351
|
Bapat SP, Myoung Suh J, Fang S, Liu S, Zhang Y, Cheng A, Zhou C, Liang Y, LeBlanc M, Liddle C, Atkins AR, Yu RT, Downes M, Evans RM, Zheng Y. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 2015; 528:137-41. [PMID: 26580014 PMCID: PMC4670283 DOI: 10.1038/nature16151] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 10/28/2015] [Indexed: 12/16/2022]
Abstract
Age-associated insulin resistance (IR) and obesity-associated IR are two physiologically distinct forms of adult-onset diabetes. While macrophage-driven inflammation is a core driver of obesity-associated IR, the underlying mechanisms of the obesity-independent yet highly prevalent age-associated IR are largely unexplored. Here we show, using comparative adipo-immune profiling in mice, that fat-resident regulatory T cells, termed fTreg cells, accumulate in adipose tissue as a function of age, but not obesity. Supporting the existence of two distinct mechanisms underlying IR, mice deficient in fTreg cells are protected against age-associated IR, yet remain susceptible to obesity-associated IR and metabolic disease. By contrast, selective depletion of fTreg cells via anti-ST2 antibody treatment increases adipose tissue insulin sensitivity. These findings establish that distinct immune cell populations within adipose tissue underlie ageing- and obesity-associated IR, and implicate fTreg cells as adipo-immune drivers and potential therapeutic targets in the treatment of age-associated IR.
Collapse
Affiliation(s)
- Sagar P Bapat
- Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jae Myoung Suh
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Graduate School of Medical Science and Engineering, KAIST 34141, South Korea
| | - Sungsoon Fang
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Department of Biotechnology, College of Life Sciences, Sejong University, Seoul 143-747, South Korea
| | - Sihao Liu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Yang Zhang
- Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Albert Cheng
- Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Carmen Zhou
- Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Yuqiong Liang
- Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Mathias LeBlanc
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Millennium Institute, Sydney Medical School, University of Sydney, Sydney 2145, Australia
| | - Annette R Atkins
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Ruth T Yu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Michael Downes
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Ronald M Evans
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Ye Zheng
- Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
352
|
Galvan V, Hart MJ. Vascular mTOR-dependent mechanisms linking the control of aging to Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2015; 1862:992-1007. [PMID: 26639036 DOI: 10.1016/j.bbadis.2015.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
Abstract
Aging is the strongest known risk factor for Alzheimer's disease (AD). With the discovery of the mechanistic target of rapamycin (mTOR) as a critical pathway controlling the rate of aging in mice, molecules at the interface between the regulation of aging and the mechanisms of specific age-associated diseases can be identified. We will review emerging evidence that mTOR-dependent brain vascular dysfunction, a universal feature of aging, may be one of the mechanisms linking the regulation of the rate of aging to the pathogenesis of Alzheimer's disease. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Veronica Galvan
- Department of Physiology and the Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio.
| | - Matthew J Hart
- Department of Biochemistry, University of Texas Health Science Center at San Antonio
| |
Collapse
|
353
|
Harbison CE, Lipman RD, Bronson RT. Strain- and Diet-Related Lesion Variability in Aging DBA/2, C57BL/6, and DBA/2xC57BL/6 F1 Mice. Vet Pathol 2015; 53:468-76. [PMID: 26604215 DOI: 10.1177/0300985815612152] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Genetic and environmental factors both play a role in the occurrence of age-related disease. To examine the genetic contribution to the development of spontaneous lesions in aging animals, a complete range of tissues was comprehensively analyzed by histopathology from 180 individually housed ad libitum-fed or 40% calorically restricted 24-month-old male and female mice of 2 parental strains-DBA/2NNia (D2) and C57BL/6NNia (B6)-and the F1 cross B6D2F1/NNia. Several strain- and diet-dependent patterns of lesions were identified. Many lesions were genotype dependent and exhibited recessive phenotypic expression, defined as being common in 1 parental strain but infrequently observed in the F1 cross (eg, glomerulonephritis in B6 mice), while others were maintained from 1 parental strain to the F1 with similar frequencies (eg, reproductive tract leiomyoma in D2 mice). Other lesions were common regardless of genotype (osteoarthritis, periodontitis). Only rare lesions were more common in the F1 but underrepresented in the 2 parental strains. Furthermore, F1 mice had a lower number of overall total lesions and a lower number of tumors than either parental strain. Caloric restriction reduced the total number of lesions and neoplasms regardless of genotype but differentially affected genotype-dependent lesions in B6 and D2 mice, with B6 mice more sensitive to the effects of caloric restriction than D2 mice. In summary, genetics and environmental factors (eg, dietary restriction) both substantially contribute to the pattern of lesions that develop as animals age.
