351
|
Huang A, Shinde PV, Huang J, Senff T, Xu HC, Margotta C, Häussinger D, Willnow TE, Zhang J, Pandyra AA, Timm J, Weggen S, Lang KS, Lang PA. Progranulin prevents regulatory NK cell cytotoxicity against antiviral T cells. JCI Insight 2019; 4:129856. [PMID: 31484831 PMCID: PMC6777906 DOI: 10.1172/jci.insight.129856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
`NK cell-mediated regulation of antigen-specific T cells can contribute to and exacerbate chronic viral infection, but the protective mechanisms against NK cell-mediated attack on T cell immunity are poorly understood. Here, we show that progranulin (PGRN) can reduce NK cell cytotoxicity through reduction of NK cell expansion, granzyme B transcription, and NK cell-mediated lysis of target cells. Following infection with the lymphocytic choriomeningitis virus (LCMV), PGRN levels increased - a phenomenon dependent on the presence of macrophages and type I IFN signaling. Absence of PGRN in mice (Grn-/-) resulted in enhanced NK cell activity, increased NK cell-mediated killing of antiviral T cells, reduced antiviral T cell immunity, and increased viral burden, culminating in increased liver immunopathology. Depletion of NK cells restored antiviral immunity and alleviated pathology during infection in Grn-/- mice. In turn, PGRN treatment improved antiviral T cell immunity. Taken together, we identified PGRN as a critical factor capable of reducing NK cell-mediated attack of antiviral T cells.
Collapse
Affiliation(s)
| | | | - Jun Huang
- Department of Molecular Medicine II and
| | - Tina Senff
- Institute of Virology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | | | | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Thomas E. Willnow
- Molecular Cardiovascular Research, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Aleksandra A. Pandyra
- Department of Molecular Medicine II and
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jörg Timm
- Institute of Virology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sascha Weggen
- Department of Neuropathology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Karl S. Lang
- Institute of Immunology, Medical Faculty, Universität Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
352
|
Abstract
Mammalian genomes are extensively transcribed, which produces a large number of both coding and non-coding transcripts. Various RNAs are physically associated with chromatin, through being either retained in cis at their site of transcription or recruited in trans to other genomic regions. Driven by recent technological innovations for detecting chromatin-associated RNAs, diverse roles are being revealed for these RNAs and associated RNA-binding proteins (RBPs) in gene regulation and genome function. Such functions include locus-specific roles in gene activation and silencing, as well as emerging roles in higher-order genome organization, such as involvement in long-range enhancer-promoter interactions, transcription hubs, heterochromatin, nuclear bodies and phase transitions.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
353
|
Organization and regulation of gene transcription. Nature 2019; 573:45-54. [PMID: 31462772 DOI: 10.1038/s41586-019-1517-4] [Citation(s) in RCA: 437] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
The regulated transcription of genes determines cell identity and function. Recent structural studies have elucidated mechanisms that govern the regulation of transcription by RNA polymerases during the initiation and elongation phases. Microscopy studies have revealed that transcription involves the condensation of factors in the cell nucleus. A model is emerging for the transcription of protein-coding genes in which distinct transient condensates form at gene promoters and in gene bodies to concentrate the factors required for transcription initiation and elongation, respectively. The transcribing enzyme RNA polymerase II may shuttle between these condensates in a phosphorylation-dependent manner. Molecular principles are being defined that rationalize transcriptional organization and regulation, and that will guide future investigations.
Collapse
|
354
|
Falo-Sanjuan J, Lammers NC, Garcia HG, Bray SJ. Enhancer Priming Enables Fast and Sustained Transcriptional Responses to Notch Signaling. Dev Cell 2019; 50:411-425.e8. [PMID: 31378591 PMCID: PMC6706658 DOI: 10.1016/j.devcel.2019.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/23/2019] [Accepted: 07/01/2019] [Indexed: 11/23/2022]
Abstract
Information from developmental signaling pathways must be accurately decoded to generate transcriptional outcomes. In the case of Notch, the intracellular domain (NICD) transduces the signal directly to the nucleus. How enhancers decipher NICD in the real time of developmental decisions is not known. Using the MS2-MCP system to visualize nascent transcripts in single cells in Drosophila embryos, we reveal how two target enhancers read Notch activity to produce synchronized and sustained profiles of transcription. By manipulating the levels of NICD and altering specific motifs within the enhancers, we uncover two key principles. First, increased NICD levels alter transcription by increasing duration rather than frequency of transcriptional bursts. Second, priming of enhancers by tissue-specific transcription factors is required for NICD to confer synchronized and sustained activity; in their absence, transcription is stochastic and bursty. The dynamic response of an individual enhancer to NICD thus differs depending on the cellular context.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | - Hernan G Garcia
- Biophysics Graduate Group, UC Berkeley, Berkeley, CA 94720, USA; Department of Physics, UC Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA; Institute for Quantitative Biosciences-QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
355
|
Kilic S, Lezaja A, Gatti M, Bianco E, Michelena J, Imhof R, Altmeyer M. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. EMBO J 2019; 38:e101379. [PMID: 31267591 PMCID: PMC6694294 DOI: 10.15252/embj.2018101379] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The DNA damage response (DDR) generates transient repair compartments to concentrate repair proteins and activate signaling factors. The physicochemical properties of these spatially confined compartments and their function remain poorly understood. Here, we establish, based on live cell microscopy and CRISPR/Cas9-mediated endogenous protein tagging, that 53BP1-marked repair compartments are dynamic, show droplet-like behavior, and undergo frequent fusion and fission events. 53BP1 assembly, but not the upstream accumulation of γH2AX and MDC1, is highly sensitive to changes in osmotic pressure, temperature, salt concentration and to disruption of hydrophobic interactions. Phase separation of 53BP1 is substantiated by optoDroplet experiments, which further allowed dissection of the 53BP1 sequence elements that cooperate for light-induced clustering. Moreover, we found the tumor suppressor protein p53 to be enriched within 53BP1 optoDroplets, and conditions that disrupt 53BP1 phase separation impair 53BP1-dependent induction of p53 and diminish p53 target gene expression. We thus suggest that 53BP1 phase separation integrates localized DNA damage recognition and repair factor assembly with global p53-dependent gene activation and cell fate decisions.
Collapse
Affiliation(s)
- Sinan Kilic
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Aleksandra Lezaja
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
- Cancer Biology PhD ProgramLife Science Zurich Graduate SchoolZurichSwitzerland
| | - Marco Gatti
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Eliana Bianco
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
- Cancer Biology PhD ProgramLife Science Zurich Graduate SchoolZurichSwitzerland
- Present address:
Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Jone Michelena
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Ralph Imhof
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| |
Collapse
|
356
|
Powers SK, Holehouse AS, Korasick DA, Schreiber KH, Clark NM, Jing H, Emenecker R, Han S, Tycksen E, Hwang I, Sozzani R, Jez JM, Pappu RV, Strader LC. Nucleo-cytoplasmic Partitioning of ARF Proteins Controls Auxin Responses in Arabidopsis thaliana. Mol Cell 2019; 76:177-190.e5. [PMID: 31421981 DOI: 10.1016/j.molcel.2019.06.044] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/06/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
The phytohormone auxin plays crucial roles in nearly every aspect of plant growth and development. The auxin response factor (ARF) transcription factor family regulates auxin-responsive gene expression and exhibits nuclear localization in regions of high auxin responsiveness. Here we show that the ARF7 and ARF19 proteins accumulate in micron-sized assemblies within the cytoplasm of tissues with attenuated auxin responsiveness. We found that the intrinsically disordered middle region and the folded PB1 interaction domain of ARFs drive protein assembly formation. Mutation of a single lysine within the PB1 domain abrogates cytoplasmic assemblies, promotes ARF nuclear localization, and results in an altered transcriptome and morphological defects. Our data suggest a model in which ARF nucleo-cytoplasmic partitioning regulates auxin responsiveness, providing a mechanism for cellular competence for auxin signaling.
