351
|
Gudjonsson T, Rønnov-Jessen L, Villadsen R, Bissell MJ, Petersen OW. To create the correct microenvironment: three-dimensional heterotypic collagen assays for human breast epithelial morphogenesis and neoplasia. Methods 2003; 30:247-55. [PMID: 12798139 PMCID: PMC2933212 DOI: 10.1016/s1046-2023(03)00031-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The normal human breast comprises an inner layer of luminal epithelial cells and an outer layer of myoepithelial cells separated from the connective tissue stroma by an intact basement membrane. In breast cancer, tumor cells are in direct contact with the surrounding highly activated collagenous stroma, with little or no discernible myoepithelial fence from the original double-layered structure. To understand the evolution of these two scenarios, we took advantage of a three-dimensional hydrated collagen gel approach. The contribution of myoepithelial cells to normal morphogenesis was studied by ablation and rescue experiments, and genes regulated on tumor cell-fibroblast interaction were identified in a tumor environment assay. In normal breast morphogenesis, the ability to correctly polarize sialomucin to the luminal membrane of emerging acini was used as a criterion for apical polarity and functional differentiation. In the assay of breast neoplasia, the consequence of reciprocal tumor cell-fibroblast interaction was addressed morphologically as well as by a differential display approach. Normal breast epithelial cells were purified immunomagnetically and an established cell line, MCF-7, was used as a surrogate tumor cell. With regard to the importance of myoepithelial cells in normal breast epithelial morphogenesis, the collagen gel assay elucidated the following subtleties: In contrast to culturing in basement membrane gels, luminal epithelial cells when cultured alone made structures that were all inversely polarized. This aberrant polarity could be rescued by co-culture with myoepithelial cells. The molecular activity of myoepithelial cells responsible for correct morphogenesis was narrowed down to the laminin-1 component of the basement membrane. As for the consequence of interaction of tumor cells with connective tissue fibroblasts, the assay allowed us to identify a hitherto undescribed gene referred to as EPSTI1. The relevance of the assay-based identification of regulated genes was confirmed in a series of breast carcinomas in which EPSTI1 was highly upregulated compared with normal breast. Few if any of these observations would have been possible on two-dimensional tissue culture plastic.
Collapse
Affiliation(s)
- Thorarinn Gudjonsson
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, DK-2200 Copenhagen N, Denmark
- Molecular and Cell Biology Research Laboratory, Icelandic Cancer Society, 105 Reykjavik, Iceland
| | - Lone Rønnov-Jessen
- Zoophysiological Laboratory, The August Krogh Institute, DK-2100 Copenhagen Ø, Denmark
| | - René Villadsen
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, DK-2200 Copenhagen N, Denmark
| | - Mina J. Bissell
- Life Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory, University of California, LBNL, 83 Room 101, Berkeley, CA 94720, USA
| | - Ole William Petersen
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
352
|
Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30:256-68. [PMID: 12798140 DOI: 10.1016/s1046-2023(03)00032-x] [Citation(s) in RCA: 1596] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The three-dimensional culture of MCF-10A mammary epithelial cells on a reconstituted basement membrane results in formation of polarized, growth-arrested acini-like spheroids that recapitulate several aspects of glandular architecture in vivo. Oncogenes introduced into MCF-10A cells disrupt this morphogenetic process, and elicit distinct morphological phenotypes. Recent studies analyzing the mechanistic basis for phenotypic heterogeneity observed among different oncogenes (e.g., ErbB2, cyclin D1) have illustrated the utility of this three-dimensional culture system in modeling the biological activities of cancer genes, particularly with regard to their ability to disrupt epithelial architecture during the early aspects of carcinoma formation. Here we provide a collection of protocols to culture MCF-10A cells, to establish stable pools expressing a gene of interest via retroviral infection, as well as to grow and analyze MCF-10A cells in three-dimensional basement membrane culture.
Collapse
Affiliation(s)
- Jayanta Debnath
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
353
|
Abstract
Signals from integrins are now known to play critical roles in virtually every aspect of the behavior of epithelial cells, including survival, proliferation, maintenance of polarity, secretory differentiation, and malignant transformation. The cells that line the conducting airways and alveoli of the lung, like most surface epithelia, simultaneously express multiple members of the integrin family, including several with broadly overlapping ligand binding specificities. Although multiple integrins on airway epithelial cells may support adhesion to the same ligands, the functional roles of each integrin that has been examined in detail are quite distinct. Findings from mice expressing null mutations of some of these integrins have identified roles for epithelial cells and epithelial integrins in lung development and in the regulation of lung inflammation, macrophage protease expression, pulmonary fibrosis, and the pulmonary edema that follows acute lung injury. Epithelial integrins are thus attractive targets for intervention in a number of common lung disorders.