Collapse
Affiliation(s)
- C E Harbison
- New England Primate Research Center, Division of Comparative Pathology, Harvard Medical School, Southborough, MA, USA. C.E. Harbison is now with Alnylam Pharmaceuticals, Cambridge, MA, USA
| | - R D Lipman
- Science and Practice, American Association of Diabetes Educators, Chicago, IL, USA
| | - R T Bronson
- Rodent Histopathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
354
|
Currais A, Goldberg J, Farrokhi C, Chang M, Prior M, Dargusch R, Daugherty D, Armando A, Quehenberger O, Maher P, Schubert D. A comprehensive multiomics approach toward understanding the relationship between aging and dementia. Aging (Albany NY) 2015; 7:937-55. [PMID: 26564964 PMCID: PMC4694064 DOI: 10.18632/aging.100838] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/30/2015] [Indexed: 04/14/2023]
Abstract
Because age is the greatest risk factor for sporadic Alzheimer's disease (AD), phenotypic screens based upon old age-associated brain toxicities were used to develop the potent neurotrophic drug J147. Since certain aspects of aging may be primary cause of AD, we hypothesized that J147 would be effective against AD-associated pathology in rapidly aging SAMP8 mice and could be used to identify some of the molecular contributions of aging to AD. An inclusive and integrative multiomics approach was used to investigate protein and gene expression, metabolite levels, and cognition in old and young SAMP8 mice. J147 reduced cognitive deficits in old SAMP8 mice, while restoring multiple molecular markers associated with human AD, vascular pathology, impaired synaptic function, and inflammation to those approaching the young phenotype. The extensive assays used in this study identified a subset of molecular changes associated with aging that may be necessary for the development of AD.
Collapse
Affiliation(s)
- Antonio Currais
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joshua Goldberg
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Max Chang
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Marguerite Prior
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Richard Dargusch
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Daniel Daugherty
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Aaron Armando
- Department of Medicine, University of California San Diego, CA 92093-0601, USA
| | - Oswald Quehenberger
- Department of Medicine, University of California San Diego, CA 92093-0601, USA
| | - Pamela Maher
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David Schubert
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
355
|
Brown DM, Goljanek-Whysall K. microRNAs: Modulators of the underlying pathophysiology of sarcopenia? Ageing Res Rev 2015; 24:263-73. [PMID: 26342566 DOI: 10.1016/j.arr.2015.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/15/2015] [Accepted: 08/31/2015] [Indexed: 12/25/2022]
Abstract
Skeletal muscle homeostasis depends on an intricate balance between muscle hypertrophy, atrophy and regeneration. As we age, maintenance of muscle homeostasis is perturbed, resulting in a loss of muscle mass and function, termed sarcopenia. Individuals with sarcopenia exhibit impaired balance, increased falls (leading to subsequent injury) and an overall decline in quality of life. The mechanisms mediating sarcopenia are still not fully understood but clarity in our understanding of the precise pathophysiological changes occurring during skeletal muscle ageing has improved dramatically. Advances in transcriptomics has highlighted significant deregulation in skeletal muscle gene expression with ageing, suggesting epigenetic alterations may play a crucial and potentially causative role in the skeletal muscle ageing process. microRNAs (miRNAs, miRs), novel regulators of gene expression, can modulate many processes in skeletal muscle, including myogenesis, tissue regeneration and cellular programming. Expression of numerous evolutionary conserved miRNAs is disrupted in skeletal muscle with age. Given that a single miRNA can simultaneously affect the functionality of multiple signaling pathways, miRNAs are potent modulators of pathophysiological changes. miRNA-based interventions provide a promising new therapeutic strategy against alterations in muscle homeostasis. The aim of this review is two-fold; firstly to outline the latest understanding of the pathophysiological alterations impacting the deregulation of skeletal muscle mass and function with ageing, and secondly, to highlight the mounting evidence for a role of miRNAs in modulating muscle mass, and the need to explore their specific role in sarcopenia.