Collapse
Affiliation(s)
- Samantha K Powers
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alex S Holehouse
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - David A Korasick
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Katherine H Schreiber
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Natalie M Clark
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Hongwei Jing
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ryan Emenecker
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Soeun Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Eric Tycksen
- Genome Technology Access Center, Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lucia C Strader
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
357
|
Brouwer I, Lenstra TL. Visualizing transcription: key to understanding gene expression dynamics. Curr Opin Chem Biol 2019; 51:122-129. [DOI: 10.1016/j.cbpa.2019.05.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/03/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
|
358
|
Guo YE, Manteiga JC, Henninger JE, Sabari BR, Dall'Agnese A, Hannett NM, Spille JH, Afeyan LK, Zamudio AV, Shrinivas K, Abraham BJ, Boija A, Decker TM, Rimel JK, Fant CB, Lee TI, Cisse II, Sharp PA, Taatjes DJ, Young RA. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 2019; 572:543-548. [PMID: 31391587 PMCID: PMC6706314 DOI: 10.1038/s41586-019-1464-0] [Citation(s) in RCA: 457] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 07/10/2019] [Indexed: 12/12/2022]
Abstract
The synthesis of pre-mRNA by RNA polymerase II (Pol II) involves the formation of a transcription initiation complex, and a transition to an elongation complex1-4. The large subunit of Pol II contains an intrinsically disordered C-terminal domain that is phosphorylated by cyclin-dependent kinases during the transition from initiation to elongation, thus influencing the interaction of the C-terminal domain with different components of the initiation or the RNA-splicing apparatus5,6. Recent observations suggest that this model provides only a partial picture of the effects of phosphorylation of the C-terminal domain7-12. Both the transcription-initiation machinery and the splicing machinery can form phase-separated condensates that contain large numbers of component molecules: hundreds of molecules of Pol II and mediator are concentrated in condensates at super-enhancers7,8, and large numbers of splicing factors are concentrated in nuclear speckles, some of which occur at highly active transcription sites9-12. Here we investigate whether the phosphorylation of the Pol II C-terminal domain regulates the incorporation of Pol II into phase-separated condensates that are associated with transcription initiation and splicing. We find that the hypophosphorylated C-terminal domain of Pol II is incorporated into mediator condensates and that phosphorylation by regulatory cyclin-dependent kinases reduces this incorporation. We also find that the hyperphosphorylated C-terminal domain is preferentially incorporated into condensates that are formed by splicing factors. These results suggest that phosphorylation of the Pol II C-terminal domain drives an exchange from condensates that are involved in transcription initiation to those that are involved in RNA processing, and implicates phosphorylation as a mechanism that regulates condensate preference.
Collapse
Affiliation(s)
- Yang Eric Guo
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - John C Manteiga
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Jan-Hendrik Spille
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lena K Afeyan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alicia V Zamudio
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Krishna Shrinivas
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ann Boija
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Jenna K Rimel
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Charli B Fant
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Ibrahim I Cisse
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Phillip A Sharp
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
359
|
|
360
|
Wang N, Liu C. Implications of liquid-liquid phase separation in plant chromatin organization and transcriptional control. Curr Opin Genet Dev 2019; 55:59-65. [PMID: 31306885 DOI: 10.1016/j.gde.2019.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 12/30/2022]
Abstract
As an essential feature of three-dimensional (3D) genome organization, compartmentalization of chromatin in the nucleus is tightly linked to various chromatin activities. Recent work on liquid-liquid phase separation (LLPS), which drives the formation of miscellaneous membrane-less compartments in cells, suggests that it is a critical aspect of chromatin compartmentalization. In this review, we provide an overview of recent work in the animal field that focuses on understanding how LLPS is involved in 3D chromatin organization and transcriptional regulation. By combining scattered information in 3D plant genomics, we attempt to interpret some known plant chromatin organization patterns in the context of LLPS. Moreover, we discuss and speculate factors that can undergo phase separation to modulate chromatin structure and gene expression in plants.
Collapse
Affiliation(s)
- Nan Wang
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| |
Collapse
|
361
|
Isoda T, Morio T, Takagi M. Noncoding RNA transcription at enhancers and genome folding in cancer. Cancer Sci 2019; 110:2328-2336. [PMID: 31228211 PMCID: PMC6676135 DOI: 10.1111/cas.14107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
Changes of nuclear localization of lineage-specific genes from a transcriptionally inert to permissive environment are a crucial step in establishing the identity of a cell. Noncoding RNA transcription-mediated genome folding and activation of target gene expression have been found in a variety of cell types. Noncoding RNA ThymoD (thymocyte differentiation factor) transcription at superenhancers is essential for mouse T-cell lineage commitment. The cessation of ThymoD transcription abolishes transcription-mediated demethylation, recruiting looping factors such as the cohesin complex, CCCTC-binding factor (CTCF), ultimately leading to the phenotype of severe combined immunodeficiency and T-cell leukemia/lymphoma. In this review, we describe the functional role of RNA polymerase II-mediated transcription at enhancers and in genome folding. We also highlight the involvement of faulty activation or suppression of enhancer transcription and enhancer-promoter interaction in cancer development.
Collapse
Affiliation(s)
- Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
362
|
Plys AJ, Davis CP, Kim J, Rizki G, Keenen MM, Marr SK, Kingston RE. Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. Genes Dev 2019; 33:799-813. [PMID: 31171700 PMCID: PMC6601514 DOI: 10.1101/gad.326488.119] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022]
Abstract
Mammalian development requires effective mechanisms to repress genes whose expression would generate inappropriately specified cells. The Polycomb-repressive complex 1 (PRC1) family complexes are central to maintaining this repression. These include a set of canonical PRC1 complexes, each of which contains four core proteins, including one from the CBX family. These complexes have been shown previously to reside in membraneless organelles called Polycomb bodies, leading to speculation that canonical PRC1 might be found in a separate phase from the rest of the nucleus. We show here that reconstituted PRC1 readily phase-separates into droplets in vitro at low concentrations and physiological salt conditions. This behavior is driven by the CBX2 subunit. Point mutations in an internal domain of Cbx2 eliminate phase separation. These same point mutations eliminate the formation of puncta in cells and have been shown previously to eliminate nucleosome compaction in vitro and generate axial patterning defects in mice. Thus, the domain of CBX2 that is important for phase separation is the same domain shown previously to be important for chromatin compaction and proper development, raising the possibility of a mechanistic or evolutionary link between these activities.
Collapse
Affiliation(s)
- Aaron J Plys
- Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Christopher P Davis
- Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jongmin Kim
- Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Gizem Rizki
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Madeline M Keenen
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Sharon K Marr
- Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
363
|
Krasnopolsky S, Marom L, Victor RA, Kuzmina A, Schwartz JC, Fujinaga K, Taube R. Fused in sarcoma silences HIV gene transcription and maintains viral latency through suppressing AFF4 gene activation. Retrovirology 2019; 16:16. [PMID: 31238957 PMCID: PMC6593535 DOI: 10.1186/s12977-019-0478-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background The human immunodeficiency virus (HIV) cell reservoir is currently a main obstacle towards complete eradication of the virus. This infected pool is refractory to anti-viral therapy and harbors integrated proviruses that are transcriptionally repressed but replication competent. As transcription silencing is key for establishing the HIV reservoir, significant efforts have been made to understand the mechanism that regulate HIV gene transcription, and the role of the elongation machinery in promoting this step. However, while the role of the super elongation complex (SEC) in enhancing transcription activation of HIV is well established, the function of SEC in modulating viral latency is less defined and its cell partners are yet to be identified. Results In this study we identify fused in sarcoma (FUS) as a partner of AFF4 in cells. FUS inhibits the activation of HIV transcription by AFF4 and ELL2, and silences overall HIV gene transcription. Concordantly, depletion of FUS elevates the occupancy of AFF4 and Cdk9 on the viral promoter and activates HIV gene transcription. Live cell imaging demonstrates that FUS co-localizes with AFF4 within nuclear punctuated condensates, which are disrupted upon treating cells with aliphatic alcohol. In HIV infected cells, knockout of FUS delays the gradual entry of HIV into latency, and similarly promotes viral activation in a T cell latency model that is treated with JQ1. Finally, effects of FUS on HIV gene transcription are also exhibited genome wide, where FUS mainly occupies gene promoters at transcription starting sites, while its knockdown leads to an increase in AFF4 and Cdk9 occupancy on gene promoters of FUS affected genes. Conclusions Towards eliminating the HIV infected reservoir, understanding the mechanisms by which the virus persists in the face of therapy is important. Our observations show that FUS regulates both HIV and global gene transcription and modulates viral latency, thus can potentially serve as a target for future therapy that sets to reactivate HIV from its latent state. Electronic supplementary material The online version of this article (10.1186/s12977-019-0478-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simona Krasnopolsky
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Lital Marom
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Rachel A Victor
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Alona Kuzmina
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Koh Fujinaga
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| |
Collapse
|
364
|
Weber CA, Zwicker D, Jülicher F, Lee CF. Physics of active emulsions. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064601. [PMID: 30731446 DOI: 10.1088/1361-6633/ab052b] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phase separating systems that are maintained away from thermodynamic equilibrium via molecular processes represent a class of active systems, which we call active emulsions. These systems are driven by external energy input, for example provided by an external fuel reservoir. The external energy input gives rise to novel phenomena that are not present in passive systems. For instance, concentration gradients can spatially organise emulsions and cause novel droplet size distributions. Another example are active droplets that are subject to chemical reactions such that their nucleation and size can be controlled, and they can divide spontaneously. In this review, we discuss the physics of phase separation and emulsions and show how the concepts that govern such phenomena can be extended to capture the physics of active emulsions. This physics is relevant to the spatial organisation of the biochemistry in living cells, for the development of novel applications in chemical engineering and models for the origin of life.
