351
|
Saenz C, Nigro E, Gunalan V, Arumugam M. MIntO: A Modular and Scalable Pipeline For Microbiome Metagenomic and Metatranscriptomic Data Integration. FRONTIERS IN BIOINFORMATICS 2022; 2:846922. [PMID: 36304282 PMCID: PMC9580859 DOI: 10.3389/fbinf.2022.846922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
Omics technologies have revolutionized microbiome research allowing the characterization of complex microbial communities in different biomes without requiring their cultivation. As a consequence, there has been a great increase in the generation of omics data from metagenomes and metatranscriptomes. However, pre-processing and analysis of these data have been limited by the availability of computational resources, bioinformatics expertise and standardized computational workflows to obtain consistent results that are comparable across different studies. Here, we introduce MIntO (Microbiome Integrated meta-Omics), a highly versatile pipeline that integrates metagenomic and metatranscriptomic data in a scalable way. The distinctive feature of this pipeline is the computation of gene expression profile through integrating metagenomic and metatranscriptomic data taking into account the community turnover and gene expression variations to disentangle the mechanisms that shape the metatranscriptome across time and between conditions. The modular design of MIntO enables users to run the pipeline using three available modes based on the input data and the experimental design, including de novo assembly leading to metagenome-assembled genomes. The integrated pipeline will be relevant to provide unique biochemical insights into microbial ecology by linking functions to retrieved genomes and to examine gene expression variation. Functional characterization of community members will be crucial to increase our knowledge of the microbiome’s contribution to human health and environment. MIntO v1.0.1 is available at https://github.com/arumugamlab/MIntO.
Collapse
|
352
|
Phukon LC, Chourasia R, Padhi S, Abedin MM, Godan TK, Parameswaran B, Singh SP, Rai AK. Cold-adaptive traits identified by comparative genomic analysis of a lipase-producing Pseudomonas sp. HS6 isolated from snow-covered soil of Sikkim Himalaya and molecular simulation of lipase for wide substrate specificity. Curr Genet 2022; 68:375-391. [PMID: 35532798 DOI: 10.1007/s00294-022-01241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 11/26/2022]
Abstract
The genomic analysis of industrially important bacteria can help in understanding their capability to withstand extreme environments and shed light on their metabolic capabilities. The whole genome of a previously reported broad temperature active lipase-producing Pseudomonas sp. HS6, isolated from snow-covered soil of the Sikkim Himalayan Region, was analyzed to understand the capability of the bacterium to withstand cold temperatures and study its lipolytic nature. Pseudomonas sp. HS6 was found to be psychrotolerant with an optimal growth temperature ranging between 25 and 30 °C, with the ability to grow at 5 °C. The genome harbours various cold-adaptation genes, such as cold-shock proteins, fatty acid alteration, and cold stress-tolerance genes, supporting the psychrotolerant nature of the organism. The comparative analysis of Pseudomonas sp. HS6 genome showed the presence of amino acid substitutions in genes that favor efficient functioning and flexibility at cold temperatures. Genome mining revealed the presence of four triacylglycerol lipases, among which the putative lipase 3 was highly similar to the broad temperature-active lipase purified and characterized in our previous study. In silico studies of putative lipase 3 revealed broad substrate specificity with partial and no inhibition of the enzyme activity in the presence of PMSF and orlistat. The presence of genes associated with cold adaptations and true lipases with activity at broad temperature and substrate specificity in the genome of Pseudomonas sp. HS6 makes this bacterium a suitable candidate for industrial applications.
Collapse
Affiliation(s)
- Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Rounak Chourasia
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Md Minhajul Abedin
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | | | - Binod Parameswaran
- CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India.
| |
Collapse
|
353
|
Jiang Y, Balaban M, Zhu Q, Mirarab S. DEPP: Deep Learning Enables Extending Species Trees using Single Genes. Syst Biol 2022; 72:17-34. [PMID: 35485976 DOI: 10.1093/sysbio/syac031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Placing new sequences onto reference phylogenies is increasingly used for analyzing environmental samples, especially microbiomes. Existing placement methods assume that query sequences have evolved under specific models directly on the reference phylogeny. For example, they assume single-gene data (e.g., 16S rRNA amplicons) have evolved under the GTR model on a gene tree. Placement, however, often has a more ambitious goal: extending a (genome-wide) species tree given data from individual genes without knowing the evolutionary model. Addressing this challenging problem requires new directions. Here, we introduce Deep-learning Enabled Phylogenetic Placement (DEPP), an algorithm that learns to extend species trees using single genes without pre-specified models. In simulations and on real data, we show that DEPP can match the accuracy of model-based methods without any prior knowledge of the model. We also show that DEPP can update the multi-locus microbial tree-of-life with single genes with high accuracy. We further demonstrate that DEPP can combine 16S and metagenomic data onto a single tree, enabling community structure analyses that take advantage of both sources of data.
Collapse
Affiliation(s)
- Yueyu Jiang
- Department of Electrical and Computer Engineering, UC San Diego, CA 92093, USA
| | - Metin Balaban
- Bioinformatics and Systems Biology Graduate Program, UC San Diego, CA 92093, USA
| | - Qiyun Zhu
- Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, UC San Diego, CA 92093, USA
| |
Collapse
|
354
|
Wang R, Chen F, Wang J, Liu A, Ke L, Wan F, Chen S. Halorhabdus amylolytica sp. nov. and Halorhabdus salina sp. nov., isolated from hypersaline environments. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel extremely halophilic archaeal strains, designated H27T and FL145T, were isolated from a salt mine and a kelp salt sample, respectively. Cells of both strains were Gram-stain-negative, motile and pleomorphic. The 16S rRNA and rpoB′ gene sequence similarities between strains H27T and FL145T were 96.60 and 88.77%. Strains H27T and FL145T were both closely related to
Halorhabdus rudnickae
WSM-64T,
Halorhabdus tiamatea
SARL4BT and
Halorhabdus utahensis
AX-2T, with a 16S rRNA gene sequence similarities of 98.14, 96.34 and 96.27% for strain H27T and 96.42, 95.82 and 96.17% for strain FL145T. The genome-based average nucleotide identity (ANI) values between strains H27T and FL145T, and these three species were 83.93, 79.79 and 79.09% (for strain H27T), and 78.32, 77.95 and 77.05% (for strain FL145T), respectively. The ANI value between strains H27T and FL145T was 78.65 %. The digital DNA–DNA hybridization values between strains H27T and FL145T, and these three species were less than 27.40%, which were below the recommended threshold for membership of the same species. The major polar lipids of both strains were found to consist of sulfated diglycosyl diether, triglycosyl diether, phosphatidylglycerol phosphate methyl ester and phosphatidylglycerol. The DNA G+C content was determined from genome to be 62.10 mol% for strain H27T and 61.51 mol% for strain FL145T. Based on phylogenetic, phenotypic, chemotaxonomic and genomic analyses, these two new isolates should be classified as representing two novel species in the genus
Halorhabdus
, with strain H27T (=CGMCC 1.16342T=NBRC 113589T) as the type strain of a new species for which we propose the name Halorhabdus amylolytica sp. nov., and strain FL145T (=CGMCC 1.13888T=NBRC 114260T) as the type strain of another new species for which we propose the name Halorhabdus salina sp. nov.
Collapse
Affiliation(s)
- Rui Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, PR China
| | - Feilong Chen
- College of Life Sciences, Anhui Normal University, Wuhu 241000, PR China
| | - Jianzhong Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, PR China
| | - Aimin Liu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, PR China
| | - Lixia Ke
- College of Life Sciences, Anhui Normal University, Wuhu 241000, PR China
| | - Fengying Wan
- Library of Anhui Normal University, Wuhu 241002, PR China
| | - Shaoxing Chen
- College of Life Sciences, Honghe University, Mengzi 661100, PR China
- College of Life Sciences, Anhui Normal University, Wuhu 241000, PR China
| |
Collapse
|
355
|
Zhu Q, Huang S, Gonzalez A, McGrath I, McDonald D, Haiminen N, Armstrong G, Vázquez-Baeza Y, Yu J, Kuczynski J, Sepich-Poore GD, Swafford AD, Das P, Shaffer JP, Lejzerowicz F, Belda-Ferre P, Havulinna AS, Méric G, Niiranen T, Lahti L, Salomaa V, Kim HC, Jain M, Inouye M, Gilbert JA, Knight R. Phylogeny-Aware Analysis of Metagenome Community Ecology Based on Matched Reference Genomes while Bypassing Taxonomy. mSystems 2022; 7:e0016722. [PMID: 35369727 PMCID: PMC9040630 DOI: 10.1128/msystems.00167-22] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
We introduce the operational genomic unit (OGU) method, a metagenome analysis strategy that directly exploits sequence alignment hits to individual reference genomes as the minimum unit for assessing the diversity of microbial communities and their relevance to environmental factors. This approach is independent of taxonomic classification, granting the possibility of maximal resolution of community composition, and organizes features into an accurate hierarchy using a phylogenomic tree. The outputs are suitable for contemporary analytical protocols for community ecology, differential abundance, and supervised learning while supporting phylogenetic methods, such as UniFrac and phylofactorization, that are seldom applied to shotgun metagenomics despite being prevalent in 16S rRNA gene amplicon studies. As demonstrated in two real-world case studies, the OGU method produces biologically meaningful patterns from microbiome data sets. Such patterns further remain detectable at very low metagenomic sequencing depths. Compared with taxonomic unit-based analyses implemented in currently adopted metagenomics tools, and the analysis of 16S rRNA gene amplicon sequence variants, this method shows superiority in informing biologically relevant insights, including stronger correlation with body environment and host sex on the Human Microbiome Project data set and more accurate prediction of human age by the gut microbiomes of Finnish individuals included in the FINRISK 2002 cohort. We provide Woltka, a bioinformatics tool to implement this method, with full integration with the QIIME 2 package and the Qiita web platform, to facilitate adoption of the OGU method in future metagenomics studies. IMPORTANCE Shotgun metagenomics is a powerful, yet computationally challenging, technique compared to 16S rRNA gene amplicon sequencing for decoding the composition and structure of microbial communities. Current analyses of metagenomic data are primarily based on taxonomic classification, which is limited in feature resolution. To solve these challenges, we introduce operational genomic units (OGUs), which are the individual reference genomes derived from sequence alignment results, without further assigning them taxonomy. The OGU method advances current read-based metagenomics in two dimensions: (i) providing maximal resolution of community composition and (ii) permitting use of phylogeny-aware tools. Our analysis of real-world data sets shows that it is advantageous over currently adopted metagenomic analysis methods and the finest-grained 16S rRNA analysis methods in predicting biological traits. We thus propose the adoption of OGUs as an effective practice in metagenomic studies.
Collapse
Affiliation(s)
- Qiyun Zhu
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Shi Huang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Antonio Gonzalez
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Imran McGrath
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Niina Haiminen
- IBM T. J. Watson Research Center, Yorktown Heights, New York, USA
| | - George Armstrong
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California, USA
| | - Yoshiki Vázquez-Baeza
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Julian Yu
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | | | - Austin D. Swafford
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Promi Das
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Justin P. Shaffer
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Franck Lejzerowicz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Aki S. Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Guillaume Méric
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Teemu Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Ho-Cheol Kim
- IBM Almaden Research Center, San Jose, California, USA
| | - Mohit Jain
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Public Health and Primary Care, Cambridge University, Cambridge, United Kingdom
| | - Jack A. Gilbert
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
356
|
Boase K, González C, Vergara E, Neira G, Holmes D, Watkin E. Prediction and Inferred Evolution of Acid Tolerance Genes in the Biotechnologically Important Acidihalobacter Genus. Front Microbiol 2022; 13:848410. [PMID: 35516430 PMCID: PMC9062700 DOI: 10.3389/fmicb.2022.848410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Acidihalobacter is a genus of acidophilic, gram-negative bacteria known for its ability to oxidize pyrite minerals in the presence of elevated chloride ions, a capability rare in other iron-sulfur oxidizing acidophiles. Previous research involving Acidihalobacter spp. has focused on their applicability in saline biomining operations and their genetic arsenal that allows them to cope with chloride, metal and oxidative stress. However, an understanding of the molecular adaptations that enable Acidihalobacter spp. to thrive under both acid and chloride stress is needed to provide a more comprehensive understanding of how this genus can thrive in such extreme biomining conditions. Currently, four genomes of the Acidihalobacter genus have been sequenced: Acidihalobacter prosperus DSM 5130T, Acidihalobacter yilgarnensis DSM 105917T, Acidihalobacter aeolianus DSM 14174T, and Acidihalobacter ferrooxydans DSM 14175T. Phylogenetic analysis shows that the Acidihalobacter genus roots to the Chromatiales class consisting of mostly halophilic microorganisms. In this study, we aim to advance our knowledge of the genetic repertoire of the Acidihalobacter genus that has enabled it to cope with acidic stress. We provide evidence of gene gain events that are hypothesized to help the Acidihalobacter genus cope with acid stress. Potential acid tolerance mechanisms that were found in the Acidihalobacter genomes include multiple potassium transporters, chloride/proton antiporters, glutamate decarboxylase system, arginine decarboxylase system, urease system, slp genes, squalene synthesis, and hopanoid synthesis. Some of these genes are hypothesized to have entered the Acidihalobacter via vertical decent from an inferred non-acidophilic ancestor, however, horizontal gene transfer (HGT) from other acidophilic lineages is probably responsible for the introduction of many acid resistance genes.
Collapse
Affiliation(s)
- Katelyn Boase
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - David Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencias, Universidad San Sebastián, Santiago, Chile
- *Correspondence: David S. Holmes,
| | - Elizabeth Watkin
- Curtin Medical School, Curtin University, Perth, WA, Australia
- Elizabeth Watkin,
| |
Collapse
|
357
|
Ushijima B, Saw JH, Videau P, Häse CC. Comparison of Vibrio coralliilyticus virulence in Pacific oyster larvae and corals. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35380530 DOI: 10.1099/mic.0.001169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bacterium Vibrio coralliilyticus has been implicated in mass mortalities of corals and shellfish larvae. However, using corals for manipulative infection experiments can be logistically difficult compared to other model organisms, so we aimed to establish oyster larvae infections as a proxy model. Therefore, this study assessed the virulence of six wild-type V. coralliilyticus strains, and mutants of one strain with deletions of known virulence factors, between Pacific oyster larvae (Crassostrea gigas) and Hawaiian rice coral (Montipora capitata) infection systems. The wild-type strains tested displayed variable virulence in each system, but virulence levels between hosts were not necessarily comparable. Strains RE98 and OCN008 maintained a medium to high level of virulence across hosts and appeared to be more generalist pathogens. Strain H1, in contrast, was avirulent towards coral but displayed a medium level of virulence towards oyster larvae. Interestingly, the BAA-450 type strain had a medium level of virulence towards coral and was the least virulent to oyster larvae. A comparison of known virulence factors determined that the flagellum, motility or chemotaxis, all of which play a significant role in coral infections, were not crucial for oyster infections with strain OCN008. A genomic comparison of the newly sequenced strain H1 with the other strains tested identified 16 genes potentially specific to coral pathogens that were absent in H1. This is both the first comparison of various V. coralliilyticus strains across infection systems and the first investigation of a strain that is non-virulent to coral. Our results indicate that the virulence of V. coralliilyticus strains in coral is not necessarily indicative of virulence in oyster larvae, and that the set of genes tested are not required for virulence in both model systems. This study increases our understanding of the virulence between V. coralliilyticus strains and helps assess their potential threat to marine environments and shellfish industries.
Collapse
Affiliation(s)
- Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Jimmy H Saw
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, USA
- Present address: Bayer Crop Science, MO, Chesterfield, USA
| | - Claudia C Häse
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
358
|
Vuong P, Moreira-Grez B, Wise MJ, Whiteley AS, Kumaresan D, Kaur P. From Rags to Enriched: Metagenomic Insights into Ammonia-oxidizing Archaea Following Ammonia Enrichment of a Denuded Oligotrophic Soil Ecosystem. Environ Microbiol 2022; 24:3097-3110. [PMID: 35384236 PMCID: PMC9545067 DOI: 10.1111/1462-2920.15994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Stored topsoil acts as a microbial inoculant for ecological restoration of land after disturbance, but the altered circumstances frequently create unfavorable conditions for microbial survival. Nitrogen cycling is a critical indicator for ecological success and this study aimed to investigate the cornerstone taxa driving the process. Previous in-silico studies investigating stored topsoil discovered persistent archaeal taxa with the potential for re-establishing ecological activity. Ammonia oxidization is the limiting step in nitrification and as such, ammonia oxidizing archaea (AOA) can be considered as the one of the gatekeepers for the re-establishment of the nitrogen cycle in disturbed soils. Semi-arid soil samples were enriched with ammonium sulfate to promote the selective enrichment of ammonia oxidizers for targeted genomic recovery, and to investigate the microbial response of the microcosm to nitrogen input. Ammonia addition produced an increase in AOA population, particularly within the genus Candidatus Nitrosotalea, from which metagenome-assembled genomes (MAGs) were successfully recovered. The Ca. Nitrosotalea archaeon candidates' ability to survive in extreme conditions and rapidly respond to ammonia input makes it a potential bioprospecting target for application in ecological restoration of semi-arid soils and the recovered MAGs provide a metabolic blueprint for developing potential strategies towards isolation of these acclimated candidates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Paton Vuong
- UWA School of Agriculture & Environment, University of Western Australia, Perth, Australia
| | - Benjamin Moreira-Grez
- UWA School of Agriculture & Environment, University of Western Australia, Perth, Australia
| | - Michael J Wise
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia.,The Marshall Centre of Infectious Diseases, School of Biological Sciences, The University of Western Australia, Perth, Australia
| | - Andrew S Whiteley
- Centre for Environment & Life Sciences, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat, Australia
| | - Deepak Kumaresan
- School of Biological Sciences, Queen's University of Belfast, Belfast, UK
| | - Parwinder Kaur
- UWA School of Agriculture & Environment, University of Western Australia, Perth, Australia
| |
Collapse
|
359
|
Li PD, Zhu ZR, Zhang Y, Xu J, Wang H, Wang Z, Li H. The phyllosphere microbiome shifts toward combating melanose pathogen. MICROBIOME 2022; 10:56. [PMID: 35366955 PMCID: PMC8976405 DOI: 10.1186/s40168-022-01234-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/23/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plants can recruit beneficial microbes to enhance their ability to defend against pathogens. However, in contrast to the intensively studied roles of the rhizosphere microbiome in suppressing plant pathogens, the collective community-level change and effect of the phyllosphere microbiome in response to pathogen invasion remains largely elusive. RESULTS Here, we integrated 16S metabarcoding, shotgun metagenomics and culture-dependent methods to systematically investigate the changes in phyllosphere microbiome between infected and uninfected citrus leaves by Diaporthe citri, a fungal pathogen causing melanose disease worldwide. Multiple microbiome features suggested a shift in phyllosphere microbiome upon D. citri infection, highlighted by the marked reduction of community evenness, the emergence of large numbers of new microbes, and the intense microbial network. We also identified the microbiome features from functional perspectives in infected leaves, such as enriched microbial functions for iron competition and potential antifungal traits, and enriched microbes with beneficial genomic characteristics. Glasshouse experiments demonstrated that several bacteria associated with the microbiome shift could positively affect plant performance under D. citri challenge, with reductions in disease index ranging from 65.7 to 88.4%. Among them, Pantoea asv90 and Methylobacterium asv41 identified as "recruited new microbes" in the infected leaves, exhibited antagonistic activities to D. citri both in vitro and in vivo, including inhibition of spore germination and/or mycelium growth. Sphingomonas spp. presented beneficial genomic characteristics and were found to be the main contributor for the functional enrichment of iron complex outer membrane receptor protein in the infected leaves. Moreover, Sphingomonas asv20 showed a stronger suppression ability against D. citri in iron-deficient conditions than iron-sufficient conditions, suggesting a role of iron competition during their antagonistic action. CONCLUSIONS Overall, our study revealed how phyllosphere microbiomes differed between infected and uninfected citrus leaves by melanose pathogen, and identified potential mechanisms for how the observed microbiome shift might have helped plants cope with pathogen pressure. Our findings provide novel insights into understanding the roles of phyllosphere microbiome responses during pathogen challenge. Video abstract.
Collapse
Affiliation(s)
- Pu-Dong Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zeng-Rong Zhu
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Yunzeng Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| | - Hongkai Wang
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhengyi Wang
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hongye Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Hainan Institute, Zhejiang University, Sanya, 572000, China.
| |
Collapse
|
360
|
Kumar S, Bansal K, Sethi SK. Comparative genomics analysis of genus Leuconostoc resolves its taxonomy and elucidates its biotechnological importance. Food Microbiol 2022; 106:104039. [DOI: 10.1016/j.fm.2022.104039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022]
|
361
|
Zhou Y, Liu M, Yang J. Recovering metagenome-assembled genomes from shotgun metagenomic sequencing data: methods, applications, challenges, and opportunities. Microbiol Res 2022; 260:127023. [DOI: 10.1016/j.micres.2022.127023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/07/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022]
|
362
|
Yuan PB, Zhan Y, Zhu JH, Ling JH, Chen EZ, Liu WT, Wang LJ, Zhong YX, Chen DQ. Pan-Genome Analysis of Laribacter hongkongensis: Virulence Gene Profiles, Carbohydrate-Active Enzyme Prediction, and Antimicrobial Resistance Characterization. Front Microbiol 2022; 13:862776. [PMID: 35432229 PMCID: PMC9008761 DOI: 10.3389/fmicb.2022.862776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Laribacter hongkongensis is a new emerging foodborne pathogen that causes community-acquired gastroenteritis and traveler’s diarrhea. However, the genetic features of L. hongkongensis have not yet been properly understood. A total of 45 aquatic animal-associated L. hongkongensis strains isolated from intestinal specimens of frogs and grass carps were subjected to whole-genome sequencing (WGS), along with the genome data of 4 reported human clinical strains, the analysis of virulence genes, carbohydrate-active enzymes, and antimicrobial resistance (AMR) determinants were carried out for comprehensively understanding of this new foodborne pathogen. Human clinical strains were genetically more related to some strains from frogs inferred from phylogenetic trees. The distribution of virulence genes and carbohydrate-active enzymes exhibited different patterns among strains of different sources, reflecting their adaption to different host environments and indicating different potentials to infect humans. Thirty-two AMR genes were detected, susceptibility to 18 clinical used antibiotics including aminoglycoside, chloramphenicol, trimethoprim, and sulfa was checked to evaluate the availability of clinical medicines. Resistance to Rifampicin, Cefazolin, ceftazidime, Ampicillin, and ceftriaxone is prevalent in most strains, resistance to tetracycline, trimethoprim-sulfamethoxazole, ciprofloxacin, and levofloxacin are aggregated in nearly half of frog-derived strains, suggesting that drug resistance of frog-derived strains is more serious, and clinical treatment for L. hongkongensis infection should be more cautious.
Collapse
|
363
|
Isolation of Leptospira interrogans Serovar Canicola in a Vaccinated Dog without Clinical Symptoms. Pathogens 2022; 11:pathogens11040406. [PMID: 35456081 PMCID: PMC9028210 DOI: 10.3390/pathogens11040406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/08/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
More than one million cases of leptospirosis occur across the globe annually, resulting in about 59,000 deaths. Dogs are one of the most important reservoirs of Leptospira species and play an important role in transmitting the pathogen to humans. Many of these infections are controlled by routine vaccination that has reduced the possible reintroduction of leptospiral serovars into the human population. However, it is still not clear how a vaccinated dog can become infected with one or more Leptospira serovars contained in the vaccine formulation and thus against which it should be immunized. Here, we present the case of an asymptomatic dog who developed leptospiral infection despite being vaccinated. This unusual case emphasizes the substantial impact of immunization on mitigating the acute signs of the disease, even while providing limited protection against infection. Further studies will be required to better understand the role of dogs in the environmental circulation of leptospiral serovars in Sardinia. Asymptomatic leptospiral infection in vaccinated dogs should be considered to allow for better diagnosis and management of the infection. This will be essential for preventing Leptospira outbreaks in the future.
Collapse
|
364
|
In Vitro and In Silico Based Approaches to Identify Potential Novel Bacteriocins from the Athlete Gut Microbiome of an Elite Athlete Cohort. Microorganisms 2022; 10:microorganisms10040701. [PMID: 35456752 PMCID: PMC9025905 DOI: 10.3390/microorganisms10040701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022] Open
Abstract
Exercise reduces inflammation, fatigue, and aids overall health. Additionally, physical fitness has been associated with desirable changes in the community composition of the athlete gut microbiome, with health-associated taxa being shown to be increased in active individuals. Here, using a combination of in silico and in vitro methods, we investigate the antimicrobial activity of the athlete gut microbiome. In vitro approaches resulted in the generation of 284 gut isolates with inhibitory activity against Clostridioides difficile and/or Fusobacterium nucleatum, and the most potent isolates were further characterized, and potential bacteriocins were predicted using both MALDI-TOF MS and whole-genome sequencing. Additionally, metagenomic reads from the faecal samples were used to recover 770 Metagenome Assembled Genomes (MAGs), of which 148 were assigned to be high-quality MAGs and screened for the presence of putative bacteriocin gene clusters using BAGEL4 software, with 339 gene clusters of interest being identified. Class I was the most abundant bacteriocin class predicted, accounting for 91.3% of predictions, Class III had a predicted abundance of 7.5%, and Class II was represented by just 1% of all predictions.
Collapse
|
365
|
Murakami T, Takeuchi N, Mori H, Hirose Y, Edwards A, Irvine-Fynn T, Li Z, Ishii S, Segawa T. Metagenomics reveals global-scale contrasts in nitrogen cycling and cyanobacterial light-harvesting mechanisms in glacier cryoconite. MICROBIOME 2022; 10:50. [PMID: 35317857 PMCID: PMC8941735 DOI: 10.1186/s40168-022-01238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cryoconite granules are mineral-microbial aggregates found on glacier surfaces worldwide and are hotspots of biogeochemical reactions in glacier ecosystems. However, despite their importance within glacier ecosystems, the geographical diversity of taxonomic assemblages and metabolic potential of cryoconite communities around the globe remain unclear. In particular, the genomic content of cryoconite communities on Asia's high mountain glaciers, which represent a substantial portion of Earth's ice masses, has rarely been reported. Therefore, in this study, to elucidate the taxonomic and ecological diversities of cryoconite bacterial consortia on a global scale, we conducted shotgun metagenomic sequencing of cryoconite acquired from a range of geographical areas comprising Polar (Arctic and Antarctic) and Asian alpine regions. RESULTS Our metagenomic data indicate that compositions of both bacterial taxa and functional genes are particularly distinctive for Asian cryoconite. Read abundance of the genes responsible for denitrification was significantly more abundant in Asian cryoconite than the Polar cryoconite, implying that denitrification is more enhanced in Asian glaciers. The taxonomic composition of Cyanobacteria, the key primary producers in cryoconite communities, also differs between the Polar and Asian samples. Analyses on the metagenome-assembled genomes and fluorescence emission spectra reveal that Asian cryoconite is dominated by multiple cyanobacterial lineages possessing phycoerythrin, a green light-harvesting component for photosynthesis. In contrast, Polar cryoconite is dominated by a single cyanobacterial species Phormidesmis priestleyi that does not possess phycoerythrin. These findings suggest that the assemblage of cryoconite bacterial communities respond to regional- or glacier-specific physicochemical conditions, such as the availability of nutrients (e.g., nitrate and dissolved organic carbon) and light (i.e., incident shortwave radiation). CONCLUSIONS Our genome-resolved metagenomics provides the first characterization of the taxonomic and metabolic diversities of cryoconite from contrasting geographical areas, highlighted by the distinct light-harvesting approaches of Cyanobacteria and nitrogen utilization between Polar and Asian cryoconite, and implies the existence of environmental controls on the assemblage of cryoconite communities. These findings deepen our understanding of the biodiversity and biogeochemical cycles of glacier ecosystems, which are susceptible to ongoing climate change and glacier decline, on a global scale. Video abstract.
Collapse
Affiliation(s)
- Takumi Murakami
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan
| | - Nozomu Takeuchi
- Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba, Japan
| | - Hiroshi Mori
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Aichi, Japan
| | - Arwyn Edwards
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK
- Interdisciplinary Centre for Environmental Microbiology, Aberystwyth University, Aberystwyth, UK
| | - Tristram Irvine-Fynn
- Interdisciplinary Centre for Environmental Microbiology, Aberystwyth University, Aberystwyth, UK
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
| | - Zhongqin Li
- State Key Laboratory of Cryospheric Sciences/Tien Shan Glaciological Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Satoshi Ishii
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN USA
| | - Takahiro Segawa
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
366
|
Gilroy R, Leng J, Ravi A, Adriaenssens EM, Oren A, Baker D, La Ragione RM, Proudman C, Pallen MJ. Metagenomic investigation of the equine faecal microbiome reveals extensive taxonomic diversity. PeerJ 2022; 10:e13084. [PMID: 35345588 PMCID: PMC8957277 DOI: 10.7717/peerj.13084] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
Background The horse plays crucial roles across the globe, including in horseracing, as a working and companion animal and as a food animal. The horse hindgut microbiome makes a key contribution in turning a high fibre diet into body mass and horsepower. However, despite its importance, the horse hindgut microbiome remains largely undefined. Here, we applied culture-independent shotgun metagenomics to thoroughbred equine faecal samples to deliver novel insights into this complex microbial community. Results We performed metagenomic sequencing on five equine faecal samples to construct 123 high- or medium-quality metagenome-assembled genomes from Bacteria and Archaea. In addition, we recovered nearly 200 bacteriophage genomes. We document surprising taxonomic diversity, encompassing dozens of novel or unnamed bacterial genera and species, to which we have assigned new Candidatus names. Many of these genera are conserved across a range of mammalian gut microbiomes. Conclusions Our metagenomic analyses provide new insights into the bacterial, archaeal and bacteriophage components of the horse gut microbiome. The resulting datasets provide a key resource for future high-resolution taxonomic and functional studies on the equine gut microbiome.
Collapse
Affiliation(s)
- Rachel Gilroy
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Joy Leng
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Anuradha Ravi
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | | - Aharon Oren
- The Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dave Baker
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | | | | - Mark J. Pallen
- Quadram Institute Bioscience, Norwich, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
367
|
Genetic Characteristics of the Transmissible Locus of Stress Tolerance (tLST) and tLST Harboring Escherichia coli as Revealed by Large-Scale Genomic Analysis. Appl Environ Microbiol 2022; 88:e0218521. [PMID: 35285715 DOI: 10.1128/aem.02185-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transmissible locus of stress tolerance (tLST) confers resistance to multiple stresses in E. coli. Utilizing 18,959 E. coli genomes available in the NCBI database, we investigated the prevalence, phylogenetic distribution, and configuration patterns of tLST, and correlations between tLST, and virulence and antimicrobial resistance (AMR) genes in E. coli. Four tLST variants were found in 2.7% of E. coli, with the most prevalent (77.1%) variant being tLST1 followed by tLST2 (8.3%), tLST3b (8.3%) and tLST3a (6.3%). The majority (93%) of those tLST were in E. coli belonging to phylogroup A in which the prevalence was 10.4%. tLST was also found in phylogroup B1 (0.5%) and C (0.5%) but not found in B2 or D-G. An additional 1% of the 18,959 E. coli genomes harbored tLST fragments to various extent. Phylogenetic analysis revealed both intra- and interspecies transmission of both chromosomal and plasmid-borne tLST, with E. coli showing a preference of chromosomal over plasmid-borne tLST. The presence of tLST and virulence genes in E. coli was overall negatively correlated, but tLST was found in all genomes of a subgroup of enterotoxigenic E. coli (ST2332). Of note, no Shiga toxin-producing E. coli (n = 3,492) harbored tLST. The prevalence of tLST and AMR genes showed different temporal trends over the period 1985 to 2019. However, a substantial fraction of tLST positive E. coli harbor AMR genes, posing a threat to public health. In conclusion, this study improves our understanding of the genetic characteristics of tLST and E. coli harboring tLST. IMPORTANCE This study, through a large-scale genomic analysis, demonstrated that the genomic island tLST related to multiple stress resistance (such as extreme heat resistance and oxidative stress tolerance) in E. coli is differentially present in subgroups of E. coli and is strongly associated with certain phylogenetic background of the host strain. The study also shows the transmission mechanisms of tLST in E. coli and other bacterial species. The overall negative association of tLST, and virulence genes and antimicrobial (AMR) genes suggest the selective pressures for the acquisition and transmission of these traits likely differ. Even so, the high prevalence of tLST in the enterotoxigenic E. coli clone ST2332 and co-occurrence of tLST and AMR genes in E. coli are concerning. Thus, the findings better our understanding of tLST evolution and provide information for risk assessment of tLST harboring bacteria.
Collapse
|
368
|
Westerholm M, Calusinska M, Dolfing J. Syntrophic propionate-oxidizing bacteria in methanogenic systems. FEMS Microbiol Rev 2022; 46:fuab057. [PMID: 34875063 PMCID: PMC8892533 DOI: 10.1093/femsre/fuab057] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/03/2021] [Indexed: 12/04/2022] Open
Abstract
The mutual nutritional cooperation underpinning syntrophic propionate degradation provides a scant amount of energy for the microorganisms involved, so propionate degradation often acts as a bottleneck in methanogenic systems. Understanding the ecology, physiology and metabolic capacities of syntrophic propionate-oxidizing bacteria (SPOB) is of interest in both engineered and natural ecosystems, as it offers prospects to guide further development of technologies for biogas production and biomass-derived chemicals, and is important in forecasting contributions by biogenic methane emissions to climate change. SPOB are distributed across different phyla. They can exhibit broad metabolic capabilities in addition to syntrophy (e.g. fermentative, sulfidogenic and acetogenic metabolism) and demonstrate variations in interplay with cooperating partners, indicating nuances in their syntrophic lifestyle. In this review, we discuss distinctions in gene repertoire and organization for the methylmalonyl-CoA pathway, hydrogenases and formate dehydrogenases, and emerging facets of (formate/hydrogen/direct) electron transfer mechanisms. We also use information from cultivations, thermodynamic calculations and omic analyses as the basis for identifying environmental conditions governing propionate oxidation in various ecosystems. Overall, this review improves basic and applied understanding of SPOB and highlights knowledge gaps, hopefully encouraging future research and engineering on propionate metabolism in biotechnological processes.
Collapse
Affiliation(s)
- Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCentre, Almas allé 5, SE-75007 Uppsala, Sweden
| | - Magdalena Calusinska
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, rue du Brill 41, L-4422 Belvaux, Luxembourg
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Wynne Jones 2.11, Ellison Place, Newcastle-upon-Tyne NE1 8QH, UK
| |
Collapse
|
369
|
Hiraoka S, Sumida T, Hirai M, Toyoda A, Kawagucci S, Yokokawa T, Nunoura T. Diverse DNA modification in marine prokaryotic and viral communities. Nucleic Acids Res 2022; 50:1531-1550. [PMID: 35051998 PMCID: PMC8919816 DOI: 10.1093/nar/gkab1292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 11/15/2022] Open
Abstract
DNA chemical modifications, including methylation, are widespread and play important roles in prokaryotes and viruses. However, current knowledge of these modification systems is severely biased towards a limited number of culturable prokaryotes, despite the fact that a vast majority of microorganisms have not yet been cultured. Here, using single-molecule real-time sequencing, we conducted culture-independent 'metaepigenomic' analyses (an integrated analysis of metagenomics and epigenomics) of marine microbial communities. A total of 233 and 163 metagenomic-assembled genomes (MAGs) were constructed from diverse prokaryotes and viruses, respectively, and 220 modified motifs and 276 DNA methyltransferases (MTases) were identified. Most of the MTase genes were not genetically linked with the endonuclease genes predicted to be involved in defense mechanisms against extracellular DNA. The MTase-motif correspondence found in the MAGs revealed 10 novel pairs, 5 of which showed novel specificities and experimentally confirmed the catalytic specificities of the MTases. We revealed novel alternative specificities in MTases that are highly conserved in Alphaproteobacteria, which may enhance our understanding of the co-evolutionary history of the methylation systems and the genomes. Our findings highlight diverse unexplored DNA modifications that potentially affect the ecology and evolution of prokaryotes and viruses in nature.
Collapse
Affiliation(s)
- Satoshi Hiraoka
- Research Center for Bioscience and Nanoscience (CeBN),
Research Institute for Marine Resources Utilization, Japan Agency for
Marine-Earth Science and Technology (JAMSTEC),
Yokosuka,
Kanagawa 237–0061,
Japan
| | - Tomomi Sumida
- Research Center for Bioscience and Nanoscience (CeBN),
Research Institute for Marine Resources Utilization, Japan Agency for
Marine-Earth Science and Technology (JAMSTEC),
Yokosuka,
Kanagawa 237–0061,
Japan
| | - Miho Hirai
- Institute for Extra-cutting-edge Science and Technology
Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), Yokosuka,
Kanagawa 237–0061,
Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of
Genetics, Mishima,
Shizuoka 411-8540,
Japan
| | - Shinsuke Kawagucci
- Institute for Extra-cutting-edge Science and Technology
Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), Yokosuka,
Kanagawa 237–0061,
Japan
- Marine Biodiversity and Environmental Assessment Research
Center (BioEnv), Research Institute for Global Change (RIGC), Japan
Agency for Marine-Earth Science and Technology (JAMSTEC),
Yokosuka,
Kanagawa 237–0061,
Japan
| | - Taichi Yokokawa
- Institute for Extra-cutting-edge Science and Technology
Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), Yokosuka,
Kanagawa 237–0061,
Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN),
Research Institute for Marine Resources Utilization, Japan Agency for
Marine-Earth Science and Technology (JAMSTEC),
Yokosuka,
Kanagawa 237–0061,
Japan
| |
Collapse
|
370
|
Hu J, Hellgeth N, Cabay C, Clark J, Oliaro FJ, Van Bonn W, Hartmann EM. Towards understanding microbial degradation of chloroquine in large saltwater systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150532. [PMID: 34606868 DOI: 10.1016/j.scitotenv.2021.150532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Circulating saltwater aquariums hosting marine animals contain a wide range of microorganisms, which have strong implications on promoting animal health. In this study, we investigated the degradation of chloroquine phosphate, an anti-parasitic bath pharmaceutical used in saltwater quarantine and exhibition systems, and attributed the reduction in drug concentration to microbial degradation of chloroquine associated with pipeline microbial communities. To advance our knowledge on chloroquine degradation in aquatic systems, we conducted microbial and chemical analyses on three tropical saltwater systems. Our findings show that aquarium microbiome composition is shaped by sampling location (i.e., tank water and pipeline; PERMANOVA R2 = 0.09992, p = 0.0134), chloroquine dosing (PERMANOVA R2 = 0.05700, p = 0.0030), and whether the aquarium is occupied by marine animals (PERMANOVA R2 = 0.07019, p = 0.0009). Several microbial taxa belonging to the phyla Actinobacteria, Bacteroidetes, Chloroflexi, and Proteobacteria, along with functional genes related to pathways such as phenylethylamine degradation and denitrification, appeared to have differential (relative) abundance between samples where chloroquine degradation was observed and those without degradation (Benjamini-Hochberg adjusted p-value <0.05). Together, these results provide practical mitigation options to prevent or delay the development of chloroquine-degrading microbial communities in saltwater aquariums. Our results further demonstrate the need to improve our understanding of the interactions between nitrogen availability and microbial activity in saltwater systems.
Collapse
Affiliation(s)
- Jinglin Hu
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Nancy Hellgeth
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Chrissy Cabay
- Animal Care and Science Division, John G. Shedd Aquarium, Chicago, IL, USA
| | - James Clark
- Animal Care and Science Division, John G. Shedd Aquarium, Chicago, IL, USA
| | - Francis J Oliaro
- Animal Care and Science Division, John G. Shedd Aquarium, Chicago, IL, USA
| | - William Van Bonn
- Animal Care and Science Division, John G. Shedd Aquarium, Chicago, IL, USA
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
371
|
Ventolero MF, Wang S, Hu H, Li X. Computational analyses of bacterial strains from shotgun reads. Brief Bioinform 2022; 23:6524011. [PMID: 35136954 DOI: 10.1093/bib/bbac013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Shotgun sequencing is routinely employed to study bacteria in microbial communities. With the vast amount of shotgun sequencing reads generated in a metagenomic project, it is crucial to determine the microbial composition at the strain level. This study investigated 20 computational tools that attempt to infer bacterial strain genomes from shotgun reads. For the first time, we discussed the methodology behind these tools. We also systematically evaluated six novel-strain-targeting tools on the same datasets and found that BHap, mixtureS and StrainFinder performed better than other tools. Because the performance of the best tools is still suboptimal, we discussed future directions that may address the limitations.
Collapse
Affiliation(s)
| | - Saidi Wang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Haiyan Hu
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA.,Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA
| | - Xiaoman Li
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
372
|
Loza A, García-Guevara F, Segovia L, Escobar-Zepeda A, Sanchez-Olmos MDC, Merino E, Sanchez-Flores A, Pardo-Lopez L, Juarez K, Gutierrez-Rios RM. Definition of the Metagenomic Profile of Ocean Water Samples From the Gulf of Mexico Based on Comparison With Reference Samples From Sites Worldwide. Front Microbiol 2022; 12:781497. [PMID: 35178038 PMCID: PMC8846951 DOI: 10.3389/fmicb.2021.781497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Computational and statistical analysis of shotgun metagenomes can predict gene abundance and is helpful for elucidating the functional and taxonomic compositions of environmental samples. Gene products are compared against physicochemical conditions or perturbations to shed light on the functions performed by the microbial community of an environmental sample; however, this information is not always available. The present study proposes a method for inferring the metabolic potential of metagenome samples by constructing a reference based on determining the probability distribution of the counts of each enzyme annotated. To test the methodology, we used marine water samples distributed worldwide as references. Then, the references were utilized to compare the annotated enzymes of two different water samples extracted from the Gulf of Mexico (GoM) to distinguish those enzymes with atypical behavior. The enzymes whose annotation counts presented frequencies significantly different from those of the reference were used to perform metabolic reconstruction, which naturally identified pathways. We found that several of the enzymes were involved in the biodegradation of petroleum, which is consistent with the impact of human hydrocarbon extraction activity and its ubiquitous presence in the GoM. The examination of other reconstructed pathways revealed significant enzymes indicating the presence of microbial communities characterizing each ocean depth and ocean cycle, providing a fingerprint of each sampled site.
Collapse
|
373
|
Aureibaculum algae sp. nov. isolated from the Pacific red alga Ahnfeltia tobuchiensis. Arch Microbiol 2022; 204:153. [PMID: 35088166 DOI: 10.1007/s00203-021-02693-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 11/02/2022]
Abstract
A Gram stain-negative, aerobic, rod-shaped, motile by gliding and yellow-orange-pigmented bacterium, designated strain 10Alg 115T, was isolated from the red alga Ahnfeltia tobuchiensis. The phylogenetic analysis based on 16S rRNA gene sequences placed the novel strain within the family Flavobacteriaceae, phylum Bacteroidetes. The nearest neighbor of the new isolate was Aureibaculum marinum KCTC 62204T with sequence similarity of 98.1%. The average nucleotide similarity and digital DNA-DNA hybridization values between the novel strain and Aureibaculum marinum KCTC 62204T were 80% and 22.3%, respectively. The prevalent fatty acids of strain 10Alg 115T were iso-C15:0, iso-C15:1 G, iso-C17:0 3-OH, iso-C16:0 3-OH and C15:0. The polar lipid profile consisted of phosphatidylethanolamine, two unidentified aminolipids and two unidentified lipids. The DNA G + C content of the type strain calculated from the whole-genome sequence was 32.2 mol%. A combination of the genotypic and phenotypic data showed that the algal isolate represents a novel species of the of genus Aureibaculum, for which the name Aureibaculum algae sp. nov. is proposed. The type strain is 10Alg 115T (= KCTC 62086T = KMM 6764T).
Collapse
|
374
|
D’Angelo T, Goordial J, Poulton NJ, Seyler L, Huber JA, Stepanauskas R, Orcutt BN. Oceanic Crustal Fluid Single Cell Genomics Complements Metagenomic and Metatranscriptomic Surveys With Orders of Magnitude Less Sample Volume. Front Microbiol 2022; 12:738231. [PMID: 35140689 PMCID: PMC8819061 DOI: 10.3389/fmicb.2021.738231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022] Open
Abstract
Fluids circulating through oceanic crust play important roles in global biogeochemical cycling mediated by their microbial inhabitants, but studying these sites is challenged by sampling logistics and low biomass. Borehole observatories installed at the North Pond study site on the western flank of the Mid-Atlantic Ridge have enabled investigation of the microbial biosphere in cold, oxygenated basaltic oceanic crust. Here we test a methodology that applies redox-sensitive fluorescent molecules for flow cytometric sorting of cells for single cell genomic sequencing from small volumes of low biomass (approximately 103 cells ml-1) crustal fluid. We compare the resulting genomic data to a recently published paired metagenomic and metatranscriptomic analysis from the same site. Even with low coverage genome sequencing, sorting cells from less than one milliliter of crustal fluid results in similar interpretation of dominant taxa and functional profiles as compared to 'omics analysis that typically filter orders of magnitude more fluid volume. The diverse community dominated by Gammaproteobacteria, Bacteroidetes, Desulfobacterota, Alphaproteobacteria, and Zetaproteobacteria, had evidence of autotrophy and heterotrophy, a variety of nitrogen and sulfur cycling metabolisms, and motility. Together, results indicate fluorescence activated cell sorting methodology is a powerful addition to the toolbox for the study of low biomass systems or at sites where only small sample volumes are available for analysis.
Collapse
Affiliation(s)
- Timothy D’Angelo
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Jacqueline Goordial
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Nicole J. Poulton
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Lauren Seyler
- School of Natural Science and Mathematics, Stockton University, Galloway, NJ, United States
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Julie A. Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | | | - Beth N. Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
375
|
Archaeal and Bacterial Metagenome-Assembled Genome Sequences Derived from Pig Feces. Microbiol Resour Announc 2022; 11:e0114221. [PMID: 35049348 PMCID: PMC8772591 DOI: 10.1128/mra.01142-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We report the recovery of metagenome-assembled genomes (MAGs) from fecal samples collected in 2018 from five healthy adult female pigs in southeast England. The resulting nonredundant catalog of 192 MAGs encompasses 102 metagenomic species, 41 of them novel, spanning 10 bacterial and 2 archaeal phyla.
Collapse
|
376
|
Wang W, Nettleton JE, Gänzle MG, Reimer RA. A Metagenomics Investigation of Intergenerational Effects of Non-nutritive Sweeteners on Gut Microbiome. Front Nutr 2022; 8:795848. [PMID: 35096940 PMCID: PMC8794796 DOI: 10.3389/fnut.2021.795848] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
To identify possible mechanisms by which maternal consumption of non-nutritive sweeteners increases obesity risk in offspring, we reconstructed the major alterations in the cecal microbiome of 3-week-old offspring of obese dams consuming high fat/sucrose (HFS) diet with or without aspartame (5-7 mg/kg/day) or stevia (2-3 mg/kg/day) by shotgun metagenomic sequencing (n = 36). High throughput 16S rRNA gene sequencing (n = 105) was performed for dams, 3- and 18-week-old offspring. Maternal consumption of sweeteners altered cecal microbial composition and metabolism of propionate/lactate in their offspring. Offspring daily body weight gain, liver weight and body fat were positively correlated to the relative abundance of key microbes and enzymes involved in succinate/propionate production while negatively correlated to that of lactose degradation and lactate production. The altered propionate/lactate production in the cecum of weanlings from aspartame and stevia consuming dams implicates an altered ratio of dietary carbohydrate digestion, mainly lactose, in the small intestine vs. microbial fermentation in the large intestine. The reconstructed microbiome alterations could explain increased offspring body weight and body fat. This study demonstrates that intense sweet tastants have a lasting and intergenerational effect on gut microbiota, microbial metabolites and host health.
Collapse
Affiliation(s)
- Weilan Wang
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Jodi E. Nettleton
- IWK Health Centre, Division of Gastroenterology and Nutrition, Halifax, NS, Canada
| | - Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Raylene A. Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
377
|
McFarland AG, Kennedy NW, Mills CE, Tullman-Ercek D, Huttenhower C, Hartmann EM. Density-based binning of gene clusters to infer function or evolutionary history using GeneGrouper. Bioinformatics 2022; 38:612-620. [PMID: 34734968 DOI: 10.1093/bioinformatics/btab752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Identifying variant forms of gene clusters of interest in phylogenetically proximate and distant taxa can help to infer their evolutionary histories and functions. Conserved gene clusters may differ by only a few genes, but these small differences can in turn induce substantial phenotypes, such as by the formation of pseudogenes or insertions interrupting regulation. Particularly as microbial genomes and metagenomic assemblies become increasingly abundant, unsupervised grouping of similar, but not necessarily identical, gene clusters into consistent bins can provide a population-level understanding of their gene content variation and functional homology. RESULTS We developed GeneGrouper, a command-line tool that uses a density-based clustering method to group gene clusters into bins. GeneGrouper demonstrated high recall and precision in benchmarks for the detection of the 23-gene Salmonella enterica LT2 Pdu gene cluster and four-gene Pseudomonas aeruginosa PAO1 Mex gene cluster among 435 genomes spanning mixed taxa. In a subsequent application investigating the diversity and impact of gene-complete and -incomplete LT2 Pdu gene clusters in 1130 S.enterica genomes, GeneGrouper identified a novel, frequently occurring pduN pseudogene. When investigated in vivo, introduction of the pduN pseudogene negatively impacted microcompartment formation. We next demonstrated the versatility of GeneGrouper by clustering distant homologous gene clusters and variable gene clusters found in integrative and conjugative elements. AVAILABILITY AND IMPLEMENTATION GeneGrouper software and code are publicly available at https://pypi.org/project/GeneGrouper/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alexander G McFarland
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Nolan W Kennedy
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Departments of Biostatistics and Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
378
|
Sato Y, Takebe H, Oishi K, Yasuda J, Kumagai H, Hirooka H, Yoshida T. Identification of 146 Metagenome-assembled Genomes from the Rumen Microbiome of Cattle in Japan. Microbes Environ 2022; 37:ME22039. [PMID: 36273894 PMCID: PMC9763041 DOI: 10.1264/jsme2.me22039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The rumen contains a complex microbial ecosystem that degrades plant materials, such as cellulose and hemicellulose. We herein reconstructed 146 nonredundant, rumen-specific metagenome-assembled genomes (MAGs), with ≥50% completeness and <10% contamination, from cattle in Japan. The majority of MAGs were potentially novel strains, encoding various enzymes related to plant biomass degradation and volatile fatty acid production. The MAGs identified in the present study may be valuable resources to enhance the resolution of future taxonomical and functional studies based on metagenomes and metatranscriptomes.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Tochigi, Japan,Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan, Corresponding authors. Yoshiaki Sato: E-mail: ; Tel: +81–28–649–5440. Takashi Yoshida: E-mail: ; Tel: +81–75–753–6217; Fax: +81–75–6226
| | - Hiroaki Takebe
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazato Oishi
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jumpei Yasuda
- Iwate Agricultural Research Center Animal Industry Research Institute, Iwate, Japan
| | - Hajime Kumagai
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiroyuki Hirooka
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan, Corresponding authors. Yoshiaki Sato: E-mail: ; Tel: +81–28–649–5440. Takashi Yoshida: E-mail: ; Tel: +81–75–753–6217; Fax: +81–75–6226
| |
Collapse
|
379
|
Valles-Colomer M, Bacigalupe R, Vieira-Silva S, Suzuki S, Darzi Y, Tito RY, Yamada T, Segata N, Raes J, Falony G. Variation and transmission of the human gut microbiota across multiple familial generations. Nat Microbiol 2022; 7:87-96. [PMID: 34969979 PMCID: PMC8727295 DOI: 10.1038/s41564-021-01021-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
Although the composition and functional potential of the human gut microbiota evolve over the lifespan, kinship has been identified as a key covariate of microbial community diversification. However, to date, sharing of microbiota features within families has mostly been assessed between parents and their direct offspring. Here we investigate the potential transmission and persistence of familial microbiome patterns and microbial genotypes in a family cohort (n = 102) spanning 3 to 5 generations over the same female bloodline. We observe microbiome community composition associated with kinship, with seven low abundant genera displaying familial distribution patterns. While kinship and current cohabitation emerge as closely entangled variables, our explorative analyses of microbial genotype distribution and transmission estimates point at the latter as a key covariate of strain dissemination. Highest potential transmission rates are estimated between sisters and mother-daughter pairs, decreasing with increasing daughter's age and being higher among cohabiting pairs than those living apart. Although rare, we detect potential transmission events spanning three and four generations, primarily involving species of the genera Alistipes and Bacteroides. Overall, while our analyses confirm the existence of family-bound microbiome community profiles, transmission or co-acquisition of bacterial strains appears to be strongly linked to cohabitation.
Collapse
Affiliation(s)
- Mireia Valles-Colomer
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department for Integrative Biology, University of Trento, Trento, Italy
| | - Rodrigo Bacigalupe
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Sara Vieira-Silva
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Shinya Suzuki
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Youssef Darzi
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Raul Y Tito
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Takuji Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Nicola Segata
- European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
- Department for Integrative Biology, University of Trento, Trento, Italy
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium.
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium.
| | - Gwen Falony
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| |
Collapse
|
380
|
Adam PS, Bornemann TLV, Probst AJ. Progress and Challenges in Studying the Ecophysiology of Archaea. Methods Mol Biol 2022; 2522:469-486. [PMID: 36125771 DOI: 10.1007/978-1-0716-2445-6_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It has been less than two decades since the study of archaeal ecophysiology has become unshackled from the limitations of cultivation and amplicon sequencing through the advent of metagenomics. As a primer to the guide on producing archaeal genomes from metagenomes, we briefly summarize here how different meta'omics, imaging, and wet lab methods have contributed to progress in understanding the ecophysiology of Archaea. We then peer into the history of how our knowledge on two particularly important lineages was assembled: the anaerobic methane and alkane oxidizers, encountered primarily among Euryarchaeota, and the nanosized, mainly parasitic, members of the DPANN superphylum.
Collapse
Affiliation(s)
- Panagiotis S Adam
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
| | - Till L V Bornemann
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany
| | - Alexander J Probst
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
| |
Collapse
|
381
|
Zhu Q, Mirarab S. Assembling a Reference Phylogenomic Tree of Bacteria and Archaea by Summarizing Many Gene Phylogenies. Methods Mol Biol 2022; 2569:137-165. [PMID: 36083447 DOI: 10.1007/978-1-0716-2691-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phylogenomics is the inference of phylogenetic trees based on multiple marker genes sampled in the genomes of interest. An important challenge in phylogenomics is the potential incongruence among the evolutionary histories of individual genes, which can be widespread in microorganisms due to the prevalence of horizontal gene transfer. This protocol introduces the procedures for building a phylogenetic tree of a large number of microbial genomes using a broad sampling of marker genes that are representative of whole-genome evolution. The protocol highlights the use of a gene tree summary method, which can effectively reconstruct the species tree while accounting for the topological conflicts among individual gene trees. The pipeline described in this protocol is scalable to tens of thousands of genomes while retaining high accuracy. We discussed multiple software tools, libraries, and scripts to enable convenient adoption of the protocol. The protocol is suitable for microbiology and microbiome studies based on public genomes and metagenomic data.
Collapse
Affiliation(s)
- Qiyun Zhu
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
382
|
Bornemann TLV, Adam PS, Probst AJ. Reconstruction of Archaeal Genomes from Short-Read Metagenomes. Methods Mol Biol 2022; 2522:487-527. [PMID: 36125772 DOI: 10.1007/978-1-0716-2445-6_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As the majority of biological diversity remains unexplored and uncultured, investigating it requires culture-independent approaches. Archaea in particular suffer from a multitude of issues that make their culturing problematic, from them being frequently members of the rare biosphere, to low growth rates, to them thriving under very specific and often extreme environmental and community conditions that are difficult to replicate. OMICs techniques are state of the art approaches that allow direct high-throughput investigations of environmental samples at all levels from nucleic acids to proteins, lipids, and secondary metabolites. Metagenomics, as the foundation for other OMICs techniques, facilitates the identification and functional characterization of the microbial community members and can be combined with other methods to provide insights into the microbial activities, both on the RNA and protein levels. In this chapter, we provide a step-by-step workflow for the recovery of archaeal genomes from metagenomes, starting from raw short-read sequences. This workflow can be applied to recover bacterial genomes as well.
Collapse
Affiliation(s)
- Till L V Bornemann
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Panagiotis S Adam
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Alexander J Probst
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
383
|
Orellana E, Guerrero LD, Davies-Sala C, Altina M, Pontiggia RM, Erijman L. Extracellular hydrolytic potential drives microbiome shifts during anaerobic co-digestion of sewage sludge and food waste. BIORESOURCE TECHNOLOGY 2022; 343:126102. [PMID: 34634462 DOI: 10.1016/j.biortech.2021.126102] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Bacterial community structure and dynamics in anaerobic digesters are primarily influenced by feedstock composition. It is therefore important to unveil microbial traits that explain microbiome variations in response to substrate changes. Here, gene and genome-centric metagenomics were used to examine microbiome dynamics in four laboratory-scale reactors, in which sewage sludge was co-digested with increasing amounts of food waste. A co-occurrence network revealed microbiome shifts in response to changes in substrate composition and concentration. Food waste concentration correlated with extracellular enzymes and metagenome-assembled genomes (MAGs) involved in the degradation of complex carbohydrates commonly found in fruits and plant cell walls as well as with the abundance of hydrolytic MAGs. A key role was attributed to Proteiniphillum for being the only bacteria that encoded the complete pectin degradation pathway. These results suggest that changes of feedstock composition establish new microbial niches for bacteria with the capacity to degrade newly added substrates.
Collapse
Affiliation(s)
- Esteban Orellana
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, 2490 - C1428ADN, Buenos Aires, Argentina
| | - Leandro D Guerrero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, 2490 - C1428ADN, Buenos Aires, Argentina
| | - Carol Davies-Sala
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, 2490 - C1428ADN, Buenos Aires, Argentina
| | - Melisa Altina
- Investigación, Desarrollo e Innovación, Benito Roggio Ambiental, Buenos Aires, Argentina
| | - Rodrigo M Pontiggia
- Investigación, Desarrollo e Innovación, Benito Roggio Ambiental, Buenos Aires, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, 2490 - C1428ADN, Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Intendente Güiraldes, 2160 - C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
384
|
Neira G, Vergara E, Cortez D, Holmes DS. A Large-Scale Multiple Genome Comparison of Acidophilic Archaea (pH ≤ 5.0) Extends Our Understanding of Oxidative Stress Responses in Polyextreme Environments. Antioxidants (Basel) 2021; 11:antiox11010059. [PMID: 35052563 PMCID: PMC8773360 DOI: 10.3390/antiox11010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Acidophilic archaea thrive in anaerobic and aerobic low pH environments (pH < 5) rich in dissolved heavy metals that exacerbate stress caused by the production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radical (OH) and superoxide (O2−). ROS react with lipids, proteins and nucleic acids causing oxidative stress and damage that can lead to cell death. Herein, genes and mechanisms potentially involved in ROS mitigation are predicted in over 200 genomes of acidophilic archaea with sequenced genomes. These organisms are often be subjected to simultaneous multiple stresses such as high temperature, high salinity, low pH and high heavy metal loads. Some of the topics addressed include: (1) the phylogenomic distribution of these genes and what this can tell us about the evolution of these mechanisms in acidophilic archaea; (2) key differences in genes and mechanisms used by acidophilic versus non-acidophilic archaea and between acidophilic archaea and acidophilic bacteria and (3) how comparative genomic analysis predicts novel genes or pathways involved in oxidative stress responses in archaea and likely horizontal gene transfer (HGT) events.
Collapse
Affiliation(s)
- Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago 7780272, Chile; (G.N.); (E.V.); (D.C.)
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago 7780272, Chile; (G.N.); (E.V.); (D.C.)
| | - Diego Cortez
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago 7780272, Chile; (G.N.); (E.V.); (D.C.)
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago 7780272, Chile; (G.N.); (E.V.); (D.C.)
- Facultad de Medicina y Ciencias, Universidad San Sebastián, Santiago 8420524, Chile
- Correspondence:
| |
Collapse
|
385
|
Abstract
The emergence of tet(X) genes has compromised the clinical use of the last-line antibiotic tigecycline. We identified 322 (1.21%) tet(X) positive samples from 12,829 human microbiome samples distributed in four continents (Asia, Europe, North America, and South America) using retrospective data from worldwide. These tet(X) genes were dominated by tet(X2)-like orthologs but we also identified 12 samples carrying novel tet(X) genes, designed tet(X45), tet(X46), and tet(X47), were resistant to tigecycline. The metagenomic analysis indicated these tet(X) genes distributed in anaerobes dominated by Bacteroidaceae (78.89%) of human-gut origin. Two mobile elements ISBf11 and IS4351 were most likely to promote the transmission of these tet(X2)-like orthologs between Bacteroidaceae and Riemerella anatipestifer. tet(X2)-like orthologs was also developed during transmission by mutation to high-level tigecycline resistant genes tet(X45), tet(X46), and tet(X47). Further tracing these tet(X) in single bacterial isolate from public repository indicated tet(X) genes were present as early as 1960s in R. anatipestifer that was the primary tet(X) carrier at early stage (before 2000). The tet(X2) and non-tet(X2) orthologs were primarily distributed in humans and food animals respectively, and non-tet(X2) were dominated by tet(X3) and tet(X4). Genomic comparison indicated these tet(X) genes were likely to be generated during tet(X) transmission between Flavobacteriaceae and E. coli/Acinetobacter spp., and ISCR2 played a key role in the transmission. These results suggest R. anatipestifer was the potential ancestral source of tet(X). In addition, Bacteroidaceae of human-gut origin was an important hidden reservoir and mutational incubator for the mobile tet(X) genes that enabled spread to facultative anaerobes and aerobes. IMPORTANCE The emergence of the tigecycline resistance gene tet(X) has posed a severe threat to public health. However, reports of its origin and distribution in human remain rare. Here, we explore the origin and distribution of tet(X) from large-scale metagenomic data of human-gut origin and public repository. This study revealed the emergency of tet(X) gene in 1960s, which has refreshed a previous standpoint that the earliest presence of tet(X) was in 1980s. The metagenomic analysis from data mining covered the unculturable bacteria, which has overcome the traditional bacteria isolating and purificating technologies, and the analysis indicated that the Bacteroidaceae of human-gut origin was an important hidden reservoir for tet(X) that enabled spread to facultative anaerobes and aerobes. The continuous monitoring of mobile tigecycline resistance determinants from both culturable and unculturable microorganisms is imperative for understanding and tackling the dissemination of tet(X) genes in both the health care and agricultural sectors.
Collapse
|
386
|
Rego A, Fernandez-Guerra A, Duarte P, Assmy P, Leão PN, Magalhães C. Secondary metabolite biosynthetic diversity in Arctic Ocean metagenomes. Microb Genom 2021; 7. [PMID: 34904945 PMCID: PMC8767328 DOI: 10.1099/mgen.0.000731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are mega enzymes responsible for the biosynthesis of a large fraction of natural products (NPs). Molecular markers for biosynthetic genes, such as the ketosynthase (KS) domain of PKSs, have been used to assess the diversity and distribution of biosynthetic genes in complex microbial communities. More recently, metagenomic studies have complemented and enhanced this approach by allowing the recovery of complete biosynthetic gene clusters (BGCs) from environmental DNA. In this study, the distribution and diversity of biosynthetic genes and clusters from Arctic Ocean samples (NICE-2015 expedition), was assessed using PCR-based strategies coupled with high-throughput sequencing and metagenomic analysis. In total, 149 KS domain OTU sequences were recovered, 36 % of which could not be assigned to any known BGC. In addition, 74 bacterial metagenome-assembled genomes were recovered, from which 179 BGCs were extracted. A network analysis identified potential new NP families, including non-ribosomal peptides and polyketides. Complete or near-complete BGCs were recovered, which will enable future heterologous expression efforts to uncover the respective NPs. Our study represents the first report of biosynthetic diversity assessed for Arctic Ocean metagenomes and highlights the potential of Arctic Ocean planktonic microbiomes for the discovery of novel secondary metabolites. The strategy employed in this study will enable future bioprospection, by identifying promising samples for bacterial isolation efforts, while providing also full-length BGCs for heterologous expression.
Collapse
Affiliation(s)
- Adriana Rego
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Antonio Fernandez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Pedro Duarte
- Norwegian Polar Institute, Fram Centre, N-9296 Tromsø, Norway
| | - Philipp Assmy
- Norwegian Polar Institute, Fram Centre, N-9296 Tromsø, Norway
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- *Correspondence: Pedro N. Leão,
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- Faculty of Sciences, University of Porto, 4150-179 Porto, Portugal
- *Correspondence: Catarina Magalhães,
| |
Collapse
|
387
|
Jansson MK, Hering S, Buhl MEJ. Parvimonas parva sp. nov., derived from a human genito-urinary lesion. Int J Syst Evol Microbiol 2021; 71. [PMID: 34878380 DOI: 10.1099/ijsem.0.005100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strain of obligately anaerobically growing Gram-positive cocci was isolated from a human genito-urinary sample and characterized by a polyphasic approach. Analyses of 16S rRNA gene and whole-genome sequences of this strain S3374T indicated that it belonged to the genus Parvimonas. Overall genome relatedness index calculations confirmed it to be phylogenetically distinct from Parvimonas micra (NCTC 11808T) as its most closely related species with standing in nomenclature, with average nucleotide identity and genome-to-genome distance values of 85.8 and 30.2 %, respectively. Biochemically, strain S3374T was strongly proteolytic and can be differentiated from P. micra (DSM 20468T) by absence of phosphatase activity. The DNA G+C content of strain S3374T was 28.6 mol%. Based on the phenotypical, biochemical and genetic findings, strain S3374T is considered to represent a novel species within the genus Parvimonas, for which the name Parvimonas parva sp. nov. is proposed. The type strain is S3374T (=DSM 110786T=CCOS 1934T=CCUG 74294T). This description adds strain S3374T as a second species to the genus Parvimonas which has so far been monotypic. While the type strain of this genus, P. micra, has a long standing in nomenclature and its role in human health and disease has been studied to some extent, this description of the proposed novel species represented by strain S3374T will allow microbiologists worldwide to identify isolates of P. parva sp. nov., a prerequisite for further investigation of its relevance in the clinical context and beyond.
Collapse
Affiliation(s)
- Moritz K Jansson
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, University of Rostock, Rostock, Germany
| | - Silvio Hering
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, University of Rostock, Rostock, Germany
| | - Michael E J Buhl
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
388
|
Piredda I, Bertoldi L, Benvenuto G, Palmas B, Pedditzi A, Pintore P, Chisu V. First Isolation and Molecular Typing of Pathogenic and Intermediate Leptospira Species from Urine of Symptomatic Dogs. Vet Sci 2021; 8:vetsci8120304. [PMID: 34941830 PMCID: PMC8706502 DOI: 10.3390/vetsci8120304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/30/2023] Open
Abstract
Aim of this study was to evaluate, the presence and diversity of Leptospira spp. in blood and urine samples collected from 175 owned-dogs from Sardinia, Italy. After determination of leptospiral infection by microscopic agglutination test (MAT), urine from MAT-positive dogs were examined by real-time polymerase chain reaction (lipL32 rt-PCR) and then isolated by culture. In order to characterize obtained serovars, positive cultures were then subjected to 16S rRNA and secY sequencing, phylogenetic analysis and Multilocus Sequence Typing (MLST). Results showed that seven dogs (4%; 95% CI: 0-55) had Leptospira DNAs in their urine and five strains were isolated from urine cultures. The three different sequence types (ST17, ST198 and ST24) belonging to Leptospira interrogans genomospecies identified by MLST analyses in this study, confirmed that the leptospiral infection was widespread in Sardinian dogs. We also reported the first characterization of a new Leptospira spp. isolated from urine of one dog living in the study area. Whole genome sequencing and phylogenetic analysis, confirmed that this genospecies was closely related to Leptospira hovindhougenii, an intermediate Leptospira spp. with unknown pathogenicity previously isolated from a rat in Denmark. Further studies are required to clarify whether healthy dogs that shed leptospires in their urine could represent a zoonotic risk for humans in this region.
Collapse
Affiliation(s)
- Ivana Piredda
- Laboratory of Seroimmunology, Animal Health Department, Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy; (B.P.); (A.P.); (P.P.); (V.C.)
- Correspondence: ; Tel.: +39-0792892329
| | - Loris Bertoldi
- BMR Genomics s.r.l., 35131 Padova, Italy; (L.B.); (G.B.)
| | | | - Bruna Palmas
- Laboratory of Seroimmunology, Animal Health Department, Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy; (B.P.); (A.P.); (P.P.); (V.C.)
| | - Aureliana Pedditzi
- Laboratory of Seroimmunology, Animal Health Department, Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy; (B.P.); (A.P.); (P.P.); (V.C.)
| | - Pierangela Pintore
- Laboratory of Seroimmunology, Animal Health Department, Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy; (B.P.); (A.P.); (P.P.); (V.C.)
| | - Valentina Chisu
- Laboratory of Seroimmunology, Animal Health Department, Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy; (B.P.); (A.P.); (P.P.); (V.C.)
| |
Collapse
|
389
|
Saw JH, Cardona T, Montejano G. Complete Genome Sequencing of a Novel Gloeobacter Species from a Waterfall Cave in Mexico. Genome Biol Evol 2021; 13:6446517. [PMID: 34850891 PMCID: PMC8691054 DOI: 10.1093/gbe/evab264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Only two complete genomes of the cyanobacterial genus Gloeobacter from two very different regions of the world currently exist. Here, we present the complete genome sequence of a third member of the genus isolated from a waterfall cave in Mexico. Analysis of the average nucleotide identities (ANIs) between published Gloeobacter genomes revealed that the complete genome of this new member is only 92.7% similar to Gloeobacter violaceus and therefore we determined it to be a new species. We propose to name this new species Gloeobacter morelensis after the location in Mexico where it was isolated. The complete genome consists of one circular chromosome (4,921,229 bp), one linear plasmid (172,328 bp), and one circular plasmid (8,839 bp). Its genome is the largest of all completely sequenced genomes of Gloeobacter species. Pangenomic comparisons revealed that G. morelensis encodes 759 genes not shared with other Gloeobacter species. Despite being more closely related to G. violaceus, it features an extremely divergent psbA gene encoding an atypical D1 core subunit of Photosystem II previously only found within the genome of Gloeobacter kilaueensis. In addition, we detected evidence of concerted evolution of psbA genes encoding identical D1 in all three Gloeobacter genomes, a characteristic that seems widespread in cyanobacteria and may therefore be traced back to their last common ancestor.
Collapse
Affiliation(s)
- Jimmy H Saw
- Department of Biological Sciences, The George Washington University, District of Columbia, USA
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, United Kingdom
| | - Gustavo Montejano
- Facultad de Ciencias, Laboratorio de Ficología, National Autonomous University of Mexico, Ciudad de México, Mexico
| |
Collapse
|
390
|
Yang C, Chowdhury D, Zhang Z, Cheung WK, Lu A, Bian Z, Zhang L. A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data. Comput Struct Biotechnol J 2021; 19:6301-6314. [PMID: 34900140 PMCID: PMC8640167 DOI: 10.1016/j.csbj.2021.11.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Metagenomic sequencing provides a culture-independent avenue to investigate the complex microbial communities by constructing metagenome-assembled genomes (MAGs). A MAG represents a microbial genome by a group of sequences from genome assembly with similar characteristics. It enables us to identify novel species and understand their potential functions in a dynamic ecosystem. Many computational tools have been developed to construct and annotate MAGs from metagenomic sequencing, however, there is a prominent gap to comprehensively introduce their background and practical performance. In this paper, we have thoroughly investigated the computational tools designed for both upstream and downstream analyses, including metagenome assembly, metagenome binning, gene prediction, functional annotation, taxonomic classification, and profiling. We have categorized the commonly used tools into unique groups based on their functional background and introduced the underlying core algorithms and associated information to demonstrate a comparative outlook. Furthermore, we have emphasized the computational requisition and offered guidance to the users to select the most efficient tools. Finally, we have indicated current limitations, potential solutions, and future perspectives for further improving the tools of MAG construction and annotation. We believe that our work provides a consolidated resource for the current stage of MAG studies and shed light on the future development of more effective MAG analysis tools on metagenomic sequencing.
Collapse
Key Words
- CNN, convolutional neural network
- DBG, De Bruijn graph
- GTDB, Genome Taxonomy Database
- Gene functional annotation
- Gene prediction
- Genome assembly
- HMM, Hidden Markov Model
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LCA, lowest common ancestor
- LPA, label propagation algorithm
- MAGs, metagenome-assembled genomes
- Metagenome binning
- Metagenome-assembled genomes
- Metagenomic sequencing
- Microbial abundance profiling
- OLC, overlap-layout consensus
- ONT, Oxford Nanopore Technologies
- ORFs, open reading frames
- PacBio, Pacific Biosciences
- QC, quality control
- SLR, synthetic long reads
- TNFs, tetranucleotide frequencies
- Taxonomic classification
Collapse
Affiliation(s)
- Chao Yang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Debajyoti Chowdhury
- Computational Medicine Lab, Hong Kong Baptist University, Hong Kong Special Administrative Region
- Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhenmiao Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - William K. Cheung
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Aiping Lu
- Computational Medicine Lab, Hong Kong Baptist University, Hong Kong Special Administrative Region
- Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhaoxiang Bian
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
- Chinese Medicine Clinical Study Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Lu Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
- Computational Medicine Lab, Hong Kong Baptist University, Hong Kong Special Administrative Region
| |
Collapse
|
391
|
Feng Y, Wang Y, Zhu B, Gao GF, Guo Y, Hu Y. Metagenome-assembled genomes and gene catalog from the chicken gut microbiome aid in deciphering antibiotic resistomes. Commun Biol 2021; 4:1305. [PMID: 34795385 PMCID: PMC8602611 DOI: 10.1038/s42003-021-02827-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Gut microbial reference genomes and gene catalogs are necessary for understanding the chicken gut microbiome. Here, we assembled 12,339 microbial genomes and constructed a gene catalog consisting of ~16.6 million genes by integrating 799 public chicken gut microbiome samples from ten countries. We found that 893 and 38 metagenome-assembled genomes (MAGs) in our dataset were putative novel species and genera, respectively. In the chicken gut, Lactobacillus aviarius and Lactobacillus crispatus were the most common lactic acid bacteria, and glycoside hydrolases were the most abundant carbohydrate-active enzymes (CAZymes). Antibiotic resistome profiling results indicated that Chinese chicken samples harbored a higher relative abundance but less diversity of antimicrobial resistance genes (ARGs) than European samples. We also proposed the effects of geography and host species on the gut resistome. Our study provides the largest integrated metagenomic dataset from the chicken gut to date and demonstrates its value in exploring chicken gut microbial genes. Feng et al. include genome recovery and data analysis of large number of chicken gut metagenomic datasets which significantly expands the reference genomes available from the chicken gut microbial communities, and catalog the genes prevalent in the gut systems. They further depict the countryspecific chicken gut antibiotic resistomes and the effects of geography and host species on the gut resistome.
Collapse
Affiliation(s)
- Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yanan Wang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
392
|
Tong X, Leung MHY, Shen Z, Lee JYY, Mason CE, Lee PKH. Metagenomic insights into the microbial communities of inert and oligotrophic outdoor pier surfaces of a coastal city. MICROBIOME 2021; 9:213. [PMID: 34724986 PMCID: PMC8562002 DOI: 10.1186/s40168-021-01166-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/20/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Studies of the microbiomes on surfaces in built environment have largely focused on indoor spaces, while outdoor spaces have received far less attention. Piers are engineered infrastructures commonly found in coastal areas, and due to their unique locations at the interface between terrestrial and aquatic ecosystems, pier surfaces are likely to harbor interesting microbiology. In this study, the microbiomes on the metal and concrete surfaces at nine piers located along the coastline of Hong Kong were investigated by metagenomic sequencing. The roles played by different physical attributes and environmental factors in shaping the taxonomic composition and functional traits of the pier surface microbiomes were determined. Metagenome-assembled genomes were reconstructed and their putative biosynthetic gene clusters were characterized in detail. RESULTS Surface material was found to be the strongest factor in structuring the taxonomic and functional compositions of the pier surface microbiomes. Corrosion-related bacteria were significantly enriched on metal surfaces, consistent with the pitting corrosion observed. The differential enrichment of taxa mediating biodegradation suggests differences between the metal and concrete surfaces in terms of specific xenobiotics being potentially degraded. Genome-centric analysis detected the presence of many novel species, with the majority of them belonging to the phylum Proteobacteria. Genomic characterization showed that the potential metabolic functions and secondary biosynthetic capacity were largely correlated with taxonomy, rather than surface attributes and geography. CONCLUSIONS Pier surfaces are a rich reservoir of abundant novel bacterial species. Members of the surface microbial communities use different mechanisms to counter the stresses under oligotrophic conditions. A better understanding of the outdoor surface microbiomes located in different environments should enhance the ability to maintain outdoor surfaces of infrastructures. Video Abstract.
Collapse
Affiliation(s)
- Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Zhiyong Shen
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Justin Y Y Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
393
|
Compositional and genetic alterations in Graves' disease gut microbiome reveal specific diagnostic biomarkers. THE ISME JOURNAL 2021; 15:3399-3411. [PMID: 34079079 PMCID: PMC8528855 DOI: 10.1038/s41396-021-01016-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 02/05/2023]
Abstract
Graves' Disease is the most common organ-specific autoimmune disease and has been linked in small pilot studies to taxonomic markers within the gut microbiome. Important limitations of this work include small sample sizes and low-resolution taxonomic markers. Accordingly, we studied 162 gut microbiomes of mild and severe Graves' disease (GD) patients and healthy controls. Taxonomic and functional analyses based on metagenome-assembled genomes (MAGs) and MAG-annotated genes, together with predicted metabolic functions and metabolite profiles, revealed a well-defined network of MAGs, genes and clinical indexes separating healthy from GD subjects. A supervised classification model identified a combination of biomarkers including microbial species, MAGs, genes and SNPs, with predictive power superior to models from any single biomarker type (AUC = 0.98). Global, cross-disease multi-cohort analysis of gut microbiomes revealed high specificity of these GD biomarkers, notably discriminating against Parkinson's Disease, and suggesting that non-invasive stool-based diagnostics will be useful for these diseases.
Collapse
|
394
|
Zobellia barbeyronii sp. nov., a New Member of the Family Flavobacteriaceae, Isolated from Seaweed, and Emended Description of the Species Z. amurskyensis, Z. laminariae, Z. russellii and Z. uliginosa. DIVERSITY 2021. [DOI: 10.3390/d13110520] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Six Gram-stain-negative, aerobic, rod-shaped, and motile by gliding bacterial strains were isolated from Pacific green and red algae. Phylogenetic analysis based on 16S rRNA gene sequences placed the novel strains into the genus Zobellia as a distinct evolutionary lineage close to Zobellia nedashkovskayae Asnod2-B07-BT and Zobellia laminariae KMM 3676T sharing the highest similarity of 99.7% and 99.5%, respectively. The average nucleotide identity and the average amino acid identity values between strains 36-CHABK-3-33T and Z. nedashkovskayae Asnod2-B07-BT and Z. laminariae KMM 3676T were 89.7%/92.9% and 94.2%/95.8%, respectively. The digital DNA–DNA hybridization values based on the draft genomes between strains 36-CHABK-3-33T and Z. nedashovskayae Asnod2-B07-BT and Z. laminariae KMM 3676T were 39.5 ± 2.5% and 59.6 ± 2.7%, respectively. Multilocus sequence analysis based on house-keeping genes (dnaK, gyrB, pyrH, recA and topA) assigned the alga-associated isolates to the same species, which clustered separately from the recognized species of the genus Zobellia. The strains under study grew at 4–32 °C and with 0.5–8% NaCl and decomposed aesculin, gelatin, DNA, and Tweens 20 and 80, and weakly agar. The DNA G+C content was 36.7% calculated from genome sequence analysis for the strain 36-CHABK-3-33T. The predominant fatty acids of strain 36-CHABK-3-33T (>5% of the total fatty acids) were iso-C17:0 3-OH, summed feature 3 (comprising C16:1ω7c and/or iso-C15:0 2-OH fatty acids), iso-C15:0, iso-C15:1 G, and C15:0. The major polar lipids were phosphatidylethanolamine, three unidentified lipids, and two unidentified aminolipids. The only detected respiratory quinone was MK-6. The significant molecular distinctiveness between the novel isolates and their nearest neighbor was strongly supported by differences in physiological and biochemical tests. Therefore, the six novel strains represent a novel species of the genus Zobellia, for which the name Zobellia barbeyronii sp. nov. is proposed. The type strain is 36-CHABK-3-33T (= KACC 21790T = KMM 6746T).
Collapse
|
395
|
Li J, Gálvez EJC, Amend L, Almási É, Iljazovic A, Lesker TR, Bielecka AA, Schorr EM, Strowig T. A versatile genetic toolbox for Prevotella copri enables studying polysaccharide utilization systems. EMBO J 2021; 40:e108287. [PMID: 34676563 PMCID: PMC8634118 DOI: 10.15252/embj.2021108287] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022] Open
Abstract
Prevotella copri is a prevalent inhabitant of the human gut and has been associated with plant‐rich diet consumption and diverse health states. The underlying genetic basis of these associations remains enigmatic due to the lack of genetic tools. Here, we developed a novel versatile genetic toolbox for rapid and efficient genetic insertion and allelic exchange applicable to P. copri strains from multiple clades. Enabled by the genetic platform, we systematically investigated the specificity of polysaccharide utilization loci (PULs) and identified four highly conserved PULs for utilizing arabinan, pectic galactan, arabinoxylan, and inulin, respectively. Further genetic and functional analysis of arabinan utilization systems illustrate that P. copri has evolved two distinct types of arabinan‐processing PULs (PULAra) and that the type‐II PULAra is significantly enriched in individuals consuming a vegan diet compared to other diets. In summary, this genetic toolbox will enable functional genetic studies for P. copri in future.
Collapse
Affiliation(s)
- Jing Li
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eric J C Gálvez
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Hannover Medical School, Hannover, Germany
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Éva Almási
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Aida Iljazovic
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Agata A Bielecka
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eva-Magdalena Schorr
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Hannover Medical School, Hannover, Germany.,Centre for Individualized Infection Medicine, Hannover, Germany
| |
Collapse
|
396
|
Yu L, Jian H, Gai Y, Yi Z, Feng Y, Qiu X, Shao Z, Tang X. Characterization of two novel psychrophilic and piezotolerant strains, Shewanella psychropiezotolerans sp. nov. and Shewanella eurypsychrophilus sp. nov, adapted to an extreme deep-sea environment. Syst Appl Microbiol 2021; 44:126266. [PMID: 34653843 DOI: 10.1016/j.syapm.2021.126266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/15/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022]
Abstract
Three marine bacterial strains designated YLB-06T, YLB-08T and YLB-09 were isolated under high hydrostatic pressure from deep-sea sediment samples collected from the Southwest Indian Ocean. They were Gram-stain-negative, oxidase- and catalase-positive, facultative anaerobic and motile. In addition, the strains were capable of growing at 0-20 °C (optimum 4-10 °C) and 0.1-40 MPa (optimum 0.1 MPa), were psychrophiles and piezotolerant, and could use trimethylamine N-oxide (TMAO), DMSO, elemental sulfur and insoluble Fe (III) as terminal electron acceptors during anaerobic growth. Strain YLB-06T could also use nitrate, and strains YLB-08T and YLB-09 could use nitrite as a terminal electron acceptor. Phylogenetic tree analyses based on 16S rRNA gene sequences and 400 optimized universal marker sequences indicated that the strains belonged to the genus Shewanella. The 16S rRNA gene highest similarity, together with the estimated ANI and DDH values for these strains with their related type strains, were below the respective thresholds for species differentiation. The ANI and DDH values between YLB-08T and YLB-09 were 99.9% and 91.8%, respectively, implying that they should belong to the same genospecies. The YLB-06T genome had duplicated genes, and multiple movement modalities, attachment modalities, biofilm synthesis systems, intercellular interactions and a strong antioxidant system, which were all beneficial for survival in an extreme deep-sea environment. The G + C contents of strains YLB-06T, YLB-08T and YLB-09 were 45.1, 43.5 and 43.6 mol%, respectively. Based on polyphasic taxonomic properties, two novel psychropiezotolerant species are proposed, Shewanella psychropiezotolerans sp. nov. with YLB-06T (=MCCC 1A12715T = KCTC 62907T) and S. eurypsychrophilus sp. nov with YLB-08T (=MCCC 1A12718T = KCTC 62909T) as type strains.
Collapse
Affiliation(s)
- Libo Yu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; China Ocean Sample Repository (Biology), Xiamen 361005, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yingbao Gai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; China Ocean Sample Repository (Biology), Xiamen 361005, China
| | - Zhiwei Yi
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Ying Feng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xu Qiu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; China Ocean Sample Repository (Biology), Xiamen 361005, China
| | - Xixiang Tang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; China Ocean Sample Repository (Biology), Xiamen 361005, China
| |
Collapse
|
397
|
Balaban M, Jiang Y, Roush D, Zhu Q, Mirarab S. Fast and accurate distance-based phylogenetic placement using divide and conquer. Mol Ecol Resour 2021; 22:1213-1227. [PMID: 34643995 DOI: 10.1111/1755-0998.13527] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023]
Abstract
Phylogenetic placement of query samples on an existing phylogeny is increasingly used in molecular ecology, including sample identification and microbiome environmental sampling. As the size of available reference trees used in these analyses continues to grow, there is a growing need for methods that place sequences on ultra-large trees with high accuracy. Distance-based placement methods have recently emerged as a path to provide such scalability while allowing flexibility to analyse both assembled and unassembled environmental samples. In this study, we introduce a distance-based phylogenetic placement method, APPLES-2, that is more accurate and scalable than existing distance-based methods and even some of the leading maximum-likelihood methods. This scalability is owed to a divide-and-conquer technique that limits distance calculation and phylogenetic placement to parts of the tree most relevant to each query. The increased scalability and accuracy enables us to study the effectiveness of APPLES-2 for placing microbial genomes on a data set of 10,575 microbial species using subsets of 381 marker genes. APPLES-2 has very high accuracy in this setting, placing 97% of query genomes within three branches of the optimal position in the species tree using 50 marker genes. Our proof-of-concept results show that APPLES-2 can quickly place metagenomic scaffolds on ultra-large backbone trees with high accuracy as long as a scaffold includes tens of marker genes. These results pave the path for a more scalable and widespread use of distance-based placement in various areas of molecular ecology.
Collapse
Affiliation(s)
- Metin Balaban
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Yueyu Jiang
- Department of Electrical and Computer Engineering, UC San Diego, La Jolla, CA, USA
| | - Daniel Roush
- Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Qiyun Zhu
- Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
398
|
Hirose Y, Ohtsubo Y, Misawa N, Yonekawa C, Nagao N, Shimura Y, Fujisawa T, Kanesaki Y, Katoh H, Katayama M, Yamaguchi H, Yoshikawa H, Ikeuchi M, Eki T, Nakamura Y, Kawachi M. Genome sequencing of the NIES Cyanobacteria collection with a focus on the heterocyst-forming clade. DNA Res 2021; 28:dsab024. [PMID: 34677568 PMCID: PMC8634303 DOI: 10.1093/dnares/dsab024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
Cyanobacteria are a diverse group of Gram-negative prokaryotes that perform oxygenic photosynthesis. Cyanobacteria have been used for research on photosynthesis and have attracted attention as a platform for biomaterial/biofuel production. Cyanobacteria are also present in almost all habitats on Earth and have extensive impacts on global ecosystems. Given their biological, economical, and ecological importance, the number of high-quality genome sequences for Cyanobacteria strains is limited. Here, we performed genome sequencing of Cyanobacteria strains in the National Institute for Environmental Studies microbial culture collection in Japan. We sequenced 28 strains that can form a heterocyst, a morphologically distinct cell that is specialized for fixing nitrogen, and 3 non-heterocystous strains. Using Illumina sequencing of paired-end and mate-pair libraries with in silico finishing, we constructed highly contiguous assemblies. We determined the phylogenetic relationship of the sequenced genome assemblies and found potential difficulties in the classification of certain heterocystous clades based on morphological observation. We also revealed a bias on the sequenced strains by the phylogenetic analysis of the 16S rRNA gene including unsequenced strains. Genome sequencing of Cyanobacteria strains deposited in worldwide culture collections will contribute to understanding the enormous genetic and phenotypic diversity within the phylum Cyanobacteria.
Collapse
Affiliation(s)
- Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku, Toyohashi, Aichi, 441-8580, Japan
| | - Yoshiyuki Ohtsubo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-0812, Japan
| | - Naomi Misawa
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku, Toyohashi, Aichi, 441-8580, Japan
| | - Chinatsu Yonekawa
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku, Toyohashi, Aichi, 441-8580, Japan
| | - Nobuyoshi Nagao
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku, Toyohashi, Aichi, 441-8580, Japan
| | - Yohei Shimura
- Biodiversity Division, National Institute for Environmental Studies, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Takatomo Fujisawa
- Department of Informatics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, 836 Oya, Suruga, Shizuoka, Shizuoka, 422-8529, Japan
| | - Hiroshi Katoh
- Advanced Science Research Promotion Center, Mie University, 1577 Kurima, Tsu, Mie, 514-8507, Japan
| | - Mitsunori Katayama
- College of Industrial Technology, Nihon University, 1-2-1 Izumi, Narashino, Chiba, 275-8575, Japan
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku, Toyohashi, Aichi, 441-8580, Japan
| | - Yasukazu Nakamura
- Department of Informatics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
399
|
Bansal K, Kumar S, Kaur A, Singh A, Patil PB. Deep phylo-taxono genomics reveals Xylella as a variant lineage of plant associated Xanthomonas and supports their taxonomic reunification along with Stenotrophomonas and Pseudoxanthomonas. Genomics 2021; 113:3989-4003. [PMID: 34610367 DOI: 10.1016/j.ygeno.2021.09.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Genus Xanthomonas is a group of phytopathogens that is phylogenetically related to Xylella, Stenotrophomonas, and Pseudoxanthomonas, having diverse lifestyles. Xylella is a lethal plant pathogen with a highly reduced genome, atypical GC content and is taxonomically related to these three genera. Deep phylo-taxono genomics reveals that Xylella is a variant Xanthomonas lineage that is sandwiched between Xanthomonas clades. Comparative studies suggest the role of unique pigment and exopolysaccharide gene clusters in the emergence of Xanthomonas and Xylella clades. Pan-genome analysis identified a set of unique genes associated with sub-lineages representing plant-associated Xanthomonas clade and nosocomial origin Stenotrophomonas clade. Overall, our study reveals the importance of reconciling classical phenotypic data and genomic findings in reconstituting the taxonomic status of these four genera. SIGNIFICANCE STATEMENT: Xylella fastidiosa is a devastating pathogen of perennial dicots such as grapes, citrus, coffee, and olives. An insect vector transmits the pathogen to its specific host wherein the infection leads to complete wilting of the plants. The genome of X. fastidiosa is significantly reduced both in terms of size (2 Mb) and GC content (50%) when compared with its relatives such as Xanthomonas, Stenotrophomonas, and Pseudoxanthomonas that have higher GC content (65%) and larger genomes (5 Mb). In this study, using systematic and in-depth genome-based taxonomic and phylogenetic criteria and comparative studies, we assert the need to unify Xanthomonas with its relatives (Xylella, Stenotrophomonas and Pseudoxanthomonas). Interestingly, Xylella revealed itself as a minor variant lineage embedded within two major Xanthomonas lineages comprising member species of different hosts.
Collapse
Affiliation(s)
- Kanika Bansal
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanjeet Kumar
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Amandeep Kaur
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Anu Singh
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.
| |
Collapse
|
400
|
Kefir ameliorates specific microbiota-gut-brain axis impairments in a mouse model relevant to autism spectrum disorder. Brain Behav Immun 2021; 97:119-134. [PMID: 34252569 DOI: 10.1016/j.bbi.2021.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is one of the most severe developmental disorders, affecting on average 1 in 150 children worldwide. There is a great need for more effective strategies to improve quality of life in ASD subjects. The gut microbiome has emerged as a potential therapeutic target in ASD. A novel modulator of the gut microbiome, the traditionally fermented milk drink kefir, has recently been shown to modulate the microbiota and decrease repetitive behaviour, one of the hallmarks of ASD, in mice. As such, we hypothesized that kefir could ameliorate behavioural deficits in a mouse model relevant to ASD; the BTBR T+ Itpr3tf/J mouse strain. To this end, adult mice were administered either kefir (UK4) or a milk control for three weeks as treatment lead-in, after which they were assessed for their behavioural phenotype using a battery of tests. In addition, we assessed systemic immunity by flow cytometry and the gut microbiome using shotgun metagenomic sequencing. We found that indeed kefir decreased repetitive behaviour in this mouse model. Furthermore, kefir prolonged stress-induced increases in corticosterone 60 min post-stress, which was accompanied by an ameliorated innate immune response as measured by LY6Chi monocyte levels. In addition, kefir increased the levels of anti-inflammatory Treg cells in mesenteric lymph nodes (MLNs). Kefir also increased the relative abundance of Lachnospiraceae bacterium A2, which correlated with reduced repetitive behaviour and increased Treg cells in MLNs. Functionally, kefir modulated various predicted gut microbial pathways, including the gut-brain module S-Adenosylmethionine (SAM) synthesis, as well as L-valine biosynthesis and pyruvate fermentation to isobutanol, which all correlated with repetitive behaviour. Taken together our data show that kefir modulates peripheral immunoregulation, can ameliorate specific ASD behavioural dysfunctions and modulates selective aspects of the composition and function of the gut microbiome, indicating that kefir supplementation might prove a viable strategy in improving quality of life in ASD subjects.
Collapse
|