Collapse
Affiliation(s)
- Dean Sheppard
- University of California, San Francisco, Box 0854, San Francisco, CA 94143-0854, USA.
| |
Collapse
|
354
|
Schmeichel KL, Bissell MJ. Modeling tissue-specific signaling and organ function in three dimensions. J Cell Sci 2003; 116:2377-88. [PMID: 12766184 PMCID: PMC2933213 DOI: 10.1242/jcs.00503] [Citation(s) in RCA: 416] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In order to translate the findings from basic cellular research into clinical applications, cell-based models need to recapitulate both the 3D organization and multicellular complexity of an organ but at the same time accommodate systematic experimental intervention. Here we describe a hierarchy of tractable 3D models that range in complexity from organotypic 3D cultures (both monotypic and multicellular) to animal-based recombinations in vivo. Implementation of these physiologically relevant models, illustrated here in the context of human epithelial tissues, has enabled the study of intrinsic cell regulation pathways and also has provided compelling evidence for the role of the stromal compartment in directing epithelial cell function and dysfunction. Furthermore the experimental accessibility afforded by these tissue-specific 3D models has implications for the design and development of cancer therapies.
Collapse
Affiliation(s)
- Karen L Schmeichel
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 83-101, CA 94720, USA.
| | | |
Collapse
|
355
|
Lipschutz JH, Lingappa VR, Mostov KE. The exocyst affects protein synthesis by acting on the translocation machinery of the endoplasmic reticulum. J Biol Chem 2003; 278:20954-60. [PMID: 12665531 DOI: 10.1074/jbc.m213210200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously showed that the exocyst complex specifically affected the synthesis and delivery of secretory and basolateral plasma membrane proteins. Significantly, the entire spectrum of secreted proteins was increased when the hSec10 (human Sec10) component of the exocyst complex was overexpressed, suggestive of post-transcriptional regulation (Lipschutz, J. H., Guo, W., O'Brien, L. E., Nguyen, Y. H., Novick, P., and Mostov, K. E. (2000) Mol. Biol. Cell 11, 4259-4275). Here, using an exogenously transfected basolateral protein, the polymeric immunoglobulin receptor (pIgR), and a secretory protein, gp80, we show that pIgR and gp80 protein synthesis and delivery are increased in cells overexpressing Sec10 despite the fact that mRNA levels are unchanged, which is highly indicative of post-transcriptional regulation. To test specificity, we also examined the synthesis and delivery of an exogenous apical protein, CNT1 (concentrative nucleoside transporter 1), and found no increase in CNT1 protein synthesis, delivery, or mRNA levels in cells overexpressing Sec10. Sec10-GFP-overexpressing cell lines were created, and staining was seen in the endoplasmic reticulum. It was demonstrated previously in yeast that high levels of expression of SEB1, the Sec61beta homologue, suppressed sec15-1, an exocyst mutant (Toikkanen, J., Gatti, E., Takei, K., Saloheimo, M., Olkkonen, V. M., Soderlund, H., De Camilli, P., and Keranen, S. (1996) Yeast 12, 425-438). Sec61beta is a member of the Sec61 heterotrimer, which is the main component of the endoplasmic reticulum translocon. By co-immunoprecipitation we show that Sec10, which forms an exocyst subcomplex with Sec15, specifically associates with the Sec61beta component of the translocon and that Sec10 overexpression increases the association of other exocyst complex members with Sec61beta. Proteosome inhibition does not appear to be the mechanism by which increased protein synthesis occurs in the face of equivalent amounts of mRNA. Although the exact mechanism remains to be elucidated, the exocyst/Sec61beta interaction represents an important link between the cellular membrane trafficking and protein synthetic machinery.
Collapse
Affiliation(s)
- Joshua H Lipschutz
- Department of Medicine and the Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
356
|
Abstract
Integrin receptors connect the extracellular matrix to the actin cytoskeleton. This interaction can be viewed as a cyclical liaison, which develops again and again at new adhesion sites only to cease at sites of de-adhesion. Recent work has demonstrated that multidomain proteins play crucial roles in the integrin-actin connection by providing a high degree of regulation adjusted to the needs of the cell. In this review we present several examples of this paradigm and with special emphasis on the ILK-PINCH-parvin complex, which amply demonstrates how structural and signalling functions are linked together.
Collapse
Affiliation(s)
- Cord Brakebusch
- Max Planck Institute for Biochemistry, Department of Molecular Medicine, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | |
Collapse
|
357
|
Lozano E, Betson M, Braga VMM. Tumor progression: Small GTPases and loss of cell-cell adhesion. Bioessays 2003; 25:452-63. [PMID: 12717816 DOI: 10.1002/bies.10262] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tumor progression involves the transition from normal to malignant cells, through a series of cumulative alterations. During this process, invasive and migratory properties are acquired, enabling cells to metastasize (reach and grow in tissues far from their origin). Numerous cellular changes take place during epithelial malignancy, and disruption of E-cadherin based cell-cell adhesion is a major event. The small Rho GTPases (Rho, Rac and Cdc42) have been implicated in multiple steps during cellular transformation, including alterations on the adhesion status of the tumor cells. This review focuses on recent in vivo evidence that implicates RhoGTPases in epithelial tumor progression. In addition, we discuss different hypotheses to explain disruption of cadherin-mediated cell-cell adhesion, directly or indirectly, through activation of Rho GTPases. Understanding the molecular mechanism of how cadherin adhesion and RhoGTPases interplay in normal cells and how this balance is altered during cellular transformation will provide clues as to how to interfere with tumor progression.
Collapse
|
358
|
Rogers KK, Jou TS, Guo W, Lipschutz JH. The Rho family of small GTPases is involved in epithelial cystogenesis and tubulogenesis. Kidney Int 2003; 63:1632-44. [PMID: 12675838 DOI: 10.1046/j.1523-1755.2003.00902.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Epithelial cyst and tubule formation represent critical processes for the development of many mammalian organs and involve transient, highly choreographed changes in cell polarity. The Rho family of small GTPases, whose prototypes are RhoA, Rac1, and Cdc42, regulate many biologic processes, including cell polarization and morphogenesis. The exocyst is a conserved eight-subunit protein complex involved in the biogenesis of polarity; in yeast, it is a downstream effector for several Rho family proteins, and, in mammals, plays a central role in cystogenesis and tubulogenesis. METHODS Inducible cell lines expressing mutant forms of RhoA, Rac1, and Cdc42 and an in vitro model of cystogenesis and tubulogenesis were used to examine the effects of Rho family proteins on cyst and tubule formation. A series of pulse-chase assays, using basolateral, apical, and secretory proteins, were performed to examine the synthesis and membrane trafficking profile of the various Rho family mutant proteins. RESULTS We show that expression of mutant RhoA, Rac1, and Cdc42 proteins all result in abnormal cyst and tubule formation. Furthermore, with respect to cystogenesis and tubulogenesis, the phenotypic effects of expressing each mutant Rho family protein are different. Specifically, cyst and, therefore, tubule formation is completely inhibited in the presence of constitutively active RhoA and tubulogenesis is inhibited in the presence of dominant negative Rac1. Reversal of cyst polarity is seen in the presence of dominant negative RhoA, dominant negative Rac1, and both dominant negative and constitutively active Cdc42. The series of synthesis and delivery assays, using basolateral, apical, and secretory proteins, revealed that Rho family mutant proteins display an exocyst-like trafficking profile. CONCLUSION The differential effects suggest that RhoA, Rac1, and Cdc42 all act to control cyst and tubule formation and may act in concert to control these higher-order processes. The exocyst-like membrane trafficking profile displayed by the Rho family mutant proteins raises the possibility that Rho family proteins interact, either directly or indirectly, with the exocyst to control cyst and tubule formation.
Collapse
Affiliation(s)
- Katherine K Rogers
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
359
|
Pujuguet P, Del Maestro L, Gautreau A, Louvard D, Arpin M. Ezrin regulates E-cadherin-dependent adherens junction assembly through Rac1 activation. Mol Biol Cell 2003; 14:2181-91. [PMID: 12802084 PMCID: PMC165106 DOI: 10.1091/mbc.e02-07-0410] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ezrin, a membrane cytoskeleton linker, is involved in cellular functions, including epithelial cell morphogenesis and adhesion. A mutant form of ezrin, ezrin T567D, maintains the protein in an open conformation, which when expressed in Madin-Darby canine kidney cells causes extensive formation of lamellipodia and altered cell-cell contacts at low cell density. Furthermore, these cells do not form tubules when grown in a collagen type I matrix. While measuring the activity of Rho family GTPases, we found that Rac1, but not RhoA or Cdc 42, is activated in ezrin T567D-expressing cells, compared with cells expressing wild-type ezrin. Together with Rac1 activation, we observed an accumulation of E-cadherin in intracellular compartments and a concomitant decrease in the level of E-cadherin present at the plasma membrane. This effect could be reversed with a dominant negative form of Rac1, N17Rac1. We show that after a calcium switch, the delivery of E-cadherin from an internalized pool to the plasma membrane is greatly delayed in ezrin T567D-producing cells. In confluent cells, ezrin T567D production decreases the rate of E-cadherin internalization. Our results identify a new role for ezrin in cell adhesion through the activation of the GTPase Rac1 and the trafficking of E-cadherin to the plasma membrane.
Collapse
Affiliation(s)
- Philippe Pujuguet
- Unité Mixte de Recherche 144 Centre National de la Recherche Scientifique/Institut Curie, 75248 Paris, France
| | | | | | | | | |
Collapse
|
360
|
Li S, Edgar D, Fässler R, Wadsworth W, Yurchenco PD. The role of laminin in embryonic cell polarization and tissue organization. Dev Cell 2003; 4:613-24. [PMID: 12737798 DOI: 10.1016/s1534-5807(03)00128-x] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Genetic analyses have revealed that members of the laminin glycoprotein family are required for basement membrane assembly and cell polarization, with subsequent effects on cell survival and tissue organization during metazoan embryogenesis. These functions depend upon the cooperation between laminin polymerization and cell anchorage mediated via interactions with beta1-integrins, dystroglycan, and other cell surface receptors.
Collapse
Affiliation(s)
- Shaohua Li
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
361
|
Abstract
The most fundamental type of organization of cells in metazoa is that of epithelia, which comprise sheets of adherent cells that divide the organism into topologically and physiologically distinct spaces. Some epithelial cells cover the outside of the organism; these often form multiple layers, such as in skin. Other epithelial cells form monolayers that line internal organs, and yet others form tubes that infiltrate the whole organism, carrying liquids and gases containing nutrients, waste and other materials. These tubes can form elaborate networks in the lung, kidney, reproductive passages and vasculature tree, as well as the many glands branching from the digestive system such as the liver, pancreas and salivary glands. In vitro systems can be used to study tube formation and might help to define common principles underlying the formation of diverse types of tubular organ.
Collapse
Affiliation(s)
- Mirjam M P Zegers
- Department of Anatomy, Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0452, USA
| | | | | | | | | |
Collapse
|
362
|
Mostov K, Su T, ter Beest M. Polarized epithelial membrane traffic: conservation and plasticity. Nat Cell Biol 2003; 5:287-93. [PMID: 12669082 DOI: 10.1038/ncb0403-287] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Most cells are polarized and have distinct plasma membrane domains, which are the result of polarized trafficking of proteins and lipids. Great progress has been made in elucidating the highly conserved polarized targeting machinery. A pre-eminent challenge now is to understand the plasticity of polarized traffic, how it is altered by differentiation and dedifferentiation during development, as well as the adaptation of differentiated cells to meet changing physiological needs.
Collapse
Affiliation(s)
- Keith Mostov
- Department of Anatomy, Genentech Hall, 600 16th Street, University of California, San Francisco, CA 94143-2140, USA.
| | | | | |
Collapse
|
363
|
Abstract
Integrins and laminins are important mediators of cell-matrix interactions in both vertebrates and invertebrates. Here, we show that germ-band retraction in the Drosophila embryo, during which the tail end of the embryo retracts to its final posterior position, allows the investigation of cell spreading and lamellipodia formation in real time in vivo. We demonstrate that alpha1, 2 laminin and alphaPS3betaPS integrin are required for the spreading of a small group of cells of the amnioserosa epithelium over the tail end of the germ band. We further implicate a role for this spreading in the process of germ-band retraction.
Collapse
Affiliation(s)
- Frieder Schöck
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
364
|
Genersch E, Ferletta M, Virtanen I, Haller H, Ekblom P. Integrin alphavbeta3 binding to human alpha5-laminins facilitates FGF-2- and VEGF-induced proliferation of human ECV304 carcinoma cells. Eur J Cell Biol 2003; 82:105-17. [PMID: 12691260 DOI: 10.1078/0171-9335-00297] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human ECV304 cells respond reproducibly by tube formation to complex basement membrane matrices. Laminins are major glycoproteins of basement membranes. We therefore studied the ability of ECV304 cells to attach to defined laminin isoforms and to fibronectin, and identified the involved laminin receptors. The cells bound poorly to fibronectin, to some extent to laminin-1, whereas laminin-2/4 and -10/11 were strong adhesive substrates. Antibody perturbation assays showed that adhesion to laminin-1 was mediated by integrin alpha6beta1, and adhesion to laminin-2/4 by cooperative activity of integrins alpha3beta1 and alpha6beta1. Adhesion of ECV 304 cells to laminin-10/11 was mainly mediated by integrins alpha3beta1, with minor involvement of alpha6beta1/4 and alphavbeta3. Solid-phase binding assays confirmed that integrin alphavbeta3 binds human laminin-10/11 and -10, in an RGD-dependent fashion. Although integrin alphavbeta3 played a very minor role in cell adhesion to laminin-10/11, this interaction facilitated growth factor-induced proliferation of ECV304 cells. In response to FGF-2 or VEGF, the cells proliferated better when attached on laminin-10/11 than on laminin-1, -2/4, or gelatin. The proliferation induced by the joint application of laminin-10/11 and either one of the growth factors could be blocked by antibodies against integrin alphavbeta3. Fragments of several other basement membrane components are known to interact with alphavbeta3. The current data show that that integrin alphavbeta3 can bind intact alpha5-containing laminin trimers. Since the laminin alpha5 chain is broadly expressed in adult basement membranes, this interaction could be physiologically important. Our data suggest that this interaction is involved in the regulation of cellular responses to growth factors known to be involved in epithelial and endothelial development.
Collapse
Affiliation(s)
- Elke Genersch
- Department of Cell and Molecular Biology, Lund University, Lund/Sweden
| | | | | | | | | |
Collapse
|
365
|
Abstract
Although the development of the digestive system of humans and vertebrate model organisms has been well characterized, relatively little is known about how the zebrafish digestive system forms. We define developmental milestones during organogenesis of the zebrafish digestive tract, liver, and pancreas and identify important differences in the way the digestive endoderm of zebrafish and amniotes is organized. Such differences account for the finding that the zebrafish digestive system is assembled from individual organ anlagen, whereas the digestive anlagen of amniotes arise from a primitive gut tube. Despite differences of organ morphogenesis, conserved molecular programs regulate pharynx, esophagus, liver, and pancreas development in teleosts and mammals. Specifically, we show that zebrafish faust/gata-5 is a functional ortholog of gata-4, a gene that is essential for the formation of the mammalian and avian foregut. Further, extraembryonic gata activity is required for this function in zebrafish as has been shown in other vertebrates. We also show that a loss-of-function mutation that perturbs sonic hedgehog causes defects in the development of the esophagus that parallel those associated with targeted disruption of this gene in mammals. Perturbation of sonic hedgehog also affects zebrafish liver and pancreas development, and these effects occur in a reciprocal fashion, as has been described during mammalian liver and ventral pancreas development. Together, these data define aspects of digestive system development necessary for the characterization of zebrafish mutants. Given the similarities of teleost and mammalian digestive physiology and anatomy, these findings have implications for developmental and evolutionary studies as well as research of human diseases, such as diabetes, liver cirrhosis, and cancer.
Collapse
Affiliation(s)
- Kenneth N Wallace
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
366
|
Abstract
Of the approximately 15 laminin trimers described in mammals, laminin-1 expression seems to be largely limited to epithelial basement membranes. It appears early during epithelial morphogenesis in most tissues of the embryo, and remains present as a major epithelial laminin in some adult tissues. Previous organ culture studies with embryonic tissues have suggested that laminin-1 is important for epithelial development. Recent data using genetically manipulated embryonic stem (ES) cells grown as embryoid bodies provide strong support for the view of a specific role of laminin-1 in epithelial morphogenesis. One common consequence of genetic ablation of FGF signaling, beta1-integrin or laminin gamma1 chain expression in ES cells is the absence of laminin-1, which correlates with failure of BM assembly and epiblast differentiation. Partial but distinct rescue of epiblast differentiation has been achieved in all three mutants by exogenously added laminin-1. Laminin-1 contains several biologically active modules, but several are found in beta1 or gamma1 chains shared by at least 11 laminins. However, the carboxytermini of the alpha chains contain five laminin globular (LG) modules, distinct for each alpha chain. There is increasing evidence for a particular role of alpha1LG4 binding to its receptors for epithelial tubulogenesis. The biological roles of this and other domains of laminin-1 are currently being explored by genetic means. The pathways controlling laminin-1 synthesis have remained largely unknown, but recent advances raise the possibility that laminin-1 and collagen IV synthesis can be regulated by pro-survival kinases of the protein kinase B/Akt family.
Collapse
Affiliation(s)
- Peter Ekblom
- Department of Cell and Molecular Biology, BMC B12, Lund University, Sweden.
| | | | | |
Collapse
|
367
|
Yu W, O'Brien LE, Wang F, Bourne H, Mostov KE, Zegers MMP. Hepatocyte growth factor switches orientation of polarity and mode of movement during morphogenesis of multicellular epithelial structures. Mol Biol Cell 2003; 14:748-63. [PMID: 12589067 PMCID: PMC150005 DOI: 10.1091/mbc.e02-06-0350] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epithelial cells form monolayers of polarized cells with apical and basolateral surfaces. Madin-Darby canine kidney epithelial cells transiently lose their apico-basolateral polarity and become motile by treatment with hepatocyte growth factor (HGF), which causes the monolayer to remodel into tubules. HGF induces cells to produce basolateral extensions. Cells then migrate out of the monolayer to produce chains of cells, which go on to form tubules. Herein, we have analyzed the molecular mechanisms underlying the production of extensions and chains. We find that cells switch from an apico-basolateral polarization in the extension stage to a migratory cell polarization when in chains. Extension formation requires phosphatidyl-inositol 3-kinase activity, whereas Rho kinase controls their number and length. Microtubule dynamics and cell division are required for the formation of chains, but not for extension formation. Cells in the monolayer divide with their spindle axis parallel to the monolayer. HGF causes the spindle axis to undergo a variable "seesaw" motion, so that a daughter cells can apparently leave the monolayer to initiate a chain. Our results demonstrate the power of direct observation in investigating how individual cell behaviors, such as polarization, movement, and division are coordinated in the very complex process of producing multicellular structures.
Collapse
Affiliation(s)
- Wei Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco, 94143-0452, USA
| | | | | | | | | | | |
Collapse
|
368
|
Abstract
Rho GTPases are molecular switches that control a wide variety of signal transduction pathways in all eukaryotic cells. They are known principally for their pivotal role in regulating the actin cytoskeleton, but their ability to influence cell polarity, microtubule dynamics, membrane transport pathways and transcription factor activity is probably just as significant. Underlying this biological complexity is a simple biochemical idea, namely that by switching on a single GTPase, several distinct signalling pathways can be coordinately activated. With spatial and temporal activation of multiple switches factored in, it is not surprising to find Rho GTPases having such a prominent role in eukaryotic cell biology.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, Cancer Research UK Oncogene and Signal Transduction Group, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
369
|
Montesano R, Soulié P. Retinoids induce lumen morphogenesis in mammary epithelial cells. J Cell Sci 2002; 115:4419-31. [PMID: 12414989 DOI: 10.1242/jcs.00164] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lumen formation is a fundamental step in the development of the structural and functional units of glandular organs, such as alveoli and ducts. In an attempt to elucidate the molecular signals that govern this morphogenetic event, we set up an in vitro system in which cloned mammary epithelial cells grown in collagen gels under serum-free conditions form solid, lumen-less colonies. Addition of as little as 0.1% donor calf serum (DCS) was sufficient to induce the formation of a central cavity. Among a number of serum constituents analyzed, retinol was found to mimic the effect of DCS in inducing lumen morphogenesis. Since the biological activities of retinol are largely dependent on its conversion to all-trans-retinoic acid (RA), we examined in more detail the effect of RA on lumen formation. RA induced the formation of lumen-containing colonies (cysts) in a concentration- and time-dependent manner, a half-maximal effect after 9 days of culture being observed with 100 pM RA. The pleiotropic effects of retinoids are mediated by nuclear retinoic acid receptors (RARs; alpha, beta and gamma) and retinoid X receptors (RXRs; alpha, beta and gamma). To identify the signaling pathway involved in RA-induced lumen formation, we used receptor-specific synthetic retinoids. TTNPB, a selective RAR agonist, promoted lumen morphogenesis, whereas RXR-selective ligands lacked this activity. Lumen formation was also induced at picomolar concentrations by Am-580, a synthetic retinoid that selectively binds the RARalpha receptor subtype. Moreover, co-addition of Ro 41-5253, an antagonist of RARalpha, abrogated the lumen-inducing activity of both RA and DCS, indicating that this biological response is mediated through an RARalpha-dependent signaling pathway. To gain insight into the mechanisms underlying RA-induced lumen formation, we assessed the potential role of matrix metalloproteinases (MMP). Using gelatin zymography, we observed a dose-dependent increase in latent and active forms of gelatinase B (MMP-9) upon RA treatment. In addition, lumen formation was abrogated by addition of the synthetic MMP inhibitor BB94, indicating that this morphogenetic process is likely to require MMP activity. Collectively, our results provide evidence that RA promotes lumen formation by mammary epithelial cells in vitro and suggest that it plays a similar role during mammary gland development in vivo.
Collapse
Affiliation(s)
- Roberto Montesano
- Department of Morphology, University of Geneva Medical Center, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
370
|
Davis GE, Bayless KJ, Mavila A. Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. THE ANATOMICAL RECORD 2002; 268:252-75. [PMID: 12382323 DOI: 10.1002/ar.10159] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although many studies have focused on blood vessel development and new blood vessel formation associated with disease processes, the question of how endothelial cells (ECs) assemble into tubes in three dimensions (i.e., EC morphogenesis) remains unanswered. EC morphogenesis is particularly dependent on a signaling axis involving the extracellular matrix (ECM), integrins, and the cytoskeleton, which regulates EC shape changes and signals the pathways necessary for tube formation. Recent studies reveal that genes regulating this matrix-integrin-cytoskeletal (MIC) signaling axis are differentially expressed during EC morphogenesis. The Rho GTPases represent an important class of molecules involved in these events. Cdc42 and Rac1 are required for the process of EC intracellular vacuole formation and coalescence that regulates EC lumen formation in three-dimensional (3D) extracellular matrices, while RhoA appears to stabilize capillary tube networks. Once EC tube networks are established, supporting cells, such as pericytes, are recruited to further stabilize these networks, perhaps by regulating EC basement membrane matrix assembly. Furthermore, we consider recent work showing that EC morphogenesis is balanced by a tendency for newly formed tubes to regress. This morphogenesis-regression balance is controlled by differential gene expression of such molecules as VEGF, angiopoietin-2, and PAI-1, as well as a plasmin- and matrix metalloproteinase-dependent mechanism that induces tube regression through degradation of ECM scaffolds that support EC-lined tubes. It is our hope that this review will stimulate increased interest and effort focused on the basic mechanisms regulating capillary tube formation and regression in 3D extracellular matrices.
Collapse
Affiliation(s)
- George E Davis
- Department of Pathology, Texas A&M University System Health Science Center, College Station 77843, USA.
| | | | | |
Collapse
|
371
|
Lamorte L, Rodrigues S, Naujokas M, Park M. Crk synergizes with epidermal growth factor for epithelial invasion and morphogenesis and is required for the met morphogenic program. J Biol Chem 2002; 277:37904-11. [PMID: 12138161 DOI: 10.1074/jbc.m201743200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Activation of the Met receptor tyrosine kinase through its ligand, hepatocyte growth factor, stimulates cell spreading, cell dispersal, and the inherent morphogenic program of various epithelial cell lines. Although both hepatocyte growth factor and epidermal growth factor (EGF) can activate downstream signaling pathways in Madin-Darby canine kidney epithelial cells, EGF fails to promote the breakdown of cell-cell junctional complexes and initiate an invasive morphogenic program. We have undertaken a strategy to identify signals that synergize with EGF in this process. We provide evidence that the overexpression of the CrkII adapter protein complements EGF-stimulated pathways to induce cell dispersal in two-dimensional cultures and cell invasion and branching morphogenesis in three-dimensional collagen gels. This finding correlates with the ability of CrkII to promote the breakdown of adherens junctions in stable cell lines and the ability of EGF to stimulate enhanced Rac activity in cells overexpressing CrkII. We have previously shown that the Gab1-docking protein is required for branching morphogenesis downstream of the Met receptor. Consistent with a role for CrkII in promoting EGF-dependent branching morphogenesis, the binding of Gab1 to CrkII is required for the branching morphogenic program downstream of Met. Together, our data support a role for the CrkII adapter protein in epithelial invasion and morphogenesis and underscores the importance of considering the synergistic actions of signaling pathways in cancer progression.
Collapse
Affiliation(s)
- Louie Lamorte
- Departments of Biochemistry, Medicine, and Oncology, Molecular Oncology Group, McGill University Hospital Center, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | |
Collapse
|
372
|
Abstract
Recent advances highlight a critical role for integrin receptors for extracellular matrix in determining where in cells critical signals are transduced. Integrins are shown to activate signaling intermediates at specific surface membrane locations, to promote nuclear translocation of factors that activate gene transcription, and to recruit and augment the signaling power of receptors for growth factors.
Collapse
Affiliation(s)
- Caroline H Damsky
- Department of Stomatology, School of Dentistry, University of California San Francisco, 94143-0512, USA.
| | | |
Collapse
|
373
|
Abstract
As organisms have evolved in size and complexity, tubular systems have developed to enable the efficient transport of substances into and out of tissues. These tubular systems are generated using strategies that are based on common elements of cell behaviour, including cell polarization, tube migration to target sites, cell-fate diversification and localization of specialized cells to different regions of the tube system. Using examples from both invertebrate and vertebrate systems, this review highlights progress in understanding these basic principles and briefly discusses the possible evolution of strategies to regulate the morphogenesis of tubular systems.
Collapse
Affiliation(s)
- Brigid L M Hogan
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt Medical Center, Nashville, Tennessee 37232-2175, USA.
| | | |
Collapse
|
374
|
O'Brien LE, Zegers MMP, Mostov KE. Opinion: Building epithelial architecture: insights from three-dimensional culture models. Nat Rev Mol Cell Biol 2002; 3:531-7. [PMID: 12094219 DOI: 10.1038/nrm859] [Citation(s) in RCA: 462] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
How do individual cells organize into multicellular tissues? Here, we propose that the morphogenetic behaviour of epithelial cells is guided by two distinct elements: an intrinsic differentiation programme that drives formation of a lumen-enclosing monolayer, and a growth factor-induced, transient de-differentiation that allows this monolayer to be remodelled.
Collapse
Affiliation(s)
- Lucy Erin O'Brien
- Department of Anatomy, and the Cardiovascular Research Institute, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
375
|
Affiliation(s)
- Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | | |
Collapse
|
376
|
Abstract
During development, metazoans are faced with the daunting task of generating many different cell types in a temporally and spatially precise manner. This orderly process of cell generation relies on creating localized signals that activate or inhibit specific cellular pathways. Recent work has shown that some of these localized signals require the targeted secretion of proteins, or their uptake by endocytosis. The importance of these protein trafficking pathways in localized signal generation is further substantiated by endo- and exocytosis mutants which can phenocopy many developmental mutants. Genetic and molecular techniques that increase our ability to inhibit exocytosis and endocytosis in a temporal and cell-type specific manner are likely to further elucidate the complexities of development.
Collapse
Affiliation(s)
- David Deitcher
- Department of Neurobiology and Behavior, Cornell University, W125 Seeley Mudd Hall, Ithaca, NY 14853, USA
| |
Collapse
|
377
|
Abstract
The exocyst is a conserved eight-subunit complex involved in the docking of exocytic vesicles. The exocyst has now been identified as an effector for five small GTPases, including Sec4, Rho1, Rho3, Cdc42 and, most recently, RalA.
Collapse
Affiliation(s)
- Joshua H Lipschutz
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
378
|
Abstract
Epithelial cells display apical-basal polarity, and the apical surface is segregated from the basolateral membranes by a barrier called the tight junction (TJ). TJs are constructed from transmembrane proteins that form cell-cell contacts-claudins, occludin, and junctional adhesion molecule (JAM)-plus peripheral proteins such as ZO-1. The Par proteins (partitioning-defective) Par3 and Par6, plus atypical protein kinase C (aPKC) function in the formation or maintenance of TJs and more generally in metazoan cell polarity establishment. Par6 contains a PDZ domain and a partial CRIB (Cdc42/Rac interactive binding) domain and binds the small GTPase Cdc42. Here, we show that Par6 inhibits TJ assembly in MDCK II epithelial cells after their disruption by Ca(2+) depletion but does not inhibit adherens junction (AJ) formation. Transepithelial resistance and paracellular diffusion assays confirmed that assembly of functional TJs is delayed by Par6 overexpression. Strikingly, the isolated, N-terminal fragment of PKCzeta, which binds Par6, also inhibits TJ assembly. Activated Cdc42 can disrupt TJs, but neither a dominant-negative Cdc42 mutant nor the CRIB domain of gammaPAK (p21-activated kinase), which inhibits Cdc42 function, observably inhibit TJ formation. These results suggest that Cdc42 and Par6 negatively regulate TJ assembly in mammalian epithelial cells.
Collapse
Affiliation(s)
- Lin Gao
- Center for Cell Signaling and Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908-0577, USA
| | | | | |
Collapse
|
379
|
Abstract
The RAS oncogenes were identified almost 20 years ago. Since then, we have learnt that they are members of a large family of small GTPases that bind GTP and hydrolyse it to GDP. This is then exchanged for GTP and the cycle is repeated. The switching between these two states regulates a wide range of cellular processes. A branch of the RAS family--the RHO proteins--is also involved in cancer, but what is the role of these proteins and would they make good therapeutic targets?
Collapse
Affiliation(s)
- Erik Sahai
- Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | | |
Collapse
|