Collapse
Affiliation(s)
- Christoph A Weber
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany. Center for Systems Biology Dresden, CSBD, Dresden, Germany. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | | | | | | |
Collapse
|
365
|
Dignon G, Zheng W, Kim YC, Mittal J. Temperature-Controlled Liquid-Liquid Phase Separation of Disordered Proteins. ACS CENTRAL SCIENCE 2019; 5:821-830. [PMID: 31139718 PMCID: PMC6535772 DOI: 10.1021/acscentsci.9b00102] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Indexed: 05/18/2023]
Abstract
The liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) is a commonly observed phenomenon within the cell, and such condensates are also highly attractive for applications in biomaterials and drug delivery. A better understanding of the sequence-dependent thermoresponsive behavior is of immense interest as it will aid in the design of protein sequences with desirable properties and in the understanding of cellular response to heat stress. In this work, we use a transferable coarse-grained model to directly probe the sequence-dependent thermoresponsive phase behavior of IDPs. To achieve this goal, we develop a unique knowledge-based amino acid potential that accounts for the temperature-dependent effects on solvent-mediated interactions for different types of amino acids. Remarkably, we are able to distinguish between more than 35 IDPs with upper or lower critical solution temperatures at experimental conditions, thus providing direct evidence that incorporating the temperature-dependent solvent-mediated interactions to IDP assemblies can capture the difference in the shape of the resulting phase diagrams. Given the success of the model in predicting experimental behavior, we use it as a high-throughput screening framework to scan through millions of disordered sequences to characterize the composition dependence of protein phase separation.
Collapse
Affiliation(s)
- Gregory
L. Dignon
- Department
of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Wenwei Zheng
- College
of Integrative Sciences and Arts, Arizona
State University, Mesa, Arizona 85212, United
States
| | - Young C. Kim
- Center
for Materials Physics and Technology, Naval
Research Laboratory, Washington, D.C. 20375, United States
| | - Jeetain Mittal
- Department
of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
366
|
Yu D, Cattoglio C, Xue Y, Zhou Q. A complex between DYRK1A and DCAF7 phosphorylates the C-terminal domain of RNA polymerase II to promote myogenesis. Nucleic Acids Res 2019; 47:4462-4475. [PMID: 30864669 PMCID: PMC6511856 DOI: 10.1093/nar/gkz162] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/24/2019] [Accepted: 03/02/2019] [Indexed: 12/11/2022] Open
Abstract
The general transcription factor P-TEFb, a master regulator of RNA polymerase (Pol) II elongation, phosphorylates the C-terminal domain (CTD) of Pol II and negative elongation factors to release Pol II from promoter-proximal pausing. We show here that P-TEFb surprisingly inhibits the myoblast differentiation into myotubes, and that P-TEFb and its two positive complexes are eliminated in this process. In contrast, DYRK1A, another CTD kinase known to control transcription of a subset of genes important for development and tissue homeostasis, is found to activate transcription of key myogenic genes. We show that active DYRK1A exists in a complex with the WD40-repeat protein DCAF7 that stabilizes and tethers DYRK1A to Pol II, so that DYRK1A-DCAF7 can co-migrate with and phosphorylate Pol II along the myogenic gene loci. Thus, DCAF7 modulates the kinase signaling output of DYRK1A on Pol II to stimulate myogenic transcription after active P-TEFb function is shut off.
Collapse
Affiliation(s)
- Dan Yu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Claudia Cattoglio
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuhua Xue
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
367
|
Donovan BT, Huynh A, Ball DA, Patel HP, Poirier MG, Larson DR, Ferguson ML, Lenstra TL. Live-cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting. EMBO J 2019; 38:embj.2018100809. [PMID: 31101674 DOI: 10.15252/embj.2018100809] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/12/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Transcription factors show rapid and reversible binding to chromatin in living cells, and transcription occurs in sporadic bursts, but how these phenomena are related is unknown. Using a combination of in vitro and in vivo single-molecule imaging approaches, we directly correlated binding of the Gal4 transcription factor with the transcriptional bursting kinetics of the Gal4 target genes GAL3 and GAL10 in living yeast cells. We find that Gal4 dwell time sets the transcriptional burst size. Gal4 dwell time depends on the affinity of the binding site and is reduced by orders of magnitude by nucleosomes. Using a novel imaging platform called orbital tracking, we simultaneously tracked transcription factor binding and transcription at one locus, revealing the timing and correlation between Gal4 binding and transcription. Collectively, our data support a model in which multiple RNA polymerases initiate transcription during one burst as long as the transcription factor is bound to DNA, and bursts terminate upon transcription factor dissociation.
Collapse
Affiliation(s)
- Benjamin T Donovan
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Anh Huynh
- Department of Physics, Boise State University, Boise, ID, USA
| | - David A Ball
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Heta P Patel
- Division of Gene Regulation, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michael G Poirier
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.,Departments of Physics, Chemistry & Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Matthew L Ferguson
- Department of Physics, Boise State University, Boise, ID, USA .,Biomolecular Sciences, Boise State University, Boise, ID, USA
| | - Tineke L Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
368
|
Transcription factors and 3D genome conformation in cell-fate decisions. Nature 2019; 569:345-354. [PMID: 31092938 DOI: 10.1038/s41586-019-1182-7] [Citation(s) in RCA: 329] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/19/2019] [Indexed: 12/31/2022]
Abstract
How cells adopt different identities has long fascinated biologists. Signal transduction in response to environmental cues results in the activation of transcription factors that determine the gene-expression program characteristic of each cell type. Technological advances in the study of 3D chromatin folding are bringing the role of genome conformation in transcriptional regulation to the fore. Characterizing this role of genome architecture has profound implications, not only for differentiation and development but also for diseases including developmental malformations and cancer. Here we review recent studies indicating that the interplay between transcription and genome conformation is a driving force for cell-fate decisions.
Collapse
|
369
|
McSwiggen DT, Hansen AS, Teves SS, Marie-Nelly H, Hao Y, Heckert AB, Umemoto KK, Dugast-Darzacq C, Tjian R, Darzacq X. Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation. eLife 2019; 8:e47098. [PMID: 31038454 PMCID: PMC6522219 DOI: 10.7554/elife.47098] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
RNA Polymerase II (Pol II) and transcription factors form concentrated hubs in cells via multivalent protein-protein interactions, often mediated by proteins with intrinsically disordered regions. During Herpes Simplex Virus infection, viral replication compartments (RCs) efficiently enrich host Pol II into membraneless domains, reminiscent of liquid-liquid phase separation. Despite sharing several properties with phase-separated condensates, we show that RCs operate via a distinct mechanism wherein unrestricted nonspecific protein-DNA interactions efficiently outcompete host chromatin, profoundly influencing the way DNA-binding proteins explore RCs. We find that the viral genome remains largely nucleosome-free, and this increase in accessibility allows Pol II and other DNA-binding proteins to repeatedly visit nearby DNA binding sites. This anisotropic behavior creates local accumulations of protein factors despite their unrestricted diffusion across RC boundaries. Our results reveal underappreciated consequences of nonspecific DNA binding in shaping gene activity, and suggest additional roles for chromatin in modulating nuclear function and organization.
Collapse
Affiliation(s)
- David Trombley McSwiggen
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- California Institute of Regenerative Medicine Center of ExcellenceUniversity of California, BerkeleyBerkeleyUnited States
| | - Anders S Hansen
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- California Institute of Regenerative Medicine Center of ExcellenceUniversity of California, BerkeleyBerkeleyUnited States
| | - Sheila S Teves
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverCanada
| | - Hervé Marie-Nelly
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- California Institute of Regenerative Medicine Center of ExcellenceUniversity of California, BerkeleyBerkeleyUnited States
| | - Yvonne Hao
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Alec Basil Heckert
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- California Institute of Regenerative Medicine Center of ExcellenceUniversity of California, BerkeleyBerkeleyUnited States
| | - Kayla K Umemoto
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Claire Dugast-Darzacq
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- California Institute of Regenerative Medicine Center of ExcellenceUniversity of California, BerkeleyBerkeleyUnited States
| | - Robert Tjian
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Xavier Darzacq
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
370
|
Guard SE, Poss ZC, Ebmeier CC, Pagratis M, Simpson H, Taatjes DJ, Old WM. The nuclear interactome of DYRK1A reveals a functional role in DNA damage repair. Sci Rep 2019; 9:6539. [PMID: 31024071 PMCID: PMC6483993 DOI: 10.1038/s41598-019-42990-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
The chromosome 21 encoded protein kinase DYRK1A is essential for normal human development. Mutations in DYRK1A underlie a spectrum of human developmental disorders, and increased dosage in trisomy 21 is implicated in Down syndrome related pathologies. DYRK1A regulates a diverse array of cellular processes through physical interactions with substrates and binding partners in various subcellular compartments. Despite recent large-scale protein-protein interaction profiling efforts, DYRK1A interactions specific to different subcellular compartments remain largely unknown, impeding progress toward understanding emerging roles for this kinase. Here, we used immunoaffinity purification and quantitative mass spectrometry to identify nuclear interaction partners of endogenous DYRK1A. This interactome was enriched in DNA damage repair factors, transcriptional elongation factors and E3 ubiquitin ligases. We validated an interaction with RNF169, a factor that promotes homology directed repair upon DNA damage, and found that DYRK1A expression and kinase activity are required for maintenance of 53BP1 expression and subsequent recruitment to DNA damage loci. Further, DYRK1A knock out conferred resistance to ionizing radiation in colony formation assays, suggesting that DYRK1A expression decreases cell survival efficiency in response to DNA damage and points to a tumor suppressive role for this kinase.
Collapse
Affiliation(s)
- Steven E Guard
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Zachary C Poss
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Christopher C Ebmeier
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Maria Pagratis
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Helen Simpson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - William M Old
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
371
|
Dynamic chromatin organization in the cell. Essays Biochem 2019; 63:133-145. [PMID: 30967477 DOI: 10.1042/ebc20180054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
Abstract
The organization and regulation of genomic DNA as nuclear chromatin is necessary for proper DNA function inside living eukaryotic cells. While this has been extensively explored, no true consensus is currently reached regarding the exact mechanism of chromatin organization. The traditional view has assumed that the DNA is packaged into a hierarchy of structures inside the nucleus based on the regular 30-nm chromatin fiber. This is currently being challenged by the fluid-like model of the chromatin which views the chromatin as a dynamic structure based on the irregular 10-nm fiber. In this review, we focus on the recent progress in chromatin structure elucidation highlighting the paradigm shift in chromatin folding mechanism from the classical textbook perspective of the regularly folded chromatin to the more dynamic fluid-like perspective.
Collapse
|
372
|
Bugai A, Quaresma AJC, Friedel CC, Lenasi T, Düster R, Sibley CR, Fujinaga K, Kukanja P, Hennig T, Blasius M, Geyer M, Ule J, Dölken L, Barborič M. P-TEFb Activation by RBM7 Shapes a Pro-survival Transcriptional Response to Genotoxic Stress. Mol Cell 2019; 74:254-267.e10. [PMID: 30824372 PMCID: PMC6482433 DOI: 10.1016/j.molcel.2019.01.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/27/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022]
Abstract
DNA damage response (DDR) involves dramatic transcriptional alterations, the mechanisms of which remain ill defined. Here, we show that following genotoxic stress, the RNA-binding motif protein 7 (RBM7) stimulates RNA polymerase II (Pol II) transcription and promotes cell viability by activating the positive transcription elongation factor b (P-TEFb) via its release from the inhibitory 7SK small nuclear ribonucleoprotein (7SK snRNP). This is mediated by activation of p38MAPK, which triggers enhanced binding of RBM7 with core subunits of 7SK snRNP. In turn, P-TEFb relocates to chromatin to induce transcription of short units, including key DDR genes and multiple classes of non-coding RNAs. Critically, interfering with the axis of RBM7 and P-TEFb provokes cellular hypersensitivity to DNA-damage-inducing agents due to activation of apoptosis. Our work uncovers the importance of stress-dependent stimulation of Pol II pause release, which enables a pro-survival transcriptional response that is crucial for cell fate upon genotoxic insult.
Collapse
Affiliation(s)
- Andrii Bugai
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki 00014, Finland
| | - Alexandre J C Quaresma
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki 00014, Finland
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Tina Lenasi
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki 00014, Finland
| | - Robert Düster
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Christopher R Sibley
- Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK; MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Koh Fujinaga
- Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Petra Kukanja
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki 00014, Finland
| | - Thomas Hennig
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Melanie Blasius
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Jernej Ule
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Lars Dölken
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Matjaž Barborič
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
373
|
Szabo Q, Bantignies F, Cavalli G. Principles of genome folding into topologically associating domains. SCIENCE ADVANCES 2019; 5:eaaw1668. [PMID: 30989119 PMCID: PMC6457944 DOI: 10.1126/sciadv.aaw1668] [Citation(s) in RCA: 362] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/20/2019] [Indexed: 05/12/2023]
Abstract
This review discusses the features of TADs across species, and their role in chromosome organization, genome function, and evolution.
Collapse
Affiliation(s)
- Quentin Szabo
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France
| | - Frédéric Bantignies
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France
| |
Collapse
|
374
|
Gilbert N. Biophysical regulation of local chromatin structure. Curr Opin Genet Dev 2019; 55:66-75. [DOI: 10.1016/j.gde.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
|
375
|
Stam M, Tark-Dame M, Fransz P. 3D genome organization: a role for phase separation and loop extrusion? CURRENT OPINION IN PLANT BIOLOGY 2019; 48:36-46. [PMID: 31035031 DOI: 10.1016/j.pbi.2019.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/08/2019] [Accepted: 03/20/2019] [Indexed: 05/21/2023]
Abstract
In eukaryotes, genomic information is encoded in chromosomes, which occupy distinct territories within the nucleus. Inside these territories, chromosomes are folded in a hierarchical set of topological structures, called compartments, topologically associated domains and loops. Phase separation and loop extrusion are the mechanisms indicated to mediate the 3D organization of the genome, and gene activity and epigenetic marks determine the activity level of the formed chromatin domains. The main difference between plants and animals may be the absence of canonical insulator elements in plants. Comparison across plant species indicates that the identification of chromatin domains is affected by genome size, gene density, and the linear distribution of genes and transposable elements.
Collapse
Affiliation(s)
- Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands.
| | - Mariliis Tark-Dame
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Paul Fransz
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
376
|
Yoo H, Triandafillou C, Drummond DA. Cellular sensing by phase separation: Using the process, not just the products. J Biol Chem 2019; 294:7151-7159. [PMID: 30877200 DOI: 10.1074/jbc.tm118.001191] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Phase separation creates two distinct liquid phases from a single mixed liquid phase, like oil droplets separating from water. Considerable attention has focused on how the products of phase separation-the resulting condensates-might act as biological compartments, bioreactors, filters, and membraneless organelles in cells. Here, we expand this perspective, reviewing recent results showing how cells instead use the process of phase separation to sense intracellular and extracellular changes. We review case studies in phase separation-based sensing and discuss key features, such as extraordinary sensitivity, which make the process of phase separation ideally suited to meet a range of sensory challenges cells encounter.
Collapse
Affiliation(s)
- Haneul Yoo
- From the Department of Biochemistry and Molecular Biology
| | | | - D Allan Drummond
- From the Department of Biochemistry and Molecular Biology, .,Department of Human Genetics, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
377
|
Nagashima R, Hibino K, Ashwin SS, Babokhov M, Fujishiro S, Imai R, Nozaki T, Tamura S, Tani T, Kimura H, Shribak M, Kanemaki MT, Sasai M, Maeshima K. Single nucleosome imaging reveals loose genome chromatin networks via active RNA polymerase II. J Cell Biol 2019; 218:1511-1530. [PMID: 30824489 PMCID: PMC6504897 DOI: 10.1083/jcb.201811090] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 01/01/2023] Open
Abstract
When a gene is activated, chromatin in the transcribed region is thought to be more open and dynamic. However, Nagashima et al. found that this is not necessarily the case—inhibition of transcription globally increases chromatin motion, revealing the existence of loose genome chromatin networks via transcriptional machinery. Although chromatin organization and dynamics play a critical role in gene transcription, how they interplay remains unclear. To approach this issue, we investigated genome-wide chromatin behavior under various transcriptional conditions in living human cells using single-nucleosome imaging. While transcription by RNA polymerase II (RNAPII) is generally thought to need more open and dynamic chromatin, surprisingly, we found that active RNAPII globally constrains chromatin movements. RNAPII inhibition or its rapid depletion released the chromatin constraints and increased chromatin dynamics. Perturbation experiments of P-TEFb clusters, which are associated with active RNAPII, had similar results. Furthermore, chromatin mobility also increased in resting G0 cells and UV-irradiated cells, which are transcriptionally less active. Our results demonstrated that chromatin is globally stabilized by loose connections through active RNAPII, which is compatible with models of classical transcription factories or liquid droplet formation of transcription-related factors. Together with our computational modeling, we propose the existence of loose chromatin domain networks for various intra-/interchromosomal contacts via active RNAPII clusters/droplets.
Collapse
Affiliation(s)
- Ryosuke Nagashima
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan
| | - Kayo Hibino
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan
| | - S S Ashwin
- Department of Applied Physics, Nagoya University, Nagoya, Japan.,Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | - Michael Babokhov
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan
| | - Shin Fujishiro
- Department of Applied Physics, Nagoya University, Nagoya, Japan.,Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | - Ryosuke Imai
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan
| | - Tadasu Nozaki
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan
| | - Tomomi Tani
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Michael Shribak
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA
| | - Masato T Kanemaki
- Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan.,Molecular Cell Engineering Laboratory, National Institute of Genetics, ROIS, Mishima, Japan
| | - Masaki Sasai
- Department of Applied Physics, Nagoya University, Nagoya, Japan.,Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan .,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Japan
| |
Collapse
|
378
|
Nair SJ, Yang L, Meluzzi D, Oh S, Yang F, Friedman MJ, Wang S, Suter T, Alshareedah I, Gamliel A, Ma Q, Zhang J, Hu Y, Tan Y, Ohgi KA, Jayani RS, Banerjee PR, Aggarwal AK, Rosenfeld MG. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat Struct Mol Biol 2019; 26:193-203. [PMID: 30833784 PMCID: PMC6709854 DOI: 10.1038/s41594-019-0190-5] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/18/2019] [Indexed: 12/16/2022]
Abstract
A crucial feature of differentiated cells is the rapid activation of enhancer-driven transcriptional programs in response to signals. The potential contributions of physicochemical properties of enhancer assembly in signaling events remain poorly understood. Here we report that in human breast cancer cells, the acute 17β-estradiol-dependent activation of functional enhancers requires assembly of an enhancer RNA-dependent ribonucleoprotein (eRNP) complex exhibiting properties of phase-separated condensates. Unexpectedly, while acute ligand-dependent assembly of eRNPs resulted in enhancer activation sensitive to chemical disruption of phase separation, chronically activated enhancers proved resistant to such disruption, with progressive maturation of eRNPs to a more gel-like state. Acute, but not chronic, stimulation resulted in ligand-induced, condensin-dependent changes in spatial chromatin conformation based on homotypic enhancer association, resulting in cooperative enhancer-activation events. Thus, distinct physicochemical properties of eRNP condensates on enhancers serve as determinants of rapid ligand-dependent alterations in chromosomal architecture and cooperative enhancer activation.
Collapse
Affiliation(s)
- Sreejith J Nair
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Lu Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Dario Meluzzi
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Soohwan Oh
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Feng Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Meyer J Friedman
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Susan Wang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Cellular and Molecular Medicine Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Tom Suter
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Amir Gamliel
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Qi Ma
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jie Zhang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yiren Hu
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Yuliang Tan
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kenneth A Ohgi
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ranveer Singh Jayani
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Priya R Banerjee
- Department of Physics, University at Buffalo-SUNY, Buffalo, NY, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
379
|
Yokoshi M, Fukaya T. Dynamics of transcriptional enhancers and chromosome topology in gene regulation. Dev Growth Differ 2019; 61:343-352. [PMID: 30780195 PMCID: PMC6850047 DOI: 10.1111/dgd.12597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
Abstract
Transcriptional enhancers are regulatory DNAs that instruct when and where genes should be transcribed in response to a variety of intrinsic and external signals. They contain a cluster of binding sites for sequence-specific transcription factors and co-activators to determine the spatiotemporal specificity of gene activities during development. Enhancers are often positioned in distal locations from their target promoters. In some cases, they work over a million base pairs or more. In the traditional view, enhancers have been thought to stably interact with promoters in a targeted manner. However, quantitative imaging studies provide a far more dynamic picture of enhancer action. Moreover, recent Hi-C methods suggest that regulatory interactions are dynamically regulated by the higher-order chromosome topology. In this review, we summarize the emerging findings in the field and propose that assembly of "transcription hubs" in the context of 3D genome structure plays an important role in transcriptional regulation.
Collapse
Affiliation(s)
- Moe Yokoshi
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Fukaya
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
380
|
Lu F, Portz B, Gilmour DS. The C-Terminal Domain of RNA Polymerase II Is a Multivalent Targeting Sequence that Supports Drosophila Development with Only Consensus Heptads. Mol Cell 2019; 73:1232-1242.e4. [PMID: 30765194 DOI: 10.1016/j.molcel.2019.01.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/03/2018] [Accepted: 01/04/2019] [Indexed: 12/29/2022]
Abstract
The C-terminal domain (CTD) of RNA polymerase II (Pol II) is composed of repeats of the consensus YSPTSPS and is an essential binding scaffold for transcription-associated factors. Metazoan CTDs have well-conserved lengths and sequence compositions arising from the evolution of divergent motifs, features thought to be essential for development. On the contrary, we show that a truncated CTD composed solely of YSPTSPS repeats supports Drosophila viability but that a CTD with enough YSPTSPS repeats to match the length of the wild-type Drosophila CTD is defective. Furthermore, a fluorescently tagged CTD lacking the rest of Pol II dynamically enters transcription compartments, indicating that the CTD functions as a signal sequence. However, CTDs with too many YSPTSPS repeats are more prone to localize to static nuclear foci separate from the chromosomes. We propose that the sequence complexity of the CTD offsets aberrant behavior caused by excessive repetitive sequences without compromising its targeting function.
Collapse
Affiliation(s)
- Feiyue Lu
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Bede Portz
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David S Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
381
|
Li X, Seebacher NA, Xiao T, Hornicek FJ, Duan Z. Targeting regulation of cyclin dependent kinase 9 as a novel therapeutic strategy in synovial sarcoma. J Orthop Res 2019; 37:510-521. [PMID: 30488489 DOI: 10.1002/jor.24189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/15/2018] [Indexed: 02/04/2023]
Abstract
Synovial sarcomas hold a low genomic complexity, making it distinct from other types of soft-tissue sarcomas. Many studies focused on targeting the SS18-SSX fusion protein, which presents in over 90% of human synovial sarcomas. This protein acts as an oncogenic promoter in the tumorigenesis of synovial sarcomas, making it an ideal therapeutic target. However, to date there have been no effective strategies targeting SS18-SSX for the treatment of synovial sarcomas. Therefore, it is an urgent need to identify alternative therapeutic targets. More recently, CDK9, a protein involved in RNA transcription regulation, has been investigated for its role in the pathogenesis of cancer. However, the expression and function of CDK9 in synovial sarcomas remains to be elucidated. In the present study, we found that CDK9 was to be largely localized to the cell nucleus, and highly expressed in all tested human synovial sarcoma cell lines and over 90% of human sarcoma tissue microarray samples. High-CDK9 expression was associated with a poorer patient prognosis of human sarcomas. Inhibition of CDK9, with either siRNA or a CDK9 inhibitor, prevented synovial sarcoma cell growth and proliferation in a dose-dependent manner. This was also accompanied with a reduction in the phosphorylation of RNA polymerase II and an increase in the expression of anti-apoptotic proteins. Moreover, CDK9 inhibition decreased sarcoma cell spheroid formation and cell motility. Collectively, these findings highlight the importance of CDK9 in human synovial sarcoma cell growth and proliferation. Therefore, CDK9 may represent a promising target for the treatment of synovial sarcomas. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:510-521, 2019.
Collapse
Affiliation(s)
- Xiaoyang Li
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, 615 Charles E. Young Dr. S., Los Angeles, California, 90095.,Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Nicole A Seebacher
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, 615 Charles E. Young Dr. S., Los Angeles, California, 90095
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, 615 Charles E. Young Dr. S., Los Angeles, California, 90095
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, 615 Charles E. Young Dr. S., Los Angeles, California, 90095
| |
Collapse
|
382
|
Singh HR, Ostwal YB. Post-Translational Modification, Phase Separation, and Robust Gene Transcription. Trends Genet 2019; 35:89-92. [DOI: 10.1016/j.tig.2018.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/08/2018] [Indexed: 11/25/2022]
|
383
|
See YX, Wang BZ, Fullwood MJ. Chromatin Interactions and Regulatory Elements in Cancer: From Bench to Bedside. Trends Genet 2019; 35:145-158. [DOI: 10.1016/j.tig.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/14/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
|
384
|
Coba MP. Regulatory mechanisms in postsynaptic phosphorylation networks. Curr Opin Struct Biol 2019; 54:86-94. [PMID: 30807903 PMCID: PMC7018365 DOI: 10.1016/j.sbi.2019.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/19/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
The modulation of the postsynaptic signaling machinery by protein phosphorylation has attracted much interest since it is key for the understanding of the regulation of a variety of synaptic functions. While advances in mass spectrometry have allowed us to begin performing large-scale analysis of protein phosphorylation in components of the PSD, the systematic collection of datasets and their functional significance within the context of regulatory signaling networks is in its infancy. Here, we will focus on the composition of the PSD phosphoproteome describing kinase, phosphatase, and protein domain modules involved in the regulation of phosphorylation signaling. We will discuss the impact of synaptic plasticity mechanisms such as long-term potentiation (LTP) in mammalian kinomes and describe the general rules of signaling organization in the PSD phosphoproteome.
Collapse
Affiliation(s)
- Marcelo P Coba
- Zilkha Neurogenetic Institute, Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
385
|
Lu H, Liu R, Zhou Q. Balanced between order and disorder: a new phase in transcription elongation control and beyond. Transcription 2019; 10:157-163. [PMID: 30663929 DOI: 10.1080/21541264.2019.1570812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We recently reported that the cyclin T1 histidine-rich domain creates a phase-separated environment to promote hyperphosphorylation of RNA polymerase II C-terminal domain and robust transcriptional elongation by P-TEFb. Here, we discuss this and several other recent discoveries to demonstrate that phase separation is important for controlling various aspects of transcription.
Collapse
Affiliation(s)
- Huasong Lu
- a Department of Molecular and Cell Biology , University of California , Berkeley , CA , USA
| | - Rongdiao Liu
- b School of Pharmaceutical Sciences , Xiamen University , Xiamen , Fujian , China
| | - Qiang Zhou
- a Department of Molecular and Cell Biology , University of California , Berkeley , CA , USA
| |
Collapse
|
386
|
Garcia Garcia C, Kiick KL. Methods for producing microstructured hydrogels for targeted applications in biology. Acta Biomater 2019; 84:34-48. [PMID: 30465923 PMCID: PMC6326863 DOI: 10.1016/j.actbio.2018.11.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Abstract
Hydrogels have been broadly studied for applications in clinically motivated fields such as tissue regeneration, drug delivery, and wound healing, as well as in a wide variety of consumer and industry uses. While the control of mechanical properties and network structures are important in all of these applications, for regenerative medicine applications in particular, matching the chemical, topographical and mechanical properties for the target use/tissue is critical. There have been multiple alternatives developed for fabricating materials with microstructures with goals of controlling the spatial location, phenotypic evolution, and signaling of cells. The commonly employed polymers such as poly(ethylene glycol) (PEG), polypeptides, and polysaccharides (as well as others) can be processed by various methods in order to control material heterogeneity and microscale structures. We review here the more commonly used polymers, chemistries, and methods for generating microstructures in biomaterials, highlighting the range of possible morphologies that can be produced, and the limitations of each method. With a focus in liquid-liquid phase separation, methods and chemistries well suited for stabilizing the interface and arresting the phase separation are covered. As the microstructures can affect cell behavior, examples of such effects are reviewed as well. STATEMENT OF SIGNIFICANCE: Heterogeneous hydrogels with enhanced matrix complexity have been studied for a variety of biomimetic materials. A range of materials based on poly(ethylene glycol), polypeptides, proteins, and/or polysaccharides, have been employed in the studies of materials that by virtue of their microstructure, can control the behaviors of cells. Methods including microfluidics, photolithography, gelation in the presence of porogens, and liquid-liquid phase separation, are presented as possible strategies for producing materials, and their relative advantages and disadvantages are discussed. We also describe in more detail the various processes involved in LLPS, and how they can be manipulated to alter the kinetics of phase separation and to yield different microstructured materials.
Collapse
Affiliation(s)
- Cristobal Garcia Garcia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering, University of Delaware, Newark, DE 19176, USA; Delaware Biotechnology Institute, Newark, DE 19716, USA
| |
Collapse
|
387
|
Ball B, Abdel-Wahab O. Activating p53 and Inhibiting Superenhancers to Cure Leukemia. Trends Pharmacol Sci 2019; 39:1002-1004. [PMID: 30454768 DOI: 10.1016/j.tips.2018.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
In a recent study, Minzel and colleagues identified a novel series of molecules that inhibit casein kinase 1α (CK1α), CDK7, and CDK9, resulting in p53 activation and preferential inhibition of superenhancer (SE)-driven transcription. This study demonstrates a highly effective therapeutic strategy combining p53 activation with suppression of SEs to promote the cooperative killing of leukemic cells.
Collapse
Affiliation(s)
- Brian Ball
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Omar Abdel-Wahab
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
388
|
Gurumurthy A, Shen Y, Gunn E, Bungert J. Phase Separation and Transcription Regulation: Are Super-Enhancers and Locus Control Regions Primary Sites of Transcription Complex Assembly? Bioessays 2019; 41:e1800164. [PMID: 30500078 PMCID: PMC6484441 DOI: 10.1002/bies.201800164] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/31/2018] [Indexed: 01/10/2023]
Abstract
It is proposed that the multiple enhancer elements associated with locus control regions and super-enhancers recruit RNA polymerase II and efficiently assemble elongation competent transcription complexes that are transferred to target genes by transcription termination and transient looping mechanisms. It is well established that transcription complexes are recruited not only to promoters but also to enhancers, where they generate enhancer RNAs. Transcription at enhancers is unstable and frequently aborted. Furthermore, the Integrator and WD-domain containing protein 82 mediate transcription termination at enhancers. Abortion and termination of transcription at the multiple enhancers of locus control regions and super-enhancers provide a large pool of elongation competent transcription complexes. These are efficiently captured by strong basal promoter elements at target genes during transient looping interactions.
Collapse
Affiliation(s)
- Aishwarya Gurumurthy
- Department of Biochemistry and Molecular Biology, College of Medicine,
UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center,
University of Florida, Gainesville, Florida, 32610, U.S.A., Phone: 352-273-8098,
Fax: 352-3f92-2953
| | - Yong Shen
- Department of Biochemistry and Molecular Biology, College of Medicine,
UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center,
University of Florida, Gainesville, Florida, 32610, U.S.A., Phone: 352-273-8098,
Fax: 352-3f92-2953
| | - Eliot Gunn
- Department of Biochemistry and Molecular Biology, College of Medicine,
UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center,
University of Florida, Gainesville, Florida, 32610, U.S.A., Phone: 352-273-8098,
Fax: 352-3f92-2953
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine,
UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center,
University of Florida, Gainesville, Florida, 32610, U.S.A., Phone: 352-273-8098,
Fax: 352-3f92-2953
| |
Collapse
|
389
|
Hofweber M, Dormann D. Friend or foe-Post-translational modifications as regulators of phase separation and RNP granule dynamics. J Biol Chem 2018; 294:7137-7150. [PMID: 30587571 DOI: 10.1074/jbc.tm118.001189] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ribonucleoprotein (RNP) granules are membrane-less organelles consisting of RNA-binding proteins (RBPs) and RNA. RNA granules form through liquid-liquid phase separation (LLPS), whereby weak promiscuous interactions among RBPs and/or RNAs create a dense network of interacting macromolecules and drive the phase separation. Post-translational modifications (PTMs) of RBPs have emerged as important regulators of LLPS and RNP granule dynamics, as they can directly weaken or enhance the multivalent interactions between phase-separating macromolecules or can recruit or exclude certain macromolecules into or from condensates. Here, we review recent insights into how PTMs regulate phase separation and RNP granule dynamics, in particular arginine (Arg)-methylation and phosphorylation. We discuss how these PTMs regulate the phase behavior of prototypical RBPs and how, as "friend or foe," they might influence the assembly, disassembly, or material properties of cellular RNP granules, such as stress granules or amyloid-like condensates. We particularly highlight how PTMs control the phase separation and aggregation behavior of disease-linked RBPs. We also review how disruptions of PTMs might be involved in aberrant phase transitions and the formation of amyloid-like protein aggregates as observed in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mario Hofweber
- From the BioMedical Center, Cell Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 9, 82152 Planegg-Martinsried.,the Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, and
| | - Dorothee Dormann
- From the BioMedical Center, Cell Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 9, 82152 Planegg-Martinsried, .,the Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, and.,the Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| |
Collapse
|
390
|
Nab3's localization to a nuclear granule in response to nutrient deprivation is determined by its essential prion-like domain. PLoS One 2018; 13:e0209195. [PMID: 30557374 PMCID: PMC6296506 DOI: 10.1371/journal.pone.0209195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Ribonucleoprotein (RNP) granules are higher order assemblies of RNA, RNA-binding proteins, and other proteins, that regulate the transcriptome and protect RNAs from environmental challenge. There is a diverse range of RNP granules, many cytoplasmic, which provide various levels of regulation of RNA metabolism. Here we present evidence that the yeast transcription termination factor, Nab3, is targeted to intranuclear granules in response to glucose starvation by Nab3’s proline/glutamine-rich, prion-like domain (PrLD) which can assemble into amyloid in vitro. Localization to the granule is reversible and sensitive to the chemical probe 1,6 hexanediol suggesting condensation is driven by phase separation. Nab3’s RNA recognition motif is also required for localization as seen for other PrLD-containing RNA-binding proteins that phase separate. Although the PrLD is necessary, it is not sufficient to localize to the granule. A heterologous PrLD that functionally replaces Nab3’s essential PrLD, directed localization to the nuclear granule, however a chimeric Nab3 molecule with a heterologous PrLD that cannot restore termination function or viability, does not form granules. The Nab3 nuclear granule shows properties similar to well characterized cytoplasmic compartments formed by phase separation, suggesting that, as seen for other elements of the transcription machinery, termination factor condensation is functionally important.
Collapse
|
391
|
Thompson VF, Victor RA, Morera AA, Moinpour M, Liu MN, Kisiel CC, Pickrel K, Springhower CE, Schwartz JC. Transcription-Dependent Formation of Nuclear Granules Containing FUS and RNA Pol II. Biochemistry 2018; 57:7021-7032. [PMID: 30488693 DOI: 10.1021/acs.biochem.8b01097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purified recombinant FUsed in Sarcoma (FUS) assembles into an oligomeric state in an RNA-dependent manner to form large condensates. FUS condensates bind and concentrate the C-terminal domain of RNA polymerase II (RNA Pol II). We asked whether a granule in cells contained FUS and RNA Pol II as suggested by the binding of FUS condensates to the polymerase. We developed cross-linking protocols to recover protein particles containing FUS from cells and separated them by size exclusion chromatography. We found a significant fraction of RNA Pol II in large granules containing FUS with diameters of >50 nm or twice that of the RNA Pol II holoenzyme. Inhibition of transcription prevented the polymerase from associating with the granules. Altogether, we found physical evidence of granules containing FUS and RNA Pol II in cells that possess properties comparable to those of in vitro FUS condensates.
Collapse
|
392
|
Tatavosian R, Kent S, Brown K, Yao T, Duc HN, Huynh TN, Zhen CY, Ma B, Wang H, Ren X. Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. J Biol Chem 2018; 294:1451-1463. [PMID: 30514760 DOI: 10.1074/jbc.ra118.006620] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/28/2018] [Indexed: 01/01/2023] Open
Abstract
Polycomb group (PcG) proteins repress master regulators of development and differentiation through organization of chromatin structure. Mutation and dysregulation of PcG genes cause developmental defects and cancer. PcG proteins form condensates in the cell nucleus, and these condensates are the physical sites of PcG-targeted gene silencing via formation of facultative heterochromatin. However, the physiochemical principles underlying the formation of PcG condensates remain unknown, and their determination could shed light on how these condensates compact chromatin. Using fluorescence live-cell imaging, we observed that the Polycomb repressive complex 1 (PRC1) protein chromobox 2 (CBX2), a member of the CBX protein family, undergoes phase separation to form condensates and that the CBX2 condensates exhibit liquid-like properties. Using site-directed mutagenesis, we demonstrated that the conserved residues of CBX2 within the intrinsically disordered region (IDR), which is the region for compaction of chromatin in vitro, promote the condensate formation both in vitro and in vivo We showed that the CBX2 condensates concentrate DNA and nucleosomes. Using genetic engineering, we report that trimethylation of Lys-27 at histone H3 (H3K27me3), a marker of heterochromatin formation produced by PRC2, had minimal effects on the CBX2 condensate formation. We further demonstrated that the CBX2 condensate formation does not require CBX2-PRC1 subunits; however, the condensate formation of CBX2-PRC1 subunits depends on CBX2, suggesting a mechanism underlying the assembly of CBX2-PRC1 condensates. In summary, our results reveal that PcG condensates assemble through liquid-liquid phase separation (LLPS) and suggest that phase-separated condensates can organize PcG-bound chromatin.
Collapse
Affiliation(s)
- Roubina Tatavosian
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Samantha Kent
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Kyle Brown
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Huy Nguyen Duc
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Thao Ngoc Huynh
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Chao Yu Zhen
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Brian Ma
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Haobin Wang
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364.
| |
Collapse
|
393
|
Abstract
Studies of 3D chromatin organization have suggested that chromosomes are hierarchically organized into large compartments composed of smaller domains called topologically associating domains (TADs). Recent evidence suggests that compartments are smaller than previously thought and that the transcriptional or chromatin state is responsible for interactions leading to the formation of small compartmental domains in all organisms. In vertebrates, CTCF forms loop domains, probably via an extrusion process involving cohesin. CTCF loops cooperate with compartmental domains to establish the 3D organization of the genome. The continuous extrusion of the chromatin fibre by cohesin may also be responsible for the establishment of enhancer-promoter interactions and stochastic aspects of the transcription process. These observations suggest that the 3D organization of the genome is an emergent property of chromatin and its components, and thus may not be only a determinant but also a consequence of its function.
Collapse
|
394
|
Abstract
Studies of RNA Polymerase II (Pol II) transcription of the HIV-1 genome are of clinical interest, as the insight gained may lead to strategies to selectively reactivate latent viruses in patients in whom viral replication is suppressed by antiviral drugs. Such a targeted reactivation may contribute to a functional cure of infection. This review discusses five Cyclin-dependent kinases - CDK7, CDK9, CDK11, CDK2, and CDK8 - involved in transcription and processing of HIV-1 RNA. CDK7 is required for Pol II promoter clearance of reactivated viruses; CDK7 also functions as an activating kinase for CDK9 when resting CD4+ T cells harboring latent HIV-1 are activated. CDK9 is targeted by the viral Tat protein and is essential for productive Pol II elongation of the HIV-1 genome. CDK11 is associated with the TREX/THOC complex and it functions in the 3' end processing and polyadenylation of HIV-1 transcripts. CDK2 phosphorylates Tat and CDK9 and this stimulates Tat activation of Pol II transcription. CDK8 may stimulate Pol II transcription of the HIV-1 genome through co-recruitment with NF-κB to the viral promoter. Some notable open questions are discussed concerning the roles of these CDKs in HIV-1 replication and viral latency.
Collapse
Affiliation(s)
- Andrew P Rice
- a Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
395
|
Tome JM, Tippens ND, Lis JT. Single-molecule nascent RNA sequencing identifies regulatory domain architecture at promoters and enhancers. Nat Genet 2018; 50:1533-1541. [PMID: 30349116 PMCID: PMC6422046 DOI: 10.1038/s41588-018-0234-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022]
Abstract
Eukaryotic RNA polymerase II (Pol II) has been found at both promoters and distal enhancers, suggesting additional functions beyond mRNA production. To understand this role, we sequenced nascent RNAs at single-molecule resolution to unravel the interplay between Pol II initiation, capping and pausing genome-wide. Our analyses identify two pause classes that are associated with different RNA capping profiles. More proximal pausing is associated with less complete capping, less elongation and a more enhancer-like complement of transcription factors than later pausing. Unexpectedly, transcription start sites (TSSs) are predominantly found in constellations composed of multiple divergent pairs. TSS clusters are intimately associated with precise arrays of nucleosomes and correspond with boundaries of transcription factor binding and chromatin modification at promoters and enhancers. TSS architecture is largely unchanged during the dramatic transcriptional changes induced by heat shock. Together, our results suggest that promoter- and enhancer-associated Pol II is a regulatory nexus for integrating information across TSS ensembles.
Collapse
Affiliation(s)
- Jacob M Tome
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nathaniel D Tippens
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Cornell University, Ithaca, NY, USA
- Department of Biological Statistics & Computational Biology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
- Tri-Institutional Training Program in Computational Biology and Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
396
|
Sawyer IA, Sturgill D, Dundr M. Membraneless nuclear organelles and the search for phases within phases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1514. [DOI: 10.1002/wrna.1514] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/20/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Iain A. Sawyer
- Department of Cell Biology and Anatomy, Chicago Medical School Rosalind Franklin University of Medicine and Science North Chicago Illinois
- Laboratory of Receptor Biology and Gene Expression National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - David Sturgill
- Laboratory of Receptor Biology and Gene Expression National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Miroslav Dundr
- Department of Cell Biology and Anatomy, Chicago Medical School Rosalind Franklin University of Medicine and Science North Chicago Illinois
| |
Collapse
|
397
|
Nakagawa S, Yamazaki T, Hirose T. Molecular dissection of nuclear paraspeckles: towards understanding the emerging world of the RNP milieu. Open Biol 2018; 8:rsob.180150. [PMID: 30355755 PMCID: PMC6223218 DOI: 10.1098/rsob.180150] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
Paraspeckles are nuclear bodies built on an architectural long noncoding RNA, NEAT1, and a series of studies have revealed their molecular components, fine internal structures and cellular and physiological functions. Emerging lines of evidence suggest that paraspeckle formation is elicited by phase separation of associating RNA-binding proteins containing intrinsically disordered regions, which induce ordered arrangement of paraspeckle components along NEAT1. In this review, we will summarize the history of paraspeckle research over the last couple of decades, especially focusing on the function and structure of the nuclear bodies. We also discuss the future directions of research on long noncoding RNAs that form ‘RNP milieux’, large and flexible phase-separated ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tomohiro Yamazaki
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
398
|
Abstract
Cyclin-dependent kinase 9 (CDK9) is critical for RNA Polymerase II (Pol II) transcription initiation, elongation, and termination in several key biological processes including development, differentiation, and cell fate responses. A broad range of diseases are characterized by CDK9 malfunction, illustrating its importance in maintaining transcriptional homeostasis in basal- and signal-regulated conditions. Here we provide a historical recount of CDK9 discovery and the current models suggesting CDK9 is a central hub necessary for proper execution of different steps in the transcription cycle. Finally, we discuss the current therapeutic strategies to treat CDK9 malfunction in several disease states. Abbreviations: CDK: Cyclin-dependent kinase; Pol II: RNA Polymerase II; PIC: Pre-initiation Complex; TFIIH: Transcription Factor-II H; snoRNA: small nucleolar RNA; CycT: CyclinT1/T2; P-TEFb: Positive Transcription Elongation Factor Complex; snRNP: small nuclear ribonucleo-protein; HEXIM: Hexamethylene Bis-acetamide-inducible Protein 1/2; LARP7: La-related Protein 7; MePCE: Methylphosphate Capping Enzyme; HIV: human immunodeficiency virus; TAT: trans-activator of transcription; TAR: Trans-activation response element; Hsp70: Heat Shock Protein 70; Hsp90/Cdc37: Hsp90- Hsp90 co-chaperone Cdc37; DSIF: DRB Sensitivity Inducing Factor; NELF: Negative Elongation Factor; CPSF: cleavage and polyadenylation-specific factor; CSTF: cleavage-stimulatory factor; eRNA: enhancer RNA; BRD4: Bromodomain-containing protein 4; JMJD6: Jumonji C-domain-containing protein 6; SEC: Super Elongation Complex; ELL: eleven-nineteen Lys-rich leukemia; ENL: eleven-nineteen leukemia; MLL: mixed lineage leukemia; BEC: BRD4-containing Elongation Complex; SEC-L2/L3: SEC-like complexes; KAP1: Kruppel-associated box-protein 1; KEC: KAP1-7SK Elongation Complex; DRB: Dichloro-1-ß-D-Ribofuranosylbenzimidazole; H2Bub1: H2B mono-ubiquitination; KM: KM05382; PP1: Protein Phosphatase 1; CDK9i: CDK9 inhibitor; SHAPE: Selective 2'-hydroxyl acylation analyzed by primer extension; TE: Typical enhancer; SE : Super enhancer.
Collapse
Affiliation(s)
- Curtis W Bacon
- a Biological Chemistry Graduate Program , The University of Texas Southwestern Medical Center , Dallas, TX , USA
| | - Iván D'Orso
- b Department of Microbiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
399
|
Hug CB, Vaquerizas JM. The Birth of the 3D Genome during Early Embryonic Development. Trends Genet 2018; 34:903-914. [PMID: 30292539 DOI: 10.1016/j.tig.2018.09.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/23/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
The 3D structure of chromatin in the nucleus is important for the regulation of gene expression and the correct deployment of developmental programs. The differentiation of germ cells and early embryonic development (when the zygotic genome is activated and transcription is taking place for the first time) are accompanied by dramatic changes in gene expression and the epigenetic landscape. Recent studies used Hi-C to investigate the 3D chromatin organization during these developmental transitions, uncovering remarkable remodeling of the 3D genome. Here, we highlight the changes described so far and discuss some of the implications that these findings have for our understanding of the mechanisms and functionality of 3D chromatin architecture.
Collapse
Affiliation(s)
- Clemens B Hug
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149 Muenster, Germany
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149 Muenster, Germany. https://twitter.com/vaquerizasjm
| |
Collapse
|
400
|
Kojima T, Takayama S. Membraneless Compartmentalization Facilitates Enzymatic Cascade Reactions and Reduces Substrate Inhibition. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32782-32791. [PMID: 30179001 PMCID: PMC6258206 DOI: 10.1021/acsami.8b07573] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Living cells possess membraneless organelles formed by liquid-liquid phase separation. With the aim of better understanding the general functions of membraneless microcompartments, this paper constructs acellular multicompartment reaction systems using an aqueous multiphase system. Membraneless coacervate droplets are placed within a molecularly crowded environment, where a larger dextran (DEX) droplet is submerged in a polyethylene glycol (PEG) solution. The coacervate droplets are capable of sequestering reagents and enzymes with a long retention time, and demonstrate multistep cascading reactions through the liquid-liquid interfaces. The ability to change phase dynamics is also demonstrated through salt-mediated dissolution of coacervate droplets, which leads to the release and mixing of separately sequestered reagents and enzymes. Finally, as phase-separated materials in membraneless organelles are often substrates and substrate analogues for the enzymes sequestered or excluded in the organelles, this paper explores the interaction between DEX and dextranase, an enzyme that hydrolyzes DEX. The results reveal that dextranase suffers from substrate inhibition when partitioned directly in a DEX phase but that this inhibition can be mitigated and reactions greatly accelerated by compartmentalization of dextranase inside a coacervate droplet that is adjacent to, but phase-separated from, the DEX phase. The insight that compartmentalization of enzymes can accelerate reactions by mitigating substrate inhibition is particularly novel and is an example where artificial membraneless organelle-like systems may provide new insights into physiological cell functions.
Collapse
Affiliation(s)
- Taisuke Kojima
- The Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332 USA
| | - Shuichi Takayama
- The Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA 30332 USA
- The Parker H Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta GA 30332 USA
- To whom correspondence should be addressed: Prof. Shuichi Takayama, EBB Building, 950 Atlantic Drive NW, Georgia Institute of Technology, GA, USA 30332,
| |
Collapse
|