351
|
Chen Y, Ji Y, Shen L, Li Y, Ren Y, Shi H, Li Y, Wu Y. High core 1β1,3-galactosyltransferase 1 expression is associated with poor prognosis and promotes cellular radioresistance in lung adenocarcinoma. J Cancer Res Clin Oncol 2024; 150:214. [PMID: 38662050 PMCID: PMC11045595 DOI: 10.1007/s00432-024-05745-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE Core 1β1,3-galactosyltransferase 1 (C1GALT1) exhibits elevated expression in multiple cancers. The present study aimed to elucidate the clinical significance of C1GALT1 aberrant expression and its impact on radiosensitivity in lung adenocarcinoma (LUAD). METHODS The C1GALT1 expression and its clinical relevance were investigated through public databases and LUAD tissue microarray analyses. A549 and H1299 cells with either C1GALT1 knockdown or overexpression were further assessed through colony formation, gamma-H2A histone family member X immunofluorescence, 5-ethynyl-2'-deoxyuridine incorporation, and flow cytometry assays. Bioinformatics analysis was used to explore single cell sequencing data, revealing the influence of C1GALT1 on cancer-associated cellular states. Vimentin, N-cadherin, and E-cadherin protein levels were measured through western blotting. RESULTS The expression of C1GALT1 was significantly higher in LUAD tissues than in adjacent non-tumor tissues both at mRNA and protein level. High expression of C1GALT1 was correlated with lymph node metastasis, advanced T stage, and poor survival, and was an independent risk factor for overall survival. Radiation notably upregulated C1GALT1 expression in A549 and H1299 cells, while radiosensitivity was increased following C1GALT1 knockdown and decreased following overexpression. Experiment results showed that overexpression of C1GALT1 conferred radioresistance, promoting DNA repair, cell proliferation, and G2/M phase arrest, while inhibiting apoptosis and decreasing E-cadherin expression, alongside upregulating vimentin and N-cadherin in A549 and H1299 cells. Conversely, C1GALT1 knockdown had opposing effects. CONCLUSION Elevated C1GALT1 expression in LUAD is associated with an unfavorable prognosis and contributes to increased radioresistance potentially by affecting DNA repair, cell proliferation, cell cycle regulation, and epithelial-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Yong Chen
- Department of Medical Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yanyan Ji
- Department of Medical Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Lin Shen
- Department of Medical Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Ying Li
- Department of Medical Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yue Ren
- Department of Medical Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Hongcan Shi
- Department of Cardiothoracic Surgery, Medical College of Yangzhou University, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yue Li
- Department of Medical Oncology, Clinical College of Dalian Medical University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yunjiang Wu
- Department of Thoracic Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Road, Yangzhou, 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
352
|
Chaudhary P, Yadav K, Lee HJ, Kang KW, Mo J, Kim JA. siRNA treatment targeting integrin α11 overexpressed via EZH2-driven axis inhibits drug-resistant breast cancer progression. Breast Cancer Res 2024; 26:72. [PMID: 38664825 PMCID: PMC11046805 DOI: 10.1186/s13058-024-01827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Breast cancer, the most prevalent cancer in women worldwide, faces treatment challenges due to drug resistance, posing a serious threat to patient survival. The present study aimed to identify the key molecules that drive drug resistance and aggressiveness in breast cancer cells and validate them as therapeutic targets. METHODS Transcriptome microarray and analysis using PANTHER pathway and StemChecker were performed to identify the most significantly expressed genes in tamoxifen-resistant and adriamycin-resistant MCF-7 breast cancer cells. Clinical relevance of the key genes was determined using Kaplan-Meier survival analyses on The Cancer Genome Atlas dataset of breast cancer patients. Gene overexpression/knockdown, spheroid formation, flow cytometric analysis, chromatin immunoprecipitation, immunocytochemistry, wound healing/transwell migration assays, and cancer stem cell transcription factor activation profiling array were used to elucidate the regulatory mechanism of integrin α11 expression. Tumour-bearing xenograft models were used to demonstrate integrin α11 is a potential therapeutic target. RESULTS Integrin α11 was consistently upregulated in drug-resistant breast cancer cells, and its silencing inhibited cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) while restoring sensitivity to anticancer drugs. HIF1α, GLI-1, and EZH2 contributed the most to the regulation of integrin α11 and EZH2 expression, with EZH2 being more necessary for EZH2 autoinduction than HIF1α and GLI-1. Additionally, unlike HIF1α or EZH2, GLI-1 was the sole transcription factor activated by integrin-linked focal adhesion kinase, indicating GLI-1 as a key driver of the EZH2-integrin α11 axis operating for cancer stem cell survival and EMT. Kaplan-Meier survival analysis using The Cancer Genome Atlas (TCGA) dataset also revealed both EZH2 and integrin α11 could be strong prognostic factors of relapse-free and overall survival in breast cancer patients. However, the superior efficacy of integrin α11 siRNA therapy over EZH2 siRNA treatment was demonstrated by enhanced inhibition of tumour growth and prolonged survival in murine models bearing tumours. CONCLUSION Our findings elucidate that integrin α11 is upregulated by EZH2, forming a positive feedback circuit involving FAK-GLI-1 and contributing to drug resistance, cancer stem cell survival and EMT. Taken together, the results suggest integrin α11 as a promising prognostic marker and a powerful therapeutic target for drug-resistant breast cancer.
Collapse
Affiliation(s)
- Prakash Chaudhary
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kiran Yadav
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Ho Jin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jongseo Mo
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
353
|
Liu X, Wang X, Yang Q, Luo L, Liu Z, Ren X, Lei K, Li S, Xie Z, Zheng G, Zhang Y, Hao Y, Zhou Q, Hou Y, Fang F, Song W, Cui J, Ma J, Xie W, Shen S, Tang C, Peng S, Yu J, Kuang M, Song X, Wang F, Xu L. Th17 Cells Secrete TWEAK to Trigger Epithelial-Mesenchymal Transition and Promote Colorectal Cancer Liver Metastasis. Cancer Res 2024; 84:1352-1371. [PMID: 38335276 DOI: 10.1158/0008-5472.can-23-2123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/28/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Liver metastasis is the leading cause of mortality in patients with colorectal cancer. Given the significance of both epithelial-mesenchymal transition (EMT) of tumor cells and the immune microenvironment in colorectal cancer liver metastasis (CRLM), the interplay between them could hold the key for developing improved treatment options. We employed multiomics analysis of 130 samples from 18 patients with synchronous CRLM integrated with external datasets to comprehensively evaluate the interaction between immune cells and EMT of tumor cells in liver metastasis. Single-cell RNA sequencing analysis revealed distinct distributions of nonmalignant cells between primary tumors from patients with metastatic colorectal cancer (mCRC) and non-metastatic colorectal cancer, showing that Th17 cells were predominantly enriched in the primary lesion of mCRC. TWEAK, a cytokine secreted by Th17 cells, promoted EMT by binding to receptor Fn14 on tumor cells, and the TWEAK-Fn14 interaction enhanced tumor migration and invasion. In mouse models, targeting Fn14 using CRISPR-induced knockout or lipid nanoparticle-encapsulated siRNA alleviated metastasis and prolonged survival. Mice lacking Il17a or Tnfsf12 (encoding TWEAK) exhibited fewer metastases compared with wild-type mice, while cotransfer of Th17 with tumor cells promoted liver metastasis. Higher TWEAK expression was associated with a worse prognosis in patients with colorectal cancer. In addition, CD163L1+ macrophages interacted with Th17 cells, recruiting Th17 via the CCL4-CCR5 axis. Collectively, this study unveils the role of immune cells in the EMT process and identifies TWEAK secreted by Th17 as a driver of CRLM. SIGNIFICANCE TWEAK secreted by Th17 cells promotes EMT by binding to Fn14 on colorectal cancer cells, suggesting that blocking the TWEAK-Fn14 interaction may be a promising therapeutic approach to inhibit liver metastasis.
Collapse
Affiliation(s)
- Xin Liu
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xin Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qingxia Yang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Li Luo
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ziqin Liu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiaoxue Ren
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Kai Lei
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shangru Li
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zonglin Xie
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Gaomin Zheng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yifan Zhang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yijie Hao
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qianying Zhou
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yingdong Hou
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Fei Fang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wu Song
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ji Cui
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jinping Ma
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wenxuan Xie
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shunli Shen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ce Tang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Clinical Trial Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jun Yu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xinming Song
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Fang Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lixia Xu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
354
|
Ouyang P, Li K, Xu W, Chen C, Shi Y, Tian Y, Gong J, Bao Z. METTL3 recruiting M2-type immunosuppressed macrophages by targeting m6A-SNAIL-CXCL2 axis to promote colorectal cancer pulmonary metastasis. J Exp Clin Cancer Res 2024; 43:111. [PMID: 38605400 PMCID: PMC11007974 DOI: 10.1186/s13046-024-03035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND The regulatory role of N6-methyladenosine (m6A) modification in the onset and progression of cancer has garnered increasing attention in recent years. However, the specific role of m6A modification in pulmonary metastasis of colorectal cancer remains unclear. METHODS This study identified differential m6A gene expression between primary colorectal cancer and its pulmonary metastases using transcriptome sequencing and immunohistochemistry. We investigated the biological function of METTL3 gene both in vitro and in vivo using assays such as CCK-8, colony formation, wound healing, EDU, transwell, and apoptosis, along with a BALB/c nude mouse model. The regulatory mechanisms of METTL3 in colorectal cancer pulmonary metastasis were studied using methods like methylated RNA immunoprecipitation quantitative reverse transcription PCR, RNA stability analysis, luciferase reporter gene assay, Enzyme-Linked Immunosorbent Assay, and quantitative reverse transcription PCR. RESULTS The study revealed high expression of METTL3 and YTHDF1 in the tumors of patients with pulmonary metastasis of colorectal cancer. METTL3 promotes epithelial-mesenchymal transition in colorectal cancer by m6A modification of SNAIL mRNA, where SNAIL enhances the secretion of CXCL2 through the NF-κB pathway. Additionally, colorectal cancer cells expressing METTL3 recruit M2-type macrophages by secreting CXCL2. CONCLUSION METTL3 facilitates pulmonary metastasis of colorectal cancer by targeting the m6A-Snail-CXCL2 axis to recruit M2-type immunosuppressive macrophages. This finding offers new research directions and potential therapeutic targets for colorectal cancer treatment.
Collapse
Affiliation(s)
- Peng Ouyang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Kang Li
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Wei Xu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Caiyun Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yangdong Shi
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yao Tian
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jin Gong
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Zhen Bao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
355
|
Yu S, Cui X, Zhou S, Li Y, Feng W, Zhang X, Zhong Y, Zhang P. THOC7-AS1/OCT1/FSTL1 axis promotes EMT and serves as a therapeutic target in cutaneous squamous cell carcinoma. J Transl Med 2024; 22:347. [PMID: 38605354 PMCID: PMC11010364 DOI: 10.1186/s12967-024-05116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND THOC7-AS1 and FSTL1 expression are frequently upregulated in cutaneous squamous cell carcinoma (cSCC). However, their molecular biological mechanisms remain elusive and their potential as therapeutic targets needs urgent exploration. METHODS Human tissue samples were used to evaluate clinical parameters. In vitro and in vivo experiments assessed biological functions. Quantitative PCR, western blot, immunohistochemistry, immunocytochemistry, immunoprecipitation, RNA fluorescence in situ hybridization, RNA pull-down, RNA immunoprecipitation, silver staining, chromatin immunoprecipitation, dual luciferase reporter assays etc. were utilized to explore the molecular biological mechanisms. RESULTS We found FSTL1 is an oncogene in cSCC, with high expression in tumor tissues and cells. Its elevated expression closely associates with tumor size and local tissue infiltration. In vitro and in vivo, high FSTL1 expression promotes cSCC proliferation, migration and invasion, facilitating malignant behaviors. Mechanistically, FSTL1 interacts with ZEB1 to promote epithelial-to-mesenchymal transition (EMT) in cSCC cells. Exploring upstream regulation, we found THOC7-AS1 can interact with OCT1, which binds the FSTL1 promoter region and promotes FSTL1 expression, facilitating cSCC progression. Finally, treating tumors with THOC7-AS1 antisense oligonucleotides inhibited cSCC proliferative and migratory abilities, delaying tumor progression. CONCLUSIONS The THOC7-AS1/OCT1/FSTL1 axis regulates EMT and promotes tumor progression in cSCC. This study provides clues and ideas for cSCC targeted therapy.
Collapse
Affiliation(s)
- Site Yu
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, P.R. China
| | - Xu Cui
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, P.R. China
| | - Situo Zhou
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, P.R. China
| | - Yun Li
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, P.R. China
| | - Wenjie Feng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, P.R. China
| | - Xiangjun Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, P.R. China
| | - Yuhui Zhong
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, P.R. China
| | - Pihong Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, P.R. China.
| |
Collapse
|
356
|
Wang R, Yan Z. Cancer spreading patterns based on epithelial-mesenchymal plasticity. Front Cell Dev Biol 2024; 12:1259953. [PMID: 38665432 PMCID: PMC11043583 DOI: 10.3389/fcell.2024.1259953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction: Metastasis is a major cause of cancer-related deaths, underscoring the necessity to discern the rules and patterns of cancer cell spreading. Epithelial-mesenchymal plasticity contributes to cancer aggressiveness and metastasis. Despite establishing key determinants of cancer aggressiveness and metastatic ability, a comprehensive understanding of the underlying mechanism is unknown. We aimed to propose a classification system for cancer cells based on epithelial-mesenchymal plasticity, focusing on hysteresis of the epithelial-mesenchymal transition and the hybrid epithelial/mesenchymal phenotype. Methods: We extensively reviewed the concept of epithelial-mesenchymal plasticity, specifically considering the hysteresis of the epithelial-mesenchymal transition and the hybrid epithelial/mesenchymal phenotype. Results: In this review and hypothesis article, based on epithelial-mesenchymal plasticity, especially the hysteresis of epithelial-mesenchymal transition and the hybrid epithelial/mesenchymal phenotype, we proposed a classification of cancer cells, indicating that cancer cells with epithelial-mesenchymal plasticity potential could be classified into four types: irreversible hysteresis, weak hysteresis, strong hysteresis, and hybrid epithelial/mesenchymal phenotype. These four types of cancer cells had varied biology, spreading features, and prognoses. Discussion: Our results highlight that the proposed classification system offers insights into the diverse behaviors of cancer cells, providing implications for cancer aggressiveness and metastasis.
Collapse
Affiliation(s)
- Rui Wang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaopeng Yan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
357
|
Guo D, Sheng K, Zhang Q, Li P, Sun H, Wang Y, Lyu X, Jia Y, Wang C, Wu J, Zhang X, Wang D, Sun Y, Huang S, Yu J, Zhang J. Single-cell transcriptomic analysis reveals the landscape of epithelial-mesenchymal transition molecular heterogeneity in esophageal squamous cell carcinoma. Cancer Lett 2024; 587:216723. [PMID: 38342234 DOI: 10.1016/j.canlet.2024.216723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and highly lethal malignant disease. The epithelial-mesenchymal transition (EMT) is crucial in promoting ESCC development. However, the molecular heterogeneity of ESCC and the potential inhibitory strategies targeting EMT remain poorly understood. In this study, we analyzed high-resolution single-cell transcriptome data encompassing 209,231 ESCC cells from 39 tumor samples and 16 adjacent samples obtained from 44 individuals. We identified distinct cell populations exhibiting heterogeneous EMT characteristics and identified 87 EMT-associated molecules. The expression profiles of these EMT-associated molecules showed heterogeneity across different stages of ESCC progression. Moreover, we observed that EMT primarily occurred in early-stage tumors, before lymph node metastasis, and significantly promoted the rapid deterioration of ESCC. Notably, we identified SERPINH1 as a potential novel marker for ESCC EMT. By classifying ESCC patients based on EMT gene sets, we found that those with high EMT exhibited poorer prognosis. Furthermore, we predicted and experimentally validated drugs targeting ESCC EMT, including dactolisib, docetaxel, and nutlin, which demonstrated efficacy in inhibiting EMT and metastasis in ESCC. Through the integration of scRNA-seq, RNA-seq, and TCGA data with experimental validation, our comprehensive analysis elucidated the landscape of EMT during the entire course of ESCC development and metastasis. These findings provide valuable insights and a reference for refining ESCC clinical treatment strategies.
Collapse
Affiliation(s)
- Dianhao Guo
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Kaiwen Sheng
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Qi Zhang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Pin Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Haoqiang Sun
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Yongjie Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xinxing Lyu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Yang Jia
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250117, China.
| | - Caifan Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Jing Wu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiaohang Zhang
- Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.
| | - Dandan Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Yawen Sun
- Department of Clinical Epidemiology and Biostatistics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jingze Zhang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
358
|
Hammer A, Diakonova M. Prolactin-induced tyrosyl phosphorylation of PAK1 facilitates epithelial-mesenchymal transition. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001136. [PMID: 38660565 PMCID: PMC11040397 DOI: 10.17912/micropub.biology.001136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
PAK1 and prolactin (PRL) regulate breast cancer. Prolactin-activated JAK2 tyrosyl phosphorylates PAK1 (pTyr-PAK1). We demonstrate here that pTyr-PAK1 regulates epithelial-mesenchymal transition (EMT) in breast cancer cells. PRL treatment of T47D PAK1 WT cells leads to downregulation of E-cadherin surface expression and "ectodomain shedding" (extracellular cleavage of E-cadherin). pTyr-PAK1 increases mRNA levels of Snail, Slug, and Twist2, transcriptional factors implicated in E-cadherin repression. pTyr-PAK1 also significantly increases PRL-dependent Slug activity leading to expression of vimentin, a hallmark of EMT. Thus, our current data on pTyr-PAK1 regulation of EMT bring insight into the role of PAK1 and PRL in human breast cancer.
Collapse
Affiliation(s)
- Alan Hammer
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States
| | - Maria Diakonova
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States
| |
Collapse
|
359
|
Xia X, Yin K, Wang S. Targeting of netrin-1 by monoclonal antibody NP137 inhibits the EMT in cancer. J Immunother Cancer 2024; 12:e008937. [PMID: 38580331 PMCID: PMC11002406 DOI: 10.1136/jitc-2024-008937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Xueli Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Immunology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, China
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Immunology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, China
| |
Collapse
|
360
|
Ren L, Huang D, Liu H, Ning L, Cai P, Yu X, Zhang Y, Luo N, Lin H, Su J, Zhang Y. Applications of single‑cell omics and spatial transcriptomics technologies in gastric cancer (Review). Oncol Lett 2024; 27:152. [PMID: 38406595 PMCID: PMC10885005 DOI: 10.3892/ol.2024.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Gastric cancer (GC) is a prominent contributor to global cancer-related mortalities, and a deeper understanding of its molecular characteristics and tumor heterogeneity is required. Single-cell omics and spatial transcriptomics (ST) technologies have revolutionized cancer research by enabling the exploration of cellular heterogeneity and molecular landscapes at the single-cell level. In the present review, an overview of the advancements in single-cell omics and ST technologies and their applications in GC research is provided. Firstly, multiple single-cell omics and ST methods are discussed, highlighting their ability to offer unique insights into gene expression, genetic alterations, epigenomic modifications, protein expression patterns and cellular location in tissues. Furthermore, a summary is provided of key findings from previous research on single-cell omics and ST methods used in GC, which have provided valuable insights into genetic alterations, tumor diagnosis and prognosis, tumor microenvironment analysis, and treatment response. In summary, the application of single-cell omics and ST technologies has revealed the levels of cellular heterogeneity and the molecular characteristics of GC, and holds promise for improving diagnostics, personalized treatments and patient outcomes in GC.
Collapse
Affiliation(s)
- Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| | - Danni Huang
- Department of Radiology, Central South University Xiangya School of Medicine Affiliated Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Hongjiang Liu
- School of Computer Science and Technology, Aba Teachers College, Aba, Sichuan 624099, P.R. China
| | - Lin Ning
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| | - Peiling Cai
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| | - Xiaolong Yu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Material Science and Engineering Institute of Hainan University, Sanya, Hainan 572025, P.R. China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Nanchao Luo
- School of Computer Science and Technology, Aba Teachers College, Aba, Sichuan 624099, P.R. China
| | - Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Jinsong Su
- Research Institute of Integrated Traditional Chinese Medicine and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yinghui Zhang
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| |
Collapse
|
361
|
Zhu X, Bao W, Xie X, Chen B, Li R, Zhao J, Wu L, Yu Z, Li S, Zhu Q, Chen G, Li J. Liensinine inhibits progression of intrahepatic cholangiocarcinoma by regulating TGF-β1 /P-smad3 signaling through HIF-1a. Mol Carcinog 2024; 63:772-784. [PMID: 38289159 DOI: 10.1002/mc.23687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/27/2023] [Accepted: 01/14/2024] [Indexed: 03/16/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a high-grade malignant digestive system tumor with an insidious onset and unfavorable prognosis. Liensinine, a small molecule derived from plants, has been proven to have significant tumor suppressor activity in other cancers. However, there are no reports on whether liensinine can inhibit the proliferation or metastasis of ICC. This study aimed to explore the tumor-suppressive activity of liensinine in ICC and its underlying mechanisms. The phenotypic changes in ICC cells were monitored in vitro using cell function tests. Western blot and immunofluorescence analyses verified the efficacy of liensinine. Tumor-bearing nude mice were used to explore the effect of liensinine on tumors and its toxicity and side effects in vivo. Liensinine suppressed ICC cell proliferation and arrested the cell cycle at the G1 phase. The epithelial-mesenchymal transition (EMT) of ICC cells was also inhibited, thereby restraining their invasion and migration of tumor cells. In addition, this study found that the potential mechanism of liensinine inhibiting EMT may be via suppression of the TGF-β1/P-smad3 signaling pathway through hypoxia-inducible factor 1 alpha (HIF-1a). In vivo experiments showed that liensinine inhibited the growth of Hucc-T1 transplanted tumors in nude mice. Liensinine restrained the proliferation of ICC cells and suppressed EMT in ICC via the HIF-1a-mediated TGF-β1/P-smad3 signaling pathway.
Collapse
Affiliation(s)
- Xuewen Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenming Bao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozai Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rizhao Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jungang Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shi Li
- Department of Urology Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiandong Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Hepatobiliary Pancreatic Tumor Bioengineering Cross International Joint Laboratory of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiacheng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
362
|
Liu D, Yan B, Yin Y, Chen F, Guo C, Li Q, Liu J, Pu L, Wu W, Luo J. PI3Kδ Mediates Fibrosis by Patient-Derived Vitreous. J Transl Med 2024; 104:102026. [PMID: 38307209 DOI: 10.1016/j.labinv.2024.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a fundamental process in developing fibrotic diseases, including forming epiretinal membranes (ERMs). ERMs can result in irreversible vision loss. Previous research has demonstrated that vitreous (VIT) derived from patients with proliferative diabetic retinopathy can stimulate angiogenesis through the Axl/PI3K/Akt pathway. Building upon this knowledge, we aimed to explore the influence of VIT from patients with macular membranes in ARPE-19 cells. Our findings reveal that patient-derived VIT from individuals with macular membranes promotes EMT and phosphoinositide 3-kinase-delta (PI3Kδ) expression in ARPE-19 cells. To elucidate the function of PI3Kδ in the ERM, we conducted experiments involving the knockout of p110δ, a key subunit of PI3Kδ, and observed that its absence hinders EMT induced by patient-derived VIT. Moreover, p110δ depletion reduces cell proliferation and migration in ARPE-19 cells. Remarkably, these effects were further corroborated by applying the p110δ inhibitor idelalisib, which blocks fibrosis in the laser-induced fibrosis model. Collectively, our results propose that p110δ plays a critical role in the progression of ERMs. Consequently, targeting p110δ emerges as a promising therapeutic approach for mitigating fibrosis. These findings contribute to a better understanding of the underlying mechanisms involved in ERM formation and highlight the potential for p110δ-directed antifibrotic therapy in retinal diseases.
Collapse
Affiliation(s)
- Dan Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Yan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiwei Yin
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Cao Guo
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Liu
- School of Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Li Pu
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenyi Wu
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jing Luo
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
363
|
Cong L, Zhao Q, Sun H, Zhou Z, Hu Y, Li C, Hao M, Cong X. A novel long non-coding RNA SLNCR1 promotes proliferation, migration, and invasion of melanoma via transcriptionally regulating SOX5. Cell Death Discov 2024; 10:160. [PMID: 38561355 PMCID: PMC10984963 DOI: 10.1038/s41420-024-01922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Steroid receptor RNA activator (SRA)-like non-coding RNA (SLNCR1) has been implicated in various tumorigenic processes, but the precise regulatory role in melanoma progression remains uncertain. We performed a comprehensive analysis to investigate the prognostic value of SLNCR1 expression in patients with melanoma by TCGA database and melanoma tissue samples via the Kaplan-Meier method. Subsequently, we conducted qRT-PCR and Fluorescence in Situ Hybridization (FISH) assays to identify SLNCR1 expression levels and localization in tissues and cells, respectively. Loss-of-function assays utilizing shRNAs vectors were used to investigate the potential impact of SLNCR1. Our data showed that SLNCR1 is significantly up-regulated in human malignant melanoma tissues and cell lines and functions as an oncogene. Silencing of SLNCR1 suppressed melanoma cell proliferation, migration, invasion, and inhibited tumorigenesis in a mouse xenograft model. Additionally, we employed bioinformatic predictive analysis, combined with dual-luciferase reporter analysis and functional rescue assays, to elucidate the mechanistic target of the SLNCR1/SOX5 axis in melanoma. Mechanistically, we discovered that SLNCR1 promotes EMT of human melanoma by targeting SOX5, as downregulation of SLNCR1 expression leads to a decrease in SOX5 protein levels and inhibits melanoma tumorigenesis. Our research offers promising insights for more precise diagnosis and treatment of human melanoma.
Collapse
Affiliation(s)
- Lele Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Qing Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Hongyan Sun
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zilong Zhou
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Hu
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | - Xianling Cong
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
364
|
Wu Y, Tang H, Liao Q, Tu Y, Fang S, He J, Cui S. Curcumol Inhibits the Progression of Hepatocellular Carcinoma by Regulating the Expression of hsa_circ_0028861. Cancer Biother Radiopharm 2024; 39:203-210. [PMID: 38181186 DOI: 10.1089/cbr.2023.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
Background: Hsa_circ_0028861, a newly discovered serum exosome circular RNA (circRNA), is greatly reduced in the serum of patients with hepatocellular carcinoma (HCC). However, the exact role of hsa_circ_0028861 in the progression of liver cancer is still unknown. Materials and Methods: Thirty patients with HCC were enrolled in this study. Hsa_circ_0028861 expression was explored via real-time polymerase chain reaction (PCR) assay. The influence of curcumol on HCC cells were tested using CCK-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, cell wound healing assay, and migration assay, respectively. The related mechanism was determined by Western blot. A xenograft tumor model was constructed, and mice were administrated with curcumol. Results: The expression of hsa_circ_0028861 in tumor tissues was elevated of patients with HCC and in HCC cells. Curcumol treatment decreased the expression of hsa_circ_0028861 in HCC cells. Curcumol treatment could largely suppress the viability, proliferation, and migration of HCC cells by reducing hsa_circ_0028861 expression and mediating the epithelial-mesenchymal transition (EMT) process. Curcumol also effectively restrained tumor growth in the HCC mice model. Conclusions: Curcumol exerted an inhibitory role in HCC progression by downregulating hsa_circ_0028861 expression and mediating the EMT process, which provides evidence for screening new therapeutic targets and drug therapies for HCC treatment.
Collapse
Affiliation(s)
- Yinbing Wu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huafei Tang
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Quanxing Liao
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yinuo Tu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shuxian Fang
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jinfu He
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shuzhong Cui
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
365
|
Qin JJ, Niu MD, Cha Z, Geng QH, Li YL, Ren CG, Molloy DP, Yu HR. TRAIL and Celastrol Combinational Treatment Suppresses Proliferation, Migration, and Invasion of Human Glioblastoma Cells via Targeting Wnt/β-catenin Signaling Pathway. Chin J Integr Med 2024; 30:322-329. [PMID: 37861963 DOI: 10.1007/s11655-023-3752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE To investigate the mechanistic basis for the anti-proliferation and anti-invasion effect of tumor necrosis factor-related apoptosis-induced ligand (TRAIL) and celastrol combination treatment (TCCT) in glioblastoma cells. METHODS Cell counting kit-8 was used to detect the effects of different concentrations of celastrol (0-16 µmol/L) and TRAIL (0-500 ng/mL) on the cell viability of glioblastoma cells. U87 cells were randomly divided into 4 groups, namely control, TRAIL (TRAIL 100 ng/mL), Cel (celastrol 0.5 µmol/L) and TCCT (TRAIL 100 ng/mL+ celastrol 0.5 µmol/L). Cell proliferation, migration, and invasion were detected by colony formation, wound healing, and Transwell assays, respectively. Quantitative reverse transcription polymerase chain reaction and Western blotting were performed to assess the levels of epithelial-mesenchymal transition (EMT) markers (zona occludens, N-cadherin, vimentin, zinc finger E-box-binding homeobox, Slug, and β-catenin). Wnt pathway was activated by lithium chloride (LiCl, 20 mol/L) and the mechanism for action of TCCT was explored. RESULTS Celastrol and TRAIL synergistically inhibited the proliferation, migration, invasion, and EMT of U87 cells (P<0.01). TCCT up-regulated the expression of GSK-3β and down-regulated the expression of β-catenin and its associated proteins (P<0.05 or P<0.01), including c-Myc, Cyclin-D1, and matrix metalloproteinase (MMP)-2. In addition, LiCl, an activator of the Wnt signaling pathway, restored the inhibitory effects of TCCT on the expression of β-catenin and its downstream genes, as well as the migration and invasion of glioblastoma cells (P<0.05 or P<0.01). CONCLUSIONS Celastrol and TRAIL can synergistically suppress glioblastoma cell migration, invasion, and EMT, potentially through inhibition of Wnt/β-catenin pathway. This underlies a novel mechanism of action for TCCT as an effective therapy for glioblastoma.
Collapse
Affiliation(s)
- Jing-Jing Qin
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Meng-da Niu
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Cha
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qing-Hua Geng
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yu-Lin Li
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Chun-Guang Ren
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - David P Molloy
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Hua-Rong Yu
- Research Center of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
366
|
Chen SY, Zhang FL, Zhang YL, Liao L, Deng L, Shao ZM, Liu GY, Li DQ. Spermatid perinuclear RNA-binding protein promotes UBR5-mediated proteolysis of Dicer to accelerate triple-negative breast cancer progression. Cancer Lett 2024; 586:216672. [PMID: 38280476 DOI: 10.1016/j.canlet.2024.216672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/17/2023] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer with no targeted therapy. Spermatid perinuclear RNA binding protein (STRBP), a poorly characterized RNA-binding protein (RBP), has an essential role in normal spermatogenesis and sperm function, but whether and how its dysregulation contributing to cancer progression has not yet been explored. Here, we report that STRBP functions as a novel oncogene to drive TNBC progression. STRBP expression was upregulated in TNBC tissues and correlated with poor disease prognosis. Functionally, STRBP promoted TNBC cell proliferation, migration, and invasion in vitro, and enhanced xenograft tumor growth and lung colonization in mice. Mechanistically, STRBP interacted with Dicer, a core component of the microRNA biogenesis machinery, and promoted its proteasomal degradation through enhancing its interaction with E3 ubiquitin ligase UBR5. MicroRNA-sequencing analysis identified miR-200a-3p as a downstream effector of STRBP, which was regulated by Dicer and affected epithelial-mesenchymal transition. Importantly, the impaired malignant phenotypes of TNBC cells caused by STRBP depletion were largely rescued by knockdown of Dicer, and these effects were compromised by transfection of miR-200a-3p mimics. Collectively, these findings revealed a previously unrecognized oncogenic role of STRBP in TNBC progression and identified STRBP as a promising target against TNBC.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Fang-Lin Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yin-Ling Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Li Liao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Deng
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhi-Min Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Guang-Yu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
367
|
Gao JH, He AD, Liu LM, Zhou YJ, Guo YW, Lu M, Zeng XB, Gong X, Lu YJ, Liang HF, Zhang BX, Ma R, Zhang RY, Ming ZY. Direct interaction of platelet with tumor cell aggravates hepatocellular carcinoma metastasis by activating TLR4/ADAM10/CX3CL1 axis. Cancer Lett 2024; 585:216674. [PMID: 38280480 DOI: 10.1016/j.canlet.2024.216674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Metastasis is the main culprit of cancer-related death and account for the poor prognosis of hepatocellular carcinoma. Although platelets have been shown to accelerate tumor cell metastasis, the exact mechanism remained to be fully understood. Here, we found that high blood platelet counts and increased tumor tissue ADAM10 expression indicated the poor prognosis of HCC patients. Meanwhile, blood platelet count has positive correlation with tumor tissue ADAM10 expression. In vitro, we revealed that platelet increased ADAM10 expression in tumor cell through TLR4/NF-κB signaling pathway. ADAM10 catalyzed the shedding of CX3CL1 which bound to CX3CR1 receptor, followed by inducing epithelial to mesenchymal transition and activating RhoA signaling in cancer cells. Moreover, knockdown HCC cell TLR4 (Tlr4) or inhibition of ADAM10 prevented platelet-increased tumor cell migration, invasion and endothelial permeability. In vivo, we further verified in mice lung metastatic model that platelet accelerated tumor metastasis via cancer cell TLR4/ADAM10/CX3CL1 axis. Overall, our study provides new insights into the underlying mechanism of platelet-induced HCC metastasis. Therefore, targeting the TLR4/ADAM10/CX3CL1 axis in cancer cells hold promise for the inhibition of platelet-promoted lung metastasis of HCC.
Collapse
Affiliation(s)
- Jia-Hui Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ao-Di He
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Lu-Man Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ya-Jun Zhou
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ya-Wei Guo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Meng Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiang-Bin Zeng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xue Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yong-Jie Lu
- Centre for Biomarkers and Therapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Hui-Fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ru-Yi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Zhang-Yin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China; Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
368
|
Rashid M, Devi BM, Banerjee M. Combinatorial Cooperativity in miR200-Zeb Feedback Network can Control Epithelial-Mesenchymal Transition. Bull Math Biol 2024; 86:48. [PMID: 38555331 DOI: 10.1007/s11538-024-01277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Carcinomas often utilize epithelial-mesenchymal transition (EMT) programs for cancer progression and metastasis. Numerous studies report SNAIL-induced miR200/Zeb feedback circuit as crucial in regulating EMT by placing cancer cells in at least three phenotypic states, viz. epithelial (E), hybrid (h-E/M), mesenchymal (M), along the E-M phenotypic spectrum. However, a coherent molecular-level understanding of how such a tiny circuit controls carcinoma cell entrance into and residence in various states is lacking. Here, we use molecular binding data and mathematical modeling to report that the miR200/Zeb circuit can essentially utilize combinatorial cooperativity to control E-M phenotypic plasticity. We identify minimal combinatorial cooperativities that give rise to E, h-E/M, and M phenotypes. We show that disrupting a specific number of miR200 binding sites on Zeb as well as Zeb binding sites on miR200 can have phenotypic consequences-the circuit can dynamically switch between two (E, M) and three (E, h-E/M, M) phenotypes. Further, we report that in both SNAIL-induced and SNAIL knock-out miR200/Zeb circuits, cooperative transcriptional feedback on Zeb as well as Zeb translation inhibition due to miR200 are essential for the occurrence of intermediate h-E/M phenotype. Finally, we demonstrate that SNAIL can be dispensable for EMT, and in the absence of SNAIL, the transcriptional feedback can control cell state transition from E to h-E/M, to M state. Our results thus highlight molecular-level regulation of EMT in miR200/Zeb circuit and we expect these findings to be crucial to future efforts aiming to prevent EMT-facilitated dissemination of carcinomas.
Collapse
Affiliation(s)
- Mubasher Rashid
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Brasanna M Devi
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Malay Banerjee
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
369
|
Zhang X, Zhang X, Yang Q, Han R, Fadhul W, Sachdeva A, Zhang X. Comprehensive analysis of ADGRE5 gene in human tumors: Clinical relevance, prognostic implications, and potential for personalized immunotherapy. Heliyon 2024; 10:e27459. [PMID: 38501000 PMCID: PMC10945187 DOI: 10.1016/j.heliyon.2024.e27459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Purpose The Adhesion G protein receptor E5 (ADGRE5) gene is involved in a wide range of biological functions in human tumors; however, its specific molecular mechanism and significance in the analysis of human tumors have not yet been determined. Here, we provide a comprehensive genomic architecture of ADGRE5 in the tumor immune microenvironment and its clinical relevance across a broad range of solid tumors. Methods In this study, we used publicly available bioinformatics databases, with a primary focus on The Cancer Genome Atlas (TCGA) database and GTEx data, to conduct a comprehensive analysis of the impact on patient prognosis associated with ADGRE5. Results Statistics of more than 30 solid tumors from TCGA and Cancer Cell Line Encyclopedia (CCLE) were examined. ADGRE5 was differentially expressed in several cancers and was significantly associated with survival outcomes. Higher ADGRE5 levels were associated with worse prognosis in adrenocortical carcinoma, low grade glioma of the brain (LGG), lung squamous cell carcinoma, liver hepatocellular carcinoma, and uveal melanoma (UVM). Additionally, ADGRE5 was found to be an independent risk factor for LGG and UVM. The clinical relevance of ADGRE5 in tumor immunogenicity was further investigated. The expression level of ADGRE5 was not only strongly associated with tumor infiltration, such as tumor-infiltrating immune cells and immune subtypes, but also with tumor mutation burden, pyroptosis, and epithelial-mesenchymal transition in various types of cancer (P < 0.05). Furthermore, we noted that ADGRE5 exhibited a positive association with targeted drug sensitivity and conversely, a negative association with traditional chemotherapeutic drug sensitivity. Thus, ADGRE5 is expected to be a guiding marker gene for clinical prognosis and personalized tumor immunotherapy.
Collapse
Affiliation(s)
- Xiangjian Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinxin Zhang
- Department of Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuhui Yang
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ruokuo Han
- Department of Surgical Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
| | - Walaa Fadhul
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Alisha Sachdeva
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xianbo Zhang
- Department of Surgical Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
370
|
Liu J, Xiao Y, Cao L, Lu S, Zhang S, Yang R, Wang Y, Zhang N, Yu Y, Wang X, Guo W, Wang Z, Xu H, Xing C, Song X, Cao L. Insights on E1-like enzyme ATG7: functional regulation and relationships with aging-related diseases. Commun Biol 2024; 7:382. [PMID: 38553562 PMCID: PMC10980737 DOI: 10.1038/s42003-024-06080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Autophagy is a dynamic self-renovation biological process that maintains cell homeostasis and is responsible for the quality control of proteins, organelles, and energy metabolism. The E1-like ubiquitin-activating enzyme autophagy-related gene 7 (ATG7) is a critical factor that initiates classic autophagy reactions by promoting the formation and extension of autophagosome membranes. Recent studies have identified the key functions of ATG7 in regulating the cell cycle, apoptosis, and metabolism associated with the occurrence and development of multiple diseases. This review summarizes how ATG7 is precisely programmed by genetic, transcriptional, and epigenetic modifications in cells and the relationship between ATG7 and aging-related diseases.
Collapse
Affiliation(s)
- Jingwei Liu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutong Xiao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Liangzi Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Songming Lu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Siyi Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Ruohan Yang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Yubang Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Naijin Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Department of Cardiology, First Hospital of China Medical University, Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Yang Yu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Xiwen Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wendong Guo
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Zhuo Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Hongde Xu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| | - Chengzhong Xing
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| | - Liu Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
371
|
Ito K, Harada I, Martinez C, Sato K, Lee E, Port E, Byerly JH, Nayak A, Tripathi E, Zhu J, Irie HY. MARCH2, a Novel Oncogene-regulated SNAIL E3 Ligase, Suppresses Triple-negative Breast Cancer Metastases. CANCER RESEARCH COMMUNICATIONS 2024; 4:946-957. [PMID: 38457262 PMCID: PMC10977041 DOI: 10.1158/2767-9764.crc-23-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Epithelial-mesenchymal transition (EMT) in cancer promotes metastasis and chemotherapy resistance. A subset of triple-negative breast cancer (TNBC) exhibits a mesenchymal gene signature that is associated with poor patient outcomes. We previously identified PTK6 tyrosine kinase as an oncogenic driver of EMT in a subset of TNBC. PTK6 induces EMT by stabilizing SNAIL, a key EMT-initiating transcriptional factor. Inhibition of PTK6 activity reverses mesenchymal features of TNBC cells and suppresses their metastases by promoting SNAIL degradation via a novel mechanism. In the current study, we identify membrane-associated RING-CH2 (MARCH2) as a novel PTK6-regulated E3 ligase that promotes the ubiquitination and degradation of SNAIL protein. The MARCH2 RING domain is critical for SNAIL ubiquitination and subsequent degradation. PTK6 inhibition promotes the interaction of MARCH2 with SNAIL. Overexpression of MARCH2 exhibits tumor suppressive properties and phenocopies the effects of SNAIL downregulation and PTK6 inhibition in TNBC cells, such as inhibition of migration, anoikis resistance, and metastasis. Consistent with this, higher levels of MARCH2 expression in breast and other cancers are associated with better prognosis. We have identified MARCH2 as a novel SNAIL E3 ligase that regulates EMT and metastases of mesenchymal TNBC. SIGNIFICANCE EMT is a process directly linked to drug resistance and metastasis of cancer cells. We identified MARCH2 as a novel regulator of SNAIL, a key EMT driver, that promotes SNAIL ubiquitination and degradation in TNBC cells. MARCH2 is oncogene regulated and inhibits growth and metastasis of TNBC. These insights could contribute to novel strategies to therapeutically target TNBC.
Collapse
Affiliation(s)
- Koichi Ito
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ibuki Harada
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Criseyda Martinez
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katsutoshi Sato
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Elisa Port
- Department of Surgery, Mount Sinai Hospital, New York, New York
| | - Jessica H. Byerly
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ekta Tripathi
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Zhu
- Sema4, Stamford, Connecticut
| | - Hanna Y. Irie
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
372
|
Palma FR, Coelho DR, Pulakanti K, Sakiyama MJ, Huang Y, Ogata FT, Danes JM, Meyer A, Furdui CM, Spitz DR, Gomes AP, Gantner BN, Rao S, Backman V, Bonini MG. Histone H3.1 is a chromatin-embedded redox sensor triggered by tumor cells developing adaptive phenotypic plasticity and multidrug resistance. Cell Rep 2024; 43:113897. [PMID: 38493478 PMCID: PMC11209755 DOI: 10.1016/j.celrep.2024.113897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/08/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
Chromatin structure is regulated through posttranslational modifications of histone variants that modulate transcription. Although highly homologous, histone variants display unique amino acid sequences associated with specific functions. Abnormal incorporation of histone variants contributes to cancer initiation, therapy resistance, and metastasis. This study reports that, among its biologic functions, histone H3.1 serves as a chromatin redox sensor that is engaged by mitochondrial H2O2. In breast cancer cells, the oxidation of H3.1Cys96 promotes its eviction and replacement by H3.3 in specific promoters. We also report that this process facilitates the opening of silenced chromatin domains and transcriptional activation of epithelial-to-mesenchymal genes associated with cell plasticity. Scavenging nuclear H2O2 or amino acid substitution of H3.1(C96S) suppresses plasticity, restores sensitivity to chemotherapy, and induces remission of metastatic lesions. Hence, it appears that increased levels of H2O2 produced by mitochondria of breast cancer cells directly promote redox-regulated H3.1-dependent chromatin remodeling involved in chemoresistance and metastasis.
Collapse
Affiliation(s)
- Flavio R Palma
- Department of Medicine, Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Chicago, IL 60611, USA
| | - Diego R Coelho
- Department of Medicine, Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Chicago, IL 60611, USA
| | - Kirthi Pulakanti
- Versiti Blood Research Institute of Wisconsin, and Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marcelo J Sakiyama
- Department of Medicine, Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Chicago, IL 60611, USA
| | - Yunping Huang
- Department of Medicine, Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Chicago, IL 60611, USA
| | - Fernando T Ogata
- Department of Medicine, Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Chicago, IL 60611, USA
| | - Jeanne M Danes
- Department of Medicine, Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Chicago, IL 60611, USA
| | - Alison Meyer
- Versiti Blood Research Institute of Wisconsin, and Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52245, USA
| | - Ana P Gomes
- Molecular Oncology Program, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Benjamin N Gantner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sridhar Rao
- Versiti Blood Research Institute of Wisconsin, and Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL 60208, USA
| | - Marcelo G Bonini
- Department of Medicine, Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
373
|
Zhang Q, Zhang J, Lan T, He J, Lei B, Wang H, Mei Z, Lv C. Integrative analysis revealed a correlation of PIAS family genes expression with prognosis, immunomodulation and chemotherapy. Eur J Med Res 2024; 29:195. [PMID: 38528630 DOI: 10.1186/s40001-024-01795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Protein inhibitor of activated STATs (PIAS) has pleiotropic biological effects, such as protein post-translational modification, transcriptional coregulation and gene editing. It is reported that PIAS family genes are also correlated with immune cells infiltration in cancers that highlights their unnoticed biological role in tumor progression. However, the relationship of their expression with prognosis, immune cell infiltration, tumor microenvironment, and immunotherapy in pan-cancer has been rarely reported. METHODS The multi-omics data were used to investigate the expression level of PIAS family members in pan-cancer, and the prognostic value of their expression in different tumors was analyzed by univariate Cox regression and Kaplan-Meier. Correlation analysis was used to investigate the relationship of PIAS gene expression with tumor microenvironment, immune infiltrating subtypes, stemness score and drug sensitivity. In addition, we also used wound healing and transwell assays to verify the biological effects of PIAS family gene expression on invasion and metastasis of HCC cells. RESULTS We found that PIAS family genes expression is significantly heterogeneous in tumors by multi-genomic analysis, and associated with poor prognosis in patients with multiple types of cancer. Furthermore, we also found that genetic alterations of PIAS family genes were not only common in different types of human tumors, but were also significantly associated with disease-free survival (DFS) across pan-cancer. Single-cell analysis revealed that PIAS family genes were mainly distributed in monocytes/macrophages. Additionally, we also found that their expression was associated with tumor microenvironment (including stromal cells and immune cells) and stemness score (DNAss and RNAss). Drug sensitivity analysis showed that PIAS family genes were able to predict the response to chemotherapy and immunotherapy. PIAS family genes expression is closely related to tumor metastasis, especially PIAS3. High PIAS3 expression significantly promotes the migration and invasion of liver cancer cell lines (HCC-LM3 and MHCC97-H). CONCLUSIONS Taking together, these findings contribute to determine whether the PIAS family genes are a potential oncogenic target gene, which have important contribution for the development of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiqi Zhang
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junkui Zhang
- Pharmaceutical Institute, Henan University, Kaifeng, 475004, China
| | - Tianyi Lan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jiayue He
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Bin Lei
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hongnan Wang
- College of Integrative Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhiqiang Mei
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Chaoxiang Lv
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
374
|
Nicolás-Morala J, Alonso-Juarranz M, Barahona A, Terrén S, Cabezas S, Falahat F, Gilaberte Y, Gonzalez S, Juarranz A, Mascaraque M. Comparative response to PDT with methyl-aminolevulinate and temoporfin in cutaneous and oral squamous cell carcinoma cells. Sci Rep 2024; 14:7025. [PMID: 38528037 DOI: 10.1038/s41598-024-57624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024] Open
Abstract
Cutaneous and Head and Neck squamous cell carcinoma (CSCC, HNSCC) are among the most prevalent cancers. Both types of cancer can be treated with photodynamic therapy (PDT) by using the photosensitizer Temoporfin in HNSCC and the prodrug methyl-aminolevulinate (MAL) in CSCC. However, PDT is not always effective. Therefore, it is mandatory to correctly approach the therapy according to the characteristics of the tumour cells. For this reason, we have used cell lines of CSCC (A431 and SCC13) and HNSCC (HN5 and SCC9). The results obtained indicated that the better response to MAL-PDT was related to its localization in the plasma membrane (A431 and HN5 cells). However, with Temoporfin all cell lines showed lysosome localization, even the most sensitive ones (HN5). The expression of mesenchymal markers and migratory capacity was greater in HNSCC lines compared to CSCC, but no correlation with PDT response was observed. The translocation to the nucleus of β-catenin and GSK3β and the activation of NF-κβ is related to the poor response to PDT in the HNSCC lines. Therefore, we propose that intracellular localization of GSK3β could be a good marker of response to PDT in HNSCC. Although the molecular mechanism of response to PDT needs further elucidation, this work shows that the most MAL-resistant line of CSCC is more sensitive to Temoporfin.
Collapse
Affiliation(s)
- J Nicolás-Morala
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034, Madrid, Spain
| | - M Alonso-Juarranz
- Oral and Maxillofacial Surgery Service, Hospital Clínico San Carlos, 28040, Madrid, Spain
- Surgery Department, Faculty of Medicine, Universidad Complutense, 28040, Madrid, Spain
| | - A Barahona
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - S Terrén
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - S Cabezas
- Oncology Service, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - F Falahat
- Oral and Maxillofacial Surgery Service, Hospital Clínico San Carlos, 28040, Madrid, Spain
- Surgery Department, Faculty of Medicine, Universidad Complutense, 28040, Madrid, Spain
| | - Y Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - S Gonzalez
- Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034, Madrid, Spain
- Department of Medicine and Medical Specialties, Universidad de Alcalá, Madrid, Spain
| | - A Juarranz
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.
- Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034, Madrid, Spain.
| | - M Mascaraque
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.
- Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034, Madrid, Spain.
| |
Collapse
|
375
|
Gao W, Lu J, Yang Z, Li E, Cao Y, Xie L. Mitotic Functions and Characters of KIF11 in Cancers. Biomolecules 2024; 14:386. [PMID: 38672404 PMCID: PMC11047945 DOI: 10.3390/biom14040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Mitosis mediates the accurate separation of daughter cells, and abnormalities are closely related to cancer progression. KIF11, a member of the kinesin family, plays a vital role in the formation and maintenance of the mitotic spindle. Recently, an increasing quantity of data have demonstrated the upregulated expression of KIF11 in various cancers, promoting the emergence and progression of cancers. This suggests the great potential of KIF11 as a prognostic biomarker and therapeutic target. However, the molecular mechanisms of KIF11 in cancers have not been systematically summarized. Therefore, we first discuss the functions of the protein encoded by KIF11 during mitosis and connect the abnormal expression of KIF11 with its clinical significance. Then, we elucidate the mechanism of KIF11 to promote various hallmarks of cancers. Finally, we provide an overview of KIF11 inhibitors and outline areas for future work.
Collapse
Affiliation(s)
| | | | | | | | - Yufei Cao
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (W.G.); (J.L.); (Z.Y.); (E.L.)
| | - Lei Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (W.G.); (J.L.); (Z.Y.); (E.L.)
| |
Collapse
|
376
|
Qin W, Fei G, Zhou Q, Li Z, Li W, Wei P. Nuclear protein NOP2 serves as a poor-prognosis predictor of LUAD and aggravates the malignancy of lung adenocarcinoma cells. Funct Integr Genomics 2024; 24:58. [PMID: 38489049 DOI: 10.1007/s10142-024-01337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Recent studies have shown that NOP2, a nucleolar protein, is up-regulated in various cancers, suggesting a potential link to tumor aggressiveness and unfavorable outcomes. This study examines NOP2's role in lung adenocarcinoma (LUAD), a context where its implications remain unclear. Utilizing bioinformatics, we assessed 513 LUAD and 59 normal tissue samples from The Cancer Genome Atlas (TCGA) to explore NOP2's diagnostic and prognostic significance in LUAD. Additionally, in vitro experiments compared NOP2 expression between Beas-2b and A549 cells. Advanced databases and analytical tools, including LINKEDOMICS, STRING, and TISIDB, were employed to further elucidate NOP2's association with LUAD. Our findings indicate a significantly higher expression of NOP2 mRNA and protein in A549 cells compared to Beas-2b cells (P < 0.001). In LUAD, elevated NOP2 levels were linked to decreased Overall Survival (OS) and advanced clinical stages. Univariate Cox analysis revealed that high NOP2 expression correlated with poorer OS in LUAD (P < 0.01), a finding independently supported by multivariate Cox analysis (P < 0.05). The relationship between NOP2 expression and LUAD risk was presented via a Nomogram. Additionally, Gene Set Enrichment Analysis (GSEA) identified seven NOP2-related signaling pathways. A focal point of our research was the interplay between NOP2 and tumor-immune interactions. Notably, a negative correlation was observed between NOP2 expression and the immune infiltration levels of macrophages, neutrophils, mast cells, Natural Killer (NK) cells, and CD8 + T cells in LUAD. Moreover, the expression of NOP2 was related to the sensitivity of various chemotherapeutic drugs. In vitro, we found that downregulating NOP2 can decrease the proliferation, migration and invasion of A549 cells. Furthermore, NOP2 can regulate Caspase3-mediated apoptosis. Collectively, particularly regarding prognosis, immune infiltration and vitro experiments, these findings suggest NOP2's potential of serving as a poor-prognostic biomarker for LUAD and aggravating the malignancy of lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Weizhuo Qin
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing City, 210009, Jiangsu Province, China
| | - Gaoqiang Fei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing City, 210009, Jiangsu Province, China
| | - Qian Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing City, 210009, Jiangsu Province, China
| | - Zhijie Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing City, 210009, Jiangsu Province, China
| | - Wei Li
- Department of Quality Management, Children's Hospital of Nanjing Medical University, No. 8 Jiangdong South Road, Jianye District, Nanjing City, 210008, Jiangsu Province, China.
| | - Pingmin Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing City, 210009, Jiangsu Province, China.
| |
Collapse
|
377
|
Li H, Cai L, Pan Q, Jiang X, Zhao J, Xiang T, Tang Y, Wang Q, He J, Weng D, Zhang Y, Liu Z, Xia J. N 6-methyladenosine-modified VGLL1 promotes ovarian cancer metastasis through high-mobility group AT-hook 1/Wnt/β-catenin signaling. iScience 2024; 27:109245. [PMID: 38439973 PMCID: PMC10910247 DOI: 10.1016/j.isci.2024.109245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/30/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
The main causes of death in patients with ovarian cancer (OC) are invasive lesions and the spread of metastasis. The present study aimed to explore the mechanisms that might promote OC metastasis. Here, we identified that VGLL1 expression was remarkably increased in metastatic OC samples. The role of VGLL1 in OC metastasis and tumor growth was examined by cell function assays and mouse models. Mechanistically level, METTL3-mediated N6-methyladenosine (m6A) modification contributed to VGLL1 upregulation in an IGF2BP2 recognition-dependent manner. Furthermore, VGLL1 directly interacts with TEAD4 and co-transcriptionally activates HMGA1. HMGA1 further activates Wnt/β-catenin signaling to enhance OC metastasis by promoting the epithelial-mesenchyme transition traits. Rescue assays indicated that the upregulation of HMGA1 was essential for VGLL1-induced metastasis. Collectively, these findings showed that the m6A-induced VGLL1/HMGA1/β-catenin axis might play a vital role in OC metastasis and tumor growth. VGLL1 might serve as a prognostic marker and therapeutic target against the metastasis of OC.
Collapse
Affiliation(s)
- Han Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Gynecology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Liming Cai
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Qiuzhong Pan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xingyu Jiang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jingjing Zhao
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Tong Xiang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yan Tang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Qijing Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jia He
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Desheng Weng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yanna Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Jianchuan Xia
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
378
|
Rodriguez E, Lindijer DV, van Vliet SJ, Garcia Vallejo JJ, van Kooyk Y. The transcriptional landscape of glycosylation-related genes in cancer. iScience 2024; 27:109037. [PMID: 38384845 PMCID: PMC10879703 DOI: 10.1016/j.isci.2024.109037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/12/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Changes in glycosylation patterns have been associated with malignant transformation and clinical outcomes in several cancer types, prompting ongoing research into the mechanisms involved and potential clinical applications. In this study, we performed an extensive transcriptomic analysis of glycosylation-related genes and pathways, using publicly available bulk and single cell transcriptomic datasets from tumor samples and cancer cell lines. We identified genes and pathways strongly associated with different tumor types, which may represent novel diagnostic biomarkers. By using single cell RNA-seq data, we characterized the contribution of different cell types to the overall tumor glycosylation. Transcriptomic analysis of cancer cell lines revealed that they present a simplified landscape of genes compared to tissue. Lastly, we describe the association of different genes and pathways with the clinical outcome of patients. These results can serve as a resource for future research aimed to unravel the role of the glyco-code in cancer.
Collapse
Affiliation(s)
- Ernesto Rodriguez
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| | - Dimitri V. Lindijer
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| | - Sandra J. van Vliet
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| | - Juan J. Garcia Vallejo
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| |
Collapse
|
379
|
Shen YJ, Ji MY, Huang Q, Hsueh CY, Du HD, Zhang M, Zhou L. Nicotine downregulates miR-375-3p via neurotrophic tyrosine receptor kinase 2 to enhance the malignant behaviors of laryngopharyngeal squamous epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116215. [PMID: 38489902 DOI: 10.1016/j.ecoenv.2024.116215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Nicotine exposure from smoking constitutes a significant global public health concern. Furthermore, smoking represents a pivotal risk factor for head and neck squamous cell carcinoma (HNSCC). However, the influence of nicotine on HNSCC remains relatively underexplored. Our aim was to unravel the molecular mechanisms that underlie the effect of nicotine on the metastatic cascade of HNSCC. In this study, we discovered a significant association between smoking and HNSCC metastasis and prognosis. Nicotine significantly enhanced HNSCC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro. Analysis of TCGA-HNSCC and FDEENT-HNSCC cohorts revealed reduced miR-375-3p levels in HNSCC tumor tissues, particularly among current smokers. Additionally, miR-375-3p level was strongly correlated with both lymph node metastasis and tumor stage. By downregulating miR-375-3p, nicotine promotes HNSCC cell metastasis in vitro and hematogenous metastatic capacity in vivo. Utilizing transcriptomic sequencing, molecular docking, dual-luciferase reporter assay, and fluorescence in situ hybridization (FISH), we demonstrated that miR-375-3p specifically binds to 3' untranslated region (3'UTR) of NTRK2 mRNA. Thus, this study uncovers a novel nicotine-induced mechanism involving miR-375-3p-mediated NTRK2 targeting, which promotes HNSCC metastasis. These findings have implications for improving the prognosis of patients with HNSCC, especially in smokers.
Collapse
Affiliation(s)
- Yu-Jie Shen
- Department of Otorhinolaryngology- Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Meng-You Ji
- Department of Otorhinolaryngology- Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Qiang Huang
- Department of Otorhinolaryngology- Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Chi-Yao Hsueh
- Department of Otorhinolaryngology- Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, China.
| | - Huai-Dong Du
- Department of Otorhinolaryngology- Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, China.
| | - Ming Zhang
- Department of Otorhinolaryngology- Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, China.
| | - Liang Zhou
- Department of Otorhinolaryngology- Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, China.
| |
Collapse
|
380
|
Sun Y, Zhang K, Wang T, Zhao S, Gao C, Xue F, Wang Y. A comprehensive analysis and experimental validation of TK1 in uterine corpus endometrial carcinoma. Sci Rep 2024; 14:6134. [PMID: 38480789 PMCID: PMC10937635 DOI: 10.1038/s41598-024-56676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/09/2024] [Indexed: 03/17/2024] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is becoming a main malignant cancer that threaten to women's health. Thymidine kinase 1 (TK1) is considering to be associated with tumorigenesis and development. Nevertheless, the function of TK1 in UCEC is still unclear. Herein, we analyzed the TK1 expression level in pan-cancer and found that TK1 was upregulated in a variety of cancers including UCEC. Patients of UCEC with high expression of TK1 were related to poor outcome. TK1 was also related to clinical stage, histologic grade and lymph node metastasis. Abnormal expression of TK1 in UCEC was related to promoter methylation while gene mutation was not frequent. TK1 and its associated genes appeared to be prominent in cell cycle and DNA replication, according to GO and KEGG analysis. Analysis of immune infiltration revealed a negative correlation between TK1 and CD8 + T cells, macrophages, and dendritic cells. In vitro experiments, TK1 knockdown resulted in the inhibition of proliferation, migration, invasion and EMT in UCEC cell lines.
Collapse
Affiliation(s)
- Yiqing Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Kaiwen Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Tianqi Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shuangshuang Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
381
|
Pang L, Xiang F, Yang H, Shen X, Fang M, Li R, Long Y, Li J, Yu Y, Pang B. Single-cell integrative analysis reveals consensus cancer cell states and clinical relevance in breast cancer. Sci Data 2024; 11:289. [PMID: 38472225 DOI: 10.1038/s41597-024-03127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
High heterogeneity and complex interactions of malignant cells in breast cancer has been recognized as a driver of cancer progression and therapeutic failure. However, complete understanding of common cancer cell states and their underlying driver factors remain scarce and challenging. Here, we revealed seven consensus cancer cell states recurring cross patients by integrative analysis of single-cell RNA sequencing data of breast cancer. The distinct biological functions, the subtype-specific distribution, the potential cells of origin and the interrelation of consensus cancer cell states were systematically elucidated and validated in multiple independent datasets. We further uncovered the internal regulons and external cell components in tumor microenvironments, which contribute to the consensus cancer cell states. Using the state-specific signature, we also inferred the abundance of cells with each consensus cancer cell state by deconvolution of large breast cancer RNA-seq cohorts, revealing the association of immune-related state with better survival. Our study provides new insights for the cancer cell state composition and potential therapeutic strategies of breast cancer.
Collapse
Affiliation(s)
- Lin Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Fengyu Xiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Huan Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xinyue Shen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Ming Fang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Ran Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yongjin Long
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jiali Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yonghuan Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Bo Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
382
|
Guo D, Li X, Wang J, Liu X, Wang Y, Huang S, Dang N. Single-cell RNA-seq reveals keratinocyte and fibroblast heterogeneity and their crosstalk via epithelial-mesenchymal transition in psoriasis. Cell Death Dis 2024; 15:207. [PMID: 38472183 PMCID: PMC10933286 DOI: 10.1038/s41419-024-06583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
The pathogenesis of psoriasis, a chronic inflammatory autoimmune skin disease with a high global prevalence, remains unclear. We performed a high-resolution single-cell RNA sequencing analysis of 94,759 cells from 13 samples, including those from psoriasis model mice and wild-type mice. We presented a single-cell atlas of the skin of imiquimod-induced mice with psoriasis and WT mice, especially the heterogeneity of keratinocytes and fibroblasts. More interestingly, we discovered that special keratinocyte subtypes and fibroblast subtypes could interact with each other through epithelial-mesenchymal transition and validated the results with drug verification. Moreover, we conducted a tentative exploration of the potential pathways involved and revealed that the IL-17 signalling pathway may be the most relevant pathway. Collectively, we revealed the full-cycle landscape of key cells associated with psoriasis and provided a more comprehensive understanding of the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Dianhao Guo
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaokang Li
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jing Wang
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, China
| | - Xin Liu
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yibo Wang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuhong Huang
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
383
|
Liao X, Wei R, Zhou J, Wu K, Li J. Emerging roles of long non-coding RNAs in osteosarcoma. Front Mol Biosci 2024; 11:1327459. [PMID: 38516191 PMCID: PMC10955361 DOI: 10.3389/fmolb.2024.1327459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Osteosarcoma (OS) is a highly aggressive and lethal malignant bone tumor that primarily afflicts children, adolescents, and young adults. However, the molecular mechanisms underlying OS pathogenesis remain obscure. Mounting evidence implicates dysregulated long non-coding RNAs (lncRNAs) in tumorigenesis and progression. These lncRNAs play a pivotal role in modulating gene expression at diverse epigenetic, transcriptional, and post-transcriptional levels. Uncovering the roles of aberrant lncRNAs would provide new insights into OS pathogenesis and novel tools for its early diagnosis and treatment. In this review, we summarize the significance of lncRNAs in controlling signaling pathways implicated in OS development, including the Wnt/β-catenin, PI3K/AKT/mTOR, NF-κB, Notch, Hippo, and HIF-1α. Moreover, we discuss the multifaceted contributions of lncRNAs to drug resistance in OS, as well as their potential to serve as biomarkers and therapeutic targets. This review aims to encourage further research into lncRNA field and the development of more effective therapeutic strategies for patients with OS.
Collapse
Affiliation(s)
- Xun Liao
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Rong Wei
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junxiu Zhou
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Ke Wu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
384
|
Zhou X, Li Y, Pan M, Lu T, Liu C, Wang Z, Tang F, Hu G. PKM2 promotes lymphatic metastasis of hypopharyngeal carcinoma via regulating epithelial-mesenchymal transition: an experimental research. Diagn Pathol 2024; 19:48. [PMID: 38431604 PMCID: PMC10907999 DOI: 10.1186/s13000-024-01474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Patients with hypopharyngeal carcinoma (HPC) have a poor prognosis mainly because of lymphatic metastasis. This research aimed to determine the PKM2 role in lymphatic metastasis in HPC and the underlying molecular mechanism contributing to this phenomenon. METHODS PKM2 in HPC was studied for its expression and its likelihood of overall survival using TCGA dataset. Western blotting, qRT-PCR, and IHC were employed to confirm PKM2 expression. Methods including gain- and loss-of-function were used to examine the PKM2 role in HPC metastasis in vitro and in vivo. In vitro and in vivo studies also confirmed lymphatic metastasis's mechanism. RESULTS Prominent PKM2 overexpression was seen in patients with lymphatic metastasis of HPC, and there was an inherent relationship between a high PKM2 level and poor prognosis. In vitro research showed that knocking down PKM2 decreased tumor cell invasion, migration, and proliferation while promoting apoptosis and inhibiting epithelial-mesenchymal transition, but overexpressing PKM2 had the reverse effect. Animal studies suggested that PKM2 may facilitate tumor development and lymphatic metastasis. CONCLUSIONS Our findings suggest that PKM2 may be a tumor's promoter gene of lymphatic metastasis, which may promote lymphatic metastasis of HPC by regulating epithelial-mesenchymal transition. PKM2 may be a biomarker of metastatic potential, ultimately providing a basis for exploring new therapeutic targets.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Otolaryngology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yanshi Li
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Min Pan
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tao Lu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Chuan Liu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zhihai Wang
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Fengxiang Tang
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Guohua Hu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
385
|
Wang Y, Ouyang S, Liu M, Si Q, Zhang X, Zhang X, Li J, Wang P, Ye H, Shi J, Song C, Wang K, Dai L. Humoral immune response to tumor-associated antigen Ubiquilin 1 (UBQLN1) and its tumor-promoting potential in lung cancer. BMC Cancer 2024; 24:283. [PMID: 38431566 PMCID: PMC10908023 DOI: 10.1186/s12885-024-12019-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND This study aims to investigate the expression of UBQLN1 in lung cancer (LC) tissue and the diagnostic capability of autoantibody to UBQLN1 (anti-UBQLN1) in the detection of LC and the discrimination of pulmonary nodules (PNs). METHODS Sera from 798 participants were used to discover and validate the level of autoantibodies via HuProt microarray and Enzyme-linked immunosorbent assay (ELISA). Logistic regression analysis was applied to establish model. Receiver operating characteristic curve (ROC) analysis was performed to evaluate the diagnostic potential. Immunohistochemistry was performed to detect UBQLN1 expression in 88 LC tissues and 88 para-tumor tissues. qRT-PCR and western blotting were performed to detect the expression of UBQLN1 at the mRNA and protein levels, respectively. Trans-well assay and cell counting kit-8 (CCK-8) was used to investigate the function of UBQLN1. RESULTS Anti-UBQLN1 was identified with the highest fold change by protein microarray. The level of anti-UBQLN1 in LC patients was obviously higher than that in NC or patients with benign lung disease of validation cohort 1 (P<0.05). The area under the curve (AUC) of anti-UBQLN1 was 0.610 (95%CI: 0.508-0.713) while reached at 0.822 (95%CI: 0.784-0.897) when combining anti-UBQLN1 with CEA, CYFRA21-1, CA125 and three CT indicators (vascular notch sign, lobulation sign and mediastinal lymph node enlargement) in the discrimination of PNs. UBQLN1 protein was overexpressed in lung adenocarcinoma (LUAD) tissues compared to para-tumor tissues. UBQLN1 knockdown remarkably inhibited the migration, invasion and proliferation of LUAD cell lines. CONCLUSIONS Anti-UBQLN1 might be a potential biomarker for the diagnosis of LC and the discrimination of PNs.
Collapse
Affiliation(s)
- Yulin Wang
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Songyun Ouyang
- Department of Respiratory and Sleep Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Man Liu
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, 450052, China
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Qiufang Si
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xue Zhang
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiuzhi Zhang
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jiaqi Li
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Peng Wang
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hua Ye
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jianxiang Shi
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chunhua Song
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Kaijuan Wang
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
386
|
Jin Y, Huang Y, Ren H, Huang H, Lai C, Wang W, Tong Z, Zhang H, Wu W, Liu C, Bao X, Fang W, Li H, Zhao P, Dai X. Nano-enhanced immunotherapy: Targeting the immunosuppressive tumor microenvironment. Biomaterials 2024; 305:122463. [PMID: 38232643 DOI: 10.1016/j.biomaterials.2023.122463] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024]
Abstract
The tumor microenvironment (TME), which is mostly composed of tumor cells, immune cells, signaling molecules, stromal tissue, and the vascular system, is an integrated system that is conducive to the formation of tumors. TME heterogeneity makes the response to immunotherapy different in different tumors, such as "immune-cold" and "immune-hot" tumors. Tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells are the major suppressive immune cells and their different phenotypes interact and influence cancer cells by secreting different signaling factors, thus playing a key role in the formation of the TME as well as in the initiation, growth, and metastasis of cancer cells. Nanotechnology development has facilitated overcoming the obstacles that limit the further development of conventional immunotherapy, such as toxic side effects and lack of targeting. In this review, we focus on the role of three major suppressive immune cells in the TME as well as in tumor development, clinical trials of different drugs targeting immune cells, and different attempts to combine drugs with nanomaterials. The aim is to reveal the relationship between immunotherapy, immunosuppressive TME and nanomedicine, thus laying the foundation for further development of immunotherapy.
Collapse
Affiliation(s)
- Yuzhi Jin
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yangyue Huang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Hui Ren
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Huanhuan Huang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Postgraduate Training Base Alliance of Wenzhou Medical University, Hangzhou, 310022, China
| | - Chunyu Lai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Wenjun Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zhou Tong
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hangyu Zhang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wei Wu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Chuan Liu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Hongjun Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
387
|
Ebrahimi N, Manavi MS, Faghihkhorasani F, Fakhr SS, Baei FJ, Khorasani FF, Zare MM, Far NP, Rezaei-Tazangi F, Ren J, Reiter RJ, Nabavi N, Aref AR, Chen C, Ertas YN, Lu Q. Harnessing function of EMT in cancer drug resistance: a metastasis regulator determines chemotherapy response. Cancer Metastasis Rev 2024; 43:457-479. [PMID: 38227149 DOI: 10.1007/s10555-023-10162-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a complicated molecular process that governs cellular shape and function changes throughout tissue development and embryogenesis. In addition, EMT contributes to the development and spread of tumors. Expanding and degrading the surrounding microenvironment, cells undergoing EMT move away from the main location. On the basis of the expression of fibroblast-specific protein-1 (FSP1), fibroblast growth factor (FGF), collagen, and smooth muscle actin (-SMA), the mesenchymal phenotype exhibited in fibroblasts is crucial for promoting EMT. While EMT is not entirely reliant on its regulators like ZEB1/2, Twist, and Snail proteins, investigation of upstream signaling (like EGF, TGF-β, Wnt) is required to get a more thorough understanding of tumor EMT. Throughout numerous cancers, connections between tumor epithelial and fibroblast cells that influence tumor growth have been found. The significance of cellular crosstalk stems from the fact that these events affect therapeutic response and disease prognosis. This study examines how classical EMT signals emanating from various cancer cells interfere to tumor metastasis, treatment resistance, and tumor recurrence.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | | | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | | | - Mohammad Mehdi Zare
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, 77030, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Chu Chen
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye.
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye.
| | - Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China.
| |
Collapse
|
388
|
Meng S, Hara T, Sato H, Tatekawa S, Tsuji Y, Saito Y, Hamano Y, Arao Y, Gotoh N, Ogawa K, Ishii H. Revealing neuropilin expression patterns in pancreatic cancer: From single‑cell to therapeutic opportunities (Review). Oncol Lett 2024; 27:113. [PMID: 38304169 PMCID: PMC10831399 DOI: 10.3892/ol.2024.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/13/2023] [Indexed: 02/03/2024] Open
Abstract
Pancreatic cancer, one of the most fatal types of human cancers, includes several non-epithelial and stromal components, such as activated fibroblasts, vascular cells, neural cells and immune cells, that are involved in different cancers. Vascular endothelial cell growth factor 165 receptors 1 [neuropilin-1 (NRP-1)] and 2 (NRP-2) play a role in the biological behaviors of pancreatic cancer and may appear as potential therapeutic targets. The NRP family of proteins serve as co-receptors for vascular endothelial growth factor, transforming growth factor β, hepatocyte growth factor, fibroblast growth factor, semaphorin 3, epidermal growth factor, insulin-like growth factor and platelet-derived growth factor. Investigations of mechanisms that involve the NRP family of proteins may help develop novel approaches for overcoming therapy resistance in pancreatic cancer. The present review aimed to provide an in-depth exploration of the multifaceted roles of the NRP family of proteins in pancreatic cancer, including recent findings from single-cell analysis conducted within the context of pancreatic adenocarcinoma, which revealed the intricate involvement of NRP proteins at the cellular level. Through these efforts, the present study endeavored to further reveal their relationships with different biological processes and their potential as therapeutic targets in various treatment modalities, offering novel perspectives and directions for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiromichi Sato
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shotaro Tatekawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiko Tsuji
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiko Saito
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yumiko Hamano
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute of Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
389
|
Gu J, Zhang J, Xia R, Wang X, Yang J, Xie F, Zhou Q, Li J, Zhang T, Chen Q, Fan Y, Guo S, Wang H. The role of histone H1.2 in pancreatic cancer metastasis and chemoresistance. Drug Resist Updat 2024; 73:101027. [PMID: 38290407 DOI: 10.1016/j.drup.2023.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024]
Abstract
AIMS Pancreatic cancer (PC) is a highly metastatic malignant tumor of the digestive system. Drug resistance frequently occurs during cancer treatment process. This study aimed to explore the link between chemoresistance and tumor metastasis in PC and its possible molecular and cellular mechanisms. METHODS A Metastasis and Chemoresistance Signature (MCS) scoring system was built and validated based on metastasis- and chemoresistance-related genes using gene expression data of PC, and the model was applied to single-cell RNA sequencing data. The influence of linker histone H1.2 (H1-2) on PC was explored through in vitro and in vivo experiments including proliferation, invasion, migration, drug sensitivity, rescue experiments and immunohistochemistry, emphasizing its regulation with c-MYC signaling pathway. RESULTS A novel MCS scoring system accurately predicted PC patient survival and was linked to chemoresistance and epithelial-mesenchymal transition (EMT) in PC single-cell RNA sequencing data. H1-2 emerged as a significant prognostic factor, with its high expression indicating increased chemoresistance and EMT. This upregulation was mediated by c-MYC, which was also found to be highly expressed in PC tissues. CONCLUSION The MCS scoring system offers insights into PC chemoresistance and metastasis potential. Targeting H1-2 could enhance therapeutic strategies and improve PC patient outcomes.
Collapse
Affiliation(s)
- Jianyou Gu
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing 401147, China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; University of Chinese Academy of Sciences (UCAS) Chongqing School, Chongqing Medical University, Chongqing, China
| | - Renpei Xia
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing 401147, China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Fuming Xie
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Qiang Zhou
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Jinghe Li
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Tao Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; University of Chinese Academy of Sciences (UCAS) Chongqing School, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing 401147, China
| | - Qing Chen
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Yingfang Fan
- Department of Biliary Surgery, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| | - Shixiang Guo
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing 401147, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; University of Chinese Academy of Sciences (UCAS) Chongqing School, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing 401147, China.
| |
Collapse
|
390
|
Cai H, Ke ZB, Chen JY, Li XD, Zhu JM, Xue YT, Ruan ZT, Wang Z, Lin F, Zheng QS, Wei Y, Xue XY, Xu N. Ubiquitin-specific protease 5 promotes bladder cancer progression through stabilizing Twist1. Oncogene 2024; 43:703-713. [PMID: 38218898 DOI: 10.1038/s41388-023-02936-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024]
Abstract
Aberrant activation of the epithelial-mesenchymal transition (EMT) pathway drives the development of solid tumors, which is precisely regulated by core EMT-related transcription factors, including Twist1. However, the expression pattern and regulatory mechanism of Twist1 in the progression of bladder cancer is still unclear. In this study, we explore the role of Twist1 in the progression of bladder cancer. We discovered that the EMT regulon Twist1 protein, but not Twist1 mRNA, is overexpressed in bladder cancer samples using RT-qPCR, western blot and immunohistochemistry (IHC). Mechanistically, co-immunoprecipitation (Co-IP) coupled with liquid chromatography and tandem mass spectrometry identified USP5 as a binding partner of Twist1, and the binding of Twist1 to ubiquitin-specific protease 5 (USP5) stabilizes Twist through its deubiquitinase activity to activate the EMT. Further studies found that USP5 depletion reduces cell proliferation, invasion and the EMT in bladder cancer cells, and ectopic expression of Twist1 rescues the adverse effects of USP5 loss on cell invasion and the EMT. A xenograft tumor model was used to reconfirmed the inhibitor effect of silencing USP5 expression on tumorigenesis in vivo. In addition, USP5 protein levels are significantly elevated and positively associated with Twist1 levels in clinical bladder cancer samples. Collectively, our study revealed that USP5-Twist1 axis is a novel regulatory mechanism driving bladder cancer progression and that approaches targeting USP5 may become a promising cancer treatment strategy.
Collapse
Affiliation(s)
- Hai Cai
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Zhi-Bin Ke
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jia-Yin Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiao-Dong Li
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jun-Ming Zhu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yu-Ting Xue
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Zhong-Tian Ruan
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Zhen Wang
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Fei Lin
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Ning Xu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
391
|
Xiang T, Wei Z, Ye C, Liu G. Prognostic impact and immunotherapeutic implications of NETosis-related gene signature in gastric cancer patients. J Cell Mol Med 2024; 28:e18087. [PMID: 38146607 PMCID: PMC10902305 DOI: 10.1111/jcmm.18087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023] Open
Abstract
The role of NETosis and its related molecules remains unclear in gastric cancer. The data used in this study was directly downloaded from the Cancer Genome Atlas (TCGA) database. All analysis and plots are completed in R software using diverse R packages. In our study, we collected the list of NETosis-related genes from previous publications. Based on the list and expression profile of gastric cancer patients from the TCGA database, we identified the NETosis-related genes significantly correlated with patients survival. Then, CLEC6A, BST1 and TLR7 were identified through LASSO regression and multivariate Cox regression analysis for prognosis model construction. This prognosis model showed great predictive efficiency in both training and validation cohorts. We noticed that the high-risk patients might have a worse survival performance. Next, we explored the biological enrichment difference between high- and low-risk patients and found that many carcinogenic pathways were upregulated in the high-risk patients. Meanwhile, we investigated the genomic instability, mutation burden and immune microenvironment difference between high- and low-risk patients. Moreover, we noticed that low-risk patients were more sensitive to immunotherapy (85.95% vs. 56.22%). High-risk patients were more sensitive to some small molecules compounds like camptothecin_1003, cisplatin_1005, cytarabine_1006, nutlin-3a (-)_1047, gemcitabine_1190, WZ4003_1614, selumetinib_1736 and mitoxantrone_1810. In summary, our study comprehensively explored the role of NETosis-related genes in gastric cancer, which can provide direction for relevant studies.
Collapse
Affiliation(s)
- Tian Xiang
- Department of Clinical Laboratory CenterCentral Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshiChina
| | | | - Chen Ye
- Hubei University of MedicineShiyanChina
| | - Gao Liu
- Department of Gastrointestinal SurgeryCentral Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshiChina
| |
Collapse
|
392
|
Fakhri S, Moradi SZ, Abbaszadeh F, Faraji F, Amirian R, Sinha D, McMahon EG, Bishayee A. Targeting the key players of phenotypic plasticity in cancer cells by phytochemicals. Cancer Metastasis Rev 2024; 43:261-292. [PMID: 38169011 DOI: 10.1007/s10555-023-10161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Plasticity of phenotypic traits refers to an organism's ability to change in response to environmental stimuli. As a result, the response may alter an organism's physiological state, morphology, behavior, and phenotype. Phenotypic plasticity in cancer cells describes the considerable ability of cancer cells to transform phenotypes through non-genetic molecular signaling activities that promote therapy evasion and tumor metastasis via amplifying cancer heterogeneity. As a result of metastable phenotypic state transitions, cancer cells can tolerate chemotherapy or develop transient adaptive resistance. Therefore, new findings have paved the road in identifying factors and agents that inhibit or suppress phenotypic plasticity. It has also investigated novel multitargeted agents that may promise new effective strategies in cancer treatment. Despite the efficiency of conventional chemotherapeutic agents, drug toxicity, development of resistance, and high-cost limit their use in cancer therapy. Recent research has shown that small molecules derived from natural sources are capable of suppressing cancer by focusing on the plasticity of phenotypic responses. This systematic, comprehensive, and critical review analyzes the current state of knowledge regarding the ability of phytocompounds to target phenotypic plasticity at both preclinical and clinical levels. Current challenges/pitfalls, limitations, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Roshanak Amirian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700 026, West Bengal, India
| | - Emily G McMahon
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
393
|
Xu P, Liu K, Huang S, Lv J, Yan Z, Ge H, Cheng Q, Chen Z, Ji P, Qian Y, Li B, Xu H, Yang L, Xu Z, Zhang D. N 6-methyladenosine-modified MIB1 promotes stemness properties and peritoneal metastasis of gastric cancer cells by ubiquitinating DDX3X. Gastric Cancer 2024; 27:275-291. [PMID: 38252226 DOI: 10.1007/s10120-023-01463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Peritoneal metastasis (PM), one of the most typical forms of metastasis in advanced gastric cancer (GC), indicates a poor prognosis. Exploring the potential molecular mechanism of PM is urgently necessary, as it has not been well studied. E3 ubiquitin ligase has been widely established to exert a biological function in various cancers, but its mechanism of action in GC with PM remains unknown. METHODS The effect of MIB1 on PM of GC was confirmed in vitro and in vivo. Co-immunoprecipitation (Co-IP) and mass spectrometry demonstrated the association between MIB1 and DDX3X. Western blot, flow cytometry and immunofluorescence determined that DDX3X was ubiquitylated by MIB1 and promoted stemness. We further confirmed that METTL3 promoted the up-regulation of MIB1 by RNA immunoprecipitation (RIP), luciferase reporter assay and other experiments. RESULTS We observed that the E3 ubiquitin ligase Mind bomb 1 (MIB1) was highly expressed in PMs, and patients with PM with high MIB1 expression showed a worse prognosis than those with low MIB1 expression. Mechanistically, our study demonstrated that the E3 ubiquitin ligase MIB1 promoted epithelial-mesenchymal transition (EMT) progression and stemness in GC cells by degrading DDX3X. In addition, METTL3 mediated m6A modification to stabilize MIB1, which required the m6A reader IGF2BP2. CONCLUSIONS Our study elucidated the specific molecular mechanism by which MIB1 promotes PM of GC, and suggested that targeting the METTL3-MIB1-DDX3X axis may be a promising therapeutic strategy for GC with PM.
Collapse
Affiliation(s)
- Peng Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kanghui Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shansong Huang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhengyuan Yan
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Surgery, Nanjing Lishui People's Hospital, Nanjing, 211200, China
| | - Han Ge
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Quan Cheng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zetian Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peicheng Ji
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yawei Qian
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bowen Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Diancai Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
394
|
Sun K, Liao S, Yao X, Yao F. USP30 promotes the progression of breast cancer by stabilising Snail. Cancer Gene Ther 2024; 31:472-483. [PMID: 38146008 PMCID: PMC10940155 DOI: 10.1038/s41417-023-00718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
Breast cancer (BC) is the most prevalent tumour in women worldwide. USP30 is a deubiquitinase that has been previously reported to promote tumour progression and lipid synthesis in hepatocellular carcinoma. However, the role of USP30 in breast cancer remains unclear. Therefore, we investigated its biological action and corresponding mechanisms in vitro and in vivo. In our study, we found that USP30 was highly expressed in breast cancer samples and correlated with a poor patient prognosis. Knockdown of USP30 significantly suppressed the proliferation, invasion and migration abilities of BC cells in vitro and tumour growth in vivo, whereas overexpression of USP30 exhibited the opposite effect. Mechanistically, we verified that USP30 interacts with and stabilises Snail to promote its protein expression through deubiquitination by K48-linked polyubiquitin chains and then accelerates the EMT program. More importantly, USP30 reduced the chemosensitivity of BC cells to paclitaxel (PTX). Collectively, these data demonstrate that USP30 promotes the BC cell EMT program by stabilising Snail and attenuating chemosensitivity to PTX and may be a potential therapeutic target in BC.
Collapse
Affiliation(s)
- Kai Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Shichong Liao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xinrui Yao
- School of Science, University of Sydney, Sydney, Australia
| | - Feng Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China.
| |
Collapse
|
395
|
Liang PI, Wei YC, Chen HD, Ma YC, Ke HL, Chien CC, Chuang HW. TGFB1I1 promotes cell proliferation and migration in urothelial carcinoma. Kaohsiung J Med Sci 2024; 40:269-279. [PMID: 38180299 DOI: 10.1002/kjm2.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/06/2024] Open
Abstract
Urothelial carcinoma (UC) is common cancer worldwide with a high prevalence in Taiwan, especially in the upper urinary tract, including the renal pelvis and ureter, also classifying as upper urinary tract urothelial carcinoma. Here, we aim to find a representative prognostic marker that strongly correlates to this type of carcinoma. Transforming growth factor beta-1-induced transcript 1 (TGFB1I1) is a cofactor of cellular TGF-β1 and interacts with various nuclear receptors. The previous study showed that TGFB1I1 promotes focal adhesion formation, contributing to the epithelial-mesenchymal transition (EMT) with actin cytoskeleton and vimentin through TGFB1I1 regulation. We aim to reveal the role of TGFB1I1 in the tumorigenesis of UC. In silico and clinicopathological data of upper urinary tract urothelial carcinoma (UTUC) and urinary bladder urothelial carcinoma (UBUC) were accessed and analyzed for IHC staining regarding tumor characteristics, including survival outcome. Finally, an in vitro study was performed to demonstrate the biological changes of UC cells. In UTUC, overexpression of TGFB1I1 was significantly correlated with advanced tumor stage, papillary configuration, and frequent mitosis. Meanwhile, overexpression of TGFB1I1 was significantly correlated with advanced tumor stage and histological grade in UBUC. Moreover, the in vitro study shows that TGFB1I1 affects cell proliferation, viability, migration and wound healing. The EMT markers also decreased upon TGFB1I1 knockdown. In this study, we identified that TGFB1I1 regulates UC cell proliferation and viability and induces the EMT to facilitate cell migration in vitro, leading to its essential role in promoting tumor aggressiveness in both UTUC and UBUC.
Collapse
Affiliation(s)
- Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Ching Wei
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Huan-Da Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chun Ma
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hung-Lung Ke
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chu-Chun Chien
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hao-Wen Chuang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
396
|
BharathwajChetty B, Sajeev A, Vishwa R, Aswani BS, Alqahtani MS, Abbas M, Kunnumakkara AB. Dynamic interplay of nuclear receptors in tumor cell plasticity and drug resistance: Shifting gears in malignant transformations and applications in cancer therapeutics. Cancer Metastasis Rev 2024; 43:321-362. [PMID: 38517618 DOI: 10.1007/s10555-024-10171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 03/24/2024]
Abstract
Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
397
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
398
|
Khoushab S, Aghmiuni MH, Esfandiari N, Sarvandani MRR, Rashidi M, Taheriazam A, Entezari M, Hashemi M. Unlocking the potential of exosomes in cancer research: A paradigm shift in diagnosis, treatment, and prevention. Pathol Res Pract 2024; 255:155214. [PMID: 38430814 DOI: 10.1016/j.prp.2024.155214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Exosomes, which are tiny particles released by cells, have the ability to transport various molecules, including proteins, lipids, and genetic material containing non-coding RNAs (ncRNAs). They are associated with processes like cancer metastasis, immunity, and tissue repair. Clinical trials have shown exosomes to be effective in treating cancer, inflammation, and chronic diseases. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are common sources of exosome production. Exosomes have therapeutic potential due to their ability to deliver cargo, modulate the immune system, and promote tissue regeneration. Bioengineered exosomes could revolutionize disease treatment. However, more research is needed to understand exosomes in tumor growth and develop new therapies. This paper provides an overview of exosome research, focusing on cancer and exosome-based therapies including chemotherapy, radiotherapy, and vaccines. It explores exosomes as a drug delivery system for cancer therapy, highlighting their advantages. The article discusses using exosomes for various therapeutic agents, including drugs, antigens, and RNAs. It also examines challenges with engineered exosomes. Analyzing exosomes for clinical purposes faces limitations in sensitivity, specificity, and purification. On the other hand, Nanotechnology offers solutions to overcome these challenges and unlock exosome potential in healthcare. Overall, the article emphasizes the potential of exosomes for personalized and targeted cancer therapy, while acknowledging the need for further research.
Collapse
Affiliation(s)
- Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
399
|
Hüsnügil HH, Güleç Taşkıran AE, Güderer I, Nehri LN, Oral G, Menemenli NŞ, Özcan Ö, Noghreh A, Akyol A, Banerjee S. Lysosomal alkalinization in nutrient restricted cancer cells activates cytoskeletal rearrangement to enhance partial epithelial to mesenchymal transition. Transl Oncol 2024; 41:101860. [PMID: 38262111 PMCID: PMC10832471 DOI: 10.1016/j.tranon.2023.101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 01/25/2024] Open
Abstract
INTRODUCTION Nutrient restriction in cancer cells can activate a number of stress response pathways for cell survival. We aimed to determine mechanistically how nutrient depletion in colorectal cancer (CRC) cells leads to cellular adaptation. MATERIALS AND METHODS Cell survival under nutrient depletion (ND) was evaluated by colony formation and in vivo tumor formation assays. Lysosomes are activated with ND; therefore, we incubated the ND cells with the V-ATPase inhibitor Bafilomycin A1 (ND+Baf). The expression of epithelial and mesenchymal markers with ND+Baf was determined by RNA sequencing and RT-qPCR while motility was determined with an in vivo Chorioallantoic membrane (CAM) assay. Reorganization of cytoskeletal network and lysosomal positioning was determined by immunocytochemistry. RESULTS 4 different colorectal cancer (CRC) cell lines under ND showed high viability, tumor forming ability and increased expression of one or more epithelial and mesenchymal markers, suggesting the activation of partial (p)-EMT. We observed a further increase in p-EMT markers, numerous membrane protrusions, decreased cell-cell adhesion in 3D, and increased motility in ND+Baf cells. The protrusions in the ND+Baf cells were primarily mediated by microtubules and enabled the relocalization of lysosomes from the perinuclear region to the periphery. CONCLUSIONS ND activated p-EMT in CRC cells, which was exacerbated by lysosomal alkalinization. The ND+Baf cells also showed numerous protrusions containing lysosomes, which may lead to lysosomal exocytosis and enhanced motility.
Collapse
Affiliation(s)
- H Hazal Hüsnügil
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Aliye Ezgi Güleç Taşkıran
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey; Department of Molecular Biology and Genetics, Başkent University, Ankara, Turkey
| | - Ismail Güderer
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Leman Nur Nehri
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Göksu Oral
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | | | - Özün Özcan
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Ariana Noghreh
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Aytekin Akyol
- Hacettepe University Faculty of Medicine, Department of Medical Pathology, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey; Cancer Systems Biology Laboratory CanSyL, Orta Dogu Teknik Universitesi, Ankara, Turkey.
| |
Collapse
|
400
|
Zhang Y, Gu X, Li Y, Huang Y, Ju S. Multiple regulatory roles of the transfer RNA-derived small RNAs in cancers. Genes Dis 2024; 11:597-613. [PMID: 37692525 PMCID: PMC10491922 DOI: 10.1016/j.gendis.2023.02.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 09/12/2023] Open
Abstract
With the development of sequencing technology, transfer RNA (tRNA)-derived small RNAs (tsRNAs) have received extensive attention as a new type of small noncoding RNAs. Based on the differences in the cleavage sites of nucleases on tRNAs, tsRNAs can be divided into two categories, tRNA halves (tiRNAs) and tRNA-derived fragments (tRFs), each with specific subcellular localizations. Additionally, the biogenesis of tsRNAs is tissue-specific and can be regulated by tRNA modifications. In this review, we first elaborated on the classification and biogenesis of tsRNAs. After summarizing the latest mechanisms of tsRNAs, including transcriptional gene silencing, post-transcriptional gene silencing, nascent RNA silencing, translation regulation, rRNA regulation, and reverse transcription regulation, we explored the representative biological functions of tsRNAs in tumors. Furthermore, this review summarized the clinical value of tsRNAs in cancers, thus providing theoretical support for their potential as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yu Zhang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yang Li
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuejiao Huang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Medical Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|