351
|
Hosseini SM, Dufort I, Caballero J, Moulavi F, Ghanaei HR, Sirard MA. Transcriptome profiling of bovine inner cell mass and trophectoderm derived from in vivo generated blastocysts. BMC DEVELOPMENTAL BIOLOGY 2015; 15:49. [PMID: 26681441 PMCID: PMC4683974 DOI: 10.1186/s12861-015-0096-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/22/2015] [Indexed: 12/24/2022]
Abstract
Background This study describes the generation and analysis of the transcriptional profile of bovine inner cell mass (ICM) and trophectoderm (TE), obtained from in vivo developed embryos by using a bovine-embryo specific array (EmbryoGENE) containing 37,238 probes. Results A total of 4,689 probes were differentially expressed between ICM and TE, among these, 2,380 and 2,309 probes were upregulated in ICM and TE tissues, respectively (P ≤ 0.01, FC ≥ 2.0, FDR: 2.0). Ontological classification of the genes predominantly expressed in ICM emerged a range of functional categories with a preponderance of genes involved in basal and developmental signaling pathways including P53, TGFβ, IL8, mTOR, integrin, ILK, and ELF2 signalings. Cross-referencing of microarray data with two available in vitro studies indicated a marked reduction in ICM vs. TE transcriptional difference following in vitro culture of bovine embryos. Moreover, a great majority of genes that were found to be misregulated following in vitro culture of bovine embryos were known genes involved in epigenetic regulation of pluripotency and cell differentiation including DNMT1, GADD45, CARM1, ELF5 HDAC8, CCNB1, KDM6A, PRDM9, CDX2, ARID3A, IL6, GADD45A, FGFR2, PPP2R2B, and SMARCA2. Cross-species referencing of microarray data revealed substantial divergence between bovine and mouse and human in signaling pathways involved in early lineage specification. Conclusions The transcriptional changes occur during ICM and TE lineages specification in bovine is greater than previously understood. Therefore, this array data establishes a standard to evaluate the in vitro imprint on the transcriptome and to hypothesize the cross-species differences that allow in vitro acquisition of pluripotent ICM in human and mice but hinder that process in bovine. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0096-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S M Hosseini
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .,Centre de Recherche en Biologie de la Reproduction, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, QC, G1V 0A6, Canada.
| | - I Dufort
- Centre de Recherche en Biologie de la Reproduction, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, QC, G1V 0A6, Canada.
| | - J Caballero
- Centre de Recherche en Biologie de la Reproduction, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, QC, G1V 0A6, Canada.
| | - F Moulavi
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - H R Ghanaei
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - M A Sirard
- Centre de Recherche en Biologie de la Reproduction, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
352
|
Ajduk A, Zernicka-Goetz M. Polarity and cell division orientation in the cleavage embryo: from worm to human. Mol Hum Reprod 2015; 22:691-703. [PMID: 26660321 PMCID: PMC5062000 DOI: 10.1093/molehr/gav068] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023] Open
Abstract
Cleavage is a period after fertilization, when a 1-cell embryo starts developing into a multicellular organism. Due to a series of mitotic divisions, the large volume of a fertilized egg is divided into numerous smaller, nucleated cells—blastomeres. Embryos of different phyla divide according to different patterns, but molecular mechanism of these early divisions remains surprisingly conserved. In the present paper, we describe how polarity cues, cytoskeleton and cell-to-cell communication interact with each other to regulate orientation of the early embryonic division planes in model animals such as Caenorhabditis elegans, Drosophila and mouse. We focus particularly on the Par pathway and the actin-driven cytoplasmic flows that accompany it. We also describe a unique interplay between Par proteins and the Hippo pathway in cleavage mammalian embryos. Moreover, we discuss the potential meaning of polarity, cytoplasmic dynamics and cell-to-cell communication as quality biomarkers of human embryos.
Collapse
Affiliation(s)
- Anna Ajduk
- Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
353
|
Jin K, Xiao D, Andersen B, Xiang M. Lmo4 and Other LIM domain only factors are necessary and sufficient for multiple retinal cell type development. Dev Neurobiol 2015; 76:900-15. [PMID: 26579872 DOI: 10.1002/dneu.22365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/01/2015] [Accepted: 11/12/2015] [Indexed: 12/13/2022]
Abstract
Understanding the molecular basis by which distinct cell types are specified is a central issue in retinogenesis and retinal disease development. Here we examined the role of LIM domain only 4 (Lmo4) in retinal development using both gain-of-function and loss-of-function approaches. By immunostaining, Lmo4 was found to be expressed in mouse retina from E10.5 to mature stages. Retroviral delivery of Lmo4 into retinal progenitor cells could promote the amacrine, bipolar and Müller cell fates at the expense of photoreceptors. It also inhibited the fate of early-born retinal ganglion cells. Using a dominant-negative form of Lmo4 which suppresses transcriptional activities of all LIM domain only factors, we demonstrated that LIM domain only factors are both necessary and sufficient for promoting amacrine and bipolar cell development, but not for the differentiation of ganglion, horizontal, Müller, or photoreceptor cells. Taken together, our study uncovers multiple roles of Lmo4 during retinal development and demonstrates the importance of LIM domain only factors in ensuring proper retinal cell specification and differentiation. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 900-915, 2016.
Collapse
Affiliation(s)
- Kangxin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China.,Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854
| | - Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Bogi Andersen
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, Irvine, California, 92697-4030.,Department of Biological Chemistry, Division of Endocrinology and Metabolism, University of California, Irvine, California, 92697-4030
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China.,Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854
| |
Collapse
|
354
|
Guo M, Wang H, Potter SS, Whitsett JA, Xu Y. SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis. PLoS Comput Biol 2015; 11:e1004575. [PMID: 26600239 PMCID: PMC4658017 DOI: 10.1371/journal.pcbi.1004575] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/30/2015] [Indexed: 01/15/2023] Open
Abstract
A major challenge in developmental biology is to understand the genetic and cellular processes/programs driving organ formation and differentiation of the diverse cell types that comprise the embryo. While recent studies using single cell transcriptome analysis illustrate the power to measure and understand cellular heterogeneity in complex biological systems, processing large amounts of RNA-seq data from heterogeneous cell populations creates the need for readily accessible tools for the analysis of single-cell RNA-seq (scRNA-seq) profiles. The present study presents a generally applicable analytic pipeline (SINCERA: a computational pipeline for SINgle CEll RNA-seq profiling Analysis) for processing scRNA-seq data from a whole organ or sorted cells. The pipeline supports the analysis for: 1) the distinction and identification of major cell types; 2) the identification of cell type specific gene signatures; and 3) the determination of driving forces of given cell types. We applied this pipeline to the RNA-seq analysis of single cells isolated from embryonic mouse lung at E16.5. Through the pipeline analysis, we distinguished major cell types of fetal mouse lung, including epithelial, endothelial, smooth muscle, pericyte, and fibroblast-like cell types, and identified cell type specific gene signatures, bioprocesses, and key regulators. SINCERA is implemented in R, licensed under the GNU General Public License v3, and freely available from CCHMC PBGE website, https://research.cchmc.org/pbge/sincera.html.
Collapse
Affiliation(s)
- Minzhe Guo
- The Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Electrical Engineering and Computing Systems, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Hui Wang
- The Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - S. Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jeffrey A. Whitsett
- The Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yan Xu
- The Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
355
|
A differential network analysis approach for lineage specifier prediction in stem cell subpopulations. NPJ Syst Biol Appl 2015; 1:15012. [PMID: 28725462 PMCID: PMC5516870 DOI: 10.1038/npjsba.2015.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/20/2015] [Accepted: 09/04/2015] [Indexed: 01/21/2023] Open
Abstract
Background: Stem cell differentiation is a complex biological process. Cellular heterogeneity, such as the co-existence of different cell subpopulations within a population, partly hampers our understanding of this process. The modern single-cell gene expression technologies, such as single-cell RT-PCR and RNA-seq, have enabled us to elucidate such heterogeneous cell subpopulations. However, the identification of a transcriptional regulatory network (TRN) for each cell subpopulation within a population and genes determining specific cell fates (lineage specifiers) remains a challenge due to the slower development of appropriate computational and experimental workflows. Here, we propose a computational differential network analysis approach for predicting lineage specifiers in binary-fate differentiation events. Methods: The proposed method is based on a model that considers each stem cell subpopulation being in a stable state maintained by its specific TRN stability core, and cell differentiation involves changes in these stability cores between parental and daughter cell subpopulations. The method first reconstructs topologically different cell-subpopulation specific TRNs from single-cell gene expression data, literature knowledge and transcription factor (TF)–DNA binding-site prediction. Then, it systematically predicts lineage specifiers by identifying genes in the TRN stability cores in both parental and daughter cell subpopulations. Results: Application of this method to different stem cell differentiation systems was able to predict known and putative novel lineage specifiers. These examples include the differentiation of inner cell mass into either primitive endoderm or epiblast, different progenitor cells in the hematopoietic system, and the lung alveolar bipotential progenitor into either alveolar type 1 or alveolar type 2. Conclusions: The method is generally applicable to any binary-fate differentiation system, for which single-cell gene expression data are available. Therefore, it should aid in understanding stem cell lineage specification, and in the development of experimental strategies for regenerative medicine.
Collapse
|
356
|
Hodne K, Weltzien FA. Single-Cell Isolation and Gene Analysis: Pitfalls and Possibilities. Int J Mol Sci 2015; 16:26832-49. [PMID: 26569222 PMCID: PMC4661855 DOI: 10.3390/ijms161125996] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/14/2015] [Accepted: 11/03/2015] [Indexed: 01/07/2023] Open
Abstract
During the last two decades single-cell analysis (SCA) has revealed extensive phenotypic differences within homogenous cell populations. These phenotypic differences are reflected in the stochastic nature of gene regulation, which is often masked by qualitatively and quantitatively averaging in whole tissue analyses. The ability to isolate transcripts and investigate how genes are regulated at the single cell level requires highly sensitive and refined methods. This paper reviews different strategies currently used for SCA, including harvesting, reverse transcription, and amplification of the RNA, followed by methods for transcript quantification. The review provides the historical background to SCA, discusses limitations, and current and future possibilities in this exciting field of research.
Collapse
Affiliation(s)
- Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences-Campus Adamstuen, 0033 Oslo, Norway.
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences-Campus Adamstuen, 0033 Oslo, Norway.
| |
Collapse
|
357
|
Boroviak T, Loos R, Lombard P, Okahara J, Behr R, Sasaki E, Nichols J, Smith A, Bertone P. Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis. Dev Cell 2015; 35:366-82. [PMID: 26555056 PMCID: PMC4643313 DOI: 10.1016/j.devcel.2015.10.011] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 09/01/2015] [Accepted: 10/14/2015] [Indexed: 12/11/2022]
Abstract
Naive pluripotency is manifest in the preimplantation mammalian embryo. Here we determine transcriptome dynamics of mouse development from the eight-cell stage to postimplantation using lineage-specific RNA sequencing. This method combines high sensitivity and reporter-based fate assignment to acquire the full spectrum of gene expression from discrete embryonic cell types. We define expression modules indicative of developmental state and temporal regulatory patterns marking the establishment and dissolution of naive pluripotency in vivo. Analysis of embryonic stem cells and diapaused embryos reveals near-complete conservation of the core transcriptional circuitry operative in the preimplantation epiblast. Comparison to inner cell masses of marmoset primate blastocysts identifies a similar complement of pluripotency factors but use of alternative signaling pathways. Embryo culture experiments further indicate that marmoset embryos utilize WNT signaling during early lineage segregation, unlike rodents. These findings support a conserved transcription factor foundation for naive pluripotency while revealing species-specific regulatory features of lineage segregation.
Collapse
Affiliation(s)
- Thorsten Boroviak
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Remco Loos
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Patrick Lombard
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Junko Okahara
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
| | - Rüdiger Behr
- Deutsches Primatenzentrum (German Primate Center), Leibniz-Institut für Primatenforschung, Kellnerweg 4, 37077 Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan; Keio Advanced Research Center, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Paul Bertone
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK; Genome Biology and Developmental Biology Units, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
358
|
Kubaczka C, Senner C, Cierlitza M, Araúzo-Bravo M, Kuckenberg P, Peitz M, Hemberger M, Schorle H. Direct Induction of Trophoblast Stem Cells from Murine Fibroblasts. Cell Stem Cell 2015; 17:557-68. [DOI: 10.1016/j.stem.2015.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/27/2015] [Accepted: 08/06/2015] [Indexed: 01/24/2023]
|
359
|
Meng F, Forrester-Gauntlett B, Turner P, Henderson H, Oback B. Signal Inhibition Reveals JAK/STAT3 Pathway as Critical for Bovine Inner Cell Mass Development. Biol Reprod 2015; 93:132. [PMID: 26510863 DOI: 10.1095/biolreprod.115.134254] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022] Open
Abstract
The inner cell mass (ICM) of mammalian blastocysts consists of pluripotent epiblast and hypoblast lineages, which develop into embryonic and extraembryonic tissues, respectively. We conducted a chemical screen for regulators of epiblast identity in bovine Day 8 blastocysts. From the morula stage onward, in vitro fertilized embryos were cultured in the presence of cell-permeable small molecules targeting nine principal signaling pathway components, including TGFbeta1, BMP, EGF, VEGF, PDGF, FGF, cAMP, PI3K, and JAK signals. Using 1) blastocyst quality (by morphological grading), 2) cell numbers (by differential stain), and 3) epiblast (FGF4, NANOG) and hypoblast (PDGFRa, SOX17) marker gene expression (by quantitative PCR), we identified positive and negative regulators of ICM development and pluripotency. TGFbeta1, BMP, and cAMP and combined VEGF/PDGF/FGF signals did not affect blastocyst development while PI3K was important for ICM growth but did not alter lineage-specific gene expression. Stimulating cAMP specifically increased NANOG expression, while combined VEGF/PDGF/FGF inhibition up-regulated epiblast and hypoblast markers. The strongest effects were observed by suppressing JAK1/2 signaling with AZD1480. This treatment interfered with ICM formation, but trophectoderm cell numbers and markers (CDX2, KTR8) were not altered. JAK inhibition repressed both epiblast and hypoblast transcripts as well as naive pluripotency-related genes (KLF4, TFCP2L1) and the JAK substrate STAT3. We found that tyrosine (Y) 705-phosphorylated STAT3 (pSTAT3(Y705)) was restricted to ICM nuclei, where it colocalized with SOX2 and NANOG. JAK inhibition abolished this ICM-exclusive pSTAT3(Y705) signal and strongly reduced the number of SOX2-positive nuclei. In conclusion, JAK/STAT3 activation is required for bovine ICM formation and acquisition of naive pluripotency markers.
Collapse
Affiliation(s)
- Fanli Meng
- AgResearch Ltd., Ruakura Research Centre, Reproductive Technologies, Hamilton, New Zealand
| | | | - Pavla Turner
- AgResearch Ltd., Ruakura Research Centre, Reproductive Technologies, Hamilton, New Zealand
| | - Harold Henderson
- AgResearch Ltd., Ruakura Research Centre, Reproductive Technologies, Hamilton, New Zealand
| | - Björn Oback
- AgResearch Ltd., Ruakura Research Centre, Reproductive Technologies, Hamilton, New Zealand
| |
Collapse
|
360
|
Arsenio J, Metz PJ, Chang JT. Asymmetric Cell Division in T Lymphocyte Fate Diversification. Trends Immunol 2015; 36:670-683. [PMID: 26474675 DOI: 10.1016/j.it.2015.09.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022]
Abstract
Immunological protection against microbial pathogens is dependent on robust generation of functionally diverse T lymphocyte subsets. Upon microbial infection, naïve CD4(+) or CD8(+) T lymphocytes can give rise to effector- and memory-fated progeny that together mediate a potent immune response. Recent advances in single-cell immunological and genomic profiling technologies have helped elucidate early and late diversification mechanisms that enable the generation of heterogeneity from single T lymphocytes. We discuss these findings here and argue that one such mechanism, asymmetric cell division, creates an early divergence in T lymphocyte fates by giving rise to daughter cells with a propensity towards the terminally differentiated effector or self-renewing memory lineages, with cell-intrinsic and -extrinsic cues from the microenvironment driving the final maturation steps.
Collapse
Affiliation(s)
- Janilyn Arsenio
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Patrick J Metz
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - John T Chang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
361
|
Nilakantan H, Kuttippurathu L, Parrish A, Hoek JB, Vadigepalli R. In Vivo Zonal Variation and Liver Cell-Type Specific NF-κB Localization after Chronic Adaptation to Ethanol and following Partial Hepatectomy. PLoS One 2015; 10:e0140236. [PMID: 26452159 PMCID: PMC4599916 DOI: 10.1371/journal.pone.0140236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 09/23/2015] [Indexed: 01/14/2023] Open
Abstract
NF-κB is a major inflammatory response mediator in the liver, playing a key role in the pathogenesis of alcoholic liver injury. We investigated zonal as well as liver cell type-specific distribution of NF-κB activation across the liver acinus following adaptation to chronic ethanol intake and 70% partial hepatectomy (PHx). We employed immunofluorescence staining, digital image analysis and statistical distributional analysis to quantify subcellular localization of NF-κB in hepatocytes and hepatic stellate cells (HSCs). We detected significant spatial heterogeneity of NF-κB expression and cellular localization between cytoplasm and nucleus across liver tissue. Our main aims involved investigating the zonal bias in NF-κB localization and determining to what extent chronic ethanol intake affects this zonal bias with in hepatocytes at baseline and post-PHx. Hepatocytes in the periportal area showed higher NF-κB expression than in the pericentral region in the carbohydrate-fed controls, but not in the ethanol group. However, the distribution of NF-κB nuclear localization in hepatocytes was shifted towards higher levels in pericentral region than in periportal area, across all treatment conditions. Chronic ethanol intake shifted the NF-κB distribution towards higher nuclear fraction in hepatocytes as compared to the pair-fed control group. Ethanol also stimulated higher NF-κB expression in a subpopulation of HSCs. In the control group, PHx elicited a shift towards higher NF-κB nuclear fraction in hepatocytes. However, this distribution remained unchanged in the ethanol group post-PHx. HSCs showed a lower NF-κB expression following PHx in both ethanol and control groups. We conclude that adaptation to chronic ethanol intake attenuates the liver zonal variation in NF-κB expression and limits the PHx-induced NF-κB activation in hepatocytes, but does not alter the NF-κB expression changes in HSCs in response to PHx. Our findings provide new insights as to how ethanol treatment may affect cell-type specific processes regulated by NF-κB activation in liver cells.
Collapse
Affiliation(s)
- Harshavardhan Nilakantan
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Austin Parrish
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Jan B. Hoek
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
362
|
Dynamic expression of chromatin modifiers during developmental transitions in mouse preimplantation embryos. Sci Rep 2015; 5:14347. [PMID: 26403153 PMCID: PMC4585904 DOI: 10.1038/srep14347] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022] Open
Abstract
During mouse preimplantation development, major changes in cell fate are accompanied by extensive alterations of gene expression programs. Embryos first transition from a maternal to zygotic program and subsequently specify the pluripotent and the trophectodermal cell lineages. These processes are regulated by key transcription factors, likely in cooperation with chromatin modifiers that control histone and DNA methylation. To characterize the spatiotemporal expression of chromatin modifiers in relation to developmental transitions, we performed gene expression profiling of 156 genes in individual oocytes and single blastomeres of developing mouse embryos until the blastocyst stage. More than half of the chromatin modifiers displayed either maternal or zygotic expression. We also detected lineage-specific expression of several modifiers, including Ezh1, Prdm14, Scmh1 and Tet1 underscoring possible roles in cell fate decisions. Members of the SET-domain containing SMYD family showed differential gene expression during preimplantation development. We further observed co-expression of genes with opposing biochemical activities, such as histone methyltransferases and demethylases, suggesting the existence of a dynamic chromatin steady-state during preimplantation development.
Collapse
|
363
|
Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, Zhou A, Eyob H, Balakrishnan S, Wang CY, Yaswen P, Goga A, Werb Z. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 2015; 526:131-5. [PMID: 26416748 DOI: 10.1038/nature15260] [Citation(s) in RCA: 682] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 07/29/2015] [Indexed: 12/13/2022]
Abstract
Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours. However, the identity of metastasis-initiating cells in human breast cancer remains elusive, and whether metastases are hierarchically organized is unknown. Here we show at the single-cell level that early stage metastatic cells possess a distinct stem-like gene expression signature. To identify and isolate metastatic cells from patient-derived xenograft models of human breast cancer, we developed a highly sensitive fluorescence-activated cell sorting (FACS)-based assay, which allowed us to enumerate metastatic cells in mouse peripheral tissues. We compared gene signatures in metastatic cells from tissues with low versus high metastatic burden. Metastatic cells from low-burden tissues were distinct owing to their increased expression of stem cell, epithelial-to-mesenchymal transition, pro-survival, and dormancy-associated genes. By contrast, metastatic cells from high-burden tissues were similar to primary tumour cells, which were more heterogeneous and expressed higher levels of luminal differentiation genes. Transplantation of stem-like metastatic cells from low-burden tissues showed that they have considerable tumour-initiating capacity, and can differentiate to produce luminal-like cancer cells. Progression to high metastatic burden was associated with increased proliferation and MYC expression, which could be attenuated by treatment with cyclin-dependent kinase (CDK) inhibitors. These findings support a hierarchical model for metastasis, in which metastases are initiated by stem-like cells that proliferate and differentiate to produce advanced metastatic disease.
Collapse
Affiliation(s)
- Devon A Lawson
- Department of Anatomy, University of California, San Francisco, California 94143, USA
| | - Nirav R Bhakta
- Department of Medicine, University of California, San Francisco, California 94143, USA
| | - Kai Kessenbrock
- Department of Anatomy, University of California, San Francisco, California 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, California 94143, USA
| | - Karin D Prummel
- Department of Anatomy, University of California, San Francisco, California 94143, USA
| | - Ying Yu
- Department of Anatomy, University of California, San Francisco, California 94143, USA
| | - Ken Takai
- Department of Anatomy, University of California, San Francisco, California 94143, USA
| | - Alicia Zhou
- Department of Cell and Tissue Biology, University of California, San Francisco, California 94143, USA
| | - Henok Eyob
- Department of Cell and Tissue Biology, University of California, San Francisco, California 94143, USA
| | - Sanjeev Balakrishnan
- Department of Cell and Tissue Biology, University of California, San Francisco, California 94143, USA
| | - Chih-Yang Wang
- Department of Anatomy, University of California, San Francisco, California 94143, USA.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Paul Yaswen
- Department of Cell and Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Andrei Goga
- Department of Medicine, University of California, San Francisco, California 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, California 94143, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, California 94143, USA
| |
Collapse
|
364
|
Chen CY, Lee DS, Yan YT, Shen CN, Hwang SM, Lee ST, Hsieh PC. Bcl3 Bridges LIF-STAT3 to Oct4 Signaling in the Maintenance of Naïve Pluripotency. Stem Cells 2015; 33:3468-80. [DOI: 10.1002/stem.2201] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/25/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Chen-Yun Chen
- Program in Molecular Medicine; National Yang-Ming University and Academia Sinica; Taipei Taiwan
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
| | - Desy S. Lee
- Institute of Clinical Medicine; National Cheng Kung University and Hospital; Tainan Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
| | - Chia-Ning Shen
- Genomics Research Center; Academia Sinica; Taipei Taiwan
| | - Shiaw-Min Hwang
- Bioresource Collection and Research Center; Food Industry Research and Development Institute; Hsinchu Taiwan
| | - Sho Tone Lee
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
| | - Patrick C.H. Hsieh
- Program in Molecular Medicine; National Yang-Ming University and Academia Sinica; Taipei Taiwan
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
- Institute of Clinical Medicine; National Cheng Kung University and Hospital; Tainan Taiwan
| |
Collapse
|
365
|
Yalcin D, Hakguder ZM, Otu HH. Bioinformatics approaches to single-cell analysis in developmental biology. Mol Hum Reprod 2015; 22:182-92. [PMID: 26358759 DOI: 10.1093/molehr/gav050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022] Open
Abstract
Individual cells within the same population show various degrees of heterogeneity, which may be better handled with single-cell analysis to address biological and clinical questions. Single-cell analysis is especially important in developmental biology as subtle spatial and temporal differences in cells have significant associations with cell fate decisions during differentiation and with the description of a particular state of a cell exhibiting an aberrant phenotype. Biotechnological advances, especially in the area of microfluidics, have led to a robust, massively parallel and multi-dimensional capturing, sorting, and lysis of single-cells and amplification of related macromolecules, which have enabled the use of imaging and omics techniques on single cells. There have been improvements in computational single-cell image analysis in developmental biology regarding feature extraction, segmentation, image enhancement and machine learning, handling limitations of optical resolution to gain new perspectives from the raw microscopy images. Omics approaches, such as transcriptomics, genomics and epigenomics, targeting gene and small RNA expression, single nucleotide and structural variations and methylation and histone modifications, rely heavily on high-throughput sequencing technologies. Although there are well-established bioinformatics methods for analysis of sequence data, there are limited bioinformatics approaches which address experimental design, sample size considerations, amplification bias, normalization, differential expression, coverage, clustering and classification issues, specifically applied at the single-cell level. In this review, we summarize biological and technological advancements, discuss challenges faced in the aforementioned data acquisition and analysis issues and present future prospects for application of single-cell analyses to developmental biology.
Collapse
Affiliation(s)
- Dicle Yalcin
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, USA
| | - Zeynep M Hakguder
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, USA
| | - Hasan H Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, USA
| |
Collapse
|
366
|
Okawa S, del Sol A. A computational strategy for predicting lineage specifiers in stem cell subpopulations. Stem Cell Res 2015; 15:427-34. [PMID: 26368290 DOI: 10.1016/j.scr.2015.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/17/2015] [Accepted: 08/16/2015] [Indexed: 10/23/2022] Open
Abstract
Stem cell differentiation is a complex biological event. Our understanding of this process is partly hampered by the co-existence of different cell subpopulations within a given population, which are characterized by different gene expression states driven by different underlying transcriptional regulatory networks (TRNs). Such cellular heterogeneity has been recently explored with the modern single-cell gene expression profiling technologies, such as single-cell RT-PCR and RNA-seq. However, the identification of cell subpopulation-specific TRNs and genes determining specific lineage commitment (i.e., lineage specifiers) remains a challenge due to the slower development of appropriate computational and experimental workflows. Here, we propose a computational method for predicting lineage specifiers for different cell subpopulations in binary-fate differentiation events. Our method first reconstructs subpopulation-specific TRNs, which is more realistic than reconstructing a single TRN representing multiple cell subpopulations. Then, it predicts lineage specifiers based on a model that assumes that each parental stem cell subpopulation is in a stable state maintained by its specific TRN stability core. In addition, this stable state is maintained in the parental cell subpopulation by the balanced gene expression pattern of pairs of opposing lineage specifiers for mutually exclusive different daughter cell subpopulations. To this end, we devised a statistical metric for identifying opposing lineage specifier pairs that show a significant ratio change upon differentiation. Application of this computational method to three different stem cell systems predicted known and putative novel lineage specifiers, which could be experimentally tested. Our method does not require pre-selection of putative candidate genes, and can be applied to any binary-fate differentiation system for which single-cell gene expression data are available. Furthermore, this method is compatible with both single-cell RT-PCR and single-cell RNA-seq data. Given the increasing importance of single-cell gene expression data in stem cell biology and regenerative medicine, approaches like ours would be useful for the identification of lineage specifiers and their associated TRN stability cores.
Collapse
Affiliation(s)
- Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Antonio del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
367
|
Welling M, Ponti A, Pantazis P. Symmetry breaking in the early mammalian embryo: the case for quantitative single-cell imaging analysis. Mol Hum Reprod 2015; 22:172-81. [DOI: 10.1093/molehr/gav048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/25/2015] [Indexed: 12/23/2022] Open
|
368
|
Blakeley P, Fogarty NME, del Valle I, Wamaitha SE, Hu TX, Elder K, Snell P, Christie L, Robson P, Niakan KK. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 2015; 142:3151-65. [PMID: 26293300 PMCID: PMC4582176 DOI: 10.1242/dev.123547] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022]
Abstract
Here, we provide fundamental insights into early human development by single-cell RNA-sequencing of human and mouse preimplantation embryos. We elucidate conserved transcriptional programs along with those that are human specific. Importantly, we validate our RNA-sequencing findings at the protein level, which further reveals differences in human and mouse embryo gene expression. For example, we identify several genes exclusively expressed in the human pluripotent epiblast, including the transcription factor KLF17. Key components of the TGF-β signalling pathway, including NODAL, GDF3, TGFBR1/ALK5, LEFTY1, SMAD2, SMAD4 and TDGF1, are also enriched in the human epiblast. Intriguingly, inhibition of TGF-β signalling abrogates NANOG expression in human epiblast cells, consistent with a requirement for this pathway in pluripotency. Although the key trophectoderm factors Id2, Elf5 and Eomes are exclusively localized to this lineage in the mouse, the human orthologues are either absent or expressed in alternative lineages. Importantly, we also identify genes with conserved expression dynamics, including Foxa2/FOXA2, which we show is restricted to the primitive endoderm in both human and mouse embryos. Comparison of the human epiblast to existing embryonic stem cells (hESCs) reveals conservation of pluripotency but also additional pathways more enriched in hESCs. Our analysis highlights significant differences in human preimplantation development compared with mouse and provides a molecular blueprint to understand human embryogenesis and its relationship to stem cells. Summary: Single-cell RNA-sequencing of human and mouse embryos reveals conserved and human-specific transcriptional programmes as well as a functional requirement for TGFβ signalling in human embryos.
Collapse
Affiliation(s)
- Paul Blakeley
- Human Embryology and Stem Cell Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Norah M E Fogarty
- Human Embryology and Stem Cell Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Ignacio del Valle
- Human Embryology and Stem Cell Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Sissy E Wamaitha
- Human Embryology and Stem Cell Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Tim Xiaoming Hu
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Philip Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Paul Robson
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Kathy K Niakan
- Human Embryology and Stem Cell Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| |
Collapse
|
369
|
Hasegawa Y, Taylor D, Ovchinnikov DA, Wolvetang EJ, de Torrenté L, Mar JC. Variability of Gene Expression Identifies Transcriptional Regulators of Early Human Embryonic Development. PLoS Genet 2015; 11:e1005428. [PMID: 26288249 PMCID: PMC4546122 DOI: 10.1371/journal.pgen.1005428] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/06/2015] [Indexed: 11/18/2022] Open
Abstract
An analysis of gene expression variability can provide an insightful window into how regulatory control is distributed across the transcriptome. In a single cell analysis, the inter-cellular variability of gene expression measures the consistency of transcript copy numbers observed between cells in the same population. Application of these ideas to the study of early human embryonic development may reveal important insights into the transcriptional programs controlling this process, based on which components are most tightly regulated. Using a published single cell RNA-seq data set of human embryos collected at four-cell, eight-cell, morula and blastocyst stages, we identified genes with the most stable, invariant expression across all four developmental stages. Stably-expressed genes were found to be enriched for those sharing indispensable features, including essentiality, haploinsufficiency, and ubiquitous expression. The stable genes were less likely to be associated with loss-of-function variant genes or human recessive disease genes affected by a DNA copy number variant deletion, suggesting that stable genes have a functional impact on the regulation of some of the basic cellular processes. Genes with low expression variability at early stages of development are involved in regulation of DNA methylation, responses to hypoxia and telomerase activity, whereas by the blastocyst stage, low-variability genes are enriched for metabolic processes as well as telomerase signaling. Based on changes in expression variability, we identified a putative set of gene expression markers of morulae and blastocyst stages. Experimental validation of a blastocyst-expressed variability marker demonstrated that HDDC2 plays a role in the maintenance of pluripotency in human ES and iPS cells. Collectively our analyses identified new regulators involved in human embryonic development that would have otherwise been missed using methods that focus on assessment of the average expression levels; in doing so, we highlight the value of studying expression variability for single cell RNA-seq data.
Collapse
Affiliation(s)
- Yu Hasegawa
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America; Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Deanne Taylor
- RMANJ Reproductive Medicine Associates of New Jersey, Morristown, New Jersey, United States of America; Division of Reproductive Endocrinology, Department of Obstetrics, Gynecology, and Reproductive Science, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Dmitry A Ovchinnikov
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Laurence de Torrenté
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jessica C Mar
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
370
|
Fu W, Zhu P, Wang C, Huang K, Du Z, Tian W, Wang Q, Wang H, Xu W, Zhu S. A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment. Sci Rep 2015; 5:12715. [PMID: 26239916 PMCID: PMC4530665 DOI: 10.1038/srep12715] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/06/2015] [Indexed: 11/09/2022] Open
Abstract
Digital PCR has developed rapidly since it was first reported in the 1990s. It was recently reported that an improved method facilitated the detection of genetically modified organisms (GMOs). However, to use this improved method, the samples must be pretreated, which could introduce inaccuracy into the results. In our study, we explored a pretreatment-free digital PCR detection method for the screening for GMOs. We chose the CaMV35s promoter and the NOS terminator as the templates in our assay. To determine the specificity of our method, 9 events of GMOs were collected, including MON810, MON863, TC1507, MIR604, MIR162, GA21, T25, NK603 and Bt176. Moreover, the sensitivity, intra-laboratory and inter-laboratory reproducibility of our detection method were assessed. The results showed that the limit of detection of our method was 0.1%, which was lower than the labeling threshold level of the EU. The specificity and stability among the 9 events were consistent, respectively. The intra-laboratory and inter-laboratory reproducibility were both good. Finally, the perfect fitness for the detection of eight double-blind samples indicated the good practicability of our method. In conclusion, the method in our study would allow more sensitive, specific and stable screening detection of the GMO content of international trading products.
Collapse
Affiliation(s)
- Wei Fu
- The Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100029, China
| | - Pengyu Zhu
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chenguang Wang
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- 1] Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China [2] The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, 100083, China
| | - Zhixin Du
- Guangxi Entry-Exit Inspection and Quarantine Bureau, Guangxi, 530028, China
| | - Wenying Tian
- 1] Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China [2] The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, 100083, China
| | - Qin Wang
- The Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100029, China
| | - Huiyu Wang
- The Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100029, China
| | - Wentao Xu
- 1] Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China [2] The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, 100083, China
| | - Shuifang Zhu
- The Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100029, China
| |
Collapse
|
371
|
O'Shaughnessy-Kirwan A, Signolet J, Costello I, Gharbi S, Hendrich B. Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development 2015; 142:2586-97. [PMID: 26116663 PMCID: PMC4529036 DOI: 10.1242/dev.125450] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
Chromatin remodelling proteins are essential for different aspects of metazoan biology, yet functional details of why these proteins are important are lacking. Although it is possible to describe the biochemistry of how they remodel chromatin, their chromatin-binding profiles in cell lines, and gene expression changes upon loss of a given protein, in very few cases can this easily translate into an understanding of how the function of that protein actually influences a developmental process. Here, we investigate how the chromatin remodelling protein CHD4 facilitates the first lineage decision in mammalian embryogenesis. Embryos lacking CHD4 can form a morphologically normal early blastocyst, but are unable to successfully complete the first lineage decision and form functional trophectoderm (TE). In the absence of a functional TE, Chd4 mutant blastocysts do not implant and are hence not viable. By measuring transcript levels in single cells from early embryos, we show that CHD4 influences the frequency at which unspecified cells in preimplantation stage embryos express lineage markers prior to the execution of this first lineage decision. In the absence of CHD4, this frequency is increased in 16-cell embryos, and by the blastocyst stage cells fail to properly adopt a TE gene expression programme. We propose that CHD4 allows cells to undertake lineage commitment in vivo by modulating the frequency with which lineage-specification genes are expressed. This provides novel insight into both how lineage decisions are made in mammalian cells, and how a chromatin remodelling protein functions to facilitate lineage commitment.
Collapse
Affiliation(s)
- Aoife O'Shaughnessy-Kirwan
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jason Signolet
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Ita Costello
- Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH9 3JQ, UK Present address: Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Sarah Gharbi
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Brian Hendrich
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
372
|
Simultaneous deletion of the methylcytosine oxidases Tet1 and Tet3 increases transcriptome variability in early embryogenesis. Proc Natl Acad Sci U S A 2015. [PMID: 26199412 DOI: 10.1073/pnas.1510510112] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dioxygenases of the TET (Ten-Eleven Translocation) family produce oxidized methylcytosines, intermediates in DNA demethylation, as well as new epigenetic marks. Here we show data suggesting that TET proteins maintain the consistency of gene transcription. Embryos lacking Tet1 and Tet3 (Tet1/3 DKO) displayed a strong loss of 5-hydroxymethylcytosine (5hmC) and a concurrent increase in 5-methylcytosine (5mC) at the eight-cell stage. Single cells from eight-cell embryos and individual embryonic day 3.5 blastocysts showed unexpectedly variable gene expression compared with controls, and this variability correlated in blastocysts with variably increased 5mC/5hmC in gene bodies and repetitive elements. Despite the variability, genes encoding regulators of cholesterol biosynthesis were reproducibly down-regulated in Tet1/3 DKO blastocysts, resulting in a characteristic phenotype of holoprosencephaly in the few embryos that survived to later stages. Thus, TET enzymes and DNA cytosine modifications could directly or indirectly modulate transcriptional noise, resulting in the selective susceptibility of certain intracellular pathways to regulation by TET proteins.
Collapse
|
373
|
Sikorski DJ, Caron NJ, VanInsberghe M, Zahn H, Eaves CJ, Piret JM, Hansen CL. Clonal analysis of individual human embryonic stem cell differentiation patterns in microfluidic cultures. Biotechnol J 2015; 10:1546-54. [PMID: 26059045 DOI: 10.1002/biot.201500035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/04/2015] [Accepted: 06/05/2015] [Indexed: 01/23/2023]
Abstract
Heterogeneity in the clonal outputs of individual human embryonic stem cells (hESCs) confounds analysis of their properties in studies of bulk populations and how to manipulate them for clinical applications. To circumvent this problem we developed a microfluidic device that supports the robust generation of colonies derived from single ESCs. This microfluidic system contains 160 individually addressable chambers equipped for perfusion culture of individual hESCs that could be shown to match the growth rates, marker expression and colony morphologies obtained in conventional cultures. Use of this microfluidic device to analyze the clonal growth kinetics of multiple individual hESCs induced to differentiation revealed variable shifts in the growth rate, area per cell and expression of OCT4 in the progeny of individual hESCs. Interestingly, low OCT4 expression, a slower growth rate and low nuclear to cytoplasmic ratios were found to be correlated responses. This study demonstrates how microfluidic systems can be used to enable large scale live-cell imaging of isolated hESCs exposed to changing culture conditions, to examine how different aspects of their variable responses are correlated.
Collapse
Affiliation(s)
- Darek J Sikorski
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Nicolas J Caron
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Michael VanInsberghe
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Hans Zahn
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - James M Piret
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Carl L Hansen
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada. .,Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
374
|
Single cells get together: High-resolution approaches to study the dynamics of early mouse development. Semin Cell Dev Biol 2015; 47-48:92-100. [PMID: 26183190 DOI: 10.1016/j.semcdb.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 11/22/2022]
Abstract
Embryonic development is a complex and highly dynamic process during which individual cells interact with one another, adopt different identities and organize themselves in three-dimensional space to generate an entire organism. Recent technical developments in genomics and high-resolution quantitative imaging are making it possible to study cellular populations at single-cell resolution and begin to integrate different inputs, for example genetic, physical and chemical factors, that affect cell differentiation over spatial and temporal scales. The preimplantation mouse embryo allows the analysis of cell fate decisions in vivo with high spatiotemporal resolution. In this review we highlight how the application of live imaging and single-cell resolution analysis pipelines is providing an unprecedented level of insight on the processes that shape the earliest stages of mammalian development.
Collapse
|
375
|
Prediction model for aneuploidy in early human embryo development revealed by single-cell analysis. Nat Commun 2015; 6:7601. [PMID: 26151134 PMCID: PMC4506544 DOI: 10.1038/ncomms8601] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 05/22/2015] [Indexed: 01/08/2023] Open
Abstract
Aneuploidies are prevalent in the human embryo and impair proper development, leading to cell cycle arrest. Recent advances in imaging and molecular and genetic analyses are postulated as promising strategies to unveil the mechanisms involved in aneuploidy generation. Here we combine time-lapse, complete chromosomal assessment and single-cell RT-qPCR to simultaneously obtain information from all cells that compose a human embryo until the approximately eight-cell stage (n=85). Our data indicate that the chromosomal status of aneuploid embryos (n=26), including those that are mosaic (n=3), correlates with significant differences in the duration of the first mitotic phase when compared with euploid embryos (n=28). Moreover, gene expression profiling suggests that a subset of genes is differentially expressed in aneuploid embryos during the first 30 h of development. Thus, we propose that the chromosomal fate of an embryo is likely determined as early as the pronuclear stage and may be predicted by a 12-gene transcriptomic signature.
Collapse
|
376
|
Andersson D, Akrap N, Svec D, Godfrey TE, Kubista M, Landberg G, Ståhlberg A. Properties of targeted preamplification in DNA and cDNA quantification. Expert Rev Mol Diagn 2015; 15:1085-100. [PMID: 26132215 PMCID: PMC4673511 DOI: 10.1586/14737159.2015.1057124] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective: Quantification of small molecule numbers often requires preamplification to generate enough copies for accurate downstream enumerations. Here, we studied experimental parameters in targeted preamplification and their effects on downstream quantitative real-time PCR (qPCR). Methods: To evaluate different strategies, we monitored the preamplification reaction in real-time using SYBR Green detection chemistry followed by melting curve analysis. Furthermore, individual targets were evaluated by qPCR. Result: The preamplification reaction performed best when a large number of primer pairs was included in the primer pool. In addition, preamplification efficiency, reproducibility and specificity were found to depend on the number of template molecules present, primer concentration, annealing time and annealing temperature. The amount of nonspecific PCR products could also be reduced about 1000-fold using bovine serum albumin, glycerol and formamide in the preamplification. Conclusion: On the basis of our findings, we provide recommendations how to perform robust and highly accurate targeted preamplification in combination with qPCR or next-generation sequencing.
Collapse
Affiliation(s)
- Daniel Andersson
- Sahlgrenska Cancer Center, Department of Pathology, Sahlgrenska Academy at University of Gothenburg, Box 425, 40530 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
377
|
Hermitte S, Chazaud C. Primitive endoderm differentiation: from specification to epithelium formation. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0537. [PMID: 25349446 DOI: 10.1098/rstb.2013.0537] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In amniotes, primitive endoderm (PrE) plays important roles not only for nutrient support but also as an inductive tissue required for embryo patterning. PrE is an epithelial monolayer that is visible shortly before embryo implantation and is one of the first three cell lineages produced by the embryo. We review here the molecular mechanisms that have been uncovered during the past 10 years on PrE and epiblast cell lineage specification within the inner cell mass of the blastocyst and on their subsequent steps of differentiation.
Collapse
Affiliation(s)
- Stéphanie Hermitte
- Clermont Université, Université d'Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France INSERM, UMR1103, 63001 Clermont-Ferrand, France CNRS, UMR6293, 63001 Clermont-Ferrand, France
| | - Claire Chazaud
- Clermont Université, Université d'Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France INSERM, UMR1103, 63001 Clermont-Ferrand, France CNRS, UMR6293, 63001 Clermont-Ferrand, France
| |
Collapse
|
378
|
Parfitt DE, Shen MM. From blastocyst to gastrula: gene regulatory networks of embryonic stem cells and early mouse embryogenesis. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0542. [PMID: 25349451 DOI: 10.1098/rstb.2013.0542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To date, many regulatory genes and signalling events coordinating mammalian development from blastocyst to gastrulation stages have been identified by mutational analyses and reverse-genetic approaches, typically on a gene-by-gene basis. More recent studies have applied bioinformatic approaches to generate regulatory network models of gene interactions on a genome-wide scale. Such models have provided insights into the gene networks regulating pluripotency in embryonic and epiblast stem cells, as well as cell-lineage determination in vivo. Here, we review how regulatory networks constructed for different stem cell types relate to corresponding networks in vivo and provide insights into understanding the molecular regulation of the blastocyst-gastrula transition.
Collapse
Affiliation(s)
- David-Emlyn Parfitt
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael M Shen
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
379
|
Abstract
Formation of a eutherian mammal requires concurrent establishment of embryonic and extraembryonic lineages. The functions of the trophectoderm and primitive endoderm are to enable implantation in the maternal uterus, axis specification and delivery of nutrients. The pluripotent epiblast represents the founding cell population of the embryo proper, which is protected from ectopic and premature differentiation until it is required to respond to inductive cues to form the fetus. While positional information plays a major role in specifying the trophoblast lineage, segregation of primitive endoderm from epiblast depends upon gradual acquisition of transcriptional identity, directed but not initiated by fibroblast growth factor (FGF) signalling. Following early cleavage divisions and formation of the blastocyst, cells of the inner cell mass lose totipotency. Developing epiblast cells transiently attain the state of naive pluripotency and competence to self-renew in vitro as embryonic stem cells and in vivo by means of diapause. This property is lost after implantation as the epiblast epithelializes and becomes primed in preparation for gastrulation and subsequent organogenesis.
Collapse
Affiliation(s)
- Thorsten Boroviak
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jennifer Nichols
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
380
|
Kalkan T, Smith A. Mapping the route from naive pluripotency to lineage specification. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0540. [PMID: 25349449 PMCID: PMC4216463 DOI: 10.1098/rstb.2013.0540] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In the mouse blastocyst, epiblast cells are newly formed shortly before implantation. They possess a unique developmental plasticity, termed naive pluripotency. For development to proceed, this naive state must be subsumed by multi-lineage differentiation within 72 h following implantation. In vitro differentiation of naive embryonic stem cells (ESCs) cultured in controlled conditions provides a tractable system to dissect and understand the process of exit from naive pluripotency and entry into lineage specification. Exploitation of this system in recent large-scale RNAi and mutagenesis screens has uncovered multiple new factors and modules that drive or facilitate progression out of the naive state. Notably, these studies show that the transcription factor network that governs the naive state is rapidly dismantled prior to upregulation of lineage specification markers, creating an intermediate state that we term formative pluripotency. Here, we summarize these findings and propose a road map for state transitions in ESC differentiation that reflects the orderly dynamics of epiblast progression in the embryo.
Collapse
Affiliation(s)
- Tüzer Kalkan
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
381
|
Bacterial Internalization, Localization, and Effectors Shape the Epithelial Immune Response during Shigella flexneri Infection. Infect Immun 2015; 83:3624-37. [PMID: 26123804 DOI: 10.1128/iai.00574-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/26/2015] [Indexed: 01/28/2023] Open
Abstract
Intracellular pathogens are differentially sensed by the compartmentalized host immune system. Nevertheless, gene expression studies of infected cells commonly average the immune responses, neglecting the precise pathogen localization. To overcome this limitation, we dissected the transcriptional immune response to Shigella flexneri across different infection stages in bulk and single cells. This identified six distinct transcriptional profiles characterizing the dynamic, multilayered host response in both bystander and infected cells. These profiles were regulated by external and internal danger signals, as well as whether bacteria were membrane bound or cytosolic. We found that bacterial internalization triggers a complex, effector-independent response in bystander cells, possibly to compensate for the undermined host gene expression in infected cells caused by bacterial effectors, particularly OspF. Single-cell analysis revealed an important bacterial strategy to subvert host responses in infected cells, demonstrating that OspF disrupts concomitant gene expression of proinflammatory, apoptosis, and stress pathways within cells. This study points to novel mechanisms through which bacterial internalization, localization, and injected effectors orchestrate immune response transcriptional signatures.
Collapse
|
382
|
Abstract
Mouse embryonic stem (ES) cells perpetuate in vitro the broad developmental potential of naïve founder cells in the preimplantation embryo. ES cells self-renew relentlessly in culture but can reenter embryonic development seamlessly, differentiating on schedule to form all elements of the fetus. Here we review the properties of these remarkable cells. Arising from the stability, homogeneity, and equipotency of ES cells, we consider the concept of a pluripotent ground state. We evaluate the authenticity of ES cells in relation to cells in the embryo and examine their utility for dissecting mechanisms that confer pluripotency and that execute fate choice. We summarize current knowledge of the transcription factor circuitry that governs the ES cell state and discuss the opportunity to expose molecular logic further through iterative computational modeling and experimentation. Finally, we present a perspective on unresolved questions, including the challenge of deriving ground state pluripotent stem cells from non-rodent species.
Collapse
|
383
|
Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation. Genome Biol 2015; 16:122. [PMID: 26056000 PMCID: PMC4480509 DOI: 10.1186/s13059-015-0683-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differentiation of metazoan cells requires execution of different gene expression programs but recent single-cell transcriptome profiling has revealed considerable variation within cells of seeming identical phenotype. This brings into question the relationship between transcriptome states and cell phenotypes. Additionally, single-cell transcriptomics presents unique analysis challenges that need to be addressed to answer this question. RESULTS We present high quality deep read-depth single-cell RNA sequencing for 91 cells from five mouse tissues and 18 cells from two rat tissues, along with 30 control samples of bulk RNA diluted to single-cell levels. We find that transcriptomes differ globally across tissues with regard to the number of genes expressed, the average expression patterns, and within-cell-type variation patterns. We develop methods to filter genes for reliable quantification and to calibrate biological variation. All cell types include genes with high variability in expression, in a tissue-specific manner. We also find evidence that single-cell variability of neuronal genes in mice is correlated with that in rats consistent with the hypothesis that levels of variation may be conserved. CONCLUSIONS Single-cell RNA-sequencing data provide a unique view of transcriptome function; however, careful analysis is required in order to use single-cell RNA-sequencing measurements for this purpose. Technical variation must be considered in single-cell RNA-sequencing studies of expression variation. For a subset of genes, biological variability within each cell type appears to be regulated in order to perform dynamic functions, rather than solely molecular noise.
Collapse
|
384
|
Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ, Sánchez Castillo M, Oedekoven CA, Diamanti E, Schulte R, Ponting CP, Voet T, Caldas C, Stingl J, Green AR, Theis FJ, Göttgens B. Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations. Cell Stem Cell 2015; 16:712-24. [PMID: 26004780 PMCID: PMC4460190 DOI: 10.1016/j.stem.2015.04.004] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/26/2015] [Accepted: 04/10/2015] [Indexed: 01/27/2023]
Abstract
Heterogeneity within the self-renewal durability of adult hematopoietic stem cells (HSCs) challenges our understanding of the molecular framework underlying HSC function. Gene expression studies have been hampered by the presence of multiple HSC subtypes and contaminating non-HSCs in bulk HSC populations. To gain deeper insight into the gene expression program of murine HSCs, we combined single-cell functional assays with flow cytometric index sorting and single-cell gene expression assays. Through bioinformatic integration of these datasets, we designed an unbiased sorting strategy that separates non-HSCs away from HSCs, and single-cell transplantation experiments using the enriched population were combined with RNA-seq data to identify key molecules that associate with long-term durable self-renewal, producing a single-cell molecular dataset that is linked to functional stem cell activity. Finally, we demonstrated the broader applicability of this approach for linking key molecules with defined cellular functions in another stem cell system.
Collapse
Affiliation(s)
- Nicola K Wilson
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - David G Kent
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Florian Buettner
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Mona Shehata
- Department of Oncology and Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Iain C Macaulay
- Single Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Fernando J Calero-Nieto
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Manuel Sánchez Castillo
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Caroline A Oedekoven
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Evangelia Diamanti
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Reiner Schulte
- Head of Flow Cytometry, Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Chris P Ponting
- Single Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; MRC Computational Genomics Analysis and Training Programme, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Thierry Voet
- Single Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Carlos Caldas
- Department of Oncology and Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - John Stingl
- Department of Oncology and Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Anthony R Green
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK.
| |
Collapse
|
385
|
Sharifi-Zarchi A, Totonchi M, Khaloughi K, Karamzadeh R, Araúzo-Bravo MJ, Baharvand H, Tusserkani R, Pezeshk H, Chitsaz H, Sadeghi M. Increased robustness of early embryogenesis through collective decision-making by key transcription factors. BMC SYSTEMS BIOLOGY 2015; 9:23. [PMID: 26033487 PMCID: PMC4450992 DOI: 10.1186/s12918-015-0169-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 05/15/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Understanding the mechanisms by which hundreds of diverse cell types develop from a single mammalian zygote has been a central challenge of developmental biology. Conrad H. Waddington, in his metaphoric "epigenetic landscape" visualized the early embryogenesis as a hierarchy of lineage bifurcations. In each bifurcation, a single progenitor cell type produces two different cell lineages. The tristable dynamical systems are used to model the lineage bifurcations. It is also shown that a genetic circuit consisting of two auto-activating transcription factors (TFs) with cross inhibitions can form a tristable dynamical system. RESULTS We used gene expression profiles of pre-implantation mouse embryos at the single cell resolution to visualize the Waddington landscape of the early embryogenesis. For each lineage bifurcation we identified two clusters of TFs - rather than two single TFs as previously proposed - that had opposite expression patterns between the pair of bifurcated cell types. The regulatory circuitry among each pair of TF clusters resembled a genetic circuit of a pair of single TFs; it consisted of positive feedbacks among the TFs of the same cluster, and negative interactions among the members of the opposite clusters. Our analyses indicated that the tristable dynamical system of the two-cluster regulatory circuitry is more robust than the genetic circuit of two single TFs. CONCLUSIONS We propose that a modular hierarchy of regulatory circuits, each consisting of two mutually inhibiting and auto-activating TF clusters, can form hierarchical lineage bifurcations with improved safeguarding of critical early embryogenesis against biological perturbations. Furthermore, our computationally fast framework for modeling and visualizing the epigenetic landscape can be used to obtain insights from experimental data of development at the single cell resolution.
Collapse
Affiliation(s)
- Ali Sharifi-Zarchi
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Computer Science Department, Colorado State University, Fort Collins, Colorado, 80523, USA.
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Keynoush Khaloughi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Razieh Karamzadeh
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Marcos J Araúzo-Bravo
- Computational Biology and Bioinformatics Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Ruzbeh Tusserkani
- School of Computer Science, Institute for Research in Fundamental Sciences, Tehran, Iran.
| | - Hamid Pezeshk
- School of Mathematics, Statistics and Computer Sciences, Center of Excellence in Biomathematics, College of Science, University of Tehran, Tehran, Iran.
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Hamidreza Chitsaz
- Computer Science Department, Colorado State University, Fort Collins, Colorado, 80523, USA.
| | - Mehdi Sadeghi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
386
|
Shibutani M, Mori T, Miyano T, Miyake M. Removal of O-GlcNAcylation is important for pig preimplantation development. J Reprod Dev 2015; 61:341-50. [PMID: 26004176 PMCID: PMC4547992 DOI: 10.1262/jrd.2014-173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucose has been recognized as an energy source for a long time, but it has recently been suggested that the hexosamine biosynthesis pathway (HBP) and downstream protein O-GlcNAcylation have important functions in mouse preimplantation development. Thus, whether or not O-GlcNAcylation was present and what functions O-GlcNAcylation has in pig preimplantation development were investigated in the present study. The expressions of mRNA of glutaminefructose-6-phosphate aminotransferase (Gfpt), O-GlcNAc transferase (Ogt) and O-GlcNAcase (Oga), which are involved in the HBP and O-GlcNAc cycling, were examined in pig parthenogenetic diploids at each preimplantation developmental stage. Gfpt and Ogt were detected in diploids at all stages. Though Oga was detected at all stages except the 4-cell stage, OGA proteins were detected in diploids from the 2-cell to
blastocyst stage. Furthermore, O-GlcNAcylated proteins in MII oocytes and diploids were also detected by immunofluorescence at every stage. Inhibition of OGT by 4.0 mM BADGP did not affect development up to the blastocyst stage, while inhibition of OGA by 300 µM PUGNAc decreased the proportion of diploids beyond the 4-cell stage. Four-cell diploids cultured with PUGNAc until 48 h developed to the blastocyst stage after culture in a PUGNAc-free medium until 144 h after electrostimulation. RNA polymerase II (Pol II) phosphorylation, which indicates the onset of mRNA transcription, was detected in nuclei of diploids in the control group at 48 h but not in the PUGNAc-treated group. These results indicate that HBP and O-GlcNAcylation have important functions in pig preimplantation development and that inhibition of OGA is fatal for development. It is also suggested that OGA inhibition disrupts normal Pol II regulation and may cause a zygotic gene activation error.
Collapse
Affiliation(s)
- Mihiro Shibutani
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | | | | | | |
Collapse
|
387
|
Nimmo RA, May GE, Enver T. Primed and ready: understanding lineage commitment through single cell analysis. Trends Cell Biol 2015; 25:459-67. [PMID: 26004869 DOI: 10.1016/j.tcb.2015.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
Regulation of lineage commitment in multipotential cells is key to maintaining a balanced hematopoietic output throughout life while retaining the capacity to respond to stress and infection. Cell fate decisions are made by individual stem cells, but population-level analysis obscures the mechanics of cell fate choice by averaging the molecular and functional heterogeneity that exists even in the most highly purified stem cell populations. Therefore, single cell analysis of both molecular and cellular phenotypes is crucial to delineate and interrogate the process of lineage commitment. We review recent single cell expression profiling, imaging, and clonal tracking studies that have provided new insights into commitment, focusing on the hematopoietic system, and suggest how new technologies may illuminate our understanding of lineage commitment in the near future.
Collapse
Affiliation(s)
- Rachael A Nimmo
- University College London (UCL) Cancer Institute, Huntley Street, London WC1E 6BT, UK.
| | - Gillian E May
- University College London (UCL) Cancer Institute, Huntley Street, London WC1E 6BT, UK
| | - Tariq Enver
- University College London (UCL) Cancer Institute, Huntley Street, London WC1E 6BT, UK
| |
Collapse
|
388
|
Haghverdi L, Buettner F, Theis FJ. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 2015; 31:2989-98. [PMID: 26002886 DOI: 10.1093/bioinformatics/btv325] [Citation(s) in RCA: 410] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 05/18/2015] [Indexed: 01/10/2023] Open
Abstract
MOTIVATION Single-cell technologies have recently gained popularity in cellular differentiation studies regarding their ability to resolve potential heterogeneities in cell populations. Analyzing such high-dimensional single-cell data has its own statistical and computational challenges. Popular multivariate approaches are based on data normalization, followed by dimension reduction and clustering to identify subgroups. However, in the case of cellular differentiation, we would not expect clear clusters to be present but instead expect the cells to follow continuous branching lineages. RESULTS Here, we propose the use of diffusion maps to deal with the problem of defining differentiation trajectories. We adapt this method to single-cell data by adequate choice of kernel width and inclusion of uncertainties or missing measurement values, which enables the establishment of a pseudotemporal ordering of single cells in a high-dimensional gene expression space. We expect this output to reflect cell differentiation trajectories, where the data originates from intrinsic diffusion-like dynamics. Starting from a pluripotent stage, cells move smoothly within the transcriptional landscape towards more differentiated states with some stochasticity along their path. We demonstrate the robustness of our method with respect to extrinsic noise (e.g. measurement noise) and sampling density heterogeneities on simulated toy data as well as two single-cell quantitative polymerase chain reaction datasets (i.e. mouse haematopoietic stem cells and mouse embryonic stem cells) and an RNA-Seq data of human pre-implantation embryos. We show that diffusion maps perform considerably better than Principal Component Analysis and are advantageous over other techniques for non-linear dimension reduction such as t-distributed Stochastic Neighbour Embedding for preserving the global structures and pseudotemporal ordering of cells. AVAILABILITY AND IMPLEMENTATION The Matlab implementation of diffusion maps for single-cell data is available at https://www.helmholtz-muenchen.de/icb/single-cell-diffusion-map. CONTACT fbuettner.phys@gmail.com, fabian.theis@helmholtz-muenchen.de SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Laleh Haghverdi
- Institute of Computational Biology, Helmholtz Zentrum München 85764 Neuherberg, Germany and Department of Mathematics, Technische Universität München 85748 Garching, Germany Institute of Computational Biology, Helmholtz Zentrum München 85764 Neuherberg, Germany and Department of Mathematics, Technische Universität München 85748 Garching, Germany
| | - Florian Buettner
- Institute of Computational Biology, Helmholtz Zentrum München 85764 Neuherberg, Germany and Department of Mathematics, Technische Universität München 85748 Garching, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München 85764 Neuherberg, Germany and Department of Mathematics, Technische Universität München 85748 Garching, Germany Institute of Computational Biology, Helmholtz Zentrum München 85764 Neuherberg, Germany and Department of Mathematics, Technische Universität München 85748 Garching, Germany
| |
Collapse
|
389
|
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015; 161:1187-1201. [PMID: 26000487 PMCID: PMC4441768 DOI: 10.1016/j.cell.2015.04.044] [Citation(s) in RCA: 2278] [Impact Index Per Article: 227.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/23/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
It has long been the dream of biologists to map gene expression at the single-cell level. With such data one might track heterogeneous cell sub-populations, and infer regulatory relationships between genes and pathways. Recently, RNA sequencing has achieved single-cell resolution. What is limiting is an effective way to routinely isolate and process large numbers of individual cells for quantitative in-depth sequencing. We have developed a high-throughput droplet-microfluidic approach for barcoding the RNA from thousands of individual cells for subsequent analysis by next-generation sequencing. The method shows a surprisingly low noise profile and is readily adaptable to other sequencing-based assays. We analyzed mouse embryonic stem cells, revealing in detail the population structure and the heterogeneous onset of differentiation after leukemia inhibitory factor (LIF) withdrawal. The reproducibility of these high-throughput single-cell data allowed us to deconstruct cell populations and infer gene expression relationships. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Linas Mazutis
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA 02138, USA; Vilnius University Institute of Biotechnology, Vilnius LT-02241, Lithuania
| | - Ilke Akartuna
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA 02138, USA
| | - Naren Tallapragada
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Adrian Veres
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Victor Li
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David A Weitz
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA 02138, USA.
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
390
|
Frum T, Ralston A. Cell signaling and transcription factors regulating cell fate during formation of the mouse blastocyst. Trends Genet 2015; 31:402-10. [PMID: 25999217 DOI: 10.1016/j.tig.2015.04.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/05/2015] [Accepted: 04/07/2015] [Indexed: 11/17/2022]
Abstract
The first cell fate decisions during mammalian development establish tissues essential for healthy pregnancy. The mouse has served as a valuable model for discovering pathways regulating the first cell fate decisions because of the ease with which early embryos can be recovered and the availability of an arsenal of classical and emerging methods for manipulating gene expression. We summarize the major pathways that govern the first cell fate decisions in mouse development. This knowledge serves as a paradigm for exploring how emergent properties of a self-organizing system can dynamically regulate gene expression and cell fate plasticity. Moreover, it brings to light the processes that establish healthy pregnancy and ES cells. We also describe unsolved mysteries and new technologies that could help to overcome experimental challenges in the field.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
391
|
Sasaki H. Position- and polarity-dependent Hippo signaling regulates cell fates in preimplantation mouse embryos. Semin Cell Dev Biol 2015; 47-48:80-7. [PMID: 25986053 DOI: 10.1016/j.semcdb.2015.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 11/25/2022]
Abstract
During the preimplantation stage, mouse embryos establish two cell lineages by the time of early blastocyst formation: the trophectoderm (TE) and the inner cell mass (ICM). Historical models have proposed that the establishment of these two lineages depends on the cell position within the embryo (e.g., the positional model) or cell polarization along the apicobasal axis (e.g., the polarity model). Recent findings have revealed that the Hippo signaling pathway plays a central role in the cell fate-specification process: active and inactive Hippo signaling in the inner and outer cells promote ICM and TE fates, respectively. Intercellular adhesion activates, while apicobasal polarization suppresses Hippo signaling, and a combination of these processes determines the spatially regulated activation of the Hippo pathway in 32-cell-stage embryos. Therefore, there is experimental evidence in favor of both positional and polarity models. At the molecular level, phosphorylation of the Hippo-pathway component angiomotin at adherens junctions (AJs) in the inner (apolar) cells activates the Lats protein kinase and triggers Hippo signaling. In the outer cells, however, cell polarization sequesters Amot from basolateral AJs and suppresses activation of the Hippo pathway. Other mechanisms, including asymmetric cell division and Notch signaling, also play important roles in the regulation of embryonic development. In this review, I discuss how these mechanisms cooperate with the Hippo signaling pathway during cell fate-specification processes.
Collapse
Affiliation(s)
- Hiroshi Sasaki
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
392
|
Lorthongpanich C, Issaragrisil S. Emerging Role of the Hippo Signaling Pathway in Position Sensing and Lineage Specification in Mammalian Preimplantation Embryos. Biol Reprod 2015; 92:143. [PMID: 25947059 DOI: 10.1095/biolreprod.114.127803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/29/2015] [Indexed: 12/29/2022] Open
Abstract
In preimplantation mouse embryos, the first lineage differentiation takes place in the 8- to 16-cell-stage embryo and results in formation of the trophectoderm (TE) and inner cell mass (ICM), which will give rise to the trophoblast of the placenta and the embryo proper, respectively. Although, it is widely accepted that positioning of a cell within the embryo influences lineage differentiation, the mechanism underlying differential lineage differentiation and how it involves cell position are largely unknown. Interestingly, novel cues from the Hippo pathway have been recently demonstrated in the preimplantation mouse embryo. Unlike the mechanisms reported from epithelium-cultured cells, the Hippo pathway was found to be responsible for translating positional information to lineage specification through a position-sensing mechanism. Disruption of Hippo pathway-component genes in early embryos results in failure of lineage specification and failure of postimplantation development. In this review, we discuss the unique role of the Hippo signaling pathway in early embryo development and its role in lineage specification. Understanding the activity and regulation of the Hippo pathway may offer new insights into other areas of developmental biology that evolve from understanding of this cell-fate specification in the early embryonic cell.
Collapse
Affiliation(s)
- Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
393
|
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:215-66. [PMID: 25772309 PMCID: PMC4393358 DOI: 10.1002/wdev.176] [Citation(s) in RCA: 1457] [Impact Index Per Article: 145.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of MedicineSt. Louis, MO, USA
- *
Correspondence to:
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto UniversitySakyo, Kyoto, Japan
| |
Collapse
|
394
|
Binder NK, Beard SA, Kaitu'u-Lino TJ, Tong S, Hannan NJ, Gardner DK. Paternal obesity in a rodent model affects placental gene expression in a sex-specific manner. Reproduction 2015; 149:435-44. [DOI: 10.1530/rep-14-0676] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fetal growth restriction (FGR) is a major obstetric complication stemming from poor placental development. We have previously demonstrated that paternal obesity in mice is associated with impaired embryo development and significantly reduced fetal and placental weights. We hypothesised that the FGR observed in our rodent model of paternal diet-induced obesity is associated with alterations in metabolic, cell signalling and stress pathways. Male C57BL/6 mice were fed either a normal or high-fat diet for 10 weeks before sperm collection for IVF and subsequent embryo transfer. On embryonic day 14, placentas were collected and RNA extracted from both male and female placentas to assess mRNA expression of 24 target genes using custom RT-qPCR arrays. Peroxisome proliferator-activated receptor alpha (Ppara) and caspase-12 (Casp12) expression were significantly altered in male placentas from obese fathers compared with normal (P<0.05), but not female placentas. PPARA and CASP12 proteins were localised within the placenta to trophoblast giant cells by immunohistochemistry, and relative protein abundance was determined by western blot analysis. DNA was also extracted from the same placentas to determine methylation status. Global DNA methylation was significantly increased in female placentas from obese fathers compared with normal (P<0.05), but not male placentas. In this study, we demonstrate for the first time that paternal obesity is associated with changes in gene expression and methylation status of extraembryonic tissue in a sex-specific manner. These findings reinforce the negative consequences of paternal obesity before conception, and emphasise the need for more lifestyle advice for prospective fathers.
Collapse
|
395
|
Herderschee J, Fenwick C, Pantaleo G, Roger T, Calandra T. Emerging single-cell technologies in immunology. J Leukoc Biol 2015; 98:23-32. [PMID: 25908734 DOI: 10.1189/jlb.6ru0115-020r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/26/2015] [Indexed: 12/14/2022] Open
Abstract
During evolution, the immune system has diversified to protect the host from the extremely wide array of possible pathogens. Until recently, immune responses were dissected by use of global approaches and bulk tools, averaging responses across samples and potentially missing particular contributions of individual cells. This is a strongly limiting factor, considering that initial immune responses are likely to be triggered by a restricted number of cells at the vanguard of host defenses. The development of novel, single-cell technologies is a major innovation offering great promise for basic and translational immunology with the potential to overcome some of the limitations of traditional research tools, such as polychromatic flow cytometry or microscopy-based methods. At the transcriptional level, much progress has been made in the fields of microfluidics and single-cell RNA sequencing. At the protein level, mass cytometry already allows the analysis of twice as many parameters as flow cytometry. In this review, we explore the basis and outcome of immune-cell diversity, how genetically identical cells become functionally different, and the consequences for the exploration of host-immune defense responses. We will highlight the advantages, trade-offs, and potential pitfalls of emerging, single-cell-based technologies and how they provide unprecedented detail of immune responses.
Collapse
Affiliation(s)
- Jacobus Herderschee
- *Infectious Diseases Service and Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; and Swiss Vaccine Research Institute, Lausanne, Switzerland
| | - Craig Fenwick
- *Infectious Diseases Service and Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; and Swiss Vaccine Research Institute, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- *Infectious Diseases Service and Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; and Swiss Vaccine Research Institute, Lausanne, Switzerland
| | - Thierry Roger
- *Infectious Diseases Service and Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; and Swiss Vaccine Research Institute, Lausanne, Switzerland
| | - Thierry Calandra
- *Infectious Diseases Service and Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; and Swiss Vaccine Research Institute, Lausanne, Switzerland
| |
Collapse
|
396
|
Printing 2-dimentional droplet array for single-cell reverse transcription quantitative PCR assay with a microfluidic robot. Sci Rep 2015; 5:9551. [PMID: 25828383 PMCID: PMC4381353 DOI: 10.1038/srep09551] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/10/2015] [Indexed: 12/31/2022] Open
Abstract
This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis.
Collapse
|
397
|
Teles J, Enver T, Pina C. Single-cell PCR profiling of gene expression in hematopoiesis. Methods Mol Biol 2015; 1185:21-42. [PMID: 25062620 DOI: 10.1007/978-1-4939-1133-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Single-cell analysis of gene expression offers the possibility of exploring cellular and molecular heterogeneity in stem and developmental cell systems, including cancer, to infer routes of cellular specification and their respective gene regulatory modules. PCR-based technologies, although limited to the analysis of a predefined set of genes, afford a cost-effective balance of throughput and biological information and have become a method of choice in stem cell laboratories. Here we describe an experimental and analytical protocol based on the Fluidigm microfluidics platform for the simultaneous expression analysis of 48 or 96 genes in multiples of 48 or 96 cells. We detail wet laboratory procedures and describe clustering, principal component analysis, correlation, and classification tools for the inference of cellular pathways and gene networks.
Collapse
Affiliation(s)
- José Teles
- Stem Cell Laboratory, University College London Cancer Institute, 72 Huntley Street, WC1E 6BT, London, UK
| | | | | |
Collapse
|
398
|
Chapman AR, He Z, Lu S, Yong J, Tan L, Tang F, Xie XS. Single cell transcriptome amplification with MALBAC. PLoS One 2015; 10:e0120889. [PMID: 25822772 PMCID: PMC4378937 DOI: 10.1371/journal.pone.0120889] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/27/2015] [Indexed: 12/21/2022] Open
Abstract
Recently, Multiple Annealing and Looping-Based Amplification Cycles (MALBAC) has been developed for whole genome amplification of an individual cell, relying on quasilinear instead of exponential amplification to achieve high coverage. Here we adapt MALBAC for single-cell transcriptome amplification, which gives consistently high detection efficiency, accuracy and reproducibility. With this newly developed technique, we successfully amplified and sequenced single cells from 3 germ layers from mouse embryos in the early gastrulation stage, and examined the epithelial-mesenchymal transition (EMT) program among cells in the mesoderm layer on a single-cell level.
Collapse
Affiliation(s)
- Alec R. Chapman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, United States of America
- Graduate program in Biophysics, Harvard University, Cambridge, MA, 02138, United States of America
| | - Zi He
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, United States of America
| | - Sijia Lu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, United States of America
| | - Jun Yong
- Biodynamics Optical Imaging Center, School of Life Sciences, Peking University, Beijing, China
| | - Longzhi Tan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, United States of America
| | - Fuchou Tang
- Biodynamics Optical Imaging Center, School of Life Sciences, Peking University, Beijing, China
| | - X. Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, United States of America
- * E-mail:
| |
Collapse
|
399
|
Kanter I, Kalisky T. Single cell transcriptomics: methods and applications. Front Oncol 2015; 5:53. [PMID: 25806353 PMCID: PMC4354386 DOI: 10.3389/fonc.2015.00053] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/14/2015] [Indexed: 12/31/2022] Open
Abstract
Traditionally, gene expression measurements were performed on “bulk” samples containing populations of thousands of cells. Recent advances in genomic technology have made it possible to measure gene expression in hundreds of individual cells at a time. As a result, cellular properties that were previously masked in “bulk” measurements can now be observed directly. In this review, we will survey emerging technologies for single cell transcriptomics, and describe how they are used to study complex disease such as cancer, as well as other biological phenomena such as tissue regeneration, embryonic development, and immune response.
Collapse
Affiliation(s)
- Itamar Kanter
- Faculty of Engineering, Institute of Nanotechnology, Bar-Ilan University , Ramat Gan , Israel
| | - Tomer Kalisky
- Faculty of Engineering, Institute of Nanotechnology, Bar-Ilan University , Ramat Gan , Israel
| |
Collapse
|
400
|
Heterogeneities in Nanog Expression Drive Stable Commitment to Pluripotency in the Mouse Blastocyst. Cell Rep 2015; 10:1508-1520. [PMID: 25753417 DOI: 10.1016/j.celrep.2015.02.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 01/04/2015] [Accepted: 01/31/2015] [Indexed: 11/21/2022] Open
Abstract
The pluripotent epiblast (EPI) is the founder tissue of almost all somatic cells. EPI and primitive endoderm (PrE) progenitors arise from the inner cell mass (ICM) of the blastocyst-stage embryo. The EPI lineage is distinctly identified by its expression of pluripotency-associated factors. Many of these factors have been reported to exhibit dynamic fluctuations of expression in embryonic stem cell cultures. Whether these fluctuations correlating with ICM fate choice occur in vivo remains an open question. Using single-cell resolution quantitative imaging of a Nanog transcriptional reporter, we noted an irreversible commitment to EPI/PrE lineages in vivo. A period of apoptosis occurred concomitantly with ICM cell-fate choice, followed by a burst of EPI-specific cell proliferation. Transitions were occasionally observed from PrE-to-EPI, but not vice versa, suggesting that they might be regulated and not stochastic. We propose that the rapid timescale of early mammalian embryonic development prevents fluctuations in cell fate.
Collapse
|