Collapse
Affiliation(s)
- David M Brown
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| | - Katarzyna Goljanek-Whysall
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| |
Collapse
|
356
|
Davies SK, Bundy JG, Leroi AM. Metabolic Youth in Middle Age: Predicting Aging in Caenorhabditis elegans Using Metabolomics. J Proteome Res 2015; 14:4603-9. [PMID: 26381038 DOI: 10.1021/acs.jproteome.5b00442] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many mutations and allelic variants are known that influence the rate at which animals age, but when in life do such variants diverge from normal patterns of aging? Is this divergence visible in their physiologies? To investigate these questions, we have used (1)H NMR spectroscopy to study how the metabolome of the nematode Caenorhabditis elegans changes as it grows older. We identify a series of metabolic changes that, collectively, predict the age of wild-type worms. We then show that long-lived mutant daf-2(m41) worms are metabolically youthful compared to wild-type worms, but that this relative youth only appears in middle age. Finally, we show that metabolic age predicts the timing and magnitude of differences in age-specific mortality between these strains. Thus, the future mortality of these two genotypes can be predicted long before most of the worms die.
Collapse
Affiliation(s)
- Sarah K Davies
- Department of Life Sciences and ‡Department of Surgery and Cancer, Imperial College London , Sir Alexander Fleming Building, London SW7 2AZ, U.K
| | - Jacob G Bundy
- Department of Life Sciences and ‡Department of Surgery and Cancer, Imperial College London , Sir Alexander Fleming Building, London SW7 2AZ, U.K
| | - Armand M Leroi
- Department of Life Sciences and ‡Department of Surgery and Cancer, Imperial College London , Sir Alexander Fleming Building, London SW7 2AZ, U.K
| |
Collapse
|
357
|
Liu HW, Chan YC, Wang MF, Wei CC, Chang SJ. Dietary (-)-Epigallocatechin-3-gallate Supplementation Counteracts Aging-Associated Skeletal Muscle Insulin Resistance and Fatty Liver in Senescence-Accelerated Mouse. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8407-8417. [PMID: 26152236 DOI: 10.1021/acs.jafc.5b02501] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Aging is accompanied by pathophysiological changes including insulin resistance and fatty liver. Dietary supplementation with (-)-epigallocatechin-3-gallate (EGCG) improves insulin sensitivity and attenuates fatty liver disease. We hypothesized that EGCG could effectively modulate aging-associated changes in glucose and lipid metabolism in senescence-accelerated mice (SAM) prone 8 (SAMP8). Higher levels of glucose, insulin, and free fatty acid, inhibited Akt activity, and decreased glucose transporter 4 (GLUT4) expression were observed in SAMP8 mice compared to the normal aging group, SAM resistant 1 mice. EGCG supplementation for 12 weeks successfully decreased blood glucose and insulin levels via restoring Akt activity and GLUT4 expression and stimulating AMPKα activation in skeletal muscle. EGCG up-regulated genes involved in mitochondrial biogenesis and subsequently restored mitochondrial DNA copy number in skeletal muscle of SAMP8 mice. Decreased adipose triglyceride lipase and increased sterol regulatory element binding proteins-1c (SREBP-1c) and carbohydrate responsive element binding protein at mRNA levels were observed in SAMP8 mice in accordance with hepatocellular ballooning and excess lipid accumulation. The pevention of hepatic lipid accumulation by EGCG was mainly attributed to down-regulation of mTOR and SREBP-1c-mediated lipid biosynthesis via suppression of the positive regulator, Akt, and activation of the negative regulator, AMPKα, in the liver. EGCG beneficially modulates glucose and lipid homeostasis in skeletal muscle and liver, leading to alleviation of aging-associated metabolic disorders.
Collapse
Affiliation(s)
- Hung-Wen Liu
- Department of Life Sciences, National Cheng Kung University , Tainan, Taiwan
| | - Yin-Ching Chan
- Department of Food and Nutrition, Providence University , Taichung, Taiwan
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University , Taichung, Taiwan
| | - Chu-Chun Wei
- Department of Life Sciences, National Cheng Kung University , Tainan, Taiwan
| | - Sue-Joan Chang
- Department of Life Sciences, National Cheng Kung University , Tainan, Taiwan
| |
Collapse
|
358
|
Ori A, Toyama BH, Harris MS, Bock T, Iskar M, Bork P, Ingolia NT, Hetzer MW, Beck M. Integrated Transcriptome and Proteome Analyses Reveal Organ-Specific Proteome Deterioration in Old Rats. Cell Syst 2015; 1:224-37. [PMID: 27135913 PMCID: PMC4802414 DOI: 10.1016/j.cels.2015.08.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/21/2015] [Accepted: 08/26/2015] [Indexed: 12/29/2022]
Abstract
Aging is associated with the decline of protein, cell, and organ function. Here, we use an integrated approach to characterize gene expression, bulk translation, and cell biology in the brains and livers of young and old rats. We identify 468 differences in protein abundance between young and old animals. The majority are a consequence of altered translation output, that is, the combined effect of changes in transcript abundance and translation efficiency. In addition, we identify 130 proteins whose overall abundance remains unchanged but whose sub-cellular localization, phosphorylation state, or splice-form varies. While some protein-level differences appear to be a generic property of the rats’ chronological age, the majority are specific to one organ. These may be a consequence of the organ’s physiology or the chronological age of the cells within the tissue. Taken together, our study provides an initial view of the proteome at the molecular, sub-cellular, and organ level in young and old rats. An integrated approach identifies molecular alterations between young and old rats Changes in translation output explain the majority of the altered protein abundances Key protein complexes are altered in abundance and composition We provide a rich data resource to stimulate further studies of aging
Collapse
Affiliation(s)
- Alessandro Ori
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Brandon H Toyama
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael S Harris
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Thomas Bock
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Murat Iskar
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany; Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany.
| |
Collapse
|
359
|
Icariin, a natural flavonol glycoside, extends healthspan in mice. Exp Gerontol 2015; 69:226-35. [DOI: 10.1016/j.exger.2015.06.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 11/20/2022]
|
360
|
Tsai S, Sitzmann JM, Dastidar SG, Rodriguez AA, Vu SL, McDonald CE, Academia EC, O'Leary MN, Ashe TD, La Spada AR, Kennedy BK. Muscle-specific 4E-BP1 signaling activation improves metabolic parameters during aging and obesity. J Clin Invest 2015; 125:2952-64. [PMID: 26121750 DOI: 10.1172/jci77361] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 05/26/2015] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) is a key downstream effector of mTOR complex 1 (mTORC1) that represses cap-dependent mRNA translation initiation by sequestering the translation initiation factor eIF4E. Reduced mTORC1 signaling is associated with life span extension and improved metabolic homeostasis, yet the downstream targets that mediate these benefits are unclear. Here, we demonstrated that enhanced 4E-BP1 activity in mouse skeletal muscle protects against age- and diet-induced insulin resistance and metabolic rate decline. Transgenic animals displayed increased energy expenditure; altered adipose tissue distribution, including reduced white adipose accumulation and preserved brown adipose mass; and were protected from hepatic steatosis. Skeletal muscle-specific 4E-BP1 mediated metabolic protection directly through increased translation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and enhanced respiratory function. Non-cell autonomous protection was through preservation of brown adipose tissue metabolism, which was increased in 4E-BP1 transgenic animals during normal aging and in a response to diet-induced type 2 diabetes. Adipose phenotypes may derive from enhanced skeletal muscle expression and secretion of the known myokine FGF21. Unlike skeletal muscle, enhanced adipose-specific 4E-BP1 activity was not protective but instead was deleterious in response to the same challenges. These findings indicate that regulation of 4E-BP1 in skeletal muscle may serve as an important conduit through which mTORC1 controls metabolism.
Collapse
|
361
|
Wang X, West JA, Murray AJ, Griffin JL. Comprehensive Metabolic Profiling of Age-Related Mitochondrial Dysfunction in the High-Fat-Fed ob/ob Mouse Heart. J Proteome Res 2015; 14:2849-62. [PMID: 25985803 DOI: 10.1021/acs.jproteome.5b00128] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ectopic deposition of fat is thought to lead to lipotoxicity and has been associated with mitochondrial dysfunction and diabetic cardiomyopathy. We have measured mitochondrial respiratory capacities in the hearts of ob/ob and wild-type mice on either a regular chow (RCD) or high-fat (HFD) diet across four age groups to investigate the impact of diet and age on mitochondrial function alongside a comprehensive strategy for metabolic profiling of the tissue. Myocardial mitochondrial dysfunction was only evident in ob/ob mice on RCD at 14 months, but it was detectable at 3 months on the HFD. Liquid chromatography-mass spectrometry (LC-MS) was used to study the profiles of acylcarnitines and the accumulation of triglycerides, but neither class of lipid was associated with mitochondrial dysfunction. However, a targeted LC-MS/MS analysis of markers of oxidative stress demonstrated increases in GSSG/GSH and 8-oxoguanine, in addition to the accumulation of diacylglycerols, which are lipid species linked to lipotoxicity. Our results demonstrate that myocardial mitochondria in ob/ob mice on RCD maintained a similar respiratory capacity to that of wild type until a late stage in aging. However, on a HFD, unlike wild-type mice, ob/ob mice failed to increase mitochondrial respiration, which may be associated with a complex I defect following increased oxidative damage.
Collapse
Affiliation(s)
- Xinzhu Wang
- ‡MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, U.K
| | - James A West
- ‡MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, U.K
| | - Andrew J Murray
- §Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, U.K
| | - Julian L Griffin
- ‡MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, U.K
| |
Collapse
|
362
|
Payne BAI, Chinnery PF. Mitochondrial dysfunction in aging: Much progress but many unresolved questions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1347-53. [PMID: 26050973 PMCID: PMC4580208 DOI: 10.1016/j.bbabio.2015.05.022] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022]
Abstract
The free radical theory of aging is almost 60 years old. As mitochondria are the principle source of intracellular reactive oxygen species (ROS), this hypothesis suggested a central role for the mitochondrion in normal mammalian aging. In recent years, however, much work has questioned the importance of mitochondrial ROS in driving aging. Conversely new evidence points to other facets of mitochondrial dysfunction which may nevertheless suggest the mitochondrion retains a critical role at the center of a complex web of processes leading to cellular and organismal aging.
Collapse
Affiliation(s)
- Brendan A I Payne
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, UK
| | - Patrick F Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, UK.
| |
Collapse
|
363
|
Fushan AA, Turanov AA, Lee S, Kim EB, Lobanov AV, Yim SH, Buffenstein R, Lee S, Chang K, Rhee H, Kim J, Yang K, Gladyshev VN. Gene expression defines natural changes in mammalian lifespan. Aging Cell 2015; 14:352-65. [PMID: 25677554 PMCID: PMC4406664 DOI: 10.1111/acel.12283] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2014] [Indexed: 01/09/2023] Open
Abstract
Mammals differ more than 100-fold in maximum lifespan, which can be altered in either direction during evolution, but the molecular basis for natural changes in longevity is not understood. Divergent evolution of mammals also led to extensive changes in gene expression within and between lineages. To understand the relationship between lifespan and variation in gene expression, we carried out RNA-seq-based gene expression analyses of liver, kidney, and brain of 33 diverse species of mammals. Our analysis uncovered parallel evolution of gene expression and lifespan, as well as the associated life-history traits, and identified the processes and pathways involved. These findings provide direct insights into how nature reversibly adjusts lifespan and other traits during adaptive radiation of lineages.
Collapse
Affiliation(s)
- Alexey A. Fushan
- Department of Bioinspired Science Ewha Womans University Seoul 120‐750South Korea
| | - Anton A. Turanov
- Division of Genetics Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115USA
| | - Sang‐Goo Lee
- Department of Bioinspired Science Ewha Womans University Seoul 120‐750South Korea
- Division of Genetics Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115USA
| | - Eun Bae Kim
- Department of Bioinspired Science Ewha Womans University Seoul 120‐750South Korea
- Department of Animal Life Science Kangwon National University Chuncheon 200‐701South Korea
| | - Alexei V. Lobanov
- Division of Genetics Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115USA
| | - Sun Hee Yim
- Division of Genetics Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115USA
| | - Rochelle Buffenstein
- Department of Physiology and The Sam and Ann Barshop Institute for Longevity and Aging Studies University of Texas Health Science Center San Antonio TX 78245USA
| | - Sang‐Rae Lee
- The National Primate Research Center Korea Research Institute of Bioscience and Biotechnology OchangCheongwon Chungbuk 363‐883 South Korea
| | - Kyu‐Tae Chang
- The National Primate Research Center Korea Research Institute of Bioscience and Biotechnology OchangCheongwon Chungbuk 363‐883 South Korea
| | | | - Jong‐So Kim
- Macrogene, Inc. Geumchen‐guSeoul 153‐781South Korea
| | | | - Vadim N. Gladyshev
- Department of Bioinspired Science Ewha Womans University Seoul 120‐750South Korea
- Division of Genetics Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115USA
| |
Collapse
|
364
|
Jové M, Maté I, Naudí A, Mota-Martorell N, Portero-Otín M, De la Fuente M, Pamplona R. Human Aging Is a Metabolome-related Matter of Gender. J Gerontol A Biol Sci Med Sci 2015; 71:578-85. [DOI: 10.1093/gerona/glv074] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/30/2015] [Indexed: 11/13/2022] Open
|
365
|
Abstract
Mitochondrial function is key for maintaining cellular health, while mitochondrial failure is associated with various pathologies, including inherited metabolic disorders and age-related diseases. In order to maintain mitochondrial quality, several pathways of mitochondrial quality control have evolved. These systems monitor mitochondrial integrity through antioxidants, DNA repair systems, and chaperones and proteases involved in the mitochondrial unfolded protein response. Additional regