351
|
Gopalakrishnan S, Vadlamudi S, Samineni S, Sameer Kumar CV. Plant growth-promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils. SPRINGERPLUS 2016; 5:1882. [PMID: 27833841 PMCID: PMC5082106 DOI: 10.1186/s40064-016-3590-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/20/2016] [Indexed: 11/10/2022]
Abstract
Seven strains of bacteria [Pseudomonas plecoglossicida SRI-156, Brevibacterium antiquum SRI-158, Bacillus altitudinis SRI-178, Enterobacter ludwigii SRI-211, E. ludwigii SRI-229, Acinetobacter tandoii SRI-305 and Pseudomonas monteilii SRI-360; demonstrated previously for control of charcoal rot disease in sorghum and plant growth-promotion (PGP) in rice] were evaluated for their PGP and biofortification traits in chickpea and pigeonpea under field conditions. When treated on seed, the seven selected bacteria significantly enhanced the shoot height and root length of both chickpea and pigeonpea over the un-inoculated control. Under field conditions, in both chickpea and pigeonpea, the plots inoculated with test bacteria enhanced the nodule number, nodule weight, root and shoot weights, pod number, pod weight, leaf weight, leaf area and grain yield over the un-inoculated control plots. Among the seven bacteria, SRI-229 was found to significantly and consistently enhance all the studied PGP and yield traits including nodule number (24 and 36%), nodule weight (11 and 44%), shoot weight (22 and 20%), root weight (23 and 16%) and grain yield (19 and 26%) for both chickpea and pigeonpea, respectively. When the harvested grains were evaluated for their mineral contents, iron (up to 18 and 12%), zinc (up to 23 and 5%), copper (up to 19 and 8%), manganese (up to 2 and 39%) and calcium (up to 22 and 11%) contents in chickpea and pigeonpea, respectively, were found enhanced in test bacteria inoculated plots over the un-inoculated control plots. This study further confirms that the selected bacterial isolates not only have the potential for PGP in cereals and legumes but also have the potential for biofortification of mineral nutrients.
Collapse
Affiliation(s)
- Subramaniam Gopalakrishnan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502 324 India
| | - Srinivas Vadlamudi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502 324 India
| | - Srinivasan Samineni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502 324 India
| | - C V Sameer Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502 324 India
| |
Collapse
|
352
|
Wright M, Adams J, Yang K, McManus P, Jacobson A, Gade A, McLean J, Britt D, Anderson A. A Root-Colonizing Pseudomonad Lessens Stress Responses in Wheat Imposed by CuO Nanoparticles. PLoS One 2016; 11:e0164635. [PMID: 27776146 PMCID: PMC5077138 DOI: 10.1371/journal.pone.0164635] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/28/2016] [Indexed: 12/26/2022] Open
Abstract
Nanoparticle (NPs) containing essential metals are being considered in formulations of fertilizers to boost plant nutrition in soils with low metal bioavailability. This paper addresses whether colonization of wheat roots by the bacterium, Pseudomonas chlororaphis O6 (PcO6), protected roots from the reduced elongation caused by CuO NPs. There was a trend for slightly elongated roots when seedlings with roots colonized by PcO6 were grown with CuO NPs; the density of bacterial cells on the root surface was not altered by the NPs. Accumulations of reactive oxygen species in the plant root cells caused by CuO NPs were little affected by root colonization. However, bacterial colonization did reduce the extent of expression of an array of genes associated with plant responses to stress induced by root exposure to CuO NPs. PcO6 colonization also reduced the levels of two important chelators of Cu ions, citric and malic acids, in the rhizosphere solution; presumably because these acids were used as nutrients for bacterial growth. There was a trend for lower levels of soluble Cu in the rhizosphere solution and reduced Cu loads in the true leaves with PcO6 colonization. These studies indicate that root colonization by bacterial cells modulates plant responses to contact with CuO NPs.
Collapse
Affiliation(s)
- Melanie Wright
- Department of Biological Engineering, Utah State University, Logan, Utah, 84322 4105, United States of America
| | - Joshua Adams
- Department of Biology, Utah State University, Logan, Utah, 84322 5305, United States of America
| | - Kwang Yang
- Department of Biological Engineering, Utah State University, Logan, Utah, 84322 4105, United States of America
| | - Paul McManus
- Utah Water Research Laboratory, Utah State University, Logan, Utah, 84321, United States of America
| | - Astrid Jacobson
- Plants Soils and Climate, Utah State University, Logan, Utah, 84322 4820, United States of America
| | - Aniket Gade
- Department of Biological Engineering, Utah State University, Logan, Utah, 84322 4105, United States of America
| | - Joan McLean
- Utah Water Research Laboratory, Utah State University, Logan, Utah, 84321, United States of America
| | - David Britt
- Department of Biology, Utah State University, Logan, Utah, 84322 5305, United States of America
| | - Anne Anderson
- Department of Biological Engineering, Utah State University, Logan, Utah, 84322 4105, United States of America
| |
Collapse
|
353
|
Montalbán B, Croes S, Weyens N, Lobo MC, Pérez-Sanz A, Vangronsveld J. Characterization of bacterial communities associated with Brassica napus L. growing on a Zn-contaminated soil and their effects on root growth. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:985-993. [PMID: 27159736 DOI: 10.1080/15226514.2016.1183566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The interaction between plant growth-promoting bacteria (PGPB) and plants can enhance biomass production and metal tolerance of the host plants. This work aimed at isolating and characterizing the cultivable bacterial community associated with Brassica napus growing on a Zn-contaminated site, for selecting cultivable PGPB that might enhance biomass production and metal tolerance of energy crops. The effects of some of these bacterial strains on root growth of B. napus exposed to increasing Zn and Cd concentrations were assessed. A total of 426 morphologically different bacterial strains were isolated from the soil, the rhizosphere, and the roots and stems of B. napus. The diversity of the isolated bacterial populations was similar in rhizosphere and roots, but lower in soil and stem compartments. Burkoholderia, Alcaligenes, Agrococcus, Polaromonas, Stenotrophomonas, Serratia, Microbacterium, and Caulobacter were found as root endophytes exclusively. The inoculation of seeds with Pseudomonas sp. strains 228 and 256, and Serratia sp. strain 246 facilitated the root development of B. napus at 1,000 µM Zn. Arthrobacter sp. strain 222, Serratia sp. strain 246, and Pseudomonas sp. 228 and 262 increased the root length at 300 µM Cd.
Collapse
Affiliation(s)
- Blanca Montalbán
- a Departamento de Investigación Agroambiental , Alcalá de Henares , Madrid , Spain
- b Environmental Biology, Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgiu
| | - Sarah Croes
- b Environmental Biology, Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgiu
| | - Nele Weyens
- b Environmental Biology, Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgiu
| | - M Carmen Lobo
- a Departamento de Investigación Agroambiental , Alcalá de Henares , Madrid , Spain
| | - Araceli Pérez-Sanz
- a Departamento de Investigación Agroambiental , Alcalá de Henares , Madrid , Spain
| | - Jaco Vangronsveld
- b Environmental Biology, Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgiu
| |
Collapse
|
354
|
Montenegro IPFM, Mucha AP, Reis I, Rodrigues P, Almeida CMR. Effect of petroleum hydrocarbons in copper phytoremediation by a salt marsh plant (Juncus maritimus) and the role of autochthonous bioaugmentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19471-19480. [PMID: 27381357 DOI: 10.1007/s11356-016-7154-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/26/2016] [Indexed: 06/06/2023]
Abstract
This work aimed to investigate, under controlled but environmental relevant conditions, the effects of the presence of both inorganic and organic contaminants (copper and petroleum hydrocarbons) on phytoremediation potential of the salt marsh plant Juncus maritimus. Moreover, bioaugmentation, with an autochthonous microbial consortium (AMC) resistant to Cu, was tested, aiming an increase in the remediation potential of this plant in the presence of a co-contamination. Salt marsh plants with sediment attached to their roots were collected, placed in vessels, and kept in greenhouses, under tidal simulation. Sediments were contaminated with Cu and petroleum, and the AMC was added to half of the vessels. After 5 months, plants accumulated significant amounts of Cu but only in belowground structures. The amount of Cu was even higher in the presence of petroleum. AMC addition increased Cu accumulation in belowground tissues, despite decreasing Cu bioavailability, promoting J. maritimus phytostabilization potential. Therefore, J. maritimus has potential to phytoremediate co-contaminated sediments, and autochthonous bioaugmentation can be a valuable strategy for the recovery and management of moderately impacted estuaries. This approach can contribute for a sustainable use of the environmental resources. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- I P F M Montenegro
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal
| | - A P Mucha
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal.
| | - I Reis
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal
| | - P Rodrigues
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal
| | - C M R Almeida
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal
| |
Collapse
|
355
|
Yang MZ, Ma MD, Yuan MQ, Huang ZY, Yang WX, Zhang HB, Huang LH, Ren AY, Shan H. Fungal Endophytes as a Metabolic Fine-Tuning Regulator for Wine Grape. PLoS One 2016; 11:e0163186. [PMID: 27656886 PMCID: PMC5033586 DOI: 10.1371/journal.pone.0163186] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/02/2016] [Indexed: 11/17/2022] Open
Abstract
Endophytes proved to exert multiple effects on host plants, including growth promotion, stress resistance. However, whether endophytes have a role in metabolites shaping of grape has not been fully understood. Eight endophytic fungal strains which originally isolated from grapevines were re-inoculated to field-grown grapevines in this study, and their effects on both leaves and berries of grapevines at maturity stage were assessed, with special focused on secondary metabolites and antioxidant activities. High-density inoculation of all these endophytic fungal strains modified the physio-chemical status of grapevine to different degrees. Fungal inoculations promoted the content of reducing sugar (RS), total flavonoids (TF), total phenols (TPh), trans-resveratrol (Res) and activities of phenylalanine ammonia-lyase (PAL), in both leaves and berries of grapevine. Inoculation of endophytic fungal strains, CXB-11 (Nigrospora sp.) and CXC-13 (Fusarium sp.) conferred greater promotion effects in grape metabolic re-shaping, compared to other used fungal strains. Additionally, inoculation of different strains of fungal endophytes led to establish different metabolites patterns of wine grape. The work implies the possibility of using endophytic fungi as fine-tuning regulator to shape the quality and character of wine grape.
Collapse
Affiliation(s)
- Ming-Zhi Yang
- School of Life Science, Yunnan University, Kunming, China
| | - Mian-Di Ma
- School of Life Science, Yunnan University, Kunming, China
| | - Ming-Quan Yuan
- School of Chemistry Science and Technology, Yunnan University, Kunming, China
| | - Zhi-Yu Huang
- School of Life Science, Yunnan University, Kunming, China
| | - Wei-Xi Yang
- College of Food and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Han-Bo Zhang
- School of Life Science, Yunnan University, Kunming, China
| | - Li-Hua Huang
- School of Life Science, Yunnan University, Kunming, China
| | - An-Yun Ren
- School of Life Science, Yunnan University, Kunming, China
| | - Hui Shan
- School of Life Science, Yunnan University, Kunming, China
| |
Collapse
|
356
|
Ibañez S, Talano M, Ontañon O, Suman J, Medina MI, Macek T, Agostini E. Transgenic plants and hairy roots: exploiting the potential of plant species to remediate contaminants. N Biotechnol 2016; 33:625-635. [DOI: 10.1016/j.nbt.2015.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 01/16/2023]
|
357
|
Tasho RP, Cho JY. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:366-376. [PMID: 27139307 DOI: 10.1016/j.scitotenv.2016.04.140] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
Therapeutic and sub-therapeutic use of antibiotics in livestock farming is and has been, a common practice worldwide. These bioactive organic compounds have short retention period and partial uptake into the animal system. The uptake effects of this pharmaceutics, with plants as the primary focus, has not been reviewed so far. This review addresses three main concerns 1) the extensive use of veterinary antibiotics in livestock farming, 2) disposal of animal waste containing active biosolids and 3) effects of veterinary antibiotics in plants. Depending upon the plant species and the antibiotic used, the response can be phytotoxic, hormetic as well as mutational. Additionally, the physiological interactions that make the uptake of these compounds relatively easy have also been discussed. High water solubility, longer half-lives, and continued introduction make them relatively persistent in the environment. Lastly, some prevention measures that can help limit their impact on the environment have been reviewed. There are three methods of control: treatment of animal manure before field application, an alternative bio-agent for disease treatment and a well targeted legalized use of antibiotics. Limiting the movement of these biosolids in the environment can be a challenge because of their varying physiological interactions. Electron irradiation and supervised inoculation of beneficial microorganisms can be effective remediation strategies. Thus, extensive future research should be focused in this area.
Collapse
Affiliation(s)
- Reep Pandi Tasho
- Department of Agricultural Chemistry, Building No. 3-2, Room 104, Chonbuk National University, Jeonju-si 561-756, Jeollabuk-do, Republic of Korea.
| | - Jae Yong Cho
- Department of Agricultural Chemistry, Building No. 3-2, Room 104, Chonbuk National University, Jeonju-si 561-756, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
358
|
Kurth C, Kage H, Nett M. Siderophores as molecular tools in medical and environmental applications. Org Biomol Chem 2016; 14:8212-27. [PMID: 27492756 DOI: 10.1039/c6ob01400c] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Almost all life forms depend on iron as an essential micronutrient that is needed for electron transport and metabolic processes. Siderophores are low-molecular-weight iron chelators that safeguard the supply of this important metal to bacteria, fungi and graminaceous plants. Although animals and the majority of plants do not utilise siderophores and have alternative means of iron acquisition, siderophores have found important clinical and agricultural applications. In this review, we will highlight the different uses of these iron-chelating molecules.
Collapse
Affiliation(s)
- Colette Kurth
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf-Reichwein-Str. 23, D-07745 Jena, Germany
| | | | | |
Collapse
|
359
|
Chen L, He LY, Wang Q, Sheng XF. Synergistic effects of plant growth-promoting Neorhizobium huautlense T1-17 and immobilizers on the growth and heavy metal accumulation of edible tissues of hot pepper. JOURNAL OF HAZARDOUS MATERIALS 2016; 312:123-131. [PMID: 27017398 DOI: 10.1016/j.jhazmat.2016.03.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/28/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
A plant growth-promoting Neorhizobium huautlense T1-17 was evaluated for its immobilization of Cd and Pb in solution. Meanwhile, the impacts of T1-17, immobilizers (vermiculite and peat) and their combination on the fruit biomass and heavy metal accumulation of hot pepper were characterized. T1-17 could significantly reduced water-soluble Cd and Pb in solution. T1-17, vermiculite+T1-17, peat, and peat+T1-17 significantly increased the fruit biomass (ranging from 45% to 269%) and decreased the fruit Cd (ranging from 66% to 87%) and Pb (ranging from 30% to 56%) contents and water-soluble Cd and Pb (ranging from 23% to 59%) contents of the rhizosphere soils compared to the controls. T1-17+vermiculite or peat had higher ability to increase the fruit biomass than T1-17 or vermiculite or peat. Furthermore, T1-17+peat had higher ability to reduce the water-soluble Cd and Pb contents of the rhizosphere soil and the fruit Pb uptake of hot pepper. The results showed that T1-17 and the immobilizers alleviated the heavy metal toxicity and decreased the fruit heavy metal uptake of hot pepper. The results also showed the synergistic effects of T1-17 and the immobilizers on the growth and Cd and Pb accumulation of hot pepper.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin-Yan He
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qi Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xia-Fang Sheng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
360
|
Syranidou E, Christofilopoulos S, Gkavrou G, Thijs S, Weyens N, Vangronsveld J, Kalogerakis N. Exploitation of Endophytic Bacteria to Enhance the Phytoremediation Potential of the Wetland Helophyte Juncus acutus. Front Microbiol 2016; 7:1016. [PMID: 27458433 PMCID: PMC4930943 DOI: 10.3389/fmicb.2016.01016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/15/2016] [Indexed: 12/30/2022] Open
Abstract
This study investigated the potential of indigenous endophytic bacteria to improve the efficiency of the wetland helophyte Juncus acutus to deal with a mixed pollution consisting of emerging organic contaminants (EOCs) and metals. The beneficial effect of bioaugmentation with selected endophytic bacteria was more prominent in case of high contamination: most of the inoculated plants (especially those inoculated with the mixed culture) removed higher percentages of organics and metals from the liquid phase in shorter times compared to the non-inoculated plants without exhibiting significant oxidative stress. When exposed to the lower concentrations, the tailored mixed culture enhanced the performance of the plants to decrease the organics and metals from the water. The composition of the root endophytic community changed in response to increased levels of contaminants while the inoculated bacteria did not modify the community structure. Our results indicate that the synergistic relationships between endophytes and the macrophyte enhance plants’ performance and may be exploited in constructed wetlands treating water with mixed contaminations. Taking into account that the concentrations of EOCs used in this study are much higher than the average contents of typical wastewaters, we can conclude that the macrophyte J. acutus with the aid of a mixed culture of tailored endophytic bacteria represents a suitable environmentally friendly alternative for treating pharmaceuticals and metals.
Collapse
Affiliation(s)
- Evdokia Syranidou
- School of Environmental Engineering, Technical University of CreteChania, Greece; Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | | | - Georgia Gkavrou
- School of Environmental Engineering, Technical University of Crete Chania, Greece
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | - Nele Weyens
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | - Nicolas Kalogerakis
- School of Environmental Engineering, Technical University of Crete Chania, Greece
| |
Collapse
|
361
|
Rocha J, Tacão M, Fidalgo C, Alves A, Henriques I. Diversity of endophytic Pseudomonas in Halimione portulacoides from metal(loid)-polluted salt marshes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13255-13267. [PMID: 27023813 DOI: 10.1007/s11356-016-6483-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Phytoremediation assisted by bacteria is seen as a promising alternative to reduce metal contamination in the environment. The main goal of this study was to characterize endophytic Pseudomonas isolated from Halimione portulacoides, a metal-accumulator plant, in salt marshes contaminated with metal(loid)s. Phylogenetic analysis based on 16S rRNA and gyrB genes showed that isolates affiliated with P. sabulinigri (n = 16), P. koreensis (n = 10), P. simiae (n = 5), P. seleniipraecipitans (n = 2), P. guineae (n = 2), P. migulae (n = 1), P. fragi (n = 1), P. xanthomarina (n = 1), and Pseudomonas sp. (n = 1). Most of these species have never been described as endophytic. The majority of the isolates were resistant to three or more metal(loid)s. Antibiotic resistance was frequent among the isolates but most likely related to species-intrinsic features. Common acquired antibiotic resistance genes and integrons were not detected. Plasmids were detected in 43.6 % of the isolates. Isolates that affiliated with different species shared the same plasmid profile but attempts to transfer metal resistance to receptor strains were not successful. Phosphate solubilization and IAA production were the most prevalent plant growth promoting traits, and 20 % of the isolates showed activity against phytopathogenic bacteria. Most isolates produced four or more extracellular enzymes. Preliminary results showed that two selected isolates promote Arabidopsis thaliana root elongation. Results highlight the diversity of endophytic Pseudomonas in H. portulacoides from contaminated sites and their potential to assist phytoremediation by acting as plant growth promoters and as environmental detoxifiers.
Collapse
Affiliation(s)
- Jaqueline Rocha
- Biology Department and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marta Tacão
- Biology Department, CESAM and iBiMED, University of Aveiro, Aveiro, Portugal
| | - Cátia Fidalgo
- Biology Department, CESAM and iBiMED, University of Aveiro, Aveiro, Portugal
| | - Artur Alves
- Biology Department and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Isabel Henriques
- Biology Department, CESAM and iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
362
|
Khan AL, Ullah I, Hussain J, Kang SM, Al-Harrasi A, Al-Rawahi A, Lee IJ. Regulations of essential amino acids and proteomics of bacterial endophytes Sphingomonas sp. Lk11 during cadmium uptake. ENVIRONMENTAL TOXICOLOGY 2016; 31:887-896. [PMID: 25533023 DOI: 10.1002/tox.22100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/07/2014] [Indexed: 06/04/2023]
Abstract
Endophytic bacteria have been recently known for their potential to bioaccumulate metal from contaminated mediums. However, little is known about the physiological responses of phytohormone producing (gibberellins and auxins) endophytes during metal stressed environment. Endophytic bacteria Sphingomonas sp. LK11 was assessed for metals bioaccumulation and its physiological responses towards metal stress. The endophyte was grown in cadmium (Cd), zinc (Zn), aluminum (Al), manganese (Mn), and copper (Cu) contaminated mediums. The results revealed significantly higher endophytic growth potentials in Cd, Cu and Zn contaminations; however, the bio-accumulation rate of Cd was more prolific as compared to Zn and Cu. Interestingly, the SDS-PAGE profile showed increased expressions of proteins in Zn and Cu than in Cd. A similar attenuate response of amino acids was also observed for Cd than in case of Zn and Cu. Only asparagine, glutamate and proline showed significant impact in Cd while Cu and Zn had significantly higher responses of almost all amino acids. Detailed protein profile showed the activation of chaperone, antioxidative and detoxification proteins. Increased regulations of oxidoreductases, superoxide dismutase, thioredoxin, malate dehydrogenase, 2-oxoisovalerate dehydrogenase, 2-oxoisovalerate dehydrogenase, and dihydrolipoyl dehydrogenase were observed. The cellular defense-related protein responses were potent against Cd stress. The results conclude that Sphingomonas sp. LK11 reprogram its amino acids and proteomic expressions and maintain a steady growth during Cd stress. Using such phytohromones producing endophytic bacterium can be ideal approach to increase the phytoextraction potential of metal remediating plants. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 887-896, 2016.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Department of Biological Sciences and Chemistry, University of Nizwa, 66, Oman
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, 616, Oman
| | - Ihsan Ullah
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Javid Hussain
- Department of Biological Sciences and Chemistry, University of Nizwa, 66, Oman
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Ahmed Al-Harrasi
- Department of Biological Sciences and Chemistry, University of Nizwa, 66, Oman
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, 616, Oman
| | - Ahmed Al-Rawahi
- Department of Biological Sciences and Chemistry, University of Nizwa, 66, Oman
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| |
Collapse
|
363
|
Ma Y, Oliveira RS, Freitas H, Zhang C. Biochemical and Molecular Mechanisms of Plant-Microbe-Metal Interactions: Relevance for Phytoremediation. FRONTIERS IN PLANT SCIENCE 2016; 7:918. [PMID: 27446148 PMCID: PMC4917562 DOI: 10.3389/fpls.2016.00918] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/09/2016] [Indexed: 05/22/2023]
Abstract
Plants and microbes coexist or compete for survival and their cohesive interactions play a vital role in adapting to metalliferous environments, and can thus be explored to improve microbe-assisted phytoremediation. Plant root exudates are useful nutrient and energy sources for soil microorganisms, with whom they establish intricate communication systems. Some beneficial bacteria and fungi, acting as plant growth promoting microorganisms (PGPMs), may alleviate metal phytotoxicity and stimulate plant growth indirectly via the induction of defense mechanisms against phytopathogens, and/or directly through the solubilization of mineral nutrients (nitrogen, phosphate, potassium, iron, etc.), production of plant growth promoting substances (e.g., phytohormones), and secretion of specific enzymes (e.g., 1-aminocyclopropane-1-carboxylate deaminase). PGPM can also change metal bioavailability in soil through various mechanisms such as acidification, precipitation, chelation, complexation, and redox reactions. This review presents the recent advances and applications made hitherto in understanding the biochemical and molecular mechanisms of plant-microbe interactions and their role in the major processes involved in phytoremediation, such as heavy metal detoxification, mobilization, immobilization, transformation, transport, and distribution.
Collapse
Affiliation(s)
- Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| | - Rui S. Oliveira
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
- Department of Environmental Health, Research Centre on Health and Environment, School of Allied Health Sciences, Polytechnic Institute of PortoVila Nova de Gaia, Portugal
- Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
| | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| | | |
Collapse
|
364
|
Ma Y, Rajkumar M, Zhang C, Freitas H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 174:14-25. [PMID: 26989941 DOI: 10.1016/j.jenvman.2016.02.047] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 02/20/2016] [Accepted: 02/26/2016] [Indexed: 05/10/2023]
Abstract
Phytoremediation is an emerging technology that uses plants and their associated microbes to clean up pollutants from the soil, water and air. In recent years, phytoremediation assisted by bacterial endophytes has been highly recommended for cleaning up of metal polluted soils since endophytic bacteria can alleviate metal toxicity in plant through their own metal resistance system and facilitate plant growth under metal stress. Endophytic bacteria improve plant growth in metal polluted soils in two different ways: 1) directly by producing plant growth beneficial substances including solubilization/transformation of mineral nutrients (phosphate, nitrogen and potassium), production of phytohormones, siderophores and specific enzymes; and 2) indirectly through controlling plant pathogens or by inducing a systemic resistance of plants against pathogens. Besides, they also alter metal accumulation capacity in plants by excreting metal immobilizing extracellular polymeric substances, as well as metal mobilizing organic acids and biosurfactants. The present work aims to review the progress of recent research on the isolation, identification and diversity of metal resistant endophytic bacteria and illustrate various mechanisms responsible for plant growth promotion and heavy metal detoxification/phytoaccumulation/translocation in plants.
Collapse
Affiliation(s)
- Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Mani Rajkumar
- Department of Life Sciences, Central University of Tamil Nadu, Tiruvarur, 610101, India
| | | | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
365
|
Mahmood A, Turgay OC, Farooq M, Hayat R. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 2016; 92:fiw112. [PMID: 27222220 DOI: 10.1093/femsec/fiw112] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 12/20/2022] Open
Abstract
Beneficial microbes are applied to the soil and plant tissues directly or through seed inoculation, whereas soil application is preferred when there is risk of inhibitors or antagonistic microbes on the plant tissues. Insufficient survival of the microorganisms, hindrance in application of fungicides to the seeds and exposure to heat and sunlight in subsequent seed storage in conventional inoculation methods force to explore appropriate and efficient bacterial application method. Seed priming, where seeds are hydrated to activate metabolism without actual germination followed by drying, increases the germination, stand establishment and stress tolerance in different crops. Seed priming with living bacterial inoculum is termed as biopriming that involves the application of plant growth promoting rhizobacteria. It increases speed and uniformity of germination; also ensures rapid, uniform and high establishment of crops; and hence improves harvest quality and yield. Seed biopriming allows the bacteria to enter/adhere the seeds and also acclimatization of bacteria in the prevalent conditions. This review focuses on methods used for biopriming, and also the role in improving crop productivity and stress tolerance along with prospects of this technology. The comparison of methods being followed is also reviewed proposing biopriming as a promising technique for application of beneficial microbes to the seeds.
Collapse
Affiliation(s)
- Ahmad Mahmood
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ankara University, 06110 Ankara, Turkey Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ankara University, 06110 Ankara, Turkey
| | - Oğuz Can Turgay
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ankara University, 06110 Ankara, Turkey
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Rifat Hayat
- Department of Soil Science and Soil Water Conservation, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| |
Collapse
|
366
|
Jeong JJ, Park H, Park BH, Mannaa M, Sang MK, Choi IG, Kim KD. Draft Genome Sequence of a Biocontrol Rhizobacterium, Chryseobacterium kwangjuense Strain KJ1R5, Isolated from Pepper (Capsicum annuum). GENOME ANNOUNCEMENTS 2016; 4:e00301-16. [PMID: 27103726 PMCID: PMC4841141 DOI: 10.1128/genomea.00301-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 12/04/2022]
Abstract
Strain KJ1R5 of the rhizobacterium ITALIC! Chryseobacterium kwangjuenseis an effective biocontrol agent against Phytophthora blight of pepper caused by a destructive soilborne oomycete, ITALIC! Phytophthora capsici Here, we present the draft genome sequence of strain KJ1R5, which contains genes related to biocontrol, plant growth promotion, and environmental stress adaptation.
Collapse
Affiliation(s)
- Jin-Ju Jeong
- Laboratory of Plant Disease and Biocontrol, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hongjae Park
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Byeong Hyeok Park
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Mohamed Mannaa
- Laboratory of Plant Disease and Biocontrol, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Mee Kyung Sang
- Laboratory of Plant Disease and Biocontrol, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea Division of Agricultural Microbiology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, Republic of Korea
| | - In-Geol Choi
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ki Deok Kim
- Laboratory of Plant Disease and Biocontrol, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
367
|
Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, Din MFM. Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:206. [PMID: 26940329 DOI: 10.1007/s10661-016-5211-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/26/2016] [Indexed: 05/20/2023]
Abstract
Increasing heavy metal (HM) concentrations in the soil have become a significant problem in the modern industrialized world due to several anthropogenic activities. Heavy metals (HMs) are non-biodegradable and have long biological half lives; thus, once entered in food chain, their concentrations keep on increasing through biomagnification. The increased concentrations of heavy metals ultimately pose threat on human life also. The one captivating solution for this problem is to use green plants for HM removal from soil and render it harmless and reusable. Although this green technology called phytoremediation has many advantages over conventional methods of HM removal from soils, there are also many challenges that need to be addressed before making this technique practically feasible and useful on a large scale. In this review, we discuss the mechanisms of HM uptake, transport, and plant tolerance mechanisms to cope with increased HM concentrations. This review article also comprehensively discusses the advantages, major challenges, and future perspectives of phytoremediation of heavy metals from the soil.
Collapse
Affiliation(s)
- Sveta Thakur
- Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, 26300, Kuantan, Pahang, Malaysia
| | - Lakhveer Singh
- Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, 26300, Kuantan, Pahang, Malaysia.
| | - Zularisam Ab Wahid
- Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, 26300, Kuantan, Pahang, Malaysia
| | - Muhammad Faisal Siddiqui
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Samson Mekbib Atnaw
- Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, 26300, Kuantan, Pahang, Malaysia
| | - Mohd Fadhil Md Din
- Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
368
|
Vílchez JI, Navas A, González-López J, Arcos SC, Manzanera M. Biosafety Test for Plant Growth-Promoting Bacteria: Proposed Environmental and Human Safety Index (EHSI) Protocol. Front Microbiol 2016; 6:1514. [PMID: 26779168 PMCID: PMC4703995 DOI: 10.3389/fmicb.2015.01514] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/15/2015] [Indexed: 11/25/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) colonize plants and enhance their growth by different mechanisms. Some of these microorganisms may represent a potential threat to human, animal or plant health; however, their use might be approved in parts of Europe if they have been recommended as plant growth enhancers. The current regulatory framework has resulted in a fragmented, contradictory system, and there is an urgent need to establish harmonized protocols for the predictability, efficiency, consistency and especially the safety of PGPB for human and animal health and for the environment. In response to current efforts to update biosafety policies and provide alternative methods to replace the use of vertebrate animals, we propose a panel of tests and an evaluation system to reliably determine the biosafety of bacterial strains used as PGPB. Based on the results of different tests, we propose a scoring system to evaluate the safety of candidates for PGPB within the limitations of the assays used.
Collapse
Affiliation(s)
- Juan I Vílchez
- Institute for Water Research and Department of Microbiology, University of Granada Granada, Spain
| | - Alfonso Navas
- Biodiversidad y Biologia Evolutiva, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Jesús González-López
- Institute for Water Research and Department of Microbiology, University of Granada Granada, Spain
| | - Susana C Arcos
- Biodiversidad y Biologia Evolutiva, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Maximino Manzanera
- Institute for Water Research and Department of Microbiology, University of Granada Granada, Spain
| |
Collapse
|
369
|
Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress. Appl Environ Microbiol 2016; 82:1734-1744. [PMID: 26729719 DOI: 10.1128/aem.03689-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/29/2015] [Indexed: 11/20/2022] Open
Abstract
Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd(2+) MIC, >250 mg liter(-1)) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion.
Collapse
|
370
|
Fang Q, Fan Z, Xie Y, Wang X, Li K, Liu Y. Screening and Evaluation of the Bioremediation Potential of Cu/Zn-Resistant, Autochthonous Acinetobacter sp. FQ-44 from Sonchus oleraceus L. FRONTIERS IN PLANT SCIENCE 2016; 7:1487. [PMID: 27746807 PMCID: PMC5043060 DOI: 10.3389/fpls.2016.01487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/20/2016] [Indexed: 05/11/2023]
Abstract
The quest for new, promising and indigenous plant growth-promoting rhizobacteria and a deeper understanding of their relationship with plants are important considerations in the improvement of phytoremediation. This study focuses on the screening of plant beneficial Cu/Zn-resistant strains and assessment of their bioremediation potential (metal solubilization/tolerance/biosorption and effects on growth of Brassica napus seedlings) to identify suitable rhizobacteria and examine their roles in microbes-assisted phytoremediation. Sixty Cu/Zn-resistant rhizobacteria were initially isolated from Sonchus oleraceus grown at a multi-metal-polluted site in Shanghai, China. From these strains, 19 isolates that were all resistant to 300 mg⋅L-1 Cu as well as 300 mg⋅L-1 Zn, and could simultaneously grow on Dworkin-Foster salt minimal medium containing 1-aminocyclopropane-1-carboxylic acid were preliminarily selected. Of those 19 isolates, 10 isolates with superior plant growth-promoting properties (indole-3-acetic acid production, siderophore production, and insoluble phosphate solubilization) were secondly chosen and further evaluated to identify those with the highest bioremediation potential and capacity for bioaugmentation. Strain S44, identified as Acinetobacter sp. FQ-44 based on 16S rDNA sequencing, was specifically chosen as the most favorable strain owing to its strong capabilities to (1) promote the growth of rape seedlings (significantly increased root length, shoot length, and fresh weight by 92.60%, 31.00%, and 41.96%, respectively) under gnotobiotic conditions; (2) tolerate up to 1000 mg⋅L-1 Cu and 800 mg⋅L-1 Zn; (3) mobilize the highest concentrations of water-soluble Cu, Zn, Pb, and Fe (16.99, 0.98, 0.08, and 3.03 mg⋅L-1, respectively); and (4) adsorb the greatest quantities of Cu and Zn (7.53 and 6.61 mg⋅g-1 dry cell, respectively). Our findings suggest that Acinetobacter sp. FQ-44 could be exploited for bacteria-assisted phytoextraction. Moreover, the present study provides a comprehensive method for the screening of rhizobacteria for phytoremediation of multi-metal-polluted soils, especially those sewage sludge-amended soils contaminated with Cu/Zn.
Collapse
|
371
|
Płociniczak T, Sinkkonen A, Romantschuk M, Sułowicz S, Piotrowska-Seget Z. Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd, Zn, Cu Phytoextraction by White Mustard. FRONTIERS IN PLANT SCIENCE 2016; 7:101. [PMID: 26909087 PMCID: PMC4754770 DOI: 10.3389/fpls.2016.00101] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/19/2016] [Indexed: 05/04/2023]
Abstract
Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants. The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn, and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA) analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%), Zn (86%), and Cu (39%) in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction.
Collapse
Affiliation(s)
- Tomasz Płociniczak
- Department of Microbiology, University of Silesia in KatowiceKatowice, Poland
- *Correspondence: Tomasz Płociniczak,
| | - Aki Sinkkonen
- Department of Environmental Sciences, University of HelsinkiLahti, Finland
- Institute of Environmental Sciences, Kazan Federal UniversityKazan, Russia
| | - Martin Romantschuk
- Department of Environmental Sciences, University of HelsinkiLahti, Finland
- Institute of Environmental Sciences, Kazan Federal UniversityKazan, Russia
| | - Sławomir Sułowicz
- Department of Microbiology, University of Silesia in KatowiceKatowice, Poland
| | | |
Collapse
|
372
|
Islam F, Yasmeen T, Ali Q, Mubin M, Ali S, Arif MS, Hussain S, Riaz M, Abbas F. Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:220-233. [PMID: 26387695 DOI: 10.1007/s11356-015-5354-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
For effective microbe-assisted bioremediation, metal-resistant plant growth-promoting bacteria (PGPB) must facilitate plant growth by restricting excess metal uptake in plants, leading to prevent its bio-amplification in the ecosystem. The aims of our study were to isolate and characterize copper (Cu)-resistant PGPB from waste water receiving contaminated soil. In addition, we investigated the phytotoxic effect of copper on the lentil plants inoculated with copper-resistant bacteria Providencia vermicola, grown in copper-contaminated soil. Copper-resistant P. vermicola showed multiple plant growth promoting characteristics, when used as a seed inoculant. It protected the lentil plants from copper toxicity with a considerable increase in root and shoot length, plant dry weight and leaf area. A notable increase in different gas exchange characteristics such as A, E, C i , g s , and A/E, as well as increase in N and P accumulation were also recorded in inoculated plants as compared to un-inoculated copper stressed plants. In addition, leaf chlorophyll content, root nodulation, number of pods, 1,000 seed weight were also higher in inoculated plants as compared with non-inoculated ones. Anti-oxidative defense mechanism improved significantly via elevated expression of reactive oxygen species -scavenging enzymes including ascorbate peroxidase, superoxide dismutase, catalase, and guaiacol peroxidase with alternate decrease in malondialdehyde and H2O2 contents, reduced electrolyte leakage, proline, and total phenolic contents suggesting that inoculation of P. vermicola triggered heavy metals stress-related defense pathways under copper stress. Overall, the results demonstrated that the P. vermicola seed inoculation confer heavy metal stress tolerance in lentil plant which can be used as a potent biotechnological tool to cope with the problems of copper pollution in crop plants for better yield.
Collapse
Affiliation(s)
- Faisal Islam
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Tahira Yasmeen
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan.
| | - Qasim Ali
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Mubin
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Sabir Hussain
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Farhat Abbas
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| |
Collapse
|
373
|
Ma Y, Zhang C, Oliveira RS, Freitas H, Luo Y. Bioaugmentation with Endophytic Bacterium E6S Homologous to Achromobacter piechaudii Enhances Metal Rhizoaccumulation in Host Sedum plumbizincicola. FRONTIERS IN PLANT SCIENCE 2016; 7:75. [PMID: 26870079 PMCID: PMC4740370 DOI: 10.3389/fpls.2016.00075] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/16/2016] [Indexed: 05/10/2023]
Abstract
Application of hyperaccumulator-endophyte symbiotic systems is a potential approach to improve phytoremediation efficiency, since some beneficial endophytic bacteria are able to detoxify heavy metals, alter metal solubility in soil, and facilitate plant growth. The objective of this study was to isolate multi-metal resistant and plant beneficial endophytic bacteria and to evaluate their role in enhancing plant growth and metal accumulation/translocation. The metal resistant endophytic bacterial strain E6S was isolated from stems of the Zn/Cd hyperaccumulator plant Sedum plumbizincicola growing in metalliferous mine soils using Dworkin and Foster salts minimal agar medium with 1-aminocyclopropane-1-carboxylate (ACC) as the sole nitrogen source, and identified as homologous to Achromobacter piechaudii based on morphological and biochemical characteristics, partial 16S rDNA sequence and phylogenetic analysis. Strain E6S showed high level of resistance to various metals (Cd, Zn, and Pb). Besides utilizing ACC, strain E6S exhibited plant beneficial traits, such as solubilization of phosphate and production of indole-3-acetic acid. Inoculation with E6S significantly increased the bioavailability of Cd, Zn, and Pb in soil. In addition, bacterial cells bound considerable amounts of metal ions in the following order: Zn > Cd >Pb. Inoculation of E6S significantly stimulated plant biomass, uptake and bioaccumulation of Cd, Zn, and Pb. However, E6S greatly reduced the root to shoot translocation of Cd and Zn, indicating that bacterial inoculation assisted the host plant to uptake and store heavy metals in its root system. Inoculation with the endophytic bacterium E6S homologous to A. piechaudii can improve phytostabilization of metalliferous soils due to its effective ability to enhance in situ metal rhizoaccumulation in plants.
Collapse
Affiliation(s)
- Ying Ma
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
- *Correspondence: Ying Ma,
| | | | - Rui S. Oliveira
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
- Department of Environmental Health, Research Centre on Health and Environment, School of Allied Health Sciences, Polytechnic Institute of PortoVila Nova de Gaia, Portugal
| | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| | - Yongming Luo
- Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| |
Collapse
|
374
|
Shahzad A, Siddiqui S, Bano A. Rhizoremediation of petroleum hydrocarbon, prospects and future. RSC Adv 2016. [DOI: 10.1039/c6ra12458e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oil refineries generate several tones of oily waste which is dumped in an open pit within the vicinity of oil field.
Collapse
Affiliation(s)
- Asim Shahzad
- Mohi-Ud-Din Islamic University
- Pakistan
- Department of Bio Sciences
- University of Wah
- Wah Cannt
| | - Samina Siddiqui
- National Center for Excellence in Geology
- University of Peshawar
- Pakistan
| | - Asghari Bano
- Department of Bio Sciences
- University of Wah
- Wah Cannt
- Pakistan
| |
Collapse
|
375
|
Sun L, Wang X, Li Y. Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:494-501. [PMID: 26587767 DOI: 10.1080/15226514.2015.1115962] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effects of inoculation with two metal-resistant and plant growth-promoting endophytic bacteria (Burkholderia sp. GL12 and Bacillus megaterium JL35) were evaluated on the plant growth and Cu uptake in their host Elsholtzia splendens and non-host Brassica napus plants grown in natural Cu-contaminated soil. The two strains showed a high level of ACC deaminase activities. In pot experiments, inoculation with strain GL12 significantly increased root and above-ground tissue dry weights of both plants, consequently increasing the total Cu uptake of E. splendens and Brassica napus by 132% and 48.2% respectively. Inoculation with strain JL35 was found to significantly increase not only the biomass of B. napus, consequently increasing the total Cu uptake of B. napus by 31.3%, but Cu concentration of E. splendens for above-ground tissues by 318% and roots by 69.7%, consequently increasing the total Cu uptake of E. splendens by 223%. The two strains could colonize the rhizosphere soils and root interiors of both plants. Notably, strain JL35 could colonize the shoot tissues and significantly increase the translocation factors and bioaccumulation factors of E. splendens. These results suggested that Burkholderia sp. GL12 and B. megaterium JL35 were valuable bacterial resource which had the potential in improving the efficiency of Cu phytoextraction by E. splendens and B. napus in a natural Cu-contaminated soil.
Collapse
Affiliation(s)
- Leni Sun
- a School of Life Science, Anhui Agricultural University , Hefei , Anhui , People's Republic of China
| | - Xiaohan Wang
- b College of Life Science, Nanjing Agricultural University , Nanjing , Jiangsu , People's Republic of China
| | - Ya Li
- b College of Life Science, Nanjing Agricultural University , Nanjing , Jiangsu , People's Republic of China
| |
Collapse
|
376
|
Álvarez-López V, Prieto-Fernández A, Janssen J, Herzig R, Vangronsveld J, Kidd PS. Inoculation methods using Rhodococcus erythropolis strain P30 affects bacterial assisted phytoextraction capacity of Nicotiana tabacum. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:406-15. [PMID: 26552496 DOI: 10.1080/15226514.2015.1109600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study different bacterial inoculation methods were tested for tobacco plants growing in a mine-soil contaminated with Pb, Zn, and Cd. The inoculation methods evaluated were: seed inoculation, soil inoculation, dual soil inoculation event, and seed+soil inoculation. Each inoculum was added at two bacterial densities (10(6) CFUs mL(-1) and 10(8) CFUs mL(-1)). The objectives were to evaluate whether or not the mode of inoculation or the number of applied microorganisms influences plant response. The most pronounced bacterial-induced effect was found for biomass production, and the soil inoculation treatment (using 10(6) CFUs mL(-1)) led to the highest increase in shoot dry weight yield (up to 45%). Bacterial-induced effects on shoot metal concentrations were less pronounced; although a positive effect was found on shoot Pb concentration when using 10(8) CFUs mL(-1) in the soil inoculation (29% increase) and in the seed+soil inoculation (34% increase). Also shoot Zn concentration increased by 24% after seed inoculation with 10(6) CFUs mL(-1). The best effects on the total metal yield were not correlated with an increasing number of inoculated bacteria. In fact the best results were found after a single soil inoculation using the lower cellular density of 10(6) CFUs mL(-1).
Collapse
Affiliation(s)
- V Álvarez-López
- a Instituto de Investigaciones Agrobiológicas de Galicia, CSIC , Santiago de Compostela , Spain
| | - A Prieto-Fernández
- a Instituto de Investigaciones Agrobiológicas de Galicia, CSIC , Santiago de Compostela , Spain
| | - J Janssen
- b Hasselt University, Centre for Environmental Sciences , Diepenbeek , Belgium
| | - R Herzig
- c Phytotech Foundation and AGB , Bern , Switzerland
| | - J Vangronsveld
- b Hasselt University, Centre for Environmental Sciences , Diepenbeek , Belgium
| | - P S Kidd
- a Instituto de Investigaciones Agrobiológicas de Galicia, CSIC , Santiago de Compostela , Spain
| |
Collapse
|
377
|
Mesa J, Rodríguez-Llorente ID, Pajuelo E, Piedras JMB, Caviedes MA, Redondo-Gómez S, Mateos-Naranjo E. Moving closer towards restoration of contaminated estuaries: Bioaugmentation with autochthonous rhizobacteria improves metal rhizoaccumulation in native Spartina maritima. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:263-271. [PMID: 26188869 DOI: 10.1016/j.jhazmat.2015.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/16/2015] [Accepted: 07/03/2015] [Indexed: 05/15/2023]
Abstract
Spartina maritima is an ecosystem engineer that has shown to be useful for phytoremediation purposes. A glasshouse experiment using soil from a metal-contaminated estuary was designed to investigate the effect of a native bacterial consortium, isolated from S. maritima rizhosphere and selected owing to their plant growth promoting properties and multiresistance to heavy metals, on plant growth and metal accumulation. Plants of S. maritima were randomly assigned to three soil bioaugmentation treatments (without inoculation, one inoculation and repeated inoculations) for 30 days. Growth parameters and photosynthetic traits, together with total concentrations of several metals were determined in roots and/or leaves. Bacterial inoculation improved root growth, through a beneficial effect on photosynthetic rate (AN) due to its positive impact on functionality of PSII and chlorophyll concentration. Also, favoured intrinsic water use efficiency of S. maritima, through the increment in AN, stomatal conductance and in root-to-shoot ratio. Moreover, this consortium was able to stimulate plant metal uptake specifically in roots, with increases of up to 19% for As, 65% for Cu, 40% for Pb and 29% for Zn. Thus, bioaugmentation of S. maritima with the selected bacterial consortium can be claimed to enhance plant adaptation and metal rhizoaccumulation during marsh restoration programs.
Collapse
Affiliation(s)
- Jennifer Mesa
- Departamento de Microbiologia, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain
| | - Ignacio David Rodríguez-Llorente
- Departamento de Microbiologia, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain
| | - Eloisa Pajuelo
- Departamento de Microbiologia, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain
| | - José María Barcia Piedras
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080 Sevilla, Spain
| | - Miguel Angel Caviedes
- Departamento de Microbiologia, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080 Sevilla, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080 Sevilla, Spain.
| |
Collapse
|
378
|
Mesa J, Mateos-Naranjo E, Caviedes MA, Redondo-Gómez S, Pajuelo E, Rodríguez-Llorente ID. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils. Front Microbiol 2015; 6:1450. [PMID: 26733985 PMCID: PMC4686625 DOI: 10.3389/fmicb.2015.01450] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/04/2015] [Indexed: 01/23/2023] Open
Abstract
Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes.
Collapse
Affiliation(s)
- Jennifer Mesa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de SevillaSevilla, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de SevillaSevilla, Spain
| | - Miguel A. Caviedes
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de SevillaSevilla, Spain
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de SevillaSevilla, Spain
| | - Eloisa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de SevillaSevilla, Spain
| | | |
Collapse
|
379
|
Briki M, Ji H, Li C, Ding H, Gao Y. Characterization, distribution, and risk assessment of heavy metals in agricultural soil and products around mining and smelting areas of Hezhang, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:767. [PMID: 26590987 DOI: 10.1007/s10661-015-4951-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Mining and smelting have been releasing huge amount of toxic substances into the environment. In the present study, agricultural soil and different agricultural products (potato, Chinese cabbage, garlic bolt, corn) were analyzed to examine the source, spatial distribution, and risk of 12 elements (As, Be, Bi, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) in agricultural soil near mine fields, smelting fields, and mountain field around Hezhang County, west of Guizhou Province, China. Multivariate statistical analysis indicated that in mining area, As, Bi, Cd, Cu, Hg, Pb, Sb, and Zn were generated from anthropogenic sources; in smelting area, As, Be, Cd, Co, Cu, Pb, Sb, and Zn were derived from anthropogenic sources through zinc smelting ceased in 2004. The enrichment factors (EFs) and ecological risk index (RI) of soil in mining area are the most harmful, showing extremely high enrichment and very high ecological risk of As, Bi, Cd, Cu, Hg, Pb, Sb, and Zn. Zinc is the most significant enriched in the smelting area; however, mountain area has a moderate enrichment and ecological risk and do not present any ecological risk. According to spatial distribution, the concentrations depend on the nearby mining and smelting activities. Transfer factors (TFs) in the smelting area and mountain are high, implying a threat for human consumption. Therefore, further studies should be carried out taking into account the harm of those heavy metals and potential negative health effects from the consumption of agricultural products in these circumstances.
Collapse
Affiliation(s)
- Meryem Briki
- Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongbing Ji
- Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing, 100083, China.
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China.
| | - Cai Li
- Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huaijian Ding
- Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang Gao
- Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
380
|
Złoch M, Tyburski J, Hrynkiewicz K. Analysis of microbiologically stimulated biomass of Salix viminalis L. in the presence of Cd2+ under in vitro conditions – implications for phytoremediation. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/abcsb-2015-0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe efficiency of phytoremediation might be highly affected by plant-associated microorganisms, and understanding of the underlying mechanisms is still a great challenge. The primary aim of this study was to evaluate the efficiency parameters for Cd2+accumulation in the biomass of willow (Salix viminalis) as well as to define the biochemical response of the host plant when it is inoculated with selected bacterial strains (Massiliasp. andPseudomonassp.) or saprophytic fungus (Clitocybesp.) under controlledin vitroconditions. Inoculation of plants with bacterial strains affected the efficiency of phytoremediation process and was expressed as the quantity of accumulated Cd (Q), the bioaccumulation factor (BCF) and the translocation index (Ti); however, the effect was strain and plant organ specific. The level of hydrogen peroxide (H2O2), which is both an indicator of plant response to biological and/or abiotic environmental stress and a molecule involved in plant-microbial interactions, decreased under the influence of Cd2+in uninoculated plants (plant growth was inhibited by Cd2+) and increased in the inoculated variants of plants growing in the presence of Cd2+(microbiologically stimulated biomass). The saprophytic fungusClitocybesp. generally stimulated biomass and increased the level of H2O2synthesis in all the investigated plant organs and variants of the experiment. We suggest that determination of phytoremediation efficiency, and biochemical response (H2O2) of the host plant underin vitroconditions can help in predicting the final effect of plant-microbial systems in further field trials.
Collapse
|
381
|
Zhang WH, Chen W, He LY, Wang Q, Sheng XF. Characterization of Mn-resistant endophytic bacteria from Mn-hyperaccumulator Phytolacca americana and their impact on Mn accumulation of hybrid penisetum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:369-376. [PMID: 26114256 DOI: 10.1016/j.ecoenv.2015.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 06/04/2023]
Abstract
Three hundred Mn-resistant endophytic bacteria were isolated from the Mn-hyperaccumulator, Phytolacca americana, grown at different levels of Mn (0, 1, and 10mM) stress. Under no Mn stress, 90%, 92%, and 11% of the bacteria produced indole acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase, respectively. Under Mn stress, 68-94%, 91-92%, and 21-81% of the bacteria produced IAA, siderophore, and ACC deaminase, respectively. Greater percentages of ACC deaminase-producing bacteria were found in the Mn-treated P. americana. Furthermore, the ratios of IAA- and siderophore-producing bacteria were significantly higher in the Mn treated plant leaves, while the ratio of ACC deaminase-producing bacteria was significantly higher in the Mn treated-roots. Based on 16S rRNA gene sequence analysis, Mn-resistant bacteria were affiliated with 10 genera. In experiments involving hybrid penisetum grown in soils treated with 0 and 1000mgkg(-1) of Mn, inoculation with strain 1Y31 was found to increase the root (ranging from 6.4% to 18.3%) and above-ground tissue (ranging from 19.3% to 70.2%) mass and total Mn uptake of above-ground tissues (64%) compared to the control. Furthermore, inoculation with strain 1Y31 was found to increase the ratio of IAA-producing bacteria in the rhizosphere and bulk soils of hybrid penisetum grown in Mn-added soils. The results showed the effect of Mn stress on the ratio of the plant growth-promoting factor-producing endophytic bacteria of P. americana and highlighted the potential of endophytic bacterium as an inoculum for enhanced phytoremediation of Mn-polluted soils by hybrid penisetum plants.
Collapse
Affiliation(s)
- Wen-Hui Zhang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Wei Chen
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Lin-Yan He
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Qi Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Xia-Fang Sheng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
382
|
Ge L, Cang L, Liu H, Zhou D. Effects of different warming patterns on the translocations of cadmium and copper in a soil-rice seedling system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15835-15843. [PMID: 26036584 DOI: 10.1007/s11356-015-4760-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
Heavy-metal-polluted rice poses potential threats to food security and has received great attention in recent years, while how elevated temperature affects the translocation of heavy metals in soil-rice system is unclear. In this study, potting experiments were conducted in plant growth chambers for 24 days to evaluate the effects of different warming patterns on cadmium (Cd) and copper (Cu) migrations in soil-rice seedling system. Rice seedlings were cultivated under four different day/night temperature patterns: 25/18 °C (CK), 25/23 °C (N5), 30/18 °C (D5), and 30/23 °C (DN5), respectively. Non-contaminated soil (CS), Cd/Cu lightly polluted soil (LS), and highly polluted soil (HS) were chosen for experiments. The results showed that different warming patterns decreased soil pH and elevated available soil Cd/Cu concentrations. The shoot and root biomass were increased by 39.0-320 and 28.6-348 %, respectively. Warming induced significant (p < 0.05) increase of Cd/Cu uptake and translocation in rice seedlings, especially for the Cd concentration in shoot. The Cd concentrations of shoot increased by 5-12 times and up to 8 times for LS and HS, respectively. Meanwhile, the Cd concentration of shoot increased with warming while that of root kept unchanged, indicating that warming promoted cadmium translocation from root to shoot (about -four to nine times of CK), while warming changed the Cu concentration of shoot similarly to that of root and had no significant effects on Cu translocations in rice seedlings. Our study may provide improved understanding for Cd/Cu fates in soil-rice system by warming and imply that heavy metals had the higher environmental risk under the future global warming.
Collapse
Affiliation(s)
- Liqiang Ge
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China.
| | - Long Cang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China.
| | - Hui Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China.
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
383
|
Khandare RV, Govindwar SP. Phytoremediation of textile dyes and effluents: Current scenario and future prospects. Biotechnol Adv 2015; 33:1697-714. [PMID: 26386310 DOI: 10.1016/j.biotechadv.2015.09.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/31/2015] [Accepted: 09/15/2015] [Indexed: 01/15/2023]
Abstract
Phytoremediation has emerged as a green, passive, solar energy driven and cost effective approach for environmental cleanup when compared to physico-chemical and even other biological methods. Textile dyes and effluents are condemned as one of the worst polluters of our precious water bodies and soils. They are well known mutagenic, carcinogenic, allergic and cytotoxic agents posing threats to all life forms. Plant based treatment of textile dyes is relatively new and hitherto has remained an unexplored area of research. Use of macrophytes like Phragmites australis and Rheum rhabarbarum have shown efficient removal of Acid Orange 7 and sulfonated anthraquinones, respectively. Common garden and ornamental plants namely Aster amellus, Portulaca grandiflora, Zinnia angustifolia, Petunia grandiflora, Glandularia pulchella, many ferns and aquatic plants have also been advocated for their dye degradation potential. Plant tissue cultures like suspension cells of Blumea malcolmii and Nopalea cochenillifera, hairy roots of Brassica juncea and Tagetes patula and whole plants of several other species have confirmed their role in dye degradation. Plants' oxidoreductases such as lignin peroxidase, laccase, tyrosinase, azo reductase, veratryl alcohol oxidase, riboflavin reductase and dichlorophenolindophenol reductase are known as key biodegrading enzymes which break the complex structures of dyes. Schematic metabolic pathways of degradation of different dyes and their environmental fates have also been proposed. Degradation products of dyes and their fates of metabolism have been reported to be validated by UV-vis spectrophotometry, high performance liquid chromatography, high performance thin layer chromatography, Fourier Transform Infrared Spectroscopy, gas chromatograph-mass spectroscopy and several other analytical tools. Constructed wetlands and various pilots scale reactors were developed independently using the plants of P. australis, Portulaca grandiflora, G. pulchella, Typha domingensis, Pogonatherum crinitum and Alternanthera philoxeroides. The developed phytoreactors gave noteworthy treatments, and significant reductions in biological oxygen demand, chemical oxygen demand, American Dye Manufacturers Institute color removal value, total organic carbon, total dissolved solids, total suspended solids, turbidity and conductivity of the dye effluents after phytoremediation. Metabolites of dyes and effluents have been assayed for phytotoxicity, cytotoxicity, genotoxicity and animal toxicity and were proved to be non/less toxic than untreated compounds. Effective strategies to handle fluctuating dye load and hydraulics for in situ treatment needs scientific attention. Future studies on development of transgenic plants for efficacious phytodegradation of textile dyes should be focused.
Collapse
Affiliation(s)
- Rahul V Khandare
- Department of Biotechnology, Shivaji University, Kolhapur, India.
| | | |
Collapse
|
384
|
Cabral L, Soares CRFS, Giachini AJ, Siqueira JO. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World J Microbiol Biotechnol 2015; 31:1655-64. [PMID: 26250548 DOI: 10.1007/s11274-015-1918-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023]
Abstract
In recent decades, the concentration of trace elements has increased in soil and water, mainly by industrialization and urbanization. Recovery of contaminated areas is generally complex. In that respect, microorganisms can be of vital importance by making significant contributions towards the establishment of plants and the stabilization of impacted areas. Among the available strategies for environmental recovery, bioremediation and phytoremediation outstand. Arbuscular mycorrhizal fungi (AMF) are considered the most important type of mycorrhizae for phytoremediation. AMF have broad occurrence in contaminated soils, and evidences suggest they improve plant tolerance to excess of certain trace elements. In this review, the use of AMF in phytoremediation and mechanisms involved in their trace element tolerance are discussed. Additionally, we present some techniques used to study the retention of trace elements by AMF, as well as a summary of studies showing major benefits of AMF for phytoremediation.
Collapse
Affiliation(s)
- Lucélia Cabral
- Research Center for Chemistry, Biology and Agriculture - CPQBA, University of Campinas - UNICAMP, Mailbox: 6171, Campinas, SP, 13081-970, Brazil.
| | - Claúdio Roberto Fonsêca Sousa Soares
- Department of Microbiology, Immunology and Parasitology (CCB/MIP), Center of Biological Science, Federal University of Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Admir José Giachini
- Department of Microbiology, Immunology and Parasitology (CCB/MIP), Center of Biological Science, Federal University of Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - José Oswaldo Siqueira
- Vale Institute of Technology Sustainable Development, Rua Boaventura da Silva, 955 (Nazaré), Belém, PA, 66055-090, Brazil
| |
Collapse
|
385
|
Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 2015; 5:355-377. [PMID: 28324544 PMCID: PMC4522733 DOI: 10.1007/s13205-014-0241-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/19/2014] [Indexed: 11/24/2022] Open
Abstract
Modern agriculture faces challenges, such as loss of soil fertility, fluctuating climatic factors and increasing pathogen and pest attacks. Sustainability and environmental safety of agricultural production relies on eco-friendly approaches like biofertilizers, biopesticides and crop residue return. The multiplicity of beneficial effects of microbial inoculants, particularly plant growth promoters (PGP), emphasizes the need for further strengthening the research and their use in modern agriculture. PGP inhabit the rhizosphere for nutrients from plant root exudates. By reaction, they help in (1) increased plant growth through soil nutrient enrichment by nitrogen fixation, phosphate solubilization, siderophore production and phytohormones production (2) increased plant protection by influencing cellulase, protease, lipase and β-1,3 glucanase productions and enhance plant defense by triggering induced systemic resistance through lipopolysaccharides, flagella, homoserine lactones, acetoin and butanediol against pests and pathogens. In addition, the PGP microbes contain useful variation for tolerating abiotic stresses like extremes of temperature, pH, salinity and drought; heavy metal and pesticide pollution. Seeking such tolerant PGP microbes is expected to offer enhanced plant growth and yield even under a combination of stresses. This review summarizes the PGP related research and its benefits, and highlights the benefits of PGP rhizobia belonging to the family Rhizobiaceae, Phyllobacteriaceae and Bradyrhizobiaceae.
Collapse
Affiliation(s)
- Subramaniam Gopalakrishnan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Arumugam Sathya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Rajendran Vijayabharathi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Rajeev Kumar Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - C L Laxmipathi Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Lakshmanan Krishnamurthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India.
| |
Collapse
|
386
|
Hong C, Si Y, Xing Y, Li Y. Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10788-99. [PMID: 25761991 DOI: 10.1007/s11356-015-4186-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/29/2015] [Indexed: 05/19/2023]
Abstract
Mine activities leaked heavy metals into surrounding soil and may affected indigenous microbial communities. In the present study, the diversity and composition of the bacterial community in soil collected from three regions which have different pollution degree, heavy pollution, moderate pollution, and non-pollution, within the catchment of Chao River in Beijing City, were compared using the Illumina MiSeq sequencing technique. Rarefaction results showed that the polluted area had significant higher bacterial alpha diversity than those from unpolluted area. Principal component analysis (PCA) showed that microbial communities in the polluted areas had significant differences compared with the unpolluted area. Moreover, PCA at phylum level and Matastats results demonstrated that communities in locations shared similar phyla diversity, indicating that the bacterial community changes under metal pollution were not reflected on phyla structure. At genus level, the relative abundance of dominant genera changed in sites with degrees of pollution. Genera Bradyrhizobium, Rhodanobacter, Reyranella, and Rhizomicrobium significantly decreased with increasing pollution degree, and their dominance decreased, whereas several genera (e.g., Steroidobacter, Massilia, Arthrobacter, Flavisolibacter, and Roseiflexus) increased and became new dominant genera in the heavily metal-polluted area. The potential resistant bacteria, found within the genera of Thiobacillus, Pseudomonas, Arthrobacter, Microcoleus, Leptolyngbya, and Rhodobacter, are less than 2.0 % in the indigenous bacterial communities, which play an important role in soil ecosystem. This effort to profile the background diversity may set the first stage for better understanding the mechanism underlying the community structure changes under in situ mild heavy metal pollution.
Collapse
Affiliation(s)
- Chen Hong
- School of Civil and Environmental Engineering, and Key Laboratory of Metal and Mine Efficiently Exploiting and Safety, Ministry of Education, University of Science and Technology Beijing, 100083, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
387
|
Akhtar SS, Andersen MN, Naveed M, Zahir ZA, Liu F. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:770-781. [PMID: 32480720 DOI: 10.1071/fp15054] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/24/2015] [Indexed: 06/11/2023]
Abstract
The objective of this work was to study the interactive effect of biochar and plant growth-promoting endophytic bacteria containing 1-aminocyclopropane-1-carboxylate deaminase and exopolysaccharide activity on mitigating salinity stress in maize (Zea mays L.). The plants were grown in a greenhouse under controlled conditions, and were subjected to separate or combined treatments of biochar (0% and 5%, w/w) and two endophytic bacterial strains (Burkholderia phytofirmans (PsJN) and Enterobacter sp. (FD17)) and salinity stress. The results indicated that salinity significantly decreased the growth of maize, whereas both biochar and inoculation mitigated the negative effects of salinity on maize performance either by decreasing the xylem Na+ concentration ([Na+]xylem) uptake or by maintaining nutrient balance within the plant, especially when the two treatments were applied in combination. Moreover, in biochar-amended saline soil, strain FD17 performed significantly better than did PsJN in reducing [Na+]xylem. Our results suggested that inoculation of plants with endophytic baterial strains along with biochar amendment could be an effective approach for sustaining crop production in salt-affected soils.
Collapse
Affiliation(s)
- Saqib Saleem Akhtar
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Mathias Neumann Andersen
- Sino-Danish Center for Education and Research, 3 Zhongguancun South 1st Alley, Haidian District, 100190 Beijing, China
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| |
Collapse
|
388
|
Pereira SI, Pires C, Henriques I, Correia A, Magan N, Castro PM. Assessment of rhizospheric culturable bacteria ofPhragmites australisandJuncus effususfrom polluted sites. J Basic Microbiol 2015; 55:1179-90. [DOI: 10.1002/jobm.201500010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/02/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Sofia I.A. Pereira
- CBQF - Centro de Biotecnologia e Qu; í; mica Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa/Porto; Porto Portugal
| | - Carlos Pires
- CBQF - Centro de Biotecnologia e Qu; í; mica Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa/Porto; Porto Portugal
- Cranfield Health; Cranfield University; Cranfield Bedford England
| | - Isabel Henriques
- Department of Biology & CESAM (Center for Environmental and Marine Studies); University of Aveiro; Campus Universit; á; rio de Santiago; Aveiro Portugal
| | - António Correia
- Department of Biology & CESAM (Center for Environmental and Marine Studies); University of Aveiro; Campus Universit; á; rio de Santiago; Aveiro Portugal
| | - Naresh Magan
- Cranfield Health; Cranfield University; Cranfield Bedford England
| | - Paula M.L. Castro
- CBQF - Centro de Biotecnologia e Qu; í; mica Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa/Porto; Porto Portugal
| |
Collapse
|
389
|
Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 156:62-9. [PMID: 25796039 DOI: 10.1016/j.jenvman.2015.03.024] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 05/08/2023]
Abstract
Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas Bacillus sp. E1S2 significantly enhanced the accumulation of Zn (18%) in plants compared with non-inoculated controls. The inoculated strains also showed high levels of colonization in rhizosphere and plant tissues. Results demonstrate the potential to improve phytoextraction of soils contaminated with multiple heavy metals by inoculating metal hyperaccumulating plants with their own selected functional endophytic bacterial strains.
Collapse
Affiliation(s)
- Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Rui S Oliveira
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal; Research Centre on Health and Environment, School of Allied Health Sciences, Polytechnic Institute of Porto, Rua Valente Perfeito, 322, 4400-330 Vila Nova de Gaia, Portugal
| | - Fengjiao Nai
- Soil Science Agricultural College, Guizhou University, Guiyang 550025, China
| | - Mani Rajkumar
- Department of Life Sciences, Central University of Tamil Nadu, Collectorate Annexe, Thanjavur Road, Thiruvarur 610 004, Tamil Nadu, India
| | - Yongming Luo
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Inês Rocha
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
390
|
Kamran MA, Syed JH, Eqani SAMAS, Munis MFH, Chaudhary HJ. Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9275-9283. [PMID: 25592913 DOI: 10.1007/s11356-015-4074-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/02/2015] [Indexed: 06/04/2023]
Abstract
Microbe-assisted phyto-remediation approach is widely applied and appropriate choice to reduce the environmental risk of heavy metals originated from contaminated soils. The present study was designed to screen out the nested belongings of Eruca sativa plants and Pseudomonas putida (ATCC 39213) at varying cadmium (Cd) levels and their potential to deal with Cd uptake from soils. We carried out pot trial experiment by examining the soil containing E. sativa seedlings either treated with P. putida and/or untreated plants subjected to three different levels (ppm) of Cd (i.e., 150, 250, and 500). In all studied cases, we observed an increase in Cd uptake for E. sativa plants inoculated with P. putida than those of un-inoculated plants. Cd toxicity was assessed by recording different parameters including stunted shoot growth, poor rooting, and Cd residual levels in the plants that were not inoculated with P. putida. Significant difference (p < 0.05) of different growth parameters for inoculated vs non-inoculated plants was observed at all given treatments. However, among the different treatments, E. sativa exhibited increased values for different growth parameters (except proline contents) at lower Cd levels than those of their corresponding higher levels, shoot length (up to 27 %), root length (up to 32 %), whole fresh plant (up to 40 %), dry weight (up to 22 %), and chlorophyll contents (up to 26 %). Despite the hyperaccumulation of Cd in whole plant of E. sativa, P. putida improved the plant growth at varying levels of Cd supply than those of associated non-inoculated plants. Present results indicated that inoculation with P. putida enhanced the Cd uptake potential of E. sativa and favors the healthy growth under Cd stress.
Collapse
Affiliation(s)
- Muhammad Aqeel Kamran
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | | | | | | | | |
Collapse
|
391
|
Ahemad M. Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Genet Eng Biotechnol 2015; 13:51-58. [PMID: 30647566 PMCID: PMC6299803 DOI: 10.1016/j.jgeb.2015.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/24/2014] [Accepted: 02/14/2015] [Indexed: 12/01/2022]
Abstract
Chromium, specifically hexavalent chromium is one of the most toxic pollutants that are released into soils by various anthropogenic activities. It has numerous adverse effects not only on plant system but also on beneficial soil microorganisms which are the indicators of soil fertility and health. Recent emergence of phytoremediation as an environmental friendly and economical approach to decontaminate the chromium stressed soils has received wider attention. But major drawback of this process is that it takes long time. Application of multifunctional plant-growth-promoting bacteria (PGPB) exhibiting chromium resistance and reducing traits when used as bioinoculants with phytoremediating plants, has resulted in a better plant growth and chromium remediating efficiency in a short time span. PGPB improve chromium uptake by modifying root architecture, secreting metal sequestering molecules in rhizosphere and alleviating chromium induced phytotoxicity. The purpose of this review is to highlight the plant-beneficial traits of PGPB to accelerate plant-growth and concurrently ameliorate phytoremediation of chromium contaminated soils.
Collapse
|
392
|
Kolbas A, Kidd P, Guinberteau J, Jaunatre R, Herzig R, Mench M. Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5370-5382. [PMID: 25561255 DOI: 10.1007/s11356-014-4006-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Endophytic bacteria from roots and crude seed extracts of a Cu-tolerant population of Agrostis capillaris were inoculated to a sunflower metal-tolerant mutant line, and their influence on Cu tolerance and phytoextraction was assessed using a Cu-contaminated soil series. Ten endophytic bacterial strains isolated from surface-sterilized A. capillaris roots were mixed to prepare the root endophyte inoculant (RE). In parallel, surface-sterilized seeds of A. capillaris were crushed in MgSO4 to prepare a crude seed extract containing seed endophytes (SE). An aliquot of this seed extract was filtered at 0.2 μm to obtain a bacterial cell-free seed extract (SEF). After surface sterilization, germinated sunflower seeds were separately treated with one of five modalities: no treatment (C), immersion in MgSO4 (CMg) or SEF solutions and inoculation with RE or SE. All plants were cultivated on a Cu-contaminated soil series (13-1020 mg Cu kg(-1)). Cultivable RE strains were mostly members of the Pseudomonas genera, and one strain was closely related to Labrys sp. The cultivable SE strains belonged mainly to the Bacillus genera and some members of the Rhodococcus genera. The treatment effects depended on the soil Cu concentration. Both SE and SEF plants had a higher Cu tolerance in the 13-517 mg Cu kg(-1) soil range as reflected by increased shoot and root DW yields compared to control plants. This was accompanied by a slight decrease in shoot Cu concentration and increase in root Cu concentration. Shoot and root DW yields were more promoted by SE than SEF in the 13-114 mg Cu kg(-1) soil range, which could reflect the influence of seed-located bacterial endophytes. At intermediate soil Cu (416-818 mg Cu kg(-1) soil), the RE and CMg plants had lower shoot Cu concentrations than the control, SE and SEF plants. At high total soil Cu (617-1020 mg Cu kg(-1)), root DW yield of RE plants slightly increased and their root Cu concentration rose by up to 1.9-fold. In terms of phytoextraction efficiency, shoot Cu removal was increased for sunflower plants inoculated with crude and bacterial cell-free seed extracts by 1.3- to 2.2-fold in the 13-416 mg Cu kg(-1) soil range. Such increase was mainly driven by an enhanced shoot DW yield. The number and distribution of endophytic bacteria in the harvested sunflower tissues must be further examined.
Collapse
Affiliation(s)
- Aliaksandr Kolbas
- UMR BIOGECO INRA 1202, Ecology of Communities, University of Bordeaux, Bât B2, allée Geoffroy St-Hilaire, CS50023, 33615, Pessac cedex, France,
| | | | | | | | | | | |
Collapse
|
393
|
Ahemad M. Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech 2015; 5:111-121. [PMID: 28324572 PMCID: PMC4362741 DOI: 10.1007/s13205-014-0206-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/24/2014] [Indexed: 11/27/2022] Open
Abstract
Heavy metal pollution of soils is of great concern. The presence of the toxic metal species above critical concentration not only harmfully affects human health but also the environment. Among existing strategies to remediate metal contaminates in soils, phytoremediation approach using metal accumulating plants is much convincing in terms of metal removal efficiency, but it has many limitations because of slow plant growth and decreased biomass owing to metal-induced stress. In addition, constrain of metal bioavailability in soils is the prime factor to restrict its applicability. Phytoremediation of metals in association with phosphate-solubilizing bacteria (PSB) considerably overcomes the practical drawbacks imposed by metal stress on plants. This review is an effort to describe mechanism of PSB in supporting and intensifying phytoremediation of heavy metals in soils and to address the developmental status of the current trend in application of PSB in this context.
Collapse
Affiliation(s)
- Munees Ahemad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India.
| |
Collapse
|
394
|
Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT. Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 151:160-6. [PMID: 25575343 DOI: 10.1016/j.jenvman.2014.12.045] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 12/23/2014] [Accepted: 12/27/2014] [Indexed: 05/10/2023]
Abstract
Endophytic bacteria have the potential to promote plant growth and heavy metal(loid) (HM) removal from contaminated soil. Pseudomonas koreensis AGB-1, isolated from roots of Miscanthus sinensis growing in mine-tailing soil, exhibited high tolerance to HMs and plant growth promoting traits. Transmission electron microscope (TEM) analysis revealed that AGB-1 sequestered HMs extracellularly and their accumulation was visible as dark metal complexes on bacterial surfaces and outside of the cells. DNA sequencing of HM resistance marker genes indicated high homology to the appropriate regions of the arsB, ACR3(1), aoxB, and bmtA determinants. Inoculating mining site soil with AGB-1 increased M. sinensis biomass by 54%, chlorophyll by 27%, and protein content by 28%. High superoxide dismutase and catalase activities, and the lower malondialdehyde content of plants growing in AGB-1-inoculated soil indicate reduced oxidative stress. Metal(loid) concentrations in roots and shoots of plants grown in inoculated soil were higher than those of the controls in pot trials with mine tailing soil. Results suggest that AGB-1 can be used in association with M. sinensis to promote phytostabilization and remediation of HM-contaminated sites.
Collapse
Affiliation(s)
- A Giridhar Babu
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic of Korea
| | - Patrick J Shea
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0817, USA
| | - D Sudhakar
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic of Korea
| | - Ik-Boo Jung
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic of Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic of Korea.
| |
Collapse
|
395
|
Muehe EM, Weigold P, Adaktylou IJ, Planer-Friedrich B, Kraemer U, Kappler A, Behrens S. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri. Appl Environ Microbiol 2015; 81:2173-81. [PMID: 25595759 PMCID: PMC4345380 DOI: 10.1128/aem.03359-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/08/2015] [Indexed: 12/07/2022] Open
Abstract
The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a "native" and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, "Candidatus Chloracidobacterium") of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy.
Collapse
Affiliation(s)
- E Marie Muehe
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Pascal Weigold
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Irini J Adaktylou
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Ute Kraemer
- Department of Plant Physiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Sebastian Behrens
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
396
|
El Aafi N, Saidi N, Maltouf AF, Perez-Palacios P, Dary M, Brhada F, Pajuelo E. Prospecting metal-tolerant rhizobia for phytoremediation of mining soils from Morocco using Anthyllis vulneraria L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4500-4512. [PMID: 25315928 DOI: 10.1007/s11356-014-3596-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 09/11/2014] [Indexed: 06/04/2023]
Abstract
The aim of this work was using the legume plant Anthyllis vulneraria L. (ecotype metallicolous) as a trap plant, in order to isolate metal-tolerant rhizobial strains from metal-contaminated soils from Morocco, with pollution indexes spanning three orders of magnitude. As bioindicator, soil bacterial density was inversely correlated to the pollution index. Forty-three bulk soil bacteria and sixty two bacteria from nodules were isolated. The resistance of bacteria from nodules to heavy metals was four to ten times higher than that of bulk soil bacteria, reaching high maximum tolerable concentrations for Cd (2 mM), Cu (2 mM), Pb (7 mM), and Zn (3 mM). Besides, some strains show multiple metal-tolerant abilities and great metal biosorption onto the bacterial surface. Amplification and restriction analysis of ribosomal 16S rDNA (ARDRA) and 16S ribosomal DNA (rDNA) sequencing were used to assess biodiversity and phylogenetic position among bacteria present in nodules. Our results suggest that a great diversity of non-rhizobial bacteria (alpha- and gamma-proteobacteria) colonize nodules of Anthyllis plants in contaminated soils. Taking together, our results evidence that, in polluted soils, rhizobia can be displaced by non-rhizobial (and hence, non-fixing) strains from nodules. Thus, the selection of metal-resistant rhizobia is a key step for using A. vulneraria symbioses for in situ phytoremediation.
Collapse
Affiliation(s)
- N El Aafi
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, University Mohamed V at Agdal, Rabat, Morocco,
| | | | | | | | | | | | | |
Collapse
|
397
|
Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. SUSTAINABILITY 2015. [DOI: 10.3390/su7022189] [Citation(s) in RCA: 384] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
398
|
Ferret C, Cornu JY, Elhabiri M, Sterckeman T, Braud A, Jezequel K, Lollier M, Lebeau T, Schalk IJ, Geoffroy VA. Effect of pyoverdine supply on cadmium and nickel complexation and phytoavailability in hydroponics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2106-2116. [PMID: 25167822 DOI: 10.1007/s11356-014-3487-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/19/2014] [Indexed: 06/03/2023]
Abstract
Siderophores are chelators with a high selectivity for Fe(III) and a good affinity for divalent metals, including Cd(II) and Ni(II). Inoculation with siderophore-producing bacteria (SPB) has thus been proposed as an alternative to chelator supply in phytoremediation. Accurate assessments of the potential of this association require a dissection of the interaction of siderophores with metals at the soil-root interface. This study focuses on pyoverdine (Pvd), the main siderophore produced by Pseudomonas aeruginosa. We first assessed the ability of Pvd to coordinate Ni(II). The stability constant of Pvd-Ni(II) (log K (L'Ni) = 10.9) was found to be higher than that of Pvd-Cd(II) (log K (L'Cd) = 8.2). We then investigated the effect of a direct supply of Pvd on the mobilization, speciation, and phytoavailability of Cd and Ni in hydroponics. When supplied at a concentration of 50 μM, Pvd selectively promoted Ni mobilization from smectite. It decreased plant Ni and Cd contents and the free ionic fractions of these two metals, consistent with the free ion activity model. Pvd had a more pronounced effect for Ni than for Cd, as predicted from its coordination properties. Inoculation with P. aeruginosa had a similar effect on Ni phytoavailability to the direct supply of Pvd.
Collapse
Affiliation(s)
- C Ferret
- UMR 7242 CNRS-Université de Strasbourg, ESBS, 300 Boulevard Sébastien Brant, F-67412, Illkirch cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
399
|
Sun G, Zhang X, Hu Q, Zhang H, Zhang D, Li G. Biodegradation of dichlorodiphenyltrichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs) with plant and nutrients and their effects on the microbial ecological kinetics. MICROBIAL ECOLOGY 2015; 69:281-92. [PMID: 25213654 DOI: 10.1007/s00248-014-0489-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/29/2014] [Indexed: 05/17/2023]
Abstract
Four pilot-scale test mesocosms were conducted for the remediation of organochlorine pesticides (OCPs)-contaminated aged soil. The results indicate that the effects on degradation of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) were in the following order: nutrients/plant bioaugmentation (81.18 % for HCHs; 85.4 % for DDTs) > nutrients bioaugmentation > plant bioaugmentation > only adding water > control, and nutrients/plant bioaugmentation greatly enhanced the degradation of HCHs (81.18 %) and DDTs (85.4 %). The bacterial community structure, diversity and composition were assessed by 454-pyrosequencing of 16S recombinant RNA (rRNA), whereas the abundance of linA gene was determined by quantitative polymerase chain reaction. Distinct differences in bacterial community composition, structure, and diversity were a function of remediation procedure. Predictability of HCH/DDT degradation in soils was also investigated. A positive correlation between linA gene abundance and the removal ratio of HCHs was indicated by correlation analyses. A similar relationship was also confirmed between the degradation of HCHs/DDTs and the abundance of some assemblages (Gammaproteobacteria and Flavobacteria). Our results offer microbial ecological insight into the degradation of HCHs and DDTs in aged contaminated soil, which is helpful for the intensification of bioremediation through modifying plant-microbe patterns, and cessation of costly and time-consuming assays.
Collapse
Affiliation(s)
- Guangdong Sun
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environmental Science, Tsinghua University, 100084, Beijing, China,
| | | | | | | | | | | |
Collapse
|
400
|
Poosakkannu A, Nissinen R, Kytöviita MM. Culturable endophytic microbial communities in the circumpolar grass, Deschampsia flexuosa in a sub-Arctic inland primary succession are habitat and growth stage specific. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:111-122. [PMID: 25721603 DOI: 10.1111/1758-2229.12195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Little is known about endophytic microbes in cold climate plants and how their communities are formed.We compared culturable putative endophytic bacteria and fungi in the ecologically important circumpolargrass, Deschampsia flexuosa growing in two successional stages of subarctic sand dune (68°29′N).Sequence analyses of partial 16S rRNA and internal transcribed spacer (ITS) sequences of culturable endophytes showed that diverse bacteria and fungi inhabit different tissues of D. flexuosa. A total of 178 bacterial isolates representing seven taxonomic divisions, Alpha, Beta and Gammaproteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Acidobacteria, and 30 fungal isolates representing the phylum Ascomycota were identified. Several endophytes were affiliated with specific plant tissues or successional stages. This first report of bacterial endophytes in D. flexuosa revealed that the genus Pseudomonas is tightly associated with D. flexuosa, and encompassed 39% of the bacterial isolates, and 58% of seed isolates. Based on 16S rRNA and ITS sequence data, most of the D. flexuosa endophytes were closely related to microbes from other cold environments. The majority of seed endophytic bacterial isolates were able to solubilize organic form of phosphate suggesting that these endophytes could play a role in resource mobilization in germinating seeds in nutrient-poor habitat.
Collapse
Affiliation(s)
- Anbu Poosakkannu
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| | | | | |
Collapse
|