351
|
Nishiyama C, Hasegawa M, Nishiyama M, Takahashi K, Akizawa Y, Yokota T, Okumura K, Ogawa H, Ra C. Regulation of human Fc epsilon RI alpha-chain gene expression by multiple transcription factors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4546-52. [PMID: 11971001 DOI: 10.4049/jimmunol.168.9.4546] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transcriptional regulation of the gene-encoding human Fc epsilon RI alpha-chain was analyzed in detail. EMSA revealed that either YY1 or PU.1 bound to the region close to that recognized by Elf-1. The alpha-chain promoter activity was up-regulated approximately 2-fold by exogenously expressed YY1 or PU.1 and approximately 7-fold by GATA-1, respectively, in KU812 cells. In contrast, coexpression of GATA-1 with either of PU.1 or YY1 dramatically activated the promoter approximately 41- or approximately 27-fold, respectively. Especially synergic activation by GATA-1 and PU.1 was surprising, because these transcription factors are known to inhibit the respective transactivating activities of each other. These up-regulating effects of PU.1 and YY1 with GATA-1 were inhibited by overexpression of Elf-1, indicating that Elf-1 serves as a repressor for the alpha-chain gene expression. Transcriptional regulation of the alpha-chain gene through four transcriptional factors is discussed.
Collapse
Affiliation(s)
- Chiharu Nishiyama
- Allergy (Atopy) Research Center, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Göttgens B, Barton LM, Chapman MA, Sinclair AM, Knudsen B, Grafham D, Gilbert JGR, Rogers J, Bentley DR, Green AR. Transcriptional regulation of the stem cell leukemia gene (SCL)--comparative analysis of five vertebrate SCL loci. Genome Res 2002; 12:749-59. [PMID: 11997341 PMCID: PMC186570 DOI: 10.1101/gr.45502] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2001] [Accepted: 03/19/2002] [Indexed: 12/25/2022]
Abstract
The stem cell leukemia (SCL) gene encodes a bHLH transcription factor with a pivotal role in hematopoiesis and vasculogenesis and a pattern of expression that is highly conserved between mammals and zebrafish. Here we report the isolation and characterization of the zebrafish SCL locus together with the identification of three neighboring genes, IER5, MAP17, and MUPP1. This region spans 68 kb and comprises the longest zebrafish genomic sequence currently available for comparison with mammalian, chicken, and pufferfish sequences. Our data show conserved synteny between zebrafish and mammalian SCL and MAP17 loci, thus suggesting the likely genomic domain necessary for the conserved pattern of SCL expression. Long-range comparative sequence analysis/phylogenetic footprinting was used to identify noncoding conserved sequences representing candidate transcriptional regulatory elements. The SCL promoter/enhancer, exon 1, and the poly(A) region were highly conserved, but no homology to other known mouse SCL enhancers was detected in the zebrafish sequence. A combined homology/structure analysis of the poly(A) region predicted consistent structural features, suggesting a conserved functional role in mRNA regulation. Analysis of the SCL promoter/enhancer revealed five motifs, which were conserved from zebrafish to mammals, and each of which is essential for the appropriate pattern or level of SCL transcription.
Collapse
Affiliation(s)
- Berthold Göttgens
- Cambridge Institute for Medical Research, Cambridge University, Cambridge, CB2 2XY, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Zabel MD, Wheeler W, Weis JJ, Weis JH. Yin Yang 1, Oct1, and NFAT-4 form repeating, cyclosporin-sensitive regulatory modules within the murine CD21 intronic control region. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3341-50. [PMID: 11907091 DOI: 10.4049/jimmunol.168.7.3341] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The murine complement receptor type 2 gene (Cr2/CD21) is expressed by murine B and follicular dendritic cells, but not murine T cells. We have previously shown that appropriate transcriptional control of the CD21 gene requires the CD21 promoter as well as intronic sequences. We have also demonstrated that altering chromatin structure by inhibiting histone deacetylases induces CD21 expression in murine T cells by increasing the accessibility of promoter and intronic regulatory elements. In this report, we identify seven distinct regulatory areas within the first intron of the murine CD21 gene that are conserved between mouse and human CD21 intronic sequences. EMSA competition and supershift analyses reveal the formation of multiple DNA-protein complexes at these sites that include Yin Yang 1, Oct1, and NFAT-4. NFAT-containing complexes were altered in B cells treated with the NFAT inhibitor cyclosporin A and correlated with a repression of CD21 gene transcription implicating NFAT transcriptional control. Functional data revealed that no single region conferred cell-specific reporter gene expression, but rather the entire CD21 regulatory element was required to confer cell-specific gene expression. Taken together, these data demonstrate the formation of repeating, overlapping regulatory modules, all of which are required to coordinately control the cell-specific expression of the murine CD21 gene. We propose a model in which Yin Yang 1 and Oct1 may recruit histone deacetylase to multiple sites in the CD21 intronic regulatory element in nonexpressing cells and NFAT either displaces this histone deacetylase or recruits a histone acetylase to allow the formation of a functional transcriptional complex in expressing cells.
Collapse
Affiliation(s)
- Mark D Zabel
- Department of Pathology, Division of Cell Biology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
354
|
Ficzycz A, Ovsenek N. The Yin Yang 1 transcription factor associates with ribonucleoprotein (mRNP) complexes in the cytoplasm of Xenopus oocytes. J Biol Chem 2002; 277:8382-7. [PMID: 11734562 DOI: 10.1074/jbc.m110304200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yin Yang 1 (YY1) is a multifunctional transcription factor that activates, represses, or initiates transcription of a diverse assortment of genes. Previous studies suggest a role for YY1 in cellular growth and differentiation, but its biological function during development of the vertebrate oocyte or embryo remains to be determined. We recently showed that YY1 is abundantly expressed throughout oogenesis and early embryonic stages of Xenopus, but it is sequestered in the cytoplasm and does not function directly in transcriptional regulation. In the present study we used a series of biochemical analyses to explore the potential function of YY1 in the oocyte cytoplasm. YY1 was isolated from oocyte lysates by oligo(dT)-cellulose chromatography, suggesting that it associates with maternally expressed mRNA in vivo. RNA mobility shift assays demonstrate that endogenous YY1 binds to labeled histone mRNA. Size exclusion chromatography of oocyte lysates revealed that YY1 exists in high molecular mass complexes in the range of 480 kDa. Destruction of endogenous RNA by RNase treatment of lysates, abolished the binding of YY1 to oligo(dT)-cellulose and resulted in redistribution from 480-kDa complexes to the monomeric form. Microinjection of RNase directly into the cytoplasm released YY1 from 480-kDa complexes and unmasked its DNA-binding activity, but did not promote translocation to the nucleus. These results provide evidence that YY1 is a component of ribonucleoprotein (mRNP) complexes in the Xenopus oocyte, indicating a novel function for YY1 in the storage or metabolism of maternal transcripts.
Collapse
Affiliation(s)
- Andrew Ficzycz
- Department of Anatomy and Cell Biology, College of Medicine, 107 Wiggins Road, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | | |
Collapse
|
355
|
Tan DP, Nonaka K, Nuckolls GH, Liu YH, Maxson RE, Slavkin HC, Shum L. YY1 activates Msx2 gene independent of bone morphogenetic protein signaling. Nucleic Acids Res 2002; 30:1213-23. [PMID: 11861914 PMCID: PMC101235 DOI: 10.1093/nar/30.5.1213] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Msx2 is a homeobox gene expressed in multiple embryonic tissues which functions as a key mediator of numerous developmental processes. YY1 is a bi-functional zinc finger protein that serves as a repressor or activator to a variety of promoters. The role of YY1 during embryogenesis remains unknown. In this study, we report that Msx2 is regulated by YY1 through protein-DNA interactions. During embryogenesis, the expression pattern of YY1 was observed to overlap in part with that of Msx2. Most notably, during first branchial arch and limb development, both YY1 and Msx2 were highly expressed, and their patterns were complementary. To test the hypothesis that YY1 regulates Msx2 gene expression, P19 embryonal cells were used in a number of expression and binding assays. We discovered that, in these cells, YY1 activated endogenous Msx2 gene expression as well as Msx2 promoter-luciferase fusion gene activity. These biological activities were dependent on both the DNA binding and activation domains of YY1. In addition, YY1 bound specifically to three YY1 binding sites on the proximal promoter of Msx2 that accounted for this transactivation. Mutations introduced to these sites reduced the level of YY1 transactivation. As bone morphogenetic protein type 4 (BMP4) regulates Msx2 expression in embryonic tissues and in P19 cells, we further tested whether YY1 is the mediator of this BMP4 activity. BMP4 did not induce the expression of YY1 in early mouse mandibular explants, nor in P19 cells, suggesting that YY1 is not a required mediator of the BMP4 pathway in these tissues at this developmental stage. Taken together, these findings suggest that YY1 functions as an activator for the Msx2 gene, and that this regulation, which is independent of the BMP4 pathway, may be required during early mouse craniofacial and limb morphogenesis.
Collapse
Affiliation(s)
- D P Tan
- Craniofacial Development Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 6 Center Drive, MSC 2745, Building 6, Room 324, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
356
|
Gavva NR, Wen SC, Daftari P, Moniwa M, Yang WM, Yang-Feng LPT, Seto E, Davie JR, Shen CKJ. NAPP2, a peroxisomal membrane protein, is also a transcriptional corepressor. Genomics 2002; 79:423-31. [PMID: 11863372 DOI: 10.1006/geno.2002.6714] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear factor-erythroid number 2 (NF-E2) is a positive regulatory, DNA binding transcription factor for gene expression in erythroid and megakaryocytic cells. To further understand the mechanisms of NF-E2 function, we used expression cloning to identify coregulators interacting with the erythroid-specific subunit of NF-E2, p45. We have isolated a protein, NAPP2, which contains an aspartic-acid- and glutamic-acid-rich region and a nuclear localization signal. The gene encoding NAPP2, PEX14, is located on chromosome 1p36 and is ubiquitously expressed. The domains of interaction in vitro and in vivo between p45 and NAPP2 were mapped by a yeast two-hybrid system and cotransfection experiments. In mammalian cell culture, ectopically expressed NAPP2 inhibited p45-directed transcriptional activation. Furthermore, NAPP2 functions as a corepressor and interacts specifically with histone deacetylase l (HDAC1), but not HDAC2 or HDAC3. NAPP2 is thus potentially a negative coregulator of NF-E2. NAPP2 is identical to PEX14, an integral membrane protein essential for protein docking onto the peroxisomes. These studies have identified a novel, bifunctional protein capable of acting as a transcriptional corepressor and a polypeptide transport modulator. They also suggest that NF-E2 may function both positively and negatively in the transcription regulation of specific erythroid and megakaryocytic genes.
Collapse
Affiliation(s)
- Narender R Gavva
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Abstract
The sequence analysis of herpesviruses suggests they have been evolving with their individual vertebrate hosts for millions of years, and their divergence parallels that of the hosts they infect. Given this time they have been learning to live with their individual hosts, it is not surprising that they have become extremely well adapted to doing so without causing much in the way of obvious disease. A key feature of their strategy for persisting in the host is the ability of all herpesviruses to establish latent infection-a state in which no, or only a very limited set of, viral genes are expressed in cells in which viral DNA persists. The alpha herpesviruses (herpes simplex and varicella zoster virus) establish latency in neuronal cells in sensory ganglia: these are long lived non-dividing cells and the alpha herpesviruses persist in these with expression of only the latency associated transcripts-although the function of these RNA transcripts remains incompletely understood. The principal gamma herpesvirus of humans, Epstein Barr virus (EBV), is latent mainly in B lymphocytes: EBV persistence in B cells is associated with expression of a limited set of viral genes encoding functions necessary for the maintenance of the episomal viral DNA as B cells divide.The mechanism by which the principal beta herpesvirus of humans-human cytomegalovirus (HCMV) persists, is also incompletely understood and the subject of this review. Understanding how HCMV persists has clinical relevance in that its transmission to seronegative recipients might be more easily prevented, and the mechanisms by which it produces disease in the neonate and immunocompromised hosts more easily understood, if we knew more about the cells in which the virus is latent and the way in which it reactivates.
Collapse
Affiliation(s)
- J G P Sissons
- Department of Medicine, School of Clinical Medicine, University of Cambridge, UK
| | | | | |
Collapse
|
358
|
Reichman TW, Muñiz LC, Mathews MB. The RNA binding protein nuclear factor 90 functions as both a positive and negative regulator of gene expression in mammalian cells. Mol Cell Biol 2002; 22:343-56. [PMID: 11739746 PMCID: PMC134226 DOI: 10.1128/mcb.22.1.343-356.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear factor 90 (NF90) was originally isolated in a complex that binds to the antigen recognition response element (ARRE-2) present in the interleukin-2 promoter. To characterize the transcriptional properties of NF90 in mammalian cells, we examined its ability to modulate promoter function in cellular transfection assays. NF90-Gal4 fusion proteins inhibited transcription from the adenovirus major late promoter in a fashion that was dependent on Gal4 targeting. Conversely, NF90 activated the cytomegalovirus immediate-early promoter, to which it was not targeted. These effects required distinct but overlapping domains in the C terminus of NF90, which contains a functional nuclear localization signal and two double-stranded-RNA binding motifs. NF90 is present in cellular complexes together with the NF45 protein. Transfection assays showed that NF45 binds NF90 strongly and stimulates its ability to activate but not to inhibit gene expression. This report characterizes NF90 as both a positive and negative regulator of gene expression, depending on the promoter context, and suggests a role for NF45 as a regulator of NF90.
Collapse
Affiliation(s)
- Trevor W Reichman
- Department of Biochemistry and Molecular Biology, New Jersey Medical School and Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07013-2714, USA
| | | | | |
Collapse
|
359
|
Guo J, Casolaro V, Seto E, Yang WM, Chang C, Seminario MC, Keen J, Georas SN. Yin-Yang 1 activates interleukin-4 gene expression in T cells. J Biol Chem 2001; 276:48871-8. [PMID: 11687571 DOI: 10.1074/jbc.m101592200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-4 (IL-4) is a multifunctional cytokine that plays an important role in immune and inflammatory responses. Expression of the IL-4 gene is tightly controlled at the level of gene transcription by both positive and negative regulatory elements in the IL-4 promoter. Several constitutive nuclear factors have been identified that can interact with IL-4 promoter elements in DNA binding assays. Here we report that the zinc-finger protein YY-1 (Yin-Yang 1) can bind to multiple elements within the human IL-4 promoter. Cotransfection of Jurkat T cells with different IL-4 promoter/reporter constructs together with expression vectors encoding antisense, wild-type, or zinc finger-deleted mutant YY-1 suggested that YY-1 enhanced IL-4 promoter activity in a DNA-binding domain-dependent manner. Site-directed mutagenesis revealed that a proximal YY-1-binding site, termed Y0 ((-59)TCATTTT(-53)), was essential for YY-1-driven IL-4 promoter activity. In addition, cotransfected YY-1 enhanced both IL-4 promoter activity and endogenous IL-4 gene expression in nontransformed peripheral blood T cells. Thus, YY-1 positively regulates IL-4 gene expression in lymphocytes.
Collapse
Affiliation(s)
- J Guo
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
360
|
Luo Z, Hines RN. Regulation of flavin-containing monooxygenase 1 expression by ying yang 1 and hepatic nuclear factors 1 and 4. Mol Pharmacol 2001; 60:1421-30. [PMID: 11723251 DOI: 10.1124/mol.60.6.1421] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The flavin-containing monooxygenases (FMOs) are important for the oxidation of a variety of environmental toxicants, natural products, and therapeutics. Consisting of six family members (FMO1-5), these enzymes exhibit distinct but broad and overlapping substrate specificity and are expressed in a highly tissue- and species-selective manner. Corresponding to previously identified regulatory domains, a YY1 binding site was identified at the major rabbit FMO1 promoter, position -8 to -2, two overlapping HNF1alpha sites, position -132 to -105, and two HNF4alpha sites, position -467 to -454 and -195 to -182. Cotransfection studies with HNF1alpha and HNF4alpha expression vectors demonstrated a major role for each of these factors in enhancing FMO1 promoter activity. In contrast, YY1 was shown by site-directed mutagenesis to be dispensable for basal promoter activity but suppressed the ability of the upstream domains to enhance transcription. Finally, comparisons between rabbit and human FMO1 demonstrated conservation of each of these regulatory elements. With the exception of the most distal HNF4alpha site, each of the orthologous human sequences also was able to compete with rabbit FMO1 cis-elements for specific protein binding. These data are consistent with these same elements being important for regulating human FMO1 developmental- and tissue-specific expression.
Collapse
Affiliation(s)
- Z Luo
- Departments of Pediatrics and Pharmacology and Toxicology, Birth Defects Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-4801, USA
| | | |
Collapse
|
361
|
Riquet FB, Tan L, Choy BK, Osaki M, Karsenty G, Osborne TF, Auron PE, Goldring MB. YY1 is a positive regulator of transcription of the Col1a1 gene. J Biol Chem 2001; 276:38665-72. [PMID: 11514536 DOI: 10.1074/jbc.m009881200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both cell-specific and ubiquitous transcription factors in fibroblasts have been identified as critical for expression of the Col1a1 gene, which encodes the alpha1 chain of type I collagen. Here, we report that Yin Yang 1 (YY1) binds to the Col1a1 promoter immediately upstream of the TATA box, and we examine the functional implications of YY1 binding for regulation of Col1a1 gene expression in BALBc/3T3 fibroblasts. The Col1a1 promoter region spanning base pairs (bp) -56 to -9 bound purified recombinant YY1 and the corresponding binding activity in nuclear extracts was supershifted using a YY1-specific antibody. Mutation of the TATA box to TgTA enhanced YY1 complex formation. Mutation analysis revealed two YY1 core binding sites at -40/-37 bp (YY1A) and, on the reverse strand, at -32/-29 bp (YY1B) immediately adjacent to the TATA box. In transfections using Col1a1-luciferase constructs, mutation of YY1A decreased activity completely (wild-type p350 (p350wt), -222/+113 bp) or partially (p130wt, -84 bp/+13 bp), whereas mutation of YY1B blocked the expression of both promoter constructs. Cotransfection with pCMV-YY1 increased p350wt and p130wt activities by as much as 10-fold, whereas antisense YY1 decreased constitutive expression and blocked the increased activity due to pCMV-YY1 overexpression. The mTgTA constructs were devoid of activity, arguing for a requirement for cognate binding of the TATA box-binding protein (TBP). Electrophoretic mobility shift assays performed under conditions permitting TBP binding showed that recombinant TBP/TFIID and YY1 could bind to the -56/-9 bp fragment and that YY1B was the preferred site for YY1 binding. Our results indicate that YY1 binds to the Col1a1 proximal promoter and functions as a positive regulator of constitutive activity in fibroblasts. Although YY1 is not sufficient for transcriptional initiation, it is a required component of the transcription machinery in this promoter.
Collapse
Affiliation(s)
- F B Riquet
- Beth Israel Deaconess Medical Center, Division of Rheumatology, and New England Baptist Bone & Joint Institute, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
362
|
Saito T, Takahashi Y, Hashimoto H, Kamataki T. Novel transcriptional regulation of the human CYP3A7 gene by Sp1 and Sp3 through nuclear factor kappa B-like element. J Biol Chem 2001; 276:38010-22. [PMID: 11495920 DOI: 10.1074/jbc.m106130200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human CYP3A7 and CYP3A4 are expressed in fetal and adult livers, respectively, although the 5'-flanking regions of the two genes show 90% homology. The purpose of this study was to clarify the mechanism(s) responsible for the transcriptional regulation of the CYP3A7 gene in human hepatoma HepG2 cells that showed fetal phenotypes. Transfection studies using a series of the CYP3A7 or CYP3A4 promoter-luciferase chimeric genes identified a nuclear factor kappaB (NF-kappaB)-like element between nucleotides -2326 and -2297 that conferred the transcriptional activation of the CYP3A7 gene. A 1-base pair mismatch within the corresponding region of the CYP3A4 gene was sufficient for a differential enhancer activity. A gel shift assay using nuclear extracts from HepG2 cells showed that Sp1 and Sp3 bound to the NF-kappaB-like element of the CYP3A7 but not CYP3A4 gene. Specific activation of the CYP3A7 promoter by Sp1 and Sp3 was confirmed by a co-transfection of the p3A7NF-kappaB or p3A4NF-kappaB reporter gene with Sp1 or Sp3 expression plasmid into Drosophila cells, which lacked endogenous Sp family. Additionally, introduction of mutations into binding sites for hepatocyte nuclear factor 3beta, upstream stimulatory factor 1, and a basic transcription element in the proximal promoter attenuated luciferase activity to 20% of the level seen with the intact CYP3A7 promoter. Thus, we conclude that the expression of the CYP3A7 gene in HepG2 cells is cooperatively regulated by Sp1, Sp3, hepatocyte nuclear factor 3beta, and upstream stimulatory factor 1.
Collapse
Affiliation(s)
- T Saito
- Laboratory of Drug Metabolism, Graduate School of Pharmaceutical Sciences, Hokkaido University, N12W6, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | | | | | | |
Collapse
|
363
|
Kukimoto I, Kanda T. Displacement of YY1 by differentiation-specific transcription factor hSkn-1a activates the P(670) promoter of human papillomavirus type 16. J Virol 2001; 75:9302-11. [PMID: 11533193 PMCID: PMC114498 DOI: 10.1128/jvi.75.19.9302-9311.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription from human papillomavirus type 16 (HPV16) P(670), a promoter in the E7 open reading frame, is repressed in undifferentiated keratinocytes but becomes activated upon differentiation. We showed that the transient luciferase expression driven by P(670) was markedly enhanced in HeLa cells cotransfected with an expression plasmid for human Skn-1a (hSkn-1a), a transcription factor specific to differentiating keratinocytes. The hSkn-1a POU domain alone, which mediates sequence-specific DNA binding, was sufficient to activate the expression of luciferase. Electrophoretic mobility shift assay revealed the presence of two binding sites, sites 1 and 2, upstream of P(670), which were shared by hSkn-1a and YY1. Site 1 bound more strongly to hSkn-1a than site 2 did. YY1 complexing with a short DNA fragment having site 1 was displaced by hSkn-1a, indicating that hSkn-1a's affinity with site 1 was stronger than YY1's. Disrupting the binding sites by nucleotide substitutions raised the basal expression level of luciferase and decreased the enhancing effect of hSkn-1a. In HeLa cells transfected with circular HPV16 DNA along with the expression plasmid for hSkn-1a, the transcript from P(670) was detectable, which indicates that the results obtained with the reporter plasmids are likely to have mimicked the regulation of P(670) in authentic HPV16 DNA. The data strongly suggest that the transcription from P(670) is repressed primarily by YY1 binding to the two sites, and the displacement of YY1 by hSkn-1a releases P(670) from the repression.
Collapse
Affiliation(s)
- I Kukimoto
- Division of Molecular Genetics, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | | |
Collapse
|
364
|
Matsusue K, Takiguchi S, Toh Y, Kono A. Characterization of mouse metastasis-associated gene 2: genomic structure, nuclear localization signal, and alternative potentials as transcriptional activator and repressor. DNA Cell Biol 2001; 20:603-11. [PMID: 11749719 DOI: 10.1089/104454901753340596] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We characterized the mouse metastasis-associated gene 2 product (mmta2), which is a homolog of the metastasis-associated gene 1 product (MTA1). We revealed that the mmta2 gene spanned approximately 10 kb and was separated into 18 exons. The transcription start site of mmta2 was located 377 bp upstream from the putative initiation codon. The subcellular location of the mmta2 protein was the nucleus, and nuclear localization signals were identified in the region between amino acids 456 and 497. To obtain data on the transcription-regulating potential of mmta2, various constructs containing different portions were fused to the GAL4 DNA-binding domain. The entire mmta2 protein repressed the transcription of the reporter genes, whereas treatment with a histone deacetylase inhibitor, trichostatin A (TSA), led to recovery from the repression and to transcriptional activation. However, the N terminus of mmta2 activated transcriptional activity in the absence of TSA. These results suggest that mmta2 has the potential to both repress and activate gene transcription and that its transcription repression activity might be related to histone deacetylation.
Collapse
Affiliation(s)
- K Matsusue
- Laboratory of Metabolism, U.S. National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
365
|
Abstract
YY1 is a sequence-specific DNA-binding transcription factor that has many important biological roles. It activates or represses many genes during cell growth and differentiation and is also required for the normal development of mammalian embryos. Previous studies have established that YY1 interacts with histone acetyltransferases p300 and CREB-binding protein (CBP) and histone deacetylase 1 (HDAC1), HDAC2, and HDAC3. Here, we present evidence that the activity of YY1 is regulated through acetylation by p300 and PCAF and through deacetylation by HDACs. YY1 was acetylated in two regions: both p300 and PCAF acetylated the central glycine-lysine-rich domain of residues 170 to 200, and PCAF also acetylated YY1 at the C-terminal DNA-binding zinc finger domain. Acetylation of the central region was required for the full transcriptional repressor activity of YY1 and targeted YY1 for active deacetylation by HDACs. However, the C-terminal region of YY1 could not be deacetylated. Rather, the acetylated C-terminal region interacted with HDACs, which resulted in stable HDAC activity associated with the YY1 protein. Finally, acetylation of the C-terminal zinc finger domain decreased the DNA-binding activity of YY1. Our findings suggest that in the natural context, YY1 activity is regulated through intricate mechanisms involving negative feedback loops, histone deacetylation, and recognition of the cognate DNA sequence affected by acetylation and deacetylation of the YY1 protein.
Collapse
|
366
|
Yang WM, Yao YL, Seto E. The FK506-binding protein 25 functionally associates with histone deacetylases and with transcription factor YY1. EMBO J 2001; 20:4814-25. [PMID: 11532945 PMCID: PMC125595 DOI: 10.1093/emboj/20.17.4814] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
FK506-binding proteins (FKBPs) are cellular receptors for immunosuppressants that belong to a subgroup of proteins, known as immunophilins, with peptidylprolyl cis-trans isomerase (PPIase) activity. Sequence comparison suggested that the HD2-type histone deacetylases and the FKBP-type PPIases may have evolved from a common ancestor enzyme. Here we show that FKBP25 physically associates with the histone deacetylases HDAC1 and HDAC2 and with the HDAC-binding transcriptional regulator YY1. An FKBP25 immunoprecipitated complex contains deacetylase activity, and this activity is associated with the N-terminus of FKBP25, distinct from the FK506/rapamycin-binding domain. Furthermore, FKBP25 can alter the DNA-binding activity of YY1. Together, our data firmly establish a relationship between histone deacetylases and the FKBP enzymes and provide a novel and critical function for the FKBPs.
Collapse
Affiliation(s)
| | | | - Edward Seto
- H.Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33612, USA
Corresponding author e-mail:
| |
Collapse
|
367
|
Abstract
YY1 is a sequence-specific DNA-binding transcription factor that has many important biological roles. It activates or represses many genes during cell growth and differentiation and is also required for the normal development of mammalian embryos. Previous studies have established that YY1 interacts with histone acetyltransferases p300 and CREB-binding protein (CBP) and histone deacetylase 1 (HDAC1), HDAC2, and HDAC3. Here, we present evidence that the activity of YY1 is regulated through acetylation by p300 and PCAF and through deacetylation by HDACs. YY1 was acetylated in two regions: both p300 and PCAF acetylated the central glycine-lysine-rich domain of residues 170 to 200, and PCAF also acetylated YY1 at the C-terminal DNA-binding zinc finger domain. Acetylation of the central region was required for the full transcriptional repressor activity of YY1 and targeted YY1 for active deacetylation by HDACs. However, the C-terminal region of YY1 could not be deacetylated. Rather, the acetylated C-terminal region interacted with HDACs, which resulted in stable HDAC activity associated with the YY1 protein. Finally, acetylation of the C-terminal zinc finger domain decreased the DNA-binding activity of YY1. Our findings suggest that in the natural context, YY1 activity is regulated through intricate mechanisms involving negative feedback loops, histone deacetylation, and recognition of the cognate DNA sequence affected by acetylation and deacetylation of the YY1 protein.
Collapse
Affiliation(s)
- Y L Yao
- Department of Medical Microbiology and Immunology, Interdisciplinary Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | |
Collapse
|
368
|
Oei SL, Shi Y. Poly(ADP-ribosyl)ation of transcription factor Yin Yang 1 under conditions of DNA damage. Biochem Biophys Res Commun 2001; 285:27-31. [PMID: 11437367 DOI: 10.1006/bbrc.2001.5115] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Under conditions of severe DNA damage the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP-1) is activated, catalyzing the modification of proteins by forming and attaching to them poly(ADP-ribose) chains. A specific physical interaction between PARP-1 and transcription factor Yin Yang 1 (YY1) in vitro was shown previously, which had important consequences for the activities of both proteins. It is demonstrated here that YY1 and PARP-1 form complexes in vivo. YY1 was transiently poly(ADP-ribosyl)ated immediately after genotoxic treatment of HeLa cells. The narrow time frame of the modification coincides with that known for the activation of PARP-1 under these conditions. This immediate modification correlated with a decreased affinity of YY1 to its cognate DNA binding sites.
Collapse
Affiliation(s)
- S L Oei
- Institut für Biochemie, Freie Universität Berlin, Thielallee 63, Berlin, 14195, Federal Republic of Germany.
| | | |
Collapse
|
369
|
Pannell D, Ellis J. Silencing of gene expression: implications for design of retrovirus vectors. Rev Med Virol 2001; 11:205-17. [PMID: 11479927 DOI: 10.1002/rmv.316] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transcriptional silencing of retroviruses poses a major obstacle to their use as gene therapy vectors. Silencing is most pronounced in stem cells which are desirable targets for therapeutic gene delivery. Many vector designs combat silencing through cis-modifications of retroviral vector sequences. These designs include mutations of known retroviral silencer elements, addition of positive regulatory elements and insulator elements to protect the transgene from negative position effects. Similar strategies are being applied to lentiviral vectors that readily infect non-dividing quiescent stem cells. Collectively these cis-modifications have significantly improved vector design but optimal expression may require additional intervention to escape completely the trans-factors that scan for foreign DNA, establish silencing in stem cells and maintain silencing in their progeny. Cytosine methylation of CpG sites was proposed to cause retroviral silencing over 20 years ago. However, several studies provide evidence that retrovirus silencing acts through methylase-independent mechanisms. We propose an alternative silencing mechanism initiated by a speculative stem cell-specific "somno-complex". Further understanding of retroviral silencing mechanisms will facilitate better gene therapy vector design and raise new strategies to block transcriptional silencing in transduced stem cells.
Collapse
Affiliation(s)
- D Pannell
- Programs in Developmental Biology, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada, M5G1X8
| | | |
Collapse
|
370
|
Oei SL, Shi Y. Transcription factor Yin Yang 1 stimulates poly(ADP-ribosyl)ation and DNA repair. Biochem Biophys Res Commun 2001; 284:450-4. [PMID: 11394900 DOI: 10.1006/bbrc.2001.4985] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that catalyzes the synthesis of ADP-ribose polymers from NAD(+). The function of PARP-1 is related to important nuclear processes including DNA repair and transcription. Previous studies demonstrated a specific physical interaction between PARP-1 and the transcription factor Yin Yang 1 (YY1) in vitro. In this study, a functional relationship between both proteins in response to genotoxic treatment of cells is presented. The interaction of YY1 with PARP-1 greatly stimulates the enzymatic activity of PARP-1. Consistent with this, the overexpression of YY1 in HeLa cells resulted in an enhanced synthesis of poly(ADP-ribose) and an acceleration of DNA repair in response to a treatment with methyl-N'-nitro-N'-nitrosoguanidine.
Collapse
Affiliation(s)
- S L Oei
- Institut für Biochemie, Freie Universität Berlin, Thielallee 63, Berlin, 14195, Federal Republic of Germany.
| | | |
Collapse
|
371
|
Vereshchagina LA, Tolnay M, Tsokos GC. Multiple transcription factors regulate the inducible expression of the human complement receptor 2 promoter. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6156-63. [PMID: 11342636 DOI: 10.4049/jimmunol.166.10.6156] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement receptor 2 (CR2) is regulated at the transcriptional level, but the promoter elements and the transcription factors that bind to them and contribute to its regulation are unknown. After documenting that PMA and cAMP induced the activity of the CR2 promoter by 10-fold, we conducted promoter truncation and mutagenesis experiments, in conjunction with shift assays, to determine the functionally important regions of the promoter and the proteins that bind to them. We identified two regions, separated by approximately 900 nucleotides, which together were responsible for inducible promoter activity. Mutagenesis of single promoter elements demonstrated a functional upstream stimulatory factor/E box in the TATA box-proximal region and three equally important, closely spaced, CREB/AP-1 half-sites in the upstream promoter region. The cAMP response element-binding protein (CREB)/AP-1 half-sites bound in vitro Jun and CREB that are induced by protein kinases A and/or C. The 900-nucleotide segment stretching between the above two regions had no functional impact on the induced transcription, and its deletion increased the promoter activity. Finally, a region upstream of the distal site had a repressor activity on CR2 transcription. Moreover, IL-4 induced binding of CREB and AP-1 to the upstream promoter elements and resulted in increased CR2 surface protein expression. These studies have characterized regions of the CR2 promoter and the transcription factors that bind to them and are crucial to induced CR2 expression. Our studies may provide insights to novel approaches to modulate B cell function by regulating CR2 gene transcription.
Collapse
MESH Headings
- 5' Untranslated Regions/drug effects
- 5' Untranslated Regions/immunology
- Antibodies, Monoclonal/pharmacology
- Base Sequence
- Binding Sites, Antibody/genetics
- Bucladesine/pharmacology
- CD40 Antigens/immunology
- Cell Line, Transformed
- Cell Membrane/immunology
- Cell Membrane/metabolism
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Genes, Reporter/drug effects
- Genes, Reporter/immunology
- Humans
- Interleukin-4/pharmacology
- Mutagenesis, Site-Directed
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/immunology
- Receptors, Complement 3d/biosynthesis
- Receptors, Complement 3d/genetics
- Receptors, Complement 3d/physiology
- Regulatory Sequences, Nucleic Acid/immunology
- Sequence Deletion/immunology
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transfection
Collapse
Affiliation(s)
- L A Vereshchagina
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | |
Collapse
|
372
|
Bhalla SS, Robitaille L, Nemer M. Cooperative activation by GATA-4 and YY1 of the cardiac B-type natriuretic peptide promoter. J Biol Chem 2001; 276:11439-45. [PMID: 11279028 DOI: 10.1074/jbc.m100208200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
YY1, a multifunctional protein essential for embryonic development, is a known repressor or activator of transcription. In cardiac and skeletal myocytes, YY1 has been described essentially as a negative regulator of muscle-specific genes. In this study, we report that YY1 is a transcriptional activator of the B-type natriuretic peptide (BNP) gene, which encodes one of the heart major secretory products. YY1 binds an element within the proximal cardiac BNP promoter, in close proximity to the high affinity binding sites for the zinc finger GATA proteins. We show that YY1 cooperates with GATA-4 to synergistically activate BNP transcription. Structure-function analysis revealed that the DNA binding domain of YY1 is sufficient for cooperative interaction with GATA-4, likely through corecruitment of the CREB-binding protein coactivator. The results suggest that YY1 and GATA factors are components of transcriptionally active complexes present in cardiac and other GATA-containing cells.
Collapse
Affiliation(s)
- S S Bhalla
- Laboratoire de Développement et Différenciation Cardiaques, Institut de Recherches Cliniques de Montréal, Université de Montréal, 110 des Pins Ouest, Montréal QC, H2W 1R7, Canada
| | | | | |
Collapse
|
373
|
Xu T, Purcell M, Zucchi P, Helentjaris T, Bogorad L. TRM1, a YY1-like suppressor of rbcS-m3 expression in maize mesophyll cells. Proc Natl Acad Sci U S A 2001; 98:2295-300. [PMID: 11226233 PMCID: PMC30132 DOI: 10.1073/pnas.041610098] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genes rbcS and rbcL encode, respectively, the small and large subunits of the photosynthetic carbon dioxide fixation enzyme ribulose bisphosphate carboxylase/oxygenase. There is a single rbcL gene in each chloroplast chromosome; a family of rbcS genes is located in the nuclear genome. These two genes are not expressed in mesophyll cells but are in adjacent bundle-sheath cells of leaves of the C4 plant Zea mays. Two regions of the maize gene rbcS-m3 are required for suppressing expression in mesophyll cells. One region is just beyond the translation termination site in the 3' region, and the other is several hundred base pairs upstream of the transcription start site. A binding site for a protein with limited homology to the viral, yeast, and mammalian transcription repressor-activator YY1 (Yin-Yang I), has now been identified in the 3' region. A maize gene for a protein with zinc fingers homologous to those of YY1 has been isolated, characterized, and expressed in Escherichia coli. The gene is designated trm1 (transcription repressor-maize 1). The protein TRM1 binds to the YY1-like site and, in addition, TRM1 binds to two sequence regions in the 5' region of the gene that have no homology to the YY1 site. Mutagenesis or deletion of any of these three sequences eliminates repression of rbcS-m3 reporter genes in mesophyll cells.
Collapse
Affiliation(s)
- T Xu
- Department of Cellular and Molecular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
374
|
Satijn DP, Hamer KM, den Blaauwen J, Otte AP. The polycomb group protein EED interacts with YY1, and both proteins induce neural tissue in Xenopus embryos. Mol Cell Biol 2001; 21:1360-9. [PMID: 11158321 PMCID: PMC99588 DOI: 10.1128/mcb.21.4.1360-1369.2001] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polycomb group (PcG) proteins form multimeric protein complexes which are involved in the heritable stable repression of genes. Previously, we identified two distinct human PcG protein complexes. The EED-EZH protein complex contains the EED and EZH2 PcG proteins, and the HPC-HPH PcG complex contains the HPC, HPH, BMI1, and RING1 PcG proteins. Here we show that YY1, a homolog of the Drosophila PcG protein pleiohomeotic (Pho), interacts specificially with the human PcG protein EED but not with proteins of the HPC-HPH PcG complex. Since YY1 and Pho are DNA-binding proteins, the interaction between YY1 and EED provides a direct link between the chromatin-associated EED-EZH PcG complex and the DNA of target genes. To study the functional significance of the interaction, we expressed the Xenopus homologs of EED and YY1 in Xenopus embryos. Both Xeed and XYY1 induce an ectopic neural axis but do not induce mesodermal tissues. In contrast, members of the HPC-HPH PcG complex do not induce neural tissue. The exclusive, direct neuralizing activity of both the Xeed and XYY1 proteins underlines the significance of the interaction between the two proteins. Our data also indicate a role for chromatin-associated proteins, such as PcG proteins, in Xenopus neural induction.
Collapse
Affiliation(s)
- D P Satijn
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, 1018 TV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
375
|
García-Cuéllar MP, Zilles O, Schreiner SA, Birke M, Winkler TH, Slany RK. The ENL moiety of the childhood leukemia-associated MLL-ENL oncoprotein recruits human Polycomb 3. Oncogene 2001; 20:411-9. [PMID: 11313972 DOI: 10.1038/sj.onc.1204108] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2000] [Revised: 11/10/2000] [Accepted: 11/13/2000] [Indexed: 11/08/2022]
Abstract
The translocation t(11;19) is frequently found in acute leukemia in infants. This event truncates the proto-oncogene MLL and fuses the 5' end of MLL in frame with the ENL gene. ENL contributes a crucial protein-protein interaction domain to the resulting oncoprotein MLL-ENL. Here we show by yeast two-hybrid assays, GST-pull-down experiments and in a far western blot analysis that this domain is necessary and sufficient to recruit a novel member of the human Polycomb protein family (hPc3). hPc3 RNA was detected throughout the human hematopoietic system. Similar to other Polycomb proteins hPc3 acts as a transcriptional repressor. The ENL-hPc3 interaction was verified by mutual co-precipitation of the proteins from cell extracts. ENL and hPc3 tagged with fluorescent proteins co-localized in living cells in a nuclear dot pattern. An internal region of hPc3 was responsible for binding to ENL. Finally, hPc3 binds to the C-terminus of AF9, another common MLL fusion partner. The recruitment of a repressive function by ENL opens up a new insight into a possible mechanism of leukemogenesis by the fusion protein MLL-ENL.
Collapse
Affiliation(s)
- M P García-Cuéllar
- Department of Genetics, University of Erlangen, Staudtstrasse 5, 91058 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
376
|
Wu F, Lee AS. YY1 as a regulator of replication-dependent hamster histone H3.2 promoter and an interactive partner of AP-2. J Biol Chem 2001; 276:28-34. [PMID: 11018030 DOI: 10.1074/jbc.m006074200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In analyzing cis-regulatory elements important for cell cycle control of the replication-dependent hamster histone H3.2 gene, we discovered a binding site for the transcription factor YY1 embedded within GC-rich sequences between the two tandem CCAAT repeats proximal to the TATA element. Base mutations that specifically eliminated YY1 binding resulted in suppression of the S phase induction of the H3.2 promoter. In addition, we discovered that YY1 is an interactive partner of AP-2, which also binds the H3.2 promoter and regulates its cell cycle-dependent expression. The critical domains for YY1 and AP-2A interaction are mapped, revealing that the N-terminal portion of YY1 (amino acids 1-300) and the DNA-binding/dimerization region of AP-2A are required. Our results suggest that YY1, acting as a transcription factor binding to its site on the promoter, or through protein-protein interaction with AP-2, may be part of a regulatory network including key cell cycle regulators such as c-Myc and Rb in controlling growth- and differentiation-regulated gene expression.
Collapse
Affiliation(s)
- F Wu
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-9176, USA
| | | |
Collapse
|
377
|
Poux S, McCabe D, Pirrotta V. Recruitment of components of Polycomb Group chromatin complexes in Drosophila. Development 2001; 128:75-85. [PMID: 11092813 DOI: 10.1242/dev.128.1.75] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polycomb Group complexes assemble at polycomb response elements (PREs) in vivo and silence genes in the surrounding chromatin. To study the recruitment of silencing complexes, we have targeted various Polycomb Group (PcG) proteins by fusing them to the LexA DNA binding domain. When LexA-PC, -PSC, -PH or -SU(Z)2 are targeted to a reporter gene, they recruit functional PcG-silencing complexes that recapitulate the silencing behavior of a PRE: silencing is sensitive to the state of activity of the target chromatin. When the target is transcriptionally active, silencing is not established but when the target is not active at syncytial blastoderm, it becomes silenced. The repressed state persists through embryonic development but cannot be maintained in larval imaginal discs even when the LexA-PcG fusion is constitutively expressed, suggesting a discontinuity in the mechanism of repression. These proteins also interact with other PC-containing complexes in embryonic nuclear extracts. In contrast LexA-PHO is neither able to silence nor to interact with PC-containing complexes. Analysis of pho mutant embryos and of PRE constructs whose PHO-binding sites are mutated suggests that, while PHO is important for silencing in imaginal discs, it is not necessary for embryonic PcG silencing.
Collapse
Affiliation(s)
- S Poux
- Department of Zoology, University of Geneva, CH1211 Geneva, Switzerland
| | | | | |
Collapse
|
378
|
Phippen TM, Sweigart AL, Moniwa M, Krumm A, Davie JR, Parkhurst SM. Drosophila C-terminal binding protein functions as a context-dependent transcriptional co-factor and interferes with both mad and groucho transcriptional repression. J Biol Chem 2000; 275:37628-37. [PMID: 10973955 DOI: 10.1074/jbc.m004234200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drosophila C-terminal binding protein (dCtBP) and Groucho have been identified as Hairy-interacting proteins required for embryonic segmentation and Hairy-mediated transcriptional repression. While both dCtBP and Groucho are required for proper Hairy function, their properties are very different. As would be expected for a co-repressor, reduced Groucho activity enhances the hairy mutant phenotype. In contrast, reduced dCtBP activity suppresses it. We show here that dCtBP can function as either a co-activator or co-repressor of transcription in a context-dependent manner. The regions of dCtBP required for activation and repression are separable. We find that mSin3A-histone deacetylase complexes are altered in the presence of dCtBP and that dCtBP interferes with both Groucho and Mad transcriptional repression. Similar to CtBP's role in attenuating E1A's oncogenicity, we propose that dCtBP can interfere with corepressor-histone deacetylase complexes, thereby attenuating transcriptional repression. Hairy defines a new class of proteins that requires both CtBP and Groucho co-factors for proper function.
Collapse
Affiliation(s)
- T M Phippen
- Division of Basic Sciences and Program in Developmental Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | |
Collapse
|
379
|
Shestopal SA, Johnson MR, Diasio RB. Molecular cloning and characterization of the human dihydropyrimidine dehydrogenase promoter. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1494:162-9. [PMID: 11072080 DOI: 10.1016/s0167-4781(00)00213-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several studies have demonstrated that dihydropyrimidine dehydrogenase (EC 1.3.1.2) has a critical role in the pharmacokinetics of the anticancer agent 5-fluorouracil. We previously reported the structural organization of the human DPYD gene. In this article, we describe the molecular cloning and functional characterization of 1.2 kb of the 5' flanking region of the DPYD gene. Sequence analysis demonstrated that this region of the DPYD gene lacks the typical TATA or CCAAT boxes with several GC-rich regions containing potential cis-regulatory elements. Progressive 5' deletions of the 5' flanking region were fused to the luciferase reporter gene and transient expression measured following transfection into HeLa and 293 cells. Comparative analysis of luciferase activity revealed that a 208 bp region of the DPYD gene (-121/+86) contained equivalent transcriptional activity to the complete 1.2 kb 5' flanking region of the DPYD gene. Site-directed mutagenesis of the luciferase reporter constructs demonstrated that the -72/-23 sequence contained two regulatory regions (designated elements I and II) essential for promoter activity. Gel shift experiments demonstrated that both regulatory elements specifically bind with protein(s) from nuclear extracts of 293 cells. Competitive binding experiments with 293 nuclear extracts and radiolabeled oligonucleotides (corresponding to elements I and II) suggest that the same protein(s) bind to both regulatory elements. We conclude that constitutive expression of the DPYD gene involves a limited GC-rich region of the 5' flanking sequence of the DPYD gene which contains two regulatory elements.
Collapse
Affiliation(s)
- S A Shestopal
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
380
|
Farkas G, Leibovitch BA, Elgin SC. Chromatin organization and transcriptional control of gene expression in Drosophila. Gene 2000; 253:117-36. [PMID: 10940549 DOI: 10.1016/s0378-1119(00)00240-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It is increasingly clear that the packaging of DNA in nucleosome arrays serves not only to constrain the genome within the nucleus, but also to encode information concerning the activity state of the gene. Packaging limits the accessibility of many regulatory DNA sequence elements and is functionally significant in the control of transcription, replication, repair and recombination. Here, we review studies of the heat-shock genes, illustrating the formation of a specific nucleosome array at an activatable promoter, and describe present information on the roles of DNA-binding factors and energy-dependent chromatin remodeling machines in facilitating assembly of an appropriate structure. Epigenetic maintenance of the activity state within large domains appears to be a key mechanism in regulating homeotic genes during development; recent advances indicate that chromatin structural organization is a critical parameter. The ability to utilize genetic, biochemical and cytological approaches makes Drosophila an ideal organism for studies of the role of chromatin structure in the regulation of gene expression.
Collapse
Affiliation(s)
- G Farkas
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
381
|
Abstract
A key event in the regulation of eukaryotic gene expression is the posttranslational modification of nucleosomal histones, which converts regions of chromosomes into transcriptionally active or inactive chromatin. The most well studied posttranslational modification of histones is the acetylation of epsilon-amino groups on conserved lysine residues in the histones' amino-terminal tail domains. Significant advances have been made in the past few years toward the identification of histone acetyltransferases and histone deacetylases. Currently, there are over a dozen cloned histone acetyltransferases and at least eight cloned human histone deacetylases. Interestingly, many histone deacetylases can function as transcriptional corepressors and, often, they are present in multi-subunit complexes. More intriguing, at least some histone deacetylases are associated with chromatin-remodeling machines. In addition, several studies have pointed to the possible involvement of histone deacetylases in human cancer. The availability of the cloned histone deacetylase genes has provided swift progress in the understanding of the mechanisms of deacetylases, their role in transcription, and their possible role in health and disease.
Collapse
Affiliation(s)
- W D Cress
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida
| | | |
Collapse
|
382
|
Abstract
The HSV-1 VP5 and VP16 transcripts are expressed with leaky-late (gamma1) kinetics and reach maximal levels after viral DNA replication. While the minimal VP5 promoter includes only an Sp1 site at -48, a TATA box at -30, and an initiator (Inr) element at the cap site, here we show that elements upstream of -48 can functionally compensate for the mutational loss of the critical Sp1 site at -48. To determine whether this is a general feature of leaky-late promoters, we have carried out a detailed analysis of the VP16 promoter in the context of the viral genome at the gC locus. Sequence analysis suggests a great deal of similarity between the two. Despite this, however, mutational analysis revealed that the 5' boundary of the VP16 promoter extends to ca. -90. This region includes an Sp1 binding site at -46, CAAT box homology at -77, and "E box" (CACGTG) at -85. Mutational and deletional analyses demonstrate that the proximal Sp1 site plays little or no role in promoter strength; despite this it can be shown to bind Sp1 protein using DNA mobility shift assays. Like the VP5 promoter, the VP16 promoter also requires an initiator element at the cap site. The VP16 Inr element differs in sequence from that of the VP5 promoter, and its deletion or mutation has a significantly smaller effect on promoter strength. The difference between these two Inr elements was confirmed by our finding that the VP16 initiator element binds to the 65-kDa YY1 transcription factor, and the VP5 Inr element competes poorly for the binding between the VP16 element and infected cell proteins in comparative bandshift assays. While the VP16 Inr sequence is identical to that of several murine TATA-less promoters, the VP16 Inr requires a TATA box for measurable activity.
Collapse
Affiliation(s)
- P T Lieu
- Program in Animal Virology, University of California, Irvine, California 92697-3900, USA
| | | |
Collapse
|
383
|
Ai W, Narahari J, Roman A. Yin yang 1 negatively regulates the differentiation-specific E1 promoter of human papillomavirus type 6. J Virol 2000; 74:5198-205. [PMID: 10799595 PMCID: PMC110873 DOI: 10.1128/jvi.74.11.5198-5205.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human papillomavirus type 6 (HPV-6) is a low-risk HPV whose replication cycle, like that of all HPVs, is differentiation dependent. We have previously shown that CCAAT displacement protein (CDP) binds the differentiation-induced HPV-6 E1 promoter and negatively regulates its activity in undifferentiated cells (W. Ai, E. Toussaint, and A. Roman, J. Virol. 73:4220-4229, 1999). Using electrophoretic mobility shift assays (EMSAs), we now report that Yin Yang 1 (YY1), a multifunctional protein that can act as a transcriptional activator or repressor and that can also inhibit HPV replication in vitro, binds the HPV-6 E1 promoter. EMSAs, using subfragments of the promoter as competitors, showed that the YY1 binding site is located at the 5' end of the E1 promoter. When a putative YY1 site was mutated, the ability of YY1 to bind was greatly decreased. The activity of the mutated E1 promoter, monitored with the reporter gene luciferase, was threefold greater than that of the wild-type promoter, suggesting that YY1 negatively regulates HPV-6 E1 promoter activity. Nuclear extracts from differentiated keratinocytes showed decreased binding of YY1 to the wild-type promoter. Consistent with this, in differentiated keratinocytes, the activity of the transfected luciferase gene transcribed from the mutated promoter was comparable to that of the wild-type promoter; both promoters were up-regulated in differentiated keratinocytes compared to undifferentiated cells. These data suggest that YY1 functions in undifferentiated keratinocytes but not in differentiated keratinocytes. Both the wild-type and mutated promoters could be negatively regulated by overexpression of a plasmid encoding CDP. Thus, both YY1 and CDP appear to be negative regulators of the differentiation-induced HPV-6 E1 promoter and thereby the HPV life cycle. In contrast, only binding of CDP was detected using the E1 promoter of the high-risk HPV-31.
Collapse
Affiliation(s)
- W Ai
- Department of Microbiology and Immunology, Indiana University School of Medicine, and Walther Cancer Institute, Indianapolis, Indiana 46202-5120, USA
| | | | | |
Collapse
|
384
|
Romey MC, Pallares-Ruiz N, Mange A, Mettling C, Peytavi R, Demaille J, Claustres M. A naturally occurring sequence variation that creates a YY1 element is associated with increased cystic fibrosis transmembrane conductance regulator gene expression. J Biol Chem 2000; 275:3561-7. [PMID: 10652351 DOI: 10.1074/jbc.275.5.3561] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have identified previously a novel complex mutant allele in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in a patient affected with cystic fibrosis (CF). This allele contained a mutation in CFTR exon 11 known to cause CF (S549R(T>G)), associated with the first alteration described so far in the minimal CFTR promoter region (-102T>A). Studies on genotype-phenotype correlations revealed striking differences between patients carrying mutation (S549R(T>G)) alone, who had a severe disease, and patients carrying the complex allele (-102(T>A)+S549R(T>G)), who exhibited milder forms of CF. We thus postulated that the sequence change (-102T>A) may attenuate the effects of the severe (S549R(T>G)) mutation through regulation of CFTR expression. Analysis of transiently transfected cell lines with wild-type and -102A variant human CFTR-directed luciferase reporter genes demonstrates that constructs containing the -102A variant (which creates a Yin Yang 1 (YY1) core element) increases CFTR expression significantly. Electrophoretic mobility shift assays indicate that the -102 site is located in a region of multiple DNA-protein interactions and that the -102A allele recruits specifically an additional nuclear protein related to YY1. The finding that the YY1-binding allele causes a significant increase in CFTR expression in vitro may allow a better understanding of the milder phenotype observed in patients who carry a severe CF mutation within the same gene.
Collapse
Affiliation(s)
- M C Romey
- Laboratoire de Génétique Moléculaire, Centre Spitalier Universitaire, 34060 Montpellier
| | | | | | | | | | | | | |
Collapse
|
385
|
Bovolenta C, Camorali L, Lorini AL, Vallanti G, Ghezzi S, Tambussi G, Lazzarin A, Poli G. In Vivo Administration of Recombinant IL-2 to Individuals Infected by HIV Down-Modulates the Binding and Expression of the Transcription Factors Ying-Yang-1 and Leader Binding Protein-1/Late Simian Virus 40 Factor. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.12.6892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Leader binding protein-1 (LBP-1)/late SV40 factor (LSF) and ying yang-1 (YY1) transcription factors are involved in the regulation of HIV expression. In particular, YY1 and LBP-1 have been shown to cooperate in repressing HIV-1-long terminal repeat reporter gene expression by in vitro cotransfection experiments. However, no information is available on the levels of expression and activation of these transcription factors in PBMC of HIV-infected individuals. Therefore, we have evaluated the expression and DNA binding activity of YY1 and LBP-1 (LSF) in PBMC of HIV-infected individuals before, during, and after administration of IL-2 in association with antiretroviral therapy (ART), a regimen under consideration for broad clinical use in this disease based on its ability to stably raise the absolute number of circulating CD4+ T lymphocytes. Both YY1- and LBP-1 (LSF)-DNA binding were profoundly down-modulated during administration of IL-2/ART, and a proteolytic activity probably responsible for the reduced expression of the two cellular transcription factors was found activated in PBMC of individuals receiving the immunotherapeutic regimen. This study is the first evidence of modulation of cellular transcription factors following IL-2/ART administration and provides a potential correlate of the transient raises in plasma viremia early reported in patients receiving IL-2 in the absence of ART, thus underscoring the importance of always administering this cytokine to HIV-infected individuals together with potent antiretrovirals.
Collapse
Affiliation(s)
| | | | | | | | | | - Giuseppe Tambussi
- †Division of Infectious Diseases, Centro San Luigi, San Raffaele Scientific Institute, Milan, Italy
| | - Adriano Lazzarin
- †Division of Infectious Diseases, Centro San Luigi, San Raffaele Scientific Institute, Milan, Italy
| | - Guido Poli
- *AIDS Immunophatogenesis Unit, DIBIT, and
| |
Collapse
|