Accepted: 08/09/2006] [Indexed: 11/15/2022]
Abstract
G protein-coupled signaling is one of the major mechanisms for controlling cellular excitability. One of the main targets for this control at postsynaptic membranes is the G protein-coupled potassium channels (GIRK/Kir3), which generate slow inhibitory postsynaptic potentials following the activation of Pertussis toxin-sensitive G protein-coupled receptors. Using total internal reflection fluorescence (TIRF) microscopy combined with fluorescence resonance energy transfer (FRET), in intact cells, we provide evidence for the existence of a trimeric G protein-channel complex at rest. We show that activation of the channel via the receptor induces a local conformational switch of the G protein to induce channel opening. The presence of such a complex thus provides the means for a precise temporal and highly selective activation of the channel, which is required for fine tuning of neuronal excitability.
Collapse
Affiliation(s)
- Inbal Riven
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100
| | | | | |
Collapse
|
374
|
Slessareva JE, Routt SM, Temple B, Bankaitis VA, Dohlman HG. Activation of the phosphatidylinositol 3-kinase Vps34 by a G protein alpha subunit at the endosome. Cell 2006; 126:191-203. [PMID: 16839886 DOI: 10.1016/j.cell.2006.04.045] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 02/06/2006] [Accepted: 04/28/2006] [Indexed: 01/21/2023]
Abstract
In the yeast Saccharomyces cerevisiae, the G protein beta gamma subunits are essential for pheromone signaling. The Galpha subunit Gpa1 can also promote signaling, but the effectors in this pathway are not well characterized. To identify candidate Gpa1 effectors, we expressed the constitutively active Gpa1(Q323L) mutant in each of nearly 5000 gene-deletion strains and measured mating-specific responses. Our analysis reveals a requirement for both the catalytic (Vps34) and regulatory (Vps15) subunits of the sole phosphatidylinositol 3-kinase in yeast. We demonstrate that Gpa1 is present at endosomes, where it interacts directly with both Vps34 and Vps15 and stimulates increased production of phosphatidylinositol 3-phosphate. Notably, Vps15 binds to GDP-bound Gpa1 and is predicted to have a seven-WD repeat structure similar to that of known G protein beta subunits. These findings reveal two new components of the pheromone signaling pathway. More remarkably, these proteins appear to comprise a preformed effector-G beta subunit assembly and function at the endosome rather than at the plasma membrane.
Collapse
Affiliation(s)
- Janna E Slessareva
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
375
|
Wu EHT, Tam BHL, Wong YH. Constitutively active alpha subunits of G(q/11) and G(12/13) families inhibit activation of the pro-survival Akt signaling cascade. FEBS J 2006; 273:2388-98. [PMID: 16704413 DOI: 10.1111/j.1742-4658.2006.05245.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accumulating evidence indicates that G protein signaling plays an active role in the regulation of cell survival. Our previous study demonstrated the regulatory effects of G(i/o) proteins in nerve growth factor-induced activation of pro-survival Akt kinase. In the present study we explored the role of various members of the G(s), G(q/11) and G(12/13) subfamilies in the regulation of Akt in cultured mammalian cells. In human embryonic kidney 293 cells transiently expressing constitutively active mutants of G alpha11, G alpha14, G alpha16, G alpha12, or G alpha13 (G alpha11QL, G alpha14QL, G alpha16QL, G alpha12QL and G alpha13QL, respectively), basal phosphorylation of Akt was attenuated, as revealed by western blotting analysis using a phosphospecific anti-Akt immunoglobulin. In contrast, basal Akt phosphorylation was unaffected by the overexpression of a constitutively active G alpha(s) mutant (G alpha(s)QL). Additional experiments showed that G alpha11QL, G alpha14QL, G alpha16QL, G alpha12QL and G alpha13QL, but not G alpha(s)QL, attenuated phosphorylation of the Akt-regulated translation regulator tuberin. Moreover, they were able to inhibit the epidermal growth factor-induced Akt activation and tuberin phosphorylation. The inhibitory mechanism of Gq family members was independent of phospholipase Cbeta activation and calcium signaling because G alpha11QL, G alpha14QL and G alpha16QL remained capable of inhibiting epidermal growth factor-induced Akt activation in cells pretreated with U73122 and the intracellular calcium chelator, BAPTA/AM. Finally, overexpression of the dominant negative mutant of RhoA blocked G alpha12QL- and G alpha13QL-mediated inhibition, suggesting that activated G alpha12 and G alpha13 inhibit Akt signaling via RhoA. Collectively, this study demonstrated the inhibitory effect of activated G alpha11, G alpha14, G alpha16, G alpha12 and G alpha13 on pro-survival Akt signaling.
Collapse
Affiliation(s)
- Eddy H T Wu
- Department of Biochemistry, the Molecular Neuroscience Center, and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
376
|
Jennings BH, Pickles LM, Wainwright SM, Roe SM, Pearl LH, Ish-Horowicz D. Molecular recognition of transcriptional repressor motifs by the WD domain of the Groucho/TLE corepressor. Mol Cell 2006; 22:645-55. [PMID: 16762837 DOI: 10.1016/j.molcel.2006.04.024] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2006] [Revised: 03/20/2006] [Accepted: 04/24/2006] [Indexed: 11/18/2022]
Abstract
The Groucho (Gro)/TLE/Grg family of corepressors operates in many signaling pathways (including Notch and Wnt). Gro/TLE proteins recognize a wide range of transcriptional repressors by binding to divergent short peptide sequences, including a C-terminal WRPW/Y motif (Hairy/Hes/Runx) and internal eh1 motifs (FxIxxIL; Engrailed/Goosecoid/Pax/Nkx). Here, we identify several missense mutations in Drosophila Gro, which demonstrate peptide binding to the central pore of the WD (WD40) beta propeller domain in vitro and in vivo. We define these interactions at the molecular level with crystal structures of the WD domain of human TLE1 bound to either WRPW or eh1 peptides. The two distinct peptide motifs adopt markedly different bound conformations but occupy overlapping sites across the central pore of the beta propeller. Our structural and functional analysis explains the rigid conservation of the WRPW motif, the sequence flexibility of eh1 motifs, and other aspects of repressor recognition by Gro in vivo.
Collapse
Affiliation(s)
- Barbara H Jennings
- Developmental Genetics Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | | | | | |
Collapse
|
377
|
Oldham WM, Van Eps N, Preininger AM, Hubbell WL, Hamm HE. Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nat Struct Mol Biol 2006; 13:772-7. [PMID: 16892066 DOI: 10.1038/nsmb1129] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 07/06/2006] [Indexed: 12/31/2022]
Abstract
Heptahelical receptors activate intracellular signaling pathways by catalyzing GTP for GDP exchange on the heterotrimeric G protein alpha subunit (G alpha). Despite the crucial role of this process in cell signaling, little is known about the mechanism of G protein activation. Here we explore the structural basis for receptor-mediated GDP release using electron paramagnetic resonance spectroscopy. Binding to the activated receptor (R*) causes an apparent rigid-body movement of the alpha5 helix of G alpha that would perturb GDP binding at the beta6-alpha5 loop. This movement was not observed when a flexible loop was inserted between the alpha5 helix and the R*-binding C terminus, which uncouples R* binding from nucleotide exchange, suggesting that this movement is necessary for GDP release. These data provide the first direct observation of R*-mediated conformational changes in G proteins and define the structural basis for GDP release from G alpha.
Collapse
Affiliation(s)
- William M Oldham
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, USA
| | | | | | | | | |
Collapse
|
378
|
Lo SC, Li X, Henzl MT, Beamer LJ, Hannink M. Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO J 2006; 25:3605-17. [PMID: 16888629 PMCID: PMC1538563 DOI: 10.1038/sj.emboj.7601243] [Citation(s) in RCA: 416] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 06/27/2006] [Indexed: 12/18/2022] Open
Abstract
Keap1 is a BTB-Kelch substrate adaptor protein that regulates steady-state levels of Nrf2, a bZIP transcription factor, in response to oxidative stress. We have determined the structure of the Kelch domain of Keap1 bound to a 16-mer peptide from Nrf2 containing a highly conserved DxETGE motif. The Nrf2 peptide contains two short antiparallel beta-strands connected by two overlapping type I beta-turns stabilized by the aspartate and threonine residues. The beta-turn region fits into a binding pocket on the top face of the Kelch domain and the glutamate residues form multiple hydrogen bonds with highly conserved residues in Keap1. Mutagenesis experiments confirmed the role of individual amino acids for binding of Nrf2 to Keap1 and for Keap1-mediated repression of Nrf2-dependent gene expression. Our results provide a detailed picture of how a BTB-Kelch substrate adaptor protein binds to its cognate substrate and will enable the rational design of novel chemopreventive agents.
Collapse
Affiliation(s)
- Shih-Ching Lo
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO, USA
- Christopher S Bond Life Sciences Center, University of Missouri–Columbia, Columbia, MO, USA
| | - Xuchu Li
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO, USA
- Christopher S Bond Life Sciences Center, University of Missouri–Columbia, Columbia, MO, USA
| | - Michael T Henzl
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO, USA
| | - Lesa J Beamer
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO, USA
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA. Tel.: +1 573 882 6072; Fax: +1 573 884 4812; E-mail:
| | - Mark Hannink
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO, USA
- Christopher S Bond Life Sciences Center, University of Missouri–Columbia, Columbia, MO, USA
- Department of Biochemistry, University of Missouri, 1201 E Rollins Street, 440E Life Sciences Center, Columbia, MO 65211, USA. Tel.: +1 573 882 7971; Fax: +1 573 884 3087; E-mail:
| |
Collapse
|
379
|
Goddard A, Ladds G, Forfar R, Davey J. Identification of Gnr1p, a negative regulator of G alpha signalling in Schizosaccharomyces pombe, and its complementation by human G beta subunits. Fungal Genet Biol 2006; 43:840-51. [PMID: 16884933 DOI: 10.1016/j.fgb.2006.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 06/02/2006] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are involved in the response of eukaryotic cells to a wide variety of stimuli, traditionally mediating their effects through heterotrimeric G proteins comprised of G alpha, G beta and G gamma subunits. The fission yeast Schizosaccharomyces pombe is an established tool for GPCR research, possessing two G alpha-dependent signalling cascades. A complete G alpha beta gamma complex has been characterised for the glucose-sensing pathway, but only the G alpha subunit, Gpa1p, has been identified in the pheromone-response pathway. Here, we report the use of the yeast two-hybrid system to identify a novel protein, Gnr1p, which interacts with Gpa1p. Gnr1p is predicted to contain seven WD repeats and to adopt a structure similar to typical G beta subunits. Disruption and overexpression studies reveal that Gnr1p negatively regulates the pheromone-response pathway but is not required for signalling. Human G beta subunits complement the loss of Gnr1p, functioning as negative regulators of G alpha signalling in fission yeast.
Collapse
Affiliation(s)
- Alan Goddard
- Department of Biological Sciences, University of Warwick, Coventry, UK.
| | | | | | | |
Collapse
|
380
|
Dowal L, Provitera P, Scarlata S. Stable Association between Gαq and Phospholipase Cβ1 in Living Cells. J Biol Chem 2006; 281:23999-4014. [PMID: 16754659 DOI: 10.1074/jbc.m512330200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transduction through G alpha(q) involves stimulation of phospholipase C beta (PLC beta) that results in increased intracellular Ca2+ and activation of protein kinase C. We have measured complex formation between G alpha(q) and PLC beta1 in vitro and in living PC12 and HEK293 cells by fluorescence resonance energy transfer. In vitro measurements show that PLC beta1 will bind to G alpha(q)(guanosine 5'-3-O-(thio)triphosphate) and also to G alpha(q)(GDP), and the latter association has a different protein-protein orientation. In cells, image analysis of fluorescent-tagged proteins shows that G alpha(q) is localized almost entirely to the plasma membrane, whereas PLC beta1 has a significant cytosolic population. By using fluorescence resonance energy transfer, we found that these proteins are pre-associated in the unstimulated state in PC12 and HEK293 cells. By determining the cellular levels of the two proteins in transfected versus nontransfected cells, we found that under our conditions overexpression should not significantly promote complex formation. G alpha(q)-PLC beta1 complexes are observed in both single cell measurements and measurements of a large (i.e. 10(6)) cell suspension. The high level (approximately 40% maximum) of FRET is surprising considering that G alpha(q) is more highly expressed than PLC beta1 and that not all PLC beta1 is plasma membrane-localized. Our measurements suggest a model in which G proteins and effectors can exist in stable complexes prior to activation and that activation is achieved through changes in intermolecular interactions rather than diffusion and association. These pre-formed complexes in turn give rise to rapid, localized signals.
Collapse
Affiliation(s)
- Louisa Dowal
- Department of Physiology and Biophysics, State University of New York, Stony Brook, New York 11794-8661, USA
| | | | | |
Collapse
|
381
|
Leifert WR, Bailey K, Cooper TH, Aloia AL, Glatz RV, McMurchie EJ. Measurement of heterotrimeric G-protein and regulators of G-protein signaling interactions by time-resolved fluorescence resonance energy transfer. Anal Biochem 2006; 355:201-12. [PMID: 16729956 DOI: 10.1016/j.ab.2006.04.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/21/2022]
Abstract
G-protein-coupled receptors transduce their signals through G-protein subunits which in turn are subject to modulation by other intracellular proteins such as the regulators of G-protein signaling (RGS) proteins. We have developed a cell-free, homogeneous (mix and read format), time-resolved fluorescence resonance energy transfer (TR-FRET) assay to monitor heterotrimeric G-protein subunit interactions and the interaction of the G alpha subunit with RGS4. The assay uses a FRET pair consisting of a terbium cryptate chelate donor spectrally matched to an Alexa546 fluor acceptor, each of which is conjugated to separate protein binding partners, these being G alpha(i1):beta4gamma2 or G alpha(i1):RGS4. Under conditions favoring specific binding between labeled partners, high-affinity interactions were observed as a rapid increase (>fivefold) in the FRET signal. The specificity of these interactions was demonstrated using denaturing or competitive conditions which caused significant reductions in fluorescence (50-85%) indicating that labeled proteins were no longer in close proximity. We also report differential binding effects as a result of altered activation state of the G alpha(i1) protein. This assay confirms that interactions between G-protein subunits and RGS4 can be measured using TR-FRET in a cell- and receptor-free environment.
Collapse
Affiliation(s)
- Wayne R Leifert
- CSIRO Molecular and Health Technologies, Adelaide, SA 5000, Australia.
| | | | | | | | | | | |
Collapse
|
382
|
Waragai M, Nagamitsu S, Xu W, Li YJ, Lin X, Ashizawa T. Ataxin 10 induces neuritogenesis via interaction with G-protein beta2 subunit. J Neurosci Res 2006; 83:1170-8. [PMID: 16498633 DOI: 10.1002/jnr.20807] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spinocerebellar ataxia type 10 (SCA10) is a dominantly inherited disorder caused by an intronic ATTCT pentanucleotide repeat expansion. The ATXN10 gene encodes a novel protein, ataxin 10, known previously as E46L, which is widely expressed in the brain. Ataxin 10 deficiency has been shown recently to cause increased apoptosis in primary cerebellar cultures, thus implicated in SCA10 pathogenesis. The biologic functions of ataxin 10 remain largely unknown. By using yeast-two-hybrid screening of a human brain cDNA library, we identified the G-protein beta2 subunit (Gbeta2) as an ataxin 10 binding partner, and the interaction was confirmed by coimmunoprecipitation and colocalization in mammalian cells in culture. Overexpression of ataxin 10 in PC12 cells induced neurite extension and enhanced neuronal differentiation induced by nerve growth factor (NGF). Moreover, coexpression of ataxin 10 and Gbeta2 potently activated the Ras-MAP kinase-Elk-1 cascade. Dominant negative Ras or inhibitor of MEK-1/2 (U0126) aborted this activation, and blocked morphologic changes, whereas inhibition of TrkA receptor by K252a had no effects. Our data suggest that the ataxin 10-Gbeta2 interaction represents a novel mechanism for inducing neuritogenesis in PC12 cells by activating the Ras-MAP kinase-Elk-1 cascade.
Collapse
Affiliation(s)
- Masaaki Waragai
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555-0539, USA
| | | | | | | | | | | |
Collapse
|
383
|
Bhattacharjya S, Gingras R, Xu P. An NMR-based identification of a peptide fragment from the beta-subunit of a G-protein showing specific interactions with the GBB domain of the Ste20 kinase in budding yeast. Biochem Biophys Res Commun 2006; 347:1145-50. [PMID: 16870141 DOI: 10.1016/j.bbrc.2006.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 07/09/2006] [Indexed: 11/28/2022]
Abstract
In mitogen-activated protein kinase (MAPK) cascades of budding yeast, pheromone-induced mating signal is transmitted by interactions between the beta-subunit of a G-protein (G-beta) and the G-beta binding (GBB) domain of Ste20 kinase. Previously, mutational analyses of the beta-subunit of G-protein had identified two critical mutations which abrogate binding of the GBB domain of Ste20. In this work, we have identified, by use of NMR spectroscopy, a peptide fragment from the G-beta that shows specific interactions with the isolated GBB domain of Ste20. A model structure of the Ste20/G-beta complex reveals that the interface of the hetero-complex may be sustained by parallel orientation of two potentially interacting helical segments that are further stabilized by ionic, hydrogen bond, and helix macro-dipole interactions.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | | | | |
Collapse
|
384
|
Duan HY, Li FG, Wu XD, Ma DM, Wang M, Hou YX. The cloning and sequencing of a cDNA encoding a WD repeat protein in cotton (Gossypium hirsutum L.). ACTA ACUST UNITED AC 2006; 17:49-55. [PMID: 16753817 DOI: 10.1080/10425170500476418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this research, one 1156 bp cDNA containing full open reading frame and encoding a novel 24-kDa protein with four tandem WD repeat motifs was cloned from cotton, therefore was named GhWDR and the GenBank accession number is AY870657. By search of GhWDR cDNA and amino acid sequences in the database, we found that GhWDR and OSJNBa0003G23.2 from Oryza sativa show 90% sequence identity and 84% identity to WD-repeat protein from Arabidopsis thaliana, and also has high sequence identity to other WD repeat proteins, most of which are similar to Pop3 from fission yeast (accession number T39922) and Lst8p from Saccharomyces cerevisiae (accession number NP014392). Therefore, we proposed that GhWDR could act in some cellular processes as pop3 or LST8 does. In addition, the expression of GhWDR in various tissues was studied by RT-PCR, and it is expressed in all of the studied tissues, but the level of expression is low in the leaves when compared to that of other tissues.
Collapse
Affiliation(s)
- Hong Y Duan
- College of Biological Sciences, China Agriculture University, Beijing 100094, P. R. China
| | | | | | | | | | | |
Collapse
|
385
|
Zhao Q, Albsoul-Younes AM, Zhao P, Kozasa T, Nakajima Y, Nakajima S. Dominant negative effects of a Gβ mutant on G-protein coupled inward rectifier K+channel. FEBS Lett 2006; 580:3879-82. [PMID: 16797547 DOI: 10.1016/j.febslet.2006.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 06/06/2006] [Accepted: 06/08/2006] [Indexed: 11/30/2022]
Abstract
HEK293 cells were transfected with cDNAs for Gbeta1(W332A) [a mutant Gbeta1], Ggamma2, and inward rectifier K+ channels (Kir3.1/Kir3.2). Application of Gbeta1gamma2 protein to these cells activated the K+ channels only slightly. When mu-opioid receptors and Kir3.1/Kir3.2 were transfected, application of a mu-opioid agonist induced a Kir3 current. However, co-expression of Gbeta1(W332A) suppressed this current. Most likely, Gbeta1(W332A) inhibited the action of the endogenous Gbeta. Such a dominant negative effect of Gbeta1(W332A) was also observed in neuronal Kir3 channels in locus coeruleus. The mutant, Gbeta1(W332A) protein, although inactive, retains its ability to bind Kir3 and prevents the wild type Gbeta from activating the channel.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Av., Chicago, IL 60612-7343, USA
| | | | | | | | | | | |
Collapse
|
386
|
Abstract
Regulator of G protein signalling (RGS) proteins are vital in the adaptation of cells to stimulation via G protein-coupled receptors. Yeast have been integral in elucidating the important role that RGS proteins play within cellular processes. In addition to extensive characterisation of the endogenous RGS proteins, these organisms have enabled the identification and analysis of numerous mammalian homologues. The simplicity and plasticity of the yeast pheromone-response pathway has facilitated studies which would have been impossible in mammalian systems and it is certain that yeast will continue to have a great impact on this field of research in the future.
Collapse
Affiliation(s)
- Claire Hill
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | | | | | |
Collapse
|
387
|
Gurevich VV, Gurevich EV. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 2006; 110:465-502. [PMID: 16460808 PMCID: PMC2562282 DOI: 10.1016/j.pharmthera.2005.09.008] [Citation(s) in RCA: 361] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 09/22/2005] [Indexed: 12/23/2022]
Abstract
The 4 mammalian arrestins serve as almost universal regulators of the largest known family of signaling proteins, G-protein-coupled receptors (GPCRs). Arrestins terminate receptor interactions with G proteins, redirect the signaling to a variety of alternative pathways, and orchestrate receptor internalization and subsequent intracellular trafficking. The elucidation of the structural basis and fine molecular mechanisms of the arrestin-receptor interaction paved the way to the targeted manipulation of this interaction from both sides to produce very stable or extremely transient complexes that helped to understand the regulation of many biologically important processes initiated by active GPCRs. The elucidation of the structural basis of arrestin interactions with numerous non-receptor-binding partners is long overdue. It will allow the construction of fully functional arrestins in which the ability to interact with individual partners is specifically disrupted or enhanced by targeted mutagenesis. These "custom-designed" arrestin mutants will be valuable tools in defining the role of various interactions in the intricate interplay of multiple signaling pathways in the living cell. The identification of arrestin-binding sites for various signaling molecules will also set the stage for designing molecular tools for therapeutic intervention that may prove useful in numerous disorders associated with congenital or acquired disregulation of GPCR signaling.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
388
|
Wells CA, Dingus J, Hildebrandt JD. Role of the chaperonin CCT/TRiC complex in G protein betagamma-dimer assembly. J Biol Chem 2006; 281:20221-32. [PMID: 16702223 DOI: 10.1074/jbc.m602409200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gbetagamma dimer formation occurs early in the assembly of heterotrimeric G proteins. On nondenaturing (native) gels, in vitro translated, (35)S-labeled Ggamma subunits traveled primarily according to their pI and apparently were not associated with other proteins. In contrast, in vitro translated, (35)S-labeled Gbeta subunits traveled at a high apparent molecular mass (approximately 700 kDa) and co-migrated with the chaperonin CCT complex (also called TRiC). Different FLAG-Gbeta isoforms coprecipitated CCT/TRiC to a variable extent, and this correlated with the ability of the different Gbeta subunits to efficiently form dimers with Ggamma. When translated Ggamma was added to translated Gbeta, a new band of low apparent molecular mass (approximately 50 kDa) was observed, which was labeled by either (35)S-labeled Gbeta or Ggamma, indicating that it is a dimer. Formation of the Gbetagamma dimer was ATP-dependent and inhibited by either adenosine 5'-O-(thiotriphosphate) or aluminum fluoride in the presence of Mg(2+). This inhibition led to increased association of Gbeta with CCT/TRiC. Although Ggamma did not bind CCT/TRiC, addition of Ggamma to previously synthesized Gbeta caused its release from the CCT/TRiC complex. We conclude that the chaperonin CCT/TRiC complex binds to and folds Gbeta subunits and that CCT/TRiC mediates Gbetagamma dimer formation by an ATP-dependent reaction.
Collapse
Affiliation(s)
- Christopher A Wells
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
389
|
Nikkhah M, Jawad-Alami Z, Demydchuk M, Ribbons D, Paoli M. Engineering of beta-propeller protein scaffolds by multiple gene duplication and fusion of an idealized WD repeat. ACTA ACUST UNITED AC 2006; 23:185-94. [PMID: 16651025 DOI: 10.1016/j.bioeng.2006.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 01/10/2006] [Accepted: 01/16/2006] [Indexed: 10/24/2022]
Abstract
The ability to design specific amino acid sequences that fold into desired structures is central to engineering novel proteins. Protein design is also a good method to assess our understanding of sequence-structure and structure-function relationships. While beta-sheet structures are important elements of protein architecture, it has traditionally been more difficult to design beta-proteins than alpha-helical proteins. Taking advantage of the tandem repeated sequences that form the structural building blocks in a group of beta-propeller proteins; we have used a consensus design approach to engineer modular and relatively large scaffolds. An idealized WD repeat was designed from a structure-based sequence alignment with a set of structural guidelines. Using a plasmid sequential ligation strategy, artificial concatemeric genes with up to 10 copies of this idealized repeat were then constructed. Corresponding proteins with 4 through to 10 WD repeats were soluble when over-expressed in Escherichia coli. Notably, they were sufficiently stable in vivo surviving attack from endogenous proteases, and maintained a homogeneous, non-aggregated form in vitro. The results show that the beta-propeller scaffold is an attractive platform for future engineering work, particularly in experiments in which directed evolution techniques might improve the stability of the molecules and/or tailor them for a specific function.
Collapse
Affiliation(s)
- Maryam Nikkhah
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK
| | | | | | | | | |
Collapse
|
390
|
Di Cesare Mannelli L, Pacini A, Toscano A, Fortini M, Berti D, Ghelardini C, Galeotti N, Baglioni P, Bartolini A. Gi/o proteins: Expression for direct activation enquiry. Protein Expr Purif 2006; 47:303-10. [PMID: 16364655 DOI: 10.1016/j.pep.2005.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 11/07/2005] [Accepted: 11/07/2005] [Indexed: 01/19/2023]
Abstract
G protein-mediated pathways are fundamental mechanisms of cell signaling. In this paper, the expression and the characterization of the alphai1, alphai3, alphao1, beta1, and gamma2 subunits of the human G protein are described. This approach was developed to evaluate the G protein activation profile of new compounds. pCR-TOPO T7 vectors, engineered to contain the target sequences, were used to transform Escherichia coli competent cells. Subunits were over-expressed in a preparative scale as fusion proteins with a six-histidine tag, and subsequently purified by metal chelate chromatography. Afterward, the His-tag was removed by enterokinase digestion, and the secondary structures of the recombinant subunits were analyzed by circular dichroism. To assess the functionality of the subunits, the rate of GTP hydrolysis and GTPgammaS binding were evaluated both in the absence and in the presence of two modulators: the peptidic activator Mastoparan and the non-peptidic activator N-dodecyl-lysinamide (ML250). Tests were conducted on isolated alpha-subunit and on heterotrimeric alphabetagamma complex, alone or reconstituted in phospholipidic vesicles. Our results show that recombinant subunits are stable, properly folded and, fully active, which makes them suitable candidates for functional studies.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50134 Florence, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
391
|
Wang L, Jahren N, Vargas ML, Andersen EF, Benes J, Zhang J, Miller EL, Jones RS, Simon JA. Alternative ESC and ESC-like subunits of a polycomb group histone methyltransferase complex are differentially deployed during Drosophila development. Mol Cell Biol 2006; 26:2637-47. [PMID: 16537908 PMCID: PMC1430321 DOI: 10.1128/mcb.26.7.2637-2647.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Extra sex combs (ESC) protein is a Polycomb group (PcG) repressor that is a key noncatalytic subunit in the ESC-Enhancer of zeste [E(Z)] histone methyltransferase complex. Survival of esc homozygotes to adulthood based solely on maternal product and peak ESC expression during embryonic stages indicate that ESC is most critical during early development. In contrast, two other PcG repressors in the same complex, E(Z) and Suppressor of zeste-12 [SU(Z)12], are required throughout development for viability and Hox gene repression. Here we describe a novel fly PcG repressor, called ESC-Like (ESCL), whose biochemical, molecular, and genetic properties can explain the long-standing paradox of ESC dispensability during postembryonic times. Developmental Western blots show that ESCL, which is 60% identical to ESC, is expressed with peak abundance during postembryonic stages. Recombinant complexes containing ESCL in place of ESC can methylate histone H3 with activity levels, and lysine specificity for K27, similar to that of the ESC-containing complex. Coimmunoprecipitations show that ESCL associates with E(Z) in postembryonic cells and chromatin immunoprecipitations show that ESCL tracks closely with E(Z) on Ubx regulatory DNA in wing discs. Furthermore, reduced escl+ dosage enhances esc loss-of-function phenotypes and double RNA interference knockdown of ESC/ESCL in wing disc-derived cells causes Ubx derepression. These results suggest that ESCL and ESC have similar functions in E(Z) methyltransferase complexes but are differentially deployed as development proceeds.
Collapse
Affiliation(s)
- Liangjun Wang
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
392
|
Affiliation(s)
- John Joseph Grubb Tesmer
- Department of Pharmacology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
393
|
Fitzgerald K, Tertyshnikova S, Moore L, Bjerke L, Burley B, Cao J, Carroll P, Choy R, Doberstein S, Dubaquie Y, Franke Y, Kopczynski J, Korswagen H, Krystek SR, Lodge NJ, Plasterk R, Starrett J, Stouch T, Thalody G, Wayne H, van der Linden A, Zhang Y, Walker SG, Cockett M, Wardwell-Swanson J, Ross-Macdonald P, Kindt RM. Chemical genetics reveals an RGS/G-protein role in the action of a compound. PLoS Genet 2006; 2:e57. [PMID: 16683034 PMCID: PMC1440875 DOI: 10.1371/journal.pgen.0020057] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 03/01/2006] [Indexed: 12/02/2022] Open
Abstract
We report here on a chemical genetic screen designed to address the mechanism of action of a small molecule. Small molecules that were active in models of urinary incontinence were tested on the nematode Caenorhabditis elegans, and the resulting phenotypes were used as readouts in a genetic screen to identify possible molecular targets. The mutations giving resistance to compound were found to affect members of the RGS protein/G-protein complex. Studies in mammalian systems confirmed that the small molecules inhibit muscarinic G-protein coupled receptor (GPCR) signaling involving G-αq (G-protein alpha subunit). Our studies suggest that the small molecules act at the level of the RGS/G-αq signaling complex, and define new mutations in both RGS and G-αq, including a unique hypo-adapation allele of G-αq. These findings suggest that therapeutics targeted to downstream components of GPCR signaling may be effective for treatment of diseases involving inappropriate receptor activation. The authors have utilized Caenorhabditis elegans, and yeast genetics, combined with mammalian tissue and cell culture experiments to investigate the mechanism of action of a unique set of small molecules. These molecules are active in tissue models of urinary incontinence and allow for increased bladder filling. In the course of studying sensitivity and resistance to these compounds, Fitzgerald et al. uncovered novel alleles of RGS and Gq proteins. Further characterization of one such allele identified that its action conferred a hypo-adaptive phenotype on yeast during pheromone signaling assays. Their data as a whole indicate that these small molecules are able to diminish signaling from G-protein coupled receptors (GPCR) downstream of the receptors themselves. Since GPCR signaling is very important in many diseases in humans, the novel mechanism of these compounds may offer new ways to treat human disease.
Collapse
Affiliation(s)
- Kevin Fitzgerald
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Svetlana Tertyshnikova
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Lisa Moore
- Exelixis Incorporated, South San Francisco, California, United States of America
| | - Lynn Bjerke
- Exelixis Incorporated, South San Francisco, California, United States of America
| | - Ben Burley
- Exelixis Incorporated, South San Francisco, California, United States of America
| | - Jian Cao
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Pamela Carroll
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Robert Choy
- Exelixis Incorporated, South San Francisco, California, United States of America
| | - Steve Doberstein
- Exelixis Incorporated, South San Francisco, California, United States of America
| | - Yves Dubaquie
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Yvonne Franke
- Exelixis Incorporated, South San Francisco, California, United States of America
| | - Jenny Kopczynski
- Exelixis Incorporated, South San Francisco, California, United States of America
| | - Hendrik Korswagen
- Hubrecht Laboratory, Centre for Biomedical Genetics, Utrecht, Netherlands
| | - Stanley R Krystek
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Nicholas J Lodge
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Ronald Plasterk
- Hubrecht Laboratory, Centre for Biomedical Genetics, Utrecht, Netherlands
| | - John Starrett
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Terry Stouch
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - George Thalody
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Honey Wayne
- Exelixis Incorporated, South San Francisco, California, United States of America
| | | | - Yongmei Zhang
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Stephen G Walker
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Mark Cockett
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Judi Wardwell-Swanson
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Petra Ross-Macdonald
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail:
| | - Rachel M Kindt
- Exelixis Incorporated, South San Francisco, California, United States of America
| |
Collapse
|
394
|
Bonacci TM, Mathews JL, Yuan C, Lehmann DM, Malik S, Wu D, Font JL, Bidlack JM, Smrcka AV. Differential Targeting of G -Subunit Signaling with Small Molecules. Science 2006; 312:443-6. [PMID: 16627746 DOI: 10.1126/science.1120378] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G protein betagamma subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gbetagamma subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gbetagamma subunit functions. Several compounds bound to Gbetagamma subunits with affinities from 0.1 to 60 muM and selectively modulated functional Gbetagamma-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.
Collapse
Affiliation(s)
- Tabetha M Bonacci
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
395
|
Appleton BA, Wu P, Wiesmann C. The crystal structure of murine coronin-1: a regulator of actin cytoskeletal dynamics in lymphocytes. Structure 2006; 14:87-96. [PMID: 16407068 DOI: 10.1016/j.str.2005.09.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/19/2005] [Accepted: 09/18/2005] [Indexed: 12/16/2022]
Abstract
Mammalian coronin-1 is preferentially expressed in hematopoietic cells and plays a poorly understood role in the dynamic reorganization of the actin cytoskeleton. Sequence analysis of coronin-1 revealed five WD40 repeats that were predicted to form a beta propeller. They are followed by a 130 residue extension and a 30 residue leucine zipper domain that is responsible for multimerization of the protein. Here, we present the crystal structure of murine coronin-1 without the leucine zipper at 1.75 A resolution. Coronin-1 forms a seven-bladed beta propeller composed of the five predicted WD40 repeats and two additional blades that lack any homology to the canonical WD40 motif. The C-terminal extension adopts an extended conformation, packs tightly against the bottom surface of the propeller, and is likely to be required for the structural stability of the propeller. Analysis of charged and conserved surface residues delineate possible binding sites for F-actin on the beta propeller.
Collapse
Affiliation(s)
- Brent A Appleton
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | |
Collapse
|
396
|
Saeki M, Irie Y, Ni L, Yoshida M, Itsuki Y, Kamisaki Y. Monad, a WD40 repeat protein, promotes apoptosis induced by TNF-α. Biochem Biophys Res Commun 2006; 342:568-72. [PMID: 16487927 DOI: 10.1016/j.bbrc.2006.02.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 11/24/2022]
Abstract
WD40 repeat proteins have a wide range of diverse biological functions including signal transduction, cell cycle regulation, RNA splicing, and transcription. Here we report the identification and characterization of a novel human WD40 repeat protein, Monad. Monad is unique, since it contains only two WD40 repeats. Monad is widely expressed in human tissues with the highest expression in testis. Overexpression of Monad in HEK293 cells potentiated apoptosis and caspase-3 activation induced by tumor necrosis factor-alpha and cycloheximide. These results raise the possibility that Monad may function as a novel modulator of apoptosis pathway.
Collapse
Affiliation(s)
- Makio Saeki
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
397
|
Mittal V, Linder M. Biochemical characterization of RGS14: RGS14 activity towards G-protein alpha subunits is independent of its binding to Rap2A. Biochem J 2006; 394:309-15. [PMID: 16246175 PMCID: PMC1386029 DOI: 10.1042/bj20051086] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RGS (regulators of G-protein signalling) modulate signalling by acting as GAPs (GTPase-activating proteins) for alpha subunits of heterotrimeric G-proteins. RGS14 accelerates GTP hydrolysis by G(ialpha) family members through its RGS domain and suppresses guanine nucleotide dissociation from G(ialpha1) and G(ialpha3) subunits through its C-terminal GoLoco domain. Additionally, RGS14 binds the activated forms of the small GTPases Rap1 and Rap2 by virtue of tandem RBDs (Raf-like Ras/Rap binding domains). RGS14 was identified in a screen for Rap2 effectors [Traver, Splingard, Gaudriault and De Gunzburg (2004) Biochem. J. 379, 627-632]. In the present study, we tested whether Rap binding regulates RGS14's biochemical activities. We found that RGS14 activity towards heterotrimeric G-proteins, as either a GAP or a GDI (guanine nucleotide dissociation inhibitor), was unaffected by Rap binding. Extending our biochemical characterization of RGS14, we also examined whether RGS14 can suppress guanine nucleotide exchange on G(ialpha1) in the context of the heterotrimer. We found that a heterotrimer composed of N-myristoylated G(ialpha1) and prenylated G(betagamma) is resistant to the GDI activity of the GoLoco domain of RGS14. This is consistent with models of GoLoco domain action on free G(alpha) and suggests that RGS14 alone cannot induce subunit dissociation to promote receptor-independent activation of G(betagamma)-mediated signalling pathways.
Collapse
Affiliation(s)
- Vivek Mittal
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8228, St. Louis, MO 63110, U.S.A
| | - Maurine E. Linder
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8228, St. Louis, MO 63110, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
398
|
Li T, Chen X, Garbutt KC, Zhou P, Zheng N. Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 2006; 124:105-17. [PMID: 16413485 DOI: 10.1016/j.cell.2005.10.033] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/16/2005] [Accepted: 10/11/2005] [Indexed: 01/28/2023]
Abstract
The DDB1-Cul4A ubiquitin ligase complex promotes protein ubiquitination in diverse cellular functions and is reprogrammed by the V proteins of paramyxoviruses to degrade STATs and block interferon signaling. Here we report the crystal structures of DDB1 alone and in complex with the simian virus 5 V protein. The DDB1 structure reveals an intertwined three-propeller cluster, which contains two tightly coupled beta propellers with a large pocket in between and a third beta propeller flexibly attached on the side. The rigid double-propeller fold of DDB1 is targeted by the viral V protein, which inserts an entire helix into the double-propeller pocket, whereas the third propeller domain docks DDB1 to the N terminus of the Cul4A scaffold. Together, these results not only provide structural insights into how the virus hijacks the DDB1-Cul4A ubiquitin ligase but also establish a structural framework for understanding the multiple functions of DDB1 in the uniquely assembled cullin-RING E3 machinery.
Collapse
Affiliation(s)
- Ti Li
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
399
|
Hopfer U, Hopfer H, Jablonski K, Stahl RAK, Wolf G. The Novel WD-repeat Protein Morg1 Acts as a Molecular Scaffold for Hypoxia-inducible Factor Prolyl Hydroxylase 3 (PHD3). J Biol Chem 2006; 281:8645-55. [PMID: 16407229 DOI: 10.1074/jbc.m513751200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1), a transcriptional complex composed of an oxygen-sensitive alpha- and a beta-subunit, plays a pivotal role in cellular adaptation to low oxygen availability. Under normoxia, the alpha-subunit of HIF-1 is hydroxylated by a family of prolyl hydroxylases (PHDs) and consequently targeted for proteasomal degradation. Three different PHDs have been identified, but the difference among their in vivo roles remain unclear. PHD3 is strikingly expressed by hypoxia, displays high substrate specificity, and has been identified in other signaling pathways. PHD3 may therefore hydroxylate divergent substrates and/or connect divergent cellular responses with HIF. We identified a novel WD-repeat protein, recently designated Morg1 (MAPK organizer 1), by screening a cDNA library with yeast two-hybrid assays. The interaction between PHD3 and Morg1 was confirmed in vitro and in vivo. We found seven WD-repeat domains by cloning the full-length cDNA of Morg1. By confocal microscopy both proteins co-localize within the cytoplasm and the nucleus and display a similar tissue expression pattern in Northern blots. Binding occurs at a conserved region predicted to the top surface of one propeller blade. Finally, HIF-mediated reporter gene activity is decreased by Morg1 and reduced to basal levels when Morg1 is co-expressed with PHD3. Suppression of Morg1 or PHD3 by stealth RNA leads to a marked increase of HIF-1 activity. These results indicate that Morg1 specifically interacts with PHD3 most likely by acting as a molecular scaffold. This interaction may provide a molecular framework between HIF regulation and other signaling pathways.
Collapse
Affiliation(s)
- Ulrike Hopfer
- Department of Medicine, University of Hamburg, Martinistr. 52, D-20246 Hamburg.
| | | | | | | | | |
Collapse
|
400
|
Sklan EH, Podoly E, Soreq H. RACK1 has the nerve to act: structure meets function in the nervous system. Prog Neurobiol 2006; 78:117-34. [PMID: 16457939 DOI: 10.1016/j.pneurobio.2005.12.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 11/20/2005] [Accepted: 12/07/2005] [Indexed: 11/26/2022]
Abstract
The receptor for activated protein kinase C 1 (RACK1) is an intracellular adaptor protein. Accumulating evidence attributes to this member of the tryptophan-aspartate (WD) repeat family the role of regulating several major nervous system pathways. Structurally, RACK1 is a seven-bladed-beta-propeller, interacting with diverse proteins having distinct structural folds. When bound to the IP3 receptor, RACK1 regulates intracellular Ca2+ levels, potentially contributing to processes such as learning, memory and synaptic plasticity. By binding to the NMDA receptor, it dictates neuronal excitation and sensitivity to ethanol. When bound to the stress-induced acetylcholinesterase variant AChE-R, RACK1 is implicated in stress responses and behavior, compatible with reports of RACK1 modulations in brain ageing and in various neurodegenerative diseases. This review sheds new light on both the virtues and the variety of neuronal RACK1 interactions and their physiological consequences.
Collapse
Affiliation(s)
- Ella H Sklan
- The Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|