351
|
Di Pisa M, Chassaing G, Swiecicki JM. When cationic cell-penetrating peptides meet hydrocarbons to enhance in-cell cargo delivery. J Pept Sci 2015; 21:356-69. [PMID: 25787823 DOI: 10.1002/psc.2755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/30/2014] [Accepted: 01/07/2015] [Indexed: 01/03/2023]
Abstract
Cell-penetrating peptides (CPPs) are short sequences often rich in cationic residues with the remarkable ability to cross cell membranes. In the past 20 years, CPPs have gained wide interest and have found numerous applications in the delivery of bioactive cargoes to the cytosol and even the nucleus of living cells. The covalent or non-covalent addition of hydrocarbon moieties to cationic CPPs alters the hydrophobicity/hydrophilicity balance in their sequence. Such perturbation dramatically influences their interaction with the cell membrane, might induce self-assembling properties and modifies their intracellular trafficking. In particular, the introduction of lipophilic moieties changes the subcellular distribution of CPPs and might result in a dramatically increase of the internalization yield of the co-transported cargoes. Herein, we offer an overview of different aspects of the recent findings concerning the properties of CPPs covalently or non-covalently associated to hydrocarbons. We will focus on the impact of the hydrocarbon moieties on the delivery of various cargoes, either covalently or non-covalently bound to the modified CPPs. We will also provide some key elements to rationalize the influence of the hydrocarbons moieties on the cellular uptake. Furthermore, the recent in vitro and in vivo successful applications of acylated CPPs will be summarized to provide a broad view of the versatility of these modified CPPs as small-molecules and oligonucleotides vectors.
Collapse
Affiliation(s)
- Margherita Di Pisa
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7203, Laboratoire des Biomolécules, Paris, F-75005, France; CNRS, UMR 7203, Laboratoire des Biomolécules, Paris, F-75005, France; Ecole Normale Supérieure (ENS), UMR 7203, Laboratoire des Biomolécules, Département de Chimie, 24 Rue Lhomond, Paris, F-75005, France
| | | | | |
Collapse
|
352
|
Yi HX, Wu J, Du YZ, Hu YW, Yuan H, You J, Hu FQ. Effect of anionic PEGylated polypeptide on gene transfection mediated by glycolipid conjugate micelles. Mol Pharm 2015; 12:1072-83. [PMID: 25490413 DOI: 10.1021/mp500560h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To improve the gene transfection efficiency mediated by chitosan-g-stearic acid (CS) micelles, poly(ethylene glycol)-b-poly(γ-glutamic acid) (PG) was incorporated into a CS-based gene delivery system. CS/PG/pDNA complexes were prepared by ionic interaction. CS and PEGylated CS (PCS) micelles were introduced to prepare binary complexes for use as controls. CS/PG/pDNA complexes possessed similar sizes and presented as irregular spheroids in shape. The incorporation of PG into CS/pDNA complexes did not affect the ability of CS to compact pDNA and also showed a protective effect against DNase I based degradation of pDNA. Importantly, PG could increase gene transfection efficiency, which was also affected by the mixing methods used for the preparation of CS/PG/pDNA ternary complexes. The transfection efficiencies mediated by CS/PG/pDNA complexes against HEK293 and EC-1 cells reached up to 40.8% and 11.6%, respectively, which were much higher than those of CS/pDNA complexes (1.3% and 4.0%) and PCS/pDNA complexes (0.8% and 2.4%). In addition, the incorporation of PG into CS/pDNA complexes significantly enhanced cellular uptake in HEK293 and EC-1 cells and, additionally, improved endosomal escape and intracellular vector unpacking. However, the incorporation of PG reduced the cellular uptake of CS/PG/pDNA complexes in macrophages (RAW264.7 cells). It was further demonstrated that, in addition to a nonspecific charge-mediated binding to cell membranes, a γ-PGA-specific receptor-mediated pathway was involved in the internalization of CS/PG/pDNA complexes. These results indicated that PG played multiple important roles in enhancing the transfection efficiency of CS/PG/pDNA complexes.
Collapse
Affiliation(s)
- Han-Xi Yi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Jie Wu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Yong-Zhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Ying-Wen Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Fu-Qiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| |
Collapse
|
353
|
Mastorakos P, Kambhampati SP, Mishra MK, Wu T, Song E, Hanes J, Kannan RM. Hydroxyl PAMAM dendrimer-based gene vectors for transgene delivery to human retinal pigment epithelial cells. NANOSCALE 2015; 7:3845-56. [PMID: 25213606 PMCID: PMC4797994 DOI: 10.1039/c4nr04284k] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ocular gene therapy holds promise for the treatment of numerous blinding disorders. Despite the significant progress in the field of viral and non-viral gene delivery to the eye, significant obstacles remain in the way of achieving high-level transgene expression without adverse effects. The retinal pigment epithelium (RPE) is involved in the pathogenesis of retinal diseases and is a key target for a number of gene-based therapeutics. In this study, we addressed the inherent drawbacks of non-viral gene vectors and combined different approaches to design an efficient and safe dendrimer-based gene-delivery platform for delivery to human RPE cells. We used hydroxyl-terminated polyamidoamine (PAMAM) dendrimers functionalized with various amounts of amine groups to achieve effective plasmid compaction. We further used triamcinolone acetonide (TA) as a nuclear localization enhancer for the dendrimer-gene complex and achieved significant improvement in cell uptake and transfection of hard-to-transfect human RPE cells. To improve colloidal stability, we further shielded the gene vector surface through incorporation of PEGylated dendrimer along with dendrimer-TA for DNA complexation. The resultant complexes showed improved stability while minimally affecting transgene delivery, thus improving the translational relevance of this platform.
Collapse
Affiliation(s)
- Panagiotis Mastorakos
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
354
|
Kai MP, Keeler AW, Perry JL, Reuter KG, Luft JC, O'Neal SK, Zamboni WC, DeSimone JM. Evaluation of drug loading, pharmacokinetic behavior, and toxicity of a cisplatin-containing hydrogel nanoparticle. J Control Release 2015; 204:70-7. [PMID: 25744827 DOI: 10.1016/j.jconrel.2015.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/04/2015] [Accepted: 03/01/2015] [Indexed: 02/06/2023]
Abstract
Cisplatin is a cytotoxic drug used as a first-line therapy for a wide variety of cancers. However, significant renal and neurological toxicities limit its clinical use. It has been documented that drug toxicities can be mitigated through nanoparticle formulation, while simultaneously increasing tumor accumulation through the enhanced permeation and retention effect. Circulation persistence is a key characteristic for exploiting this effect, and to that end we have developed long-circulating, PEGylated, polymeric hydrogels using the Particle Replication In Non-wetting Templates (PRINT®) platform and complexed cisplatin into the particles (PRINT-Platin). Sustained release was demonstrated, and drug loading correlated to surface PEG density. A PEG Mushroom conformation showed the best compromise between particle pharmacokinetic (PK) parameters and drug loading (16wt.%). While the PK profile of PEG Brush was superior, the loading was poor (2wt.%). Conversely, the drug loading in non-PEGylated particles was better (20wt.%), but the PK was not desirable. We also showed comparable cytotoxicity to cisplatin in several cancer cell lines (non-small cell lung, A549; ovarian, SKOV-3; breast, MDA-MB-468) and a higher MTD in mice (10mg/kg versus 5mg/kg). The pharmacokinetic profiles of drug in plasma, tumor, and kidney indicate improved exposure in the blood and tumor accumulation, with concurrent renal protection, when cisplatin was formulated in a nanoparticle. PK parameters were markedly improved: a 16.4-times higher area-under-the-curve (AUC), a reduction in clearance (CL) by a factor of 11.2, and a 4.20-times increase in the volume of distribution (Vd). Additionally, non-small cell lung and ovarian tumor AUC was at least twice that of cisplatin in both models. These findings suggest the potential for PRINT-Platin to improve efficacy and reduce toxicity compared to current cisplatin therapies.
Collapse
Affiliation(s)
- Marc P Kai
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27599, USA.
| | - Amanda W Keeler
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 257 Caudill Lab, Chapel Hill, NC 27599, USA
| | - Jillian L Perry
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 257 Caudill Lab, Chapel Hill, NC 27599, USA
| | - Kevin G Reuter
- Department of Chemistry, University of North Carolina at Chapel Hill, 257 Caudill Lab, Chapel Hill, NC 27599, USA
| | - J Christopher Luft
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 257 Caudill Lab, Chapel Hill, NC 27599, USA
| | - Sara K O'Neal
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 257 Caudill Lab, Chapel Hill, NC 27599, USA
| | - William C Zamboni
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 257 Caudill Lab, Chapel Hill, NC 27599, USA
| | - Joseph M DeSimone
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 257 Caudill Lab, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina at Chapel Hill, 257 Caudill Lab, Chapel Hill, NC 27599, USA.
| |
Collapse
|
355
|
Fu H, Shi K, Hu G, Yang Y, Kuang Q, Lu L, Zhang L, Chen W, Dong M, Chen Y, He Q. Tumor-Targeted Paclitaxel Delivery and Enhanced Penetration Using TAT-Decorated Liposomes Comprising Redox-Responsive Poly(Ethylene Glycol). J Pharm Sci 2015; 104:1160-73. [DOI: 10.1002/jps.24291] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/25/2014] [Accepted: 11/06/2014] [Indexed: 12/27/2022]
|
356
|
Yin L, Chen Y, Zhang Z, Yin Q, Zheng N, Cheng J. Biodegradable micelles capable of mannose-mediated targeted drug delivery to cancer cells. Macromol Rapid Commun 2015; 36:483-9. [PMID: 25619623 PMCID: PMC4486258 DOI: 10.1002/marc.201400650] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/16/2014] [Indexed: 12/31/2022]
Abstract
A targeted micellar drug delivery system is developed from a biocompatible and biodegradable amphiphilic polyester, poly(Lac-OCA)-b-(poly(Tyr(alkynyl)-OCA)-g-mannose) (PLA-b-(PTA-g-mannose), that is synthesized via controlled ring-opening polymerization of O-carboxyanhydride (OCA) and highly efficient "Click" chemistry. Doxorubicin (DOX), a model lipophilic anticancer drug, can be effectively encapsulated into the micelles, and the mannose moiety allows active targeting of the micelles to cancer cells that specifically express mannose receptors, which thereafter enhances the anticancer efficiency of the drug. Comprised entirely of biodegradable and biocompatible polyesters, this micellar system demonstrates promising potentials for targeted drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou, Nano Science and Technology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Zhonghai Zhang
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801, USA
| | - Qian Yin
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801, USA
| | - Nan Zheng
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801, USA
| |
Collapse
|
357
|
Li Y, Liu R, Shi Y, Zhang Z, Zhang X. Zwitterionic poly(carboxybetaine)-based cationic liposomes for effective delivery of small interfering RNA therapeutics without accelerated blood clearance phenomenon. Theranostics 2015; 5:583-96. [PMID: 25825598 PMCID: PMC4377727 DOI: 10.7150/thno.11234] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/23/2015] [Indexed: 12/28/2022] Open
Abstract
For efficient delivery of small interfering RNA (siRNA) to the target diseased site in vivo, it is important to design suitable vehicles to control the blood circulation of siRNA. It has been shown that surface modification of cationic liposome/siRNA complexes (lipoplexes) with polyethylene glycol (PEG) could enhance the circulation time of lipoplexes. However, the first injection of PEGylated lipoplexes in vivo induces accelerated blood clearance and enhances hepatic accumulation of the following injected PEGylated lipoplexes, which is known as the accelerated blood clearance (ABC) phenomenon. Herein, we developed zwitterionic poly(carboxybetaine) (PCB) modified lipoplexes for the delivery of siRNA therapeutics, which could avoid protein adsorption and enhance the stability of lipoplexes as that for PEG. Quite different from the PEGylation, the PCBylated lipoplexes could avoid ABC phenomenon, which extended the blood circulation time and enhanced the tumor accumulation of lipoplexes in vivo. After accumulation in tumor site, the PCBylation could promote the cellular uptake and endosomal/lysosomal escape of lipoplexes due to its unique chemical structure and pH-sensitive ability. With excellent tumor accumulation, cellular uptake and endosomal/lysosomal escape abilities, the PCBylated lipoplexes significantly inhibited tumor growth and induced tumor cell apoptosis.
Collapse
|
358
|
Chan LJ, Bulitta JB, Ascher DB, Haynes JM, McLeod VM, Porter CJH, Williams CC, Kaminskas LM. PEGylation does not significantly change the initial intravenous or subcutaneous pharmacokinetics or lymphatic exposure of trastuzumab in rats but increases plasma clearance after subcutaneous administration. Mol Pharm 2015; 12:794-809. [PMID: 25644368 DOI: 10.1021/mp5006189] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lymphatic system plays a major role in the metastatic dissemination of cancer and has an integral role in immunity. PEGylation enhances drainage and lymphatic uptake following subcutaneous (sc) administration of proteins and protein-like polymers, but the impact of PEGylation of very large proteins (such as antibodies) on subcutaneous and lymphatic pharmacokinetics is unknown. This study therefore aimed to evaluate the impact of PEGylation on the sc absorption and lymphatic disposition of the anti-HER2 antibody trastuzumab in rats. PEG-trastuzumab was generated via the conjugation of a single 40 kDa PEG-NHS ester to trastuzumab. PEG-trastuzumab showed a 5-fold reduction in HER2 binding affinity, however the in vitro growth inhibitory effects were preserved as a result of changes in cellular trafficking when compared to native trastuzumab. The lymphatic pharmacokinetics of PEG-trastuzumab was evaluated in thoracic lymph duct cannulated rats after iv and sc administration and compared to the pharmacokinetics of native trastuzumab. The iv pharmacokinetics and lymphatic exposure of PEG-trastuzumab was similar when compared to trastuzumab. After sc administration, initial plasma pharmacokinetics and lymphatic exposure were also similar between PEG-trastuzumab and trastuzumab, but the absolute bioavailability of PEG-trastuzumab was 100% when compared to 86.1% bioavailability for trastuzumab. In contrast to trastuzumab, PEG-trastuzumab showed accelerated plasma clearance beginning approximately 7 days after sc, but not iv, administration, presumably as a result of the generation of anti-PEG IgM. This work suggests that PEGylation does not significantly alter the lymphatic disposition of very large proteins, and further suggests that it is unlikely to benefit therapy with monoclonal antibodies.
Collapse
Affiliation(s)
- Linda J Chan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
359
|
Movassaghian S, Merkel OM, Torchilin VP. Applications of polymer micelles for imaging and drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:691-707. [PMID: 25683687 DOI: 10.1002/wnan.1332] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/16/2014] [Accepted: 11/21/2014] [Indexed: 01/01/2023]
Abstract
Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers, are widely considered as convenient nano-carriers for a variety of applications, such as diagnostic imaging, and drug and gene delivery. They have demonstrated a variety of favorable properties including biocompatibility, longevity, high stability in vitro and in vivo, capacity to effectively solubilize a variety of poorly soluble drugs, changing the release profile of the incorporated pharmaceutical agents, and the ability to accumulate in the target zone based on the enhanced permeability and retention effect. Moreover, additional functions can be imparted to the micelle-based delivery systems by engineering their surface for specific applications. Various targeting ligands can be attached for cell or intracellular accumulation at a site of interest. Also, the chelation or incorporation of imaging moieties into the micelle structure enables in vivo biodistribution studies. Moreover, pH-, thermo-, ultrasound-, enzyme- and light-sensitive block-copolymers allow for controlled micelle dissociation and triggered drug release in response to the pathological environment-specific stimuli and/or externally applied signals. The combination of these approaches can further improve specificity and efficacy of micelle-based drug delivery to promote the development of smart multifunctional micelles.
Collapse
Affiliation(s)
- Sara Movassaghian
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Olivia M Merkel
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| |
Collapse
|
360
|
Han N, Zhao Q, Wan L, Wang Y, Gao Y, Wang P, Wang Z, Zhang J, Jiang T, Wang S. Hybrid lipid-capped mesoporous silica for stimuli-responsive drug release and overcoming multidrug resistance. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3342-51. [PMID: 25584634 DOI: 10.1021/am5082793] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Multidrug resistance (MDR) is known to be a great obstruction to successful chemotherapy, and considerable efforts have been devoted to reverse MDR including designing various functional drug delivery systems. In this study, hybrid lipid-capped mesoporous silica nanoparticles (LTMSNs), aimed toward achieving stimuli-responsive drug release to circumvent MDR, were specially designated for drug delivery. After modifying MSNs with hydrophobic chains through disulfide bond on the surface, lipid molecules composing polymer d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) with molar ratio of 5:1 were subsequently added to self-assemble into a surrounded lipid layer via hydrophobic interaction acting as smart valves to block the pore channels of carrier. The obtained LTMSNs had a narrow size distribution of ca. 190 nm and can be stably dispersed in body fluids, which may ensure a long circulating time and ideal enhanced permeability and retention effect. Doxorubicin (DOX) was chosen as a model drug to be encapsulated into LTMSNs. Results showed that this hybrid lipid-capped mesoporous silica drug delivery system can achieve redox and pH-responsive release of DOX, thereby avoiding the premature leakage of drug before reaching the specific site and releasing DOX within the cancerous cells. Owing to the presence of TPGS-containing lipid layer, LTMSNs-DOX exhibited higher uptake efficiency, cytotoxicity, and increased intracellular accumulation in resistant MCF-7/Adr cells compared with DOX solution, proving to be a promising vehicle to realize intracellular drug release and inhibit drug efflux.
Collapse
Affiliation(s)
- Ning Han
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , 103 Wenhua Road, Shenyang, Liaoning Province 110016, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Xu H, Hu M, Yu X, Li Y, Fu Y, Zhou X, Zhang D, Li J. Design and evaluation of pH-sensitive liposomes constructed by poly(2-ethyl-2-oxazoline)-cholesterol hemisuccinate for doxorubicin delivery. Eur J Pharm Biopharm 2015; 91:66-74. [PMID: 25660909 DOI: 10.1016/j.ejpb.2015.01.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/10/2015] [Accepted: 01/28/2015] [Indexed: 11/30/2022]
Abstract
In this study, a novel material, poly(2-ethyl-2-oxazoline)-cholesterol hemisuccinate (PEtOz-CHEMS), was synthesized to construct pH-sensitive liposomes. The structure of PEtOz-CHEMS was confirmed by thin-layer chromatography, Fourier transform infrared spectroscopy, and (1)H NMR. Anticancer fluorescent drug doxorubicin (DOX) was encapsulated into the liposomes. Compared with conventional liposomes (CL), CHEMS modified liposomes (CH-L) and PEGylated liposomes (PEG-L), the PEtOzylated liposomes (PEtOz-L) showed an acidic pH-induced increase in particle size. At pH 6.4, the heme release of PEtOz-L group was close to that of the positive control group, whereas that of CL, CH-L and PEG-L was close to that of the negative control group. In vitro drug release studies demonstrated that DOX was released from PEtOz-L in a pH-dependent manner, and the release of DOX from conventional DOX liposomes (CL-DOX), DOX loaded CH-L (CH-DOX-L) and PEGylated DOX liposomes (PEG-DOX-L) had no pronounced differences under each pH medium. In vitro cellular uptake assays showed that PEtOz-DOX-L indicated a significant fluorescence intensity at pH 6.4 compared with at pH 7.4. CL-DOX, CH-DOX-L and PEG-DOX-L did not achieve any obvious diversity at different pH conditions. Confocal laser scanning microscopy images showed that PEtOz-DOX-L can fuse with the endosomal membrane under acidic conditions of endosome, release DOX into the cytoplasm, then gather into the nucleus. Therefore, PEtOz can help liposomes achieve "endosomal escape". The in vitro cytotoxicity experiment results on A375 cells showed that PEtOz-DOX-L resulted in lower cell viability than CL-DOX, CH-DOX-L and PEG-DOX-L under low pH conditions. These results confirm that the pH-responsive PEtOz was a promising material for intracellular targeted delivery system and might be used for overcoming the "PEG dilemma".
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China.
| | - Meina Hu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China
| | - Xiu Yu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China
| | - Yan Li
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China
| | - Yuanshan Fu
- Department of Anatomy, College of Basic Medical Science, Dlian Medical University, Dalian, PR China.
| | - Xiaoxia Zhou
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China
| | - Di Zhang
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China
| | - Jianying Li
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China
| |
Collapse
|
362
|
Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med 2015; 21:223-32. [PMID: 25656384 PMCID: PMC4385479 DOI: 10.1016/j.molmed.2015.01.001] [Citation(s) in RCA: 498] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/31/2014] [Accepted: 01/05/2015] [Indexed: 02/07/2023]
Abstract
The advent of nanomedicine marks an unparalleled opportunity to advance the treatment of a variety of diseases, including cancer. The unique properties of nanoparticles, such as large surface-to volume ratio, small size, the ability to encapsulate a variety of drugs, and tunable surface chemistry, gives them many advantages over their bulk counterparts. This includes multivalent surface modification with targeting ligands, efficient navigation of the complex in vivo environment, increased intracellular trafficking, and sustained release of drug payload. These advantages make nanoparticles a mode of treatment potentially superior to conventional cancer therapies. This article highlights the most recent developments in cancer treatment using nanoparticles as drug-delivery vehicles, including promising opportunities in targeted and combination therapy.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - William Ho
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xueqing Zhang
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicolas Bertrand
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Omid Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
363
|
Abstract
Treatment of cancer using nanoparticle-based approaches relies on the rational design of carriers with respect to size, charge, and surface properties. Polymer-based nanomaterials, inorganic materials such as gold, iron oxide, and silica as well as carbon based materials such as carbon nanotubes and graphene are being explored extensively for cancer therapy. The challenges associated with the delivery of these nanoparticles depend greatly on the type of cancer and stage of development. This review highlights design considerations to develop nanoparticle-based approaches for overcoming physiological hurdles in cancer treatment, as well as emerging research in engineering advanced delivery systems for the treatment of primary, metastatic, and multidrug resistant cancers. A growing understanding of cancer biology will continue to foster development of intelligent nanoparticle-based therapeutics that take into account diverse physiological contexts of changing disease states to improve treatment outcomes.
Collapse
|
364
|
Abstract
![]()
The massive amount of human genetic
information already available
has accelerated the identification of target genes, making gene and
nucleic acid therapy the next generation of medicine. Nanoparticle
(NP)-based anticancer gene therapy treatment has received significant
interest in this evolving field. Recent advances in vector technology
have improved gene transfection efficiencies of nonviral vectors to
a level similar to viruses. This review serves as an introduction
to surface modifications of NPs based on polymeric structural improvements
and target moieties. A discussion regarding the future perspective
of multifunctional NPs in cancer therapy is also included.
Collapse
Affiliation(s)
- Guimei Lin
- School of Pharmaceutical Science, Shandong University , Jinan 250012, China
| | | | | |
Collapse
|
365
|
Self-assemblied nanocomplexes based on biomimetic amphiphilic chitosan derivatives for protein delivery. Carbohydr Polym 2015; 121:115-21. [PMID: 25659679 DOI: 10.1016/j.carbpol.2014.12.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
Abstract
A bio-inspired nanocarrier was developed for protein delivery based on biodegradable amphiphilic chitosan derivative (DCA-PCCs) with hydrophilic cell membrane mimic phosphorylcholine (PC) and hydrophobic deoxycholic acid (DCA) moieties, which was synthesized via the combination of Atherton-Todd reaction and carbodiimide coupling reaction. Using bovine serum albumin (BSA) as model protein, it was found that DCA-PCCs with suitable degree of substitution of PC and DCA moieties can load proteins by forming nanocomplexes via a solvent evaporation method. The physicochemical characteristics of BSA/DCA-PCCs nanocomplexes were investigated by Zetasizer, atomic force microscopy (AFM) and Fourier-transform infrared (FT-IR) spectroscopy. In vitro biological evaluation revealed BSA/DCA-PCCs nanocomplexes as blank DCA-PCCs nanoparticles had excellent cytocompatibility and hemocompatibility mainly due to the presence of cell membrane mimic phosphorylcholine. BSA release results suggested BSA/DCA-PCCs nanocomplexes showed a sustained release behavior following first order exponential decay kinetics. The results indicated DCA-PCCs provided a promising approach for effectively delivering therapeutic proteins.
Collapse
|
366
|
Cui L, Lin Q, Jin CS, Jiang W, Huang H, Ding L, Muhanna N, Irish JC, Wang F, Chen J, Zheng G. A PEGylation-Free Biomimetic Porphyrin Nanoplatform for Personalized Cancer Theranostics. ACS NANO 2015; 9:4484-95. [PMID: 25830219 DOI: 10.1021/acsnano.5b01077] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
PEGylation (PEG) is the most commonly adopted strategy to prolong nanoparticles' vascular circulation by mitigating the reticuloendothelial system uptake. However, there remain many concerns in regards to its immunogenicity, targeting efficiency, etc., which inspires pursuit of alternate, non-PEGylated systems. We introduced here a PEG-free, porphyrin-based ultrasmall nanostructure mimicking nature lipoproteins, termed PLP, that integrates multiple imaging and therapeutic functionalities, including positron emission tomography (PET) imaging, near-infrared (NIR) fluorescence imaging and photodynamic therapy (PDT). With an engineered lipoprotein-mimicking structure, PLP is highly stable in the blood circulation, resulting in favorable pharmacokinetics and biodistribution without the need of PEG. The prompt tumor intracellular trafficking of PLP allows for rapid nanostructure dissociation upon tumor accumulation to release monomeric porphyrins to efficiently generate fluorescence and photodynamic reactivity, which are highly silenced in intact PLP, thus providing an activatable mechanism for low-background NIR fluorescence imaging and tumor-selective PDT. Its intrinsic copper-64 labeling feature allows for noninvasive PET imaging of PLP delivery and quantitative assessment of drug distribution. Using a clinically relevant glioblastoma multiforme model, we demonstrated that PLP enabled accurate delineation of tumor from surrounding healthy brain at size less than 1 mm, exhibiting the potential for intraoperative fluorescence-guided surgery and tumor-selective PDT. Furthermore, we demonstrated the general applicability of PLP for sensitive and accurate detection of primary and metastatic tumors in other clinically relevant animal models. Therefore, PLP offers a biomimetic theranostic nanoplatform for pretreatment stratification using PET and NIR fluorescence imaging and for further customized cancer management via imaging-guided surgery, PDT, or/and potential chemotherapy.
Collapse
Affiliation(s)
- Liyang Cui
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
- ‡Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 2J7, Canada
- §Medical Isotopes Research Center, Peking University, Beijing 100871, China
| | - Qiaoya Lin
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Cheng S Jin
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
- ∥Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 2J7, Canada
- #Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| | - Wenlei Jiang
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Huang Huang
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Lili Ding
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Nidal Muhanna
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
- ∇Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| | - Jonathan C Irish
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
- ∇Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| | - Fan Wang
- §Medical Isotopes Research Center, Peking University, Beijing 100871, China
| | - Juan Chen
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Gang Zheng
- †Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
- ‡Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 2J7, Canada
- ∥Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 2J7, Canada
- #Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| |
Collapse
|
367
|
Tsukigawa K, Nakamura H, Fang J, Otagiri M, Maeda H. Effect of different chemical bonds in pegylation of zinc protoporphyrin that affects drug release, intracellular uptake, and therapeutic effect in the tumor. Eur J Pharm Biopharm 2015; 89:259-70. [DOI: 10.1016/j.ejpb.2014.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/14/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
|
368
|
Sakurai Y, Matsuda T, Hada T, Harashima H. Efficient Packaging of Plasmid DNA Using a pH Sensitive Cationic Lipid for Delivery to Hepatocytes. Biol Pharm Bull 2015; 38:1185-1191. [PMID: 26235581 DOI: 10.1248/bpb.b15-00138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Plasmid DNA (pDNA) is expected to be a new class of medicine for treating currently incurable diseases. To deliver these nucleic acids, we developed a liposomal delivery system we have called a multifunctional envelope-type nano device (MEND). In this report, we demonstrate that a MEND containing a pH-sensitive cationic lipid, YSK05 (YSK-MEND), efficiently delivered pDNA via systemic injection, and that its expression was highly dependent on the encapsulation state of the pDNA. In the preparation, the pH, ionic strength, and sodium chloride (NaCl) concentration of the lipid/pDNA mixture strongly affected the encapsulation efficiency of pDNA. Additionally, the transgene expression of luciferase in the liver by the injected YSK-MEND was dependent on the encapsulation state of pDNA rather than the nature of the YSK-MEND. Confocal laser scanning microscopy findings revealed that injection of the YSK-MEND led to homogenous gene expression in the liver compared to injection via the hydrodynamic tail vein (HTV). Concerning the safety of the YSK-MEND, a transient increase in the activity of liver enzymes was observed. However, no significant adverse events were observed. Taken together, the YSK-MEND represents a potentially attractive therapy for the treatment of various hepatic diseases.
Collapse
Affiliation(s)
- Yu Sakurai
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | | | | | | |
Collapse
|
369
|
Multifunctional Polymeric Nano-Carriers in Targeted Drug Delivery. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
370
|
Mundra V, Mahato RI. Design of nanocarriers for efficient cellular uptake and endosomal release of small molecule and nucleic acid drugs: learning from virus. Front Chem Sci Eng 2014. [DOI: 10.1007/s11705-014-1457-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
371
|
Akita H, Ishiba R, Togashi R, Tange K, Nakai Y, Hatakeyama H, Harashima H. A neutral lipid envelope-type nanoparticle composed of a pH-activated and vitamin E-scaffold lipid-like material as a platform for a gene carrier targeting renal cell carcinoma. J Control Release 2014; 200:97-105. [PMID: 25543000 DOI: 10.1016/j.jconrel.2014.12.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/07/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022]
Abstract
A renal cell carcinoma (RCC) is one of the refractory tumors, since it readily acquires resistance against chemotherapy. Thus, alternative therapeutic approaches such as obstructing the neovasculature are needed. We previously reported on the development of a plasmid DNA (pDNA)-encapsulating liposomal nanoparticle (LNP) as a hepatic gene delivery system that is applicable to systemic administration. The key molecular component is a SS-cleavable and pH-activated lipid-like material (ssPalm) that mounts dual sensing motifs (ternary amines and disulfide bonding) that are responsive to the intracellular environment. The main purpose of the present study was to expand its application to a tumor-targeting gene delivery system in mice bearing tumors established from a RCC (OS-RC-2). When the modification of the surface of the particle is optimized for the polyethyleneglycol (PEG), stability in the blood circulation is improved, and consequently tumor-selective gene expression can be achieved. Furthermore, gene expression in the tumor was increased slightly when the hydrophobic scaffold of the ssPalm was replaced from the conventionally used myristic acid (ssPalmM) to α-tocopherol succinate (ssPalmE). Moreover, tumor growth was significantly suppressed when the completely CpG-free pDNA encoding the solute form of VEGFR (fms-like tyrosine kinase-1: sFlt-1) was used, especially when it was delivered by the LNP formed with ssPalmE (LNP(ssPalmE)). Thus, the PEG-modified LNP(ssPalmE) is a promising gene carrier for the cancer gene therapy of RCC.
Collapse
Affiliation(s)
- Hidetaka Akita
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Japan.
| | - Ryohei Ishiba
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Japan
| | - Ryohei Togashi
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Japan
| | - Kota Tange
- NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-0865, Japan
| | - Yuta Nakai
- NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-0865, Japan
| | - Hiroto Hatakeyama
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Japan.
| |
Collapse
|
372
|
Khawar IA, Kim JH, Kuh HJ. Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release 2014; 201:78-89. [PMID: 25526702 DOI: 10.1016/j.jconrel.2014.12.018] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/04/2023]
Abstract
Malignant transformation and growth of the tumor mass tend to induce changes in the surrounding microenvironment. Abnormality of the tumor microenvironment provides a driving force leading not only to tumor progression, including invasion and metastasis, but also to acquisition of drug resistance, including pharmacokinetic (drug delivery-related) and pharmacodynamic (sensitivity-related) resistance. Drug delivery systems exploiting the enhanced permeability and retention (EPR) effect and active targeting moieties were expected to be able to cope with delivery-related drug resistance. However, recent evidence supports a considerable barrier role of tumors via various mechanisms, which results in imperfect or inefficient EPR and/or targeting effect. The components of the tumor microenvironment such as abnormal tumor vascular system, deregulated composition of the extracellular matrix, and interstitial hypertension (elevated interstitial fluid pressure) collectively or cooperatively hinder the drug distribution, which is prerequisite to the efficacy of nanoparticles and small-molecule drugs used in cancer medicine. Hence, the abnormal tumor microenvironment has recently been suggested to be a promising target for the improvement of drug delivery to improve therapeutic efficacy. Strategies to modulate the abnormal tumor microenvironment, referred to here as "solid tumor priming" (vascular normalization and/or solid stress alleviation leading to improvement in blood perfusion and convective molecular movement), have shown promising results in the enhancement of drug delivery and anticancer efficacy. These strategies may provide a novel avenue for the development of new chemotherapeutics and combination chemotherapeutic regimens as well as reassessment of previously ineffective agents.
Collapse
Affiliation(s)
- Iftikhar Ali Khawar
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Jung Ho Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Hyo-Jeong Kuh
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 137-701, Republic of Korea; Department of Medical LifeScience, School of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 137-701, Republic of Korea.
| |
Collapse
|
373
|
|
374
|
Sun Q, Sun X, Ma X, Zhou Z, Jin E, Zhang B, Shen Y, Van Kirk EA, Murdoch WJ, Lott JR, Lodge TP, Radosz M, Zhao Y. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7615-21. [PMID: 25328159 DOI: 10.1002/adma.201401554] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 09/03/2014] [Indexed: 05/18/2023]
Abstract
A "cluster-bomb"-like lipid-dendrimer nanoassembly synergizes the functions of its components and thereby efficiently accomplishes the drug delivery cascade for high efficacy in treating cancer. The nanoassembly successfully circulates in the blood and accumulates in the tumor. Once in the tumor, it releases small dendrimers that act like "bomblets", enabling tumor penetration, cell internalization, and drug release.
Collapse
Affiliation(s)
- Qihang Sun
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China, 310027; Department of Chemical Engineering, University of Wyoming, Laramie, WY, USA, 82071
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Rinkenauer AC, Tauhardt L, Wendler F, Kempe K, Gottschaldt M, Traeger A, Schubert US. A Cationic Poly(2-oxazoline) with High In Vitro Transfection Efficiency Identified by a Library Approach. Macromol Biosci 2014; 15:414-25. [DOI: 10.1002/mabi.201400334] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/04/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Alexandra C. Rinkenauer
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Lutz Tauhardt
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Felix Wendler
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Kristian Kempe
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Dutch Polymer Institute (DPI); John F. Kennedylaan 2 5612 AB Eindhoven The Netherlands
| |
Collapse
|
376
|
Sakurai Y, Kajimoto K, Hatakeyama H, Harashima H. Advances in an active and passive targeting to tumor and adipose tissues. Expert Opin Drug Deliv 2014; 12:41-52. [PMID: 25376864 DOI: 10.1517/17425247.2015.955847] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Data reported during the last decade of the twentieth century indicate that passive targeting is an efficient strategy for delivering nanocarrier systems to tumor tissues. The focus of this review is on active targeting as a next-generation strategy for extending the capacity of a drug delivery system (DDS). AREAS COVERED Tumor vasculature targeting was achieved using arginine- glycine-aspartic acid, asparagine-glycine-arginine and other peptides, which are well-known peptides, as ligand against tumor vasculature. An efficient system for delivering small interfering RNA to the tumor vasculature involved the use of a multifunctional envelope-type nanodevice based on a pH-modified cationic lipid and targeting ligands. The active-targeting system was extended from tumor delivery to adipose tissue delivery, where endothelial cells are tightly linked and are impermeable to nanocarriers. In mice, prohibitin-targeted nanoparticles can be used to successfully deliver macromolecules to induce anti-obese effects. Finally, the successful delivery of nanocarriers to adipose tissue in obese mice via the enhanced permeability and retention-effect is reported, which can be achieved in tumor tissue. EXPERT OPINION Unlike tumor tissues, only a few reports have appeared on how liposomal carriers accumulate in adipose tissues after systemic injection. This finding, as well as active targeting to the adipose vasculature, promises to extend the capacity of DDS to adipose tissue. Since the site of action of nucleic acids is the cytosol, the intracellular trafficking of carriers and their cargoes as well as cellular uptake must be taken into consideration.
Collapse
Affiliation(s)
- Yu Sakurai
- Hokkaido University, Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences , Kita 12, Nishi 6, Kita-ku, Sapporo, Hokkaido 060-0812 , Japan
| | | | | | | |
Collapse
|
377
|
Bai M, Bai X, Wang L. Real-Time Fluorescence Tracking of Gene Delivery via Multifunctional Nanocomposites. Anal Chem 2014; 86:11196-202. [DOI: 10.1021/ac5026489] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Min Bai
- State Key Laboratory of Chemical
Resource Engineering, Beijing Key Laboratory of Environmentally Harmful
Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xilin Bai
- State Key Laboratory of Chemical
Resource Engineering, Beijing Key Laboratory of Environmentally Harmful
Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Leyu Wang
- State Key Laboratory of Chemical
Resource Engineering, Beijing Key Laboratory of Environmentally Harmful
Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
378
|
Akhter A, Hayashi Y, Sakurai Y, Ohga N, Hida K, Harashima H. Ligand density at the surface of a nanoparticle and different uptake mechanism: Two important factors for successful siRNA delivery to liver endothelial cells. Int J Pharm 2014; 475:227-37. [DOI: 10.1016/j.ijpharm.2014.08.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/08/2014] [Accepted: 08/23/2014] [Indexed: 11/30/2022]
|
379
|
“Programmed packaging” for gene delivery. J Control Release 2014; 193:316-23. [DOI: 10.1016/j.jconrel.2014.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/26/2014] [Accepted: 04/10/2014] [Indexed: 11/21/2022]
|
380
|
Ryan GM, Kaminskas LM, Porter CJ. Nano-chemotherapeutics: Maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. J Control Release 2014; 193:241-56. [DOI: 10.1016/j.jconrel.2014.04.051] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 01/17/2023]
|
381
|
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 2014; 53:12320-64. [PMID: 25294565 DOI: 10.1002/anie.201403036] [Citation(s) in RCA: 793] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Indexed: 12/18/2022]
Abstract
In medicine, nanotechnology has sparked a rapidly growing interest as it promises to solve a number of issues associated with conventional therapeutic agents, including their poor water solubility (at least, for most anticancer drugs), lack of targeting capability, nonspecific distribution, systemic toxicity, and low therapeutic index. Over the past several decades, remarkable progress has been made in the development and application of engineered nanoparticles to treat cancer more effectively. For example, therapeutic agents have been integrated with nanoparticles engineered with optimal sizes, shapes, and surface properties to increase their solubility, prolong their circulation half-life, improve their biodistribution, and reduce their immunogenicity. Nanoparticles and their payloads have also been favorably delivered into tumors by taking advantage of the pathophysiological conditions, such as the enhanced permeability and retention effect, and the spatial variations in the pH value. Additionally, targeting ligands (e.g., small organic molecules, peptides, antibodies, and nucleic acids) have been added to the surface of nanoparticles to specifically target cancerous cells through selective binding to the receptors overexpressed on their surface. Furthermore, it has been demonstrated that multiple types of therapeutic drugs and/or diagnostic agents (e.g., contrast agents) could be delivered through the same carrier to enable combination therapy with a potential to overcome multidrug resistance, and real-time readout on the treatment efficacy. It is anticipated that precisely engineered nanoparticles will emerge as the next-generation platform for cancer therapy and many other biomedical applications.
Collapse
Affiliation(s)
- Tianmeng Sun
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | | | | | | | | | | |
Collapse
|
382
|
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Maßgeschneiderte Nanopartikel für den Wirkstofftransport in der Krebstherapie. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403036] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
383
|
Duskey JT, Rice KG. Nanoparticle ligand presentation for targeting solid tumors. AAPS PharmSciTech 2014; 15:1345-54. [PMID: 24927668 PMCID: PMC4179653 DOI: 10.1208/s12249-014-0143-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/07/2014] [Indexed: 01/10/2023] Open
Abstract
Among the many scientific advances to come from the study of nanoscience, the development of ligand-targeted nanoparticles to eliminate solid tumors is predicted to have a major impact on human health. There are many reports describing novel designs and testing of targeted nanoparticles to treat cancer. While the principles of the technology are well demonstrated in controlled lab experiments, there are still many hurdles to overcome for the science to mature into truly efficacious targeted nanoparticles that join the arsenal of agents currently used to treat cancer in humans. One of these hurdles is overcoming unwanted biodistribution to the liver while maximizing delivery to the tumor. This almost certainly requires advances in both nanoparticle stealth technology and targeting. Currently, it continues to be a challenge to control the loading of ligands onto polyethylene glycol (PEG) to achieve maximal targeting. Nanoparticle cellular uptake and subcellular targeting of genes and siRNA also remain a challenge. This review examines the types of ligands that have been most often used to target nanoparticles to solid tumors. As the science matures over the coming decade, careful control over ligand presentation on nanoparticles of precise size, shape, and charge will likely play a major role in achieving success.
Collapse
Affiliation(s)
- Jason T. Duskey
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242 USA
| | - Kevin G. Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242 USA
| |
Collapse
|
384
|
Wu M, Guo K, Dong H, Zeng R, Tu M, Zhao J. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid-phosphorylcholine-chitosan conjugate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:162-9. [PMID: 25491815 DOI: 10.1016/j.msec.2014.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/07/2014] [Accepted: 09/10/2014] [Indexed: 01/06/2023]
Abstract
Novel biomimetic amphiphilic chitosan derivative, deoxycholic acid-phosphorylcholine-chitosan conjugate (DCA-PCCs) was synthesized based on the combination of Atherton-Todd reaction for coupling phosphorylcholine (PC) and carbodiimide coupling reaction for linking deoxycholic acid (DCA) to chitosan. The chemical structure of DCA-PCCs was characterized by (1)H and (31)P nuclear magnetic resonance (NMR). The self-assembly of DCA-PCCs in water was analyzed by fluorescence measurements, dynamic laser light-scattering (DLS), zeta potential and transmission electron microscopy (TEM) technologies. The results confirmed that the amphiphilic DCA-PCCs can self-assemble to form nanosized spherical micelles with biomimetic PC shell. In vitro biological evaluation revealed that DCA-PCCs micelles had low toxicity against NIH/3T3 mouse embryonic fibroblasts as well as good hemocompatibility. Using quercetin as a hydrophobic model drug, drug loading and release study suggested that biomimetic DCA-PCCs micelles could be used as a promising nanocarrier avoiding unfavorable biological response for hydrophobic drug delivery applications.
Collapse
Affiliation(s)
- Minming Wu
- Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Kai Guo
- Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Hongwei Dong
- Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Rong Zeng
- Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, PR China.
| | - Mei Tu
- Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, PR China
| | - Jianhao Zhao
- Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
385
|
Zhang J, Liu J, Zhao Y, Wang G, Zhou F. Plasma and cellular pharmacokinetic considerations for the development and optimization of antitumor block copolymer micelles. Expert Opin Drug Deliv 2014; 12:263-81. [PMID: 25217414 DOI: 10.1517/17425247.2014.945417] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Clinical application of anticancer drugs is often limited by poor pharmacokinetic profile. The biocompatible and/or biodegradable block copolymer micelles (BCMs) can improve the pharmacokinetic behavior of drugs, thus enhancing antitumor effect. However, there are still many problems that needed to be solved before there is a wide clinical application of BCMs. AREAS COVERED Micelles have been quickly developed recently to deliver hydrophobic antitumor drugs specifically. However, the final therapeutic effect of BCMs is often challenged by many factors in vivo from both plasma and cellular pharmacokinetic view: i) inefficient transport from administration site to tumor tissue; ii) poor penetration into tumor mass; iii) inadequate accumulation in tumor cell; and iv) insufficient intracellular/subcellular release in cells. This review emphasized on the newest methods and solutions based on the main challenges of BCMs application in vivo, and the new problems caused by these methods are also discussed. EXPERT OPINION Different strategies and designs of BCMs can help solve problems in each key step respectively. However, overemphasis on one aspect will result in problems on others. Therefore, a comprehensive consideration is urgently needed to integrate the advantages of each strategy and overcome the disadvantages. Only with thorough understanding and scientific assessments, the desired BCMs are expected to be applied in clinical treatments.
Collapse
Affiliation(s)
- Jingwei Zhang
- China Pharmaceutical University, State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics , 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009 , PR China
| | | | | | | | | |
Collapse
|
386
|
Kajimoto K, Sato Y, Nakamura T, Yamada Y, Harashima H. Multifunctional envelope-type nano device for controlled intracellular trafficking and selective targeting in vivo. J Control Release 2014; 190:593-606. [DOI: 10.1016/j.jconrel.2014.03.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/11/2014] [Accepted: 03/21/2014] [Indexed: 12/13/2022]
|
387
|
Hennig R, Pollinger K, Veser A, Breunig M, Goepferich A. Nanoparticle multivalency counterbalances the ligand affinity loss upon PEGylation. J Control Release 2014; 194:20-7. [PMID: 25128717 DOI: 10.1016/j.jconrel.2014.07.062] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/27/2022]
Abstract
The conjugation of receptor ligands to shielded nanoparticles is a widely used strategy to precisely control nanoparticle-cell interactions. However, it is often overlooked that a ligand's affinity can be severely impaired by its attachment to the polyethylene glycol (PEG) chains that are frequently used to protect colloids from serum protein adsorption. Using the model ligand EXP3174, a small-molecule antagonist for the angiotensin II receptor type 1 (AT1R), we investigated the ligand's affinity before and after its PEGylation and when attached to PEGylated nanoparticles. The PEGylated ligand displayed a 580-fold decreased receptor affinity compared to the native ligand. Due to their multivalency, the nanoparticles regained a low nanomolar receptor affinity, which is in the range of the affinity of the native ligand. Moreover, a four orders of magnitude higher concentration of free ligand was required to displace PEGylated nanoparticles carrying EXP3174 from the receptor. On average, one nanoparticle was decorated with 11.2 ligand molecules, which led to a multivalent enhancement factor of 22.5 compared to the monovalent PEGylated ligand. The targeted nanoparticles specifically bound the AT1R and showed no interaction to receptor negative cells. Our study shows that the attachment of a small-molecule ligand to a PEG chain can severely affect its receptor affinity. Concomitantly, when the ligand is tethered to nanoparticles, the immense avidity greatly increases the ligand-receptor interaction. Based on our results, we highly recommend the affinity testing of receptor ligands before and after PEGylation to identify potent molecules for active nanoparticle targeting.
Collapse
Affiliation(s)
- Robert Hennig
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Klaus Pollinger
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Anika Veser
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
388
|
Sakurai Y, Hatakeyama H, Akita H, Harashima H. Improvement of doxorubicin efficacy using liposomal anti-polo-like kinase 1 siRNA in human renal cell carcinomas. Mol Pharm 2014; 11:2713-9. [PMID: 24800640 DOI: 10.1021/mp500245z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
It is well-known that renal cell carcinomas (RCCs) are resistant to classical cytotoxic anticancer drugs. Therefore, facilitating the impact of anticancer drugs by altering the cell phenotype should be a useful strategy for circumventing this. We developed a multifunctional envelope-type nanodevice (MEND) as an in vivo carrier of siRNA to tumor tissues. We previously reported that a MEND containing YSK05 (YSK-MEND) efficiently delivered siRNA in RCC-bearing mice. We herein report on a combination therapy involving the use of siRNA-mediated specific gene knockdown and cytotoxic drug doxorubicin (DOX), and an advantage of YSK-MEND as an investigation tool for in vivo function of a gene. si-PLK1 encapsulated within YSK-MEND was prepared using the tertiary butanol dilution method. The in vitro cellular viability under the exposure of DOX was compared between OS-RC-2 cells with and without si-PLK1 transfection. In an in vivo study, tumor-bearing mice were systemically injected with YSK-MEND and DOX-loaded liposomes. The combination of DOX and si-PLK1 drastically reduced tumor growth rate, and apoptotic cells were observed. In an in vitro study, PLK1 knockdown increased G2/M cell population and reduced the expression of cyclin B1 (CCNB1) mRNA. CCNB1 suppression by si-PLK1 encapsulated in YSK-MEND was also observed in the in vivo experiments. A combination of DOX and anti-polo-like kinase 1 siRNA (si-PLK1) resulted in a measurable delay in OS-RC-2 tumor growth. This result suggests that the combination of si-PLK1 delivery and doxorubicin by YSK-MEND holds potential for RCC therapy via cell CCNB1 regulation.
Collapse
Affiliation(s)
- Yu Sakurai
- Faculty of Pharmaceutical Sciences, Hokkaido University , Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
389
|
Li J, Liu F, Shao Q, Min Y, Costa M, Yeow EKL, Xing B. Enzyme-responsive cell-penetrating peptide conjugated mesoporous silica quantum dot nanocarriers for controlled release of nucleus-targeted drug molecules and real-time intracellular fluorescence imaging of tumor cells. Adv Healthc Mater 2014; 3:1230-9. [PMID: 24550203 DOI: 10.1002/adhm.201300613] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/25/2014] [Indexed: 12/14/2022]
Abstract
Here, a set of novel and personalized nanocarriers are presented for controlled nucleus-targeted antitumor drug delivery and real-time imaging of intracellular drug molecule trafficking by integrating an enzyme activatable cell penetrating peptide (CPP) with mesoporous silica coated quantum dots nanoparticles. Upon loading of antitumor drug, doxorubicin (DOX) and further exposure to proteases in tumor cell environment, the enzymatic cleavage of peptide sequence activates oligocationic TAT residues on the QDs@mSiO2 surface and direct the DOX delivery into cellular nucleus. The systematic cell imaging and cytotoxicity studies confirm that the enzyme responsive DOX-loaded CPP-QDs@mSiO2 nanoparticles can selectively release DOX in the tumor cells with high cathepsin B enzyme expression and greatly facilitate DOX accumulation in targeted nucleus, thus exhibiting enhanced antitumor activity in these cells. As contrast, there is limited nuclear-targeted drug accumulation and lower tumor cytotoxicity observed in the cells without enzyme expression. More importantly, significant antitumor DOX accumulation and higher tumor inactivation is also found in the drug resistant tumor cells with targeted enzyme expression. Such simple and specific enzyme responsive mesoporous silica-QDs nanoconjugates provide great promise for rational design of targeted drug delivery into biological system, and may thus greatly facilitate the medical theranostics in the near future.
Collapse
Affiliation(s)
- Jinming Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| | - Fang Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| | - Qing Shao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| | - Yuanzeng Min
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| | - Marianne Costa
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| | - Edwin K. L. Yeow
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| |
Collapse
|
390
|
Bao X, Wang W, Wang C, Wang Y, Zhou J, Ding Y, Wang X, Jin Y. A chitosan-graft-PEI-candesartan conjugate for targeted co-delivery of drug and gene in anti-angiogenesis cancer therapy. Biomaterials 2014; 35:8450-66. [PMID: 24997481 DOI: 10.1016/j.biomaterials.2014.06.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/11/2014] [Indexed: 01/10/2023]
Abstract
A multifunctional copolymer-anticancer conjugate chitosan-graft-polyethyleneimine-candesartan (CPC) containing low molecular weight chitosan (CS) backbone and polyethyleneimine (PEI) arms with candesartan (CD) conjugated via an amide bond was fabricated as a targeted co-delivery nanovector of drug and gene for potential cancer therapy. Here, CD was utilized to specifically bind to overexpressed angiotensin II type 1 receptor (AT1R) of tumor cells, strengthen endosomal buffering capacity of CPC and suppress tumor angiogenesis. The self-assembled CPC/pDNA complexes exhibited desirable and homogenous particle size, moderate positive charges, superior stability, and efficient release of drug and gene in vitro. Flow cytometry and confocal laser scanning microscopy analyses confirmed that CD-targeted function and CD-enhanced buffering capacity induced high transfection, specific cellular uptake and efficient intracellular delivery of CPC/pDNA complexes in AT1R-overexpressed PANC-1 cells. In addition, CPC/wt-p53 complexes co-delivering CD and wild type p53 (wt-p53) gene achieved synergistic angiogenesis suppression by more effectively downregulating the expression of vascular endothelial growth factor (VEGF) mRNA and protein via different pathways in vitro, as compared to mono-delivery and mixed-delivery systems. In vivo investigation on nude mice bearing PANC-1 tumor xenografts revealed that CPC/wt-p53 complexes possessed high tumor-targeting capacity and strong anti-tumor activity. Additional analysis of microvessel density (MVD) demonstrated that CPC/wt-p53 complexes significantly inhibited tumor-associated angiogenesis. These findings suggested that CPC could be an ideal tumor-targeting nanovector for simultaneous transfer of drug and gene, and a multifunctional CPC/wt-p53 co-delivery system with tumor-specific targetability, enhanced endosomal buffering capacity and synergistic anti-angiogenesis efficacy might be a new promising strategy for effective tumor therapy.
Collapse
Affiliation(s)
- Xiuli Bao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Cheng Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yu Wang
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China.
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Xiaoyi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yuting Jin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
391
|
Mahmoudi M, Meng J, Xue X, Liang XJ, Rahman M, Pfeiffer C, Hartmann R, Gil PR, Pelaz B, Parak WJ, del Pino P, Carregal-Romero S, Kanaras AG, Tamil Selvan S. Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnol Adv 2014; 32:679-92. [DOI: 10.1016/j.biotechadv.2013.11.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/04/2013] [Accepted: 11/12/2013] [Indexed: 11/25/2022]
|
392
|
Rabanel JM, Hildgen P, Banquy X. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. J Control Release 2014; 185:71-87. [DOI: 10.1016/j.jconrel.2014.04.017] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/15/2022]
|
393
|
Verderio P, Avvakumova S, Alessio G, Bellini M, Colombo M, Galbiati E, Mazzucchelli S, Avila JP, Santini B, Prosperi D. Delivering colloidal nanoparticles to mammalian cells: a nano-bio interface perspective. Adv Healthc Mater 2014; 3:957-76. [PMID: 24443410 DOI: 10.1002/adhm.201300602] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/05/2013] [Indexed: 01/09/2023]
Abstract
Understanding the behavior of multifunctional colloidal nanoparticles capable of biomolecular targeting remains a fascinating challenge in materials science with dramatic implications in view of a possible clinical translation. In several circumstances, assumptions on structure-activity relationships have failed in determining the expected responses of these complex systems in a biological environment. The present Review depicts the most recent advances about colloidal nanoparticles designed for use as tools for cellular nanobiotechnology, in particular, for the preferential transport through different target compartments, including cell membrane, cytoplasm, mitochondria, and nucleus. Besides the conventional entry mechanisms based on crossing the cellular membrane, an insight into modern physical approaches to quantitatively deliver nanomaterials inside cells, such as microinjection and electro-poration, is provided. Recent hypotheses on how the nanoparticle structure and functionalization may affect the interactions at the nano-bio interface, which in turn mediate the nanoparticle internalization routes, are highlighted. In addition, some hurdles when this small interface faces the physiological environment and how this phenomenon can turn into different unexpected responses, are discussed. Finally, possible future developments oriented to synergistically tailor biological and chemical properties of nanoconjugates to improve the control over nanoparticle transport, which could open new scenarios in the field of nanomedicine, are addressed.
Collapse
Affiliation(s)
- Paolo Verderio
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Svetlana Avvakumova
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Giulia Alessio
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Michela Bellini
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Miriam Colombo
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Elisabetta Galbiati
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Jesus Peñaranda Avila
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Benedetta Santini
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Davide Prosperi
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
- Laboratory of Nanomedicine and Clinical Biophotonics, Fondazione Don Carlo Gnocchi ONLUS; Via Capecelatro 66 20148 Milan Italy
| |
Collapse
|
394
|
Noga M, Edinger D, Wagner E, Winter G, Besheer A. Stability and activity of hydroxyethyl starch-coated polyplexes in frozen solutions or lyophilizates. Int J Pharm 2014; 469:50-8. [DOI: 10.1016/j.ijpharm.2014.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/06/2014] [Accepted: 04/07/2014] [Indexed: 11/30/2022]
|
395
|
Liu ZT, Xiong L, Liu ZP, Miao XY, Lin LW, Wen Y. In vivo and in vitro evaluation of the cytotoxic effects of Photosan-loaded hollow silica nanoparticles on liver cancer. NANOSCALE RESEARCH LETTERS 2014; 9:319. [PMID: 25024681 PMCID: PMC4082675 DOI: 10.1186/1556-276x-9-319] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/06/2014] [Indexed: 05/04/2023]
Abstract
This study aimed to compare the inhibitory effects of photosensitizers loaded in hollow silica nanoparticles and conventional photosensitizers on HepG2 human hepatoma cell proliferation and determine the underlying mechanisms. Photosensitizers (conventional Photosan-II or nanoscale Photosan-II) were administered to in vitro cultured HepG2 hepatoma cells and treated by photodynamic therapy (PDT) with various levels of light exposure. To assess photosensitizers' effects, cell viability was determined by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, apoptotic and necrotic cells were measured by flow cytometry and the expression of caspase-3 and caspase-9 evaluated by western blot. Finally, the in vivo effects of nanoscale and conventional photosensitizers on liver cancer were assessed in nude mice. Nanoscale Photosan-II significantly inhibited hepatoma cell viability in a concentration-dependent manner and this effect was more pronounced with high laser doses. Moreover, nanoscale photosensitizers performed better than the conventional ones under the same experimental conditions (p < 0.05). Flow cytometry data demonstrated that laser-induced cell death was markedly increased after treatment with nanoscale Photosan-II in comparison with free Photosan-II (p < 0.05). Activated caspase-3 and caspase-9 levels were significantly higher in cells treated with Photosan-II loaded in silica nanoparticles than free Photosan-II (p < 0.05). Accordingly, treatment with nanoscale photosensitizers resulted in improved outcomes (tumor volume) in a mouse model of liver cancer, in comparison with conventional photosensitizers. Hollow silica nanoparticles containing photosensitizer more efficiently inhibited hepatoma cells than photosensitizer alone, through induction of apoptosis, both in vivo and in vitro.
Collapse
Affiliation(s)
- Zhong-Tao Liu
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, P.R., China
| | - Li Xiong
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, P.R., China
| | - Zhi-Peng Liu
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, P.R., China
| | - Xiong-Ying Miao
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, P.R., China
| | - Liang-Wu Lin
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, Hunan, P.R., China
| | - Yu Wen
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, P.R., China
| |
Collapse
|
396
|
Qhattal HSS, Hye T, Alali A, Liu X. Hyaluronan polymer length, grafting density, and surface poly(ethylene glycol) coating influence in vivo circulation and tumor targeting of hyaluronan-grafted liposomes. ACS NANO 2014; 8:5423-40. [PMID: 24806526 PMCID: PMC4072417 DOI: 10.1021/nn405839n] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hyaluronan-grafted liposomes (HA-liposomes) preferentially target CD44-overexpressing tumor cells in vitro via receptor-mediated endocytosis. We investigated the pharmacokinetics and biodistribution of HA-liposomes with various sizes of HA (MW 5-8, 50-60, and 175-350 kDa) in mice. Incorporation of negatively charged HA on the liposome surface compromised its blood circulation time, which led to decreased tumor accumulation in CD44+ human breast cancer MDA-MB-231 xenografts compared to PEGylated liposomes (PEG-5000). Clearance of HA-liposomes was HA polymer length-dependent; high MW (175-350 kDa, highest ligand binding affinity) HA-liposomes displayed faster clearance compared to low MW (5-8, 50-60 kDa) HA-liposomes or PEGylated liposomes. Surface HA ligand density can also affect clearance of HA-liposomes. Thus, HA is not an effective stealth coating material. When dual coating of PEG and HA was used, the PEG-HA-liposomes displayed similar blood circulation time and tumor accumulation to that of the PEGylated liposomes; however, the PEG-HA-liposomes displayed better cellular internalization capability in vivo. Tumor histology showed that PEG-HA-liposomes had a more direct association with CD44+ cancer cells, while PEGylated liposomes located predominantly in the tumor periphery, with less association with CD44+ cells. Flow cytometry analysis of ex vivo tumor cells showed that PEG-HA-liposomes had significantly higher tumor cell internalization compared to PEGylated liposomes. This study demonstrates that a long blood circulation time is critical for active tumor targeting. Furthermore, the use of the tumor-targeting ligand HA does not increase total tumor accumulation of actively targeted liposomes in solid tumors; however, it can enhance intracellular delivery.
Collapse
|
397
|
Ai X, Sun J, Zhong L, Wu C, Niu H, Xu T, Lian H, Han X, Ren G, Ding W, Wang J, Pu X, He Z. Star-Shape Redox-Responsive PEG-Sheddable Copolymer of Disulfide-Linked Polyethylene Glycol-Lysine-di-Tocopherol Succinate for Tumor-Triggering Intracellular Doxorubicin Rapid Release: Head-to-Head Comparison. Macromol Biosci 2014; 14:1415-28. [DOI: 10.1002/mabi.201400149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/02/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoyu Ai
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Jin Sun
- Department of Biopharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
- Key Laboratory of Drug Delivery Technology and Pharmacokinetics; Tianjin Institute of Pharmaceutical Research; Tianjin P. R. China
| | - Lu Zhong
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Chunnuan Wu
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Handong Niu
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Tao Xu
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - He Lian
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Xiaopeng Han
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Guolian Ren
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Wenya Ding
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Jia Wang
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Xiaohui Pu
- Pharmaceutical College of Henan University; Kaifeng 475004 P. R. China
| | - Zhonggui He
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| |
Collapse
|
398
|
Draz MS, Fang BA, Zhang P, Hu Z, Gu S, Weng KC, Gray JW, Chen FF. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Am J Cancer Res 2014; 4:872-92. [PMID: 25057313 PMCID: PMC4107289 DOI: 10.7150/thno.9404] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/27/2014] [Indexed: 12/17/2022] Open
Abstract
RNA interference (RNAi) is an endogenous post-transcriptional gene regulatory mechanism, where non-coding, double-stranded RNA molecules interfere with the expression of certain genes in order to silence it. Since its discovery, this phenomenon has evolved as powerful technology to diagnose and treat diseases at cellular and molecular levels. With a lot of attention, short interfering RNA (siRNA) therapeutics has brought a great hope for treatment of various undruggable diseases, including genetic diseases, cancer, and resistant viral infections. However, the challenge of their systemic delivery and on how they are integrated to exhibit the desired properties and functions remains a key bottleneck for realizing its full potential. Nanoparticles are currently well known to exhibit a number of unique properties that could be strategically tailored into new advanced siRNA delivery systems. This review summarizes the various nanoparticulate systems developed so far in the literature for systemic delivery of siRNA, which include silica and silicon-based nanoparticles, metal and metal oxides nanoparticles, carbon nanotubes, graphene, dendrimers, polymers, cyclodextrins, lipids, hydrogels, and semiconductor nanocrystals. Challenges and barriers to the delivery of siRNA and the role of different nanoparticles to surmount these challenges are also included in the review.
Collapse
|
399
|
Kemayo Koumkoua P, Aisenbrey C, Salnikov E, Rifi O, Bechinger B. On the design of supramolecular assemblies made of peptides and lipid bilayers. J Pept Sci 2014; 20:526-36. [PMID: 24909405 DOI: 10.1002/psc.2656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 02/02/2023]
Abstract
Peptides confer interesting properties to materials, supramolecular assemblies and to lipid membranes and are used in analytical devices or within delivery vehicles. Their relative ease of production combined with a high degree of versatility make them attractive candidates to design new such products. Here, we review and demonstrate how CD- and solid-state NMR spectroscopic approaches can be used to follow the reconstitution of peptides into membranes and to describe some of their fundamental characteristics. Whereas CD spectroscopy is used to monitor secondary structure in different solvent systems and thereby aggregation properties of the highly hydrophobic domain of p24, a protein involved in vesicle trafficking, solid-state NMR spectroscopy was used to deduce structural information and the membrane topology of a variety of peptide sequences found in nature or designed. (15)N chemical shift solid-state NMR spectroscopy indicates that the hydrophobic domain of p24 as well as a designed sequence of 19 hydrophobic amino acid residues adopt transmembrane alignments in phosphatidylcholine membranes. In contrast, the amphipathic antimicrobial peptide magainin 2 and the designed sequence LK15 align parallel to the bilayer surface. Additional angular information is obtained from deuterium solid-state NMR spectra of peptide sites labelled with (2)H3-alanine, whereas (31)P and (2)H solid-state NMR spectra of the lipids furnish valuable information on the macroscopic order and phase properties of the lipid matrix. Using these approaches, peptides and reconstitution protocols can be elaborated in a rational manner, and the analysis of a great number of peptide sequences is reviewed. Finally, a number of polypeptides with membrane topologies that are sensitive to a variety of environmental conditions such as pH, lipid composition and peptide-to-lipid ratio will be presented.
Collapse
Affiliation(s)
- Patricia Kemayo Koumkoua
- Université de Strasbourg / CNRS, UMR7177, Institut de Chimie, 1, rue Blaise Pascal, 67070, Strasbourg, France
| | | | | | | | | |
Collapse
|
400
|
Yang Y, Zhang X, Yu C, Hao X, Jie J, Zhou M, Zhang X. Smart nanorods for highly effective cancer theranostic applications. Adv Healthc Mater 2014; 3:906-15. [PMID: 24376098 DOI: 10.1002/adhm.201300463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/01/2013] [Indexed: 11/06/2022]
Abstract
Combination of chemotherapy and photothermal therapy is considered to be a promising strategy for the next generation of cancer treatments. However, it has been limited by difficulties in obtaining high drug payload chemo-photothermal agents, and thus complete destruction of tumor without recurrence has never been achieved, unless they are conjugated with some targeting ligands for special targeted drug delivery. Herein, iron oxide nanoparticle (IONP)-doped 10-hydroxycamptothecin drug nanorods (HCPT NRs), with an organic conducting polymer poly(4-styrenesulfonate) (PEDOT) coating outside, are developed for cancer diagnosis and chemo-photothermal therapy. The drug-loading capacity of HCPT in the complex NRs reaches up to 72%, which is much higher than previously reported carrier-based nanocomposites. In vitro studies show that the resulting NRs demonstrate an excellent chemo-photothermal synergistic effect for tumor ablation. More importantly, 100% in vivo tumor elimination is achieved under a low laser power density of 1 W cm(-) (2) without weight loss and tumor recurrence. Moreover, IONP endow these drug nanocomposites with imaging capabilities, thus rendering the resulting HCPT-PEDOT NR an all-in-one processing system for diagnosis and treatment with low systematic toxicity.
Collapse
Affiliation(s)
- Yinlong Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation; Center of Suzhou Nano Science and Technology; Soochow University; Suzhou Jiangsu 215123 P. R. China
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation; Center of Suzhou Nano Science and Technology; Soochow University; Suzhou Jiangsu 215123 P. R. China
| | - Caitong Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation; Center of Suzhou Nano Science and Technology; Soochow University; Suzhou Jiangsu 215123 P. R. China
| | - Xiaojun Hao
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation; Center of Suzhou Nano Science and Technology; Soochow University; Suzhou Jiangsu 215123 P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation; Center of Suzhou Nano Science and Technology; Soochow University; Suzhou Jiangsu 215123 P. R. China
| | - Mengjiao Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation; Center of Suzhou Nano Science and Technology; Soochow University; Suzhou Jiangsu 215123 P. R. China
| | - Xiaohong Zhang
- Nano-organic Photoelectronic Laboratory and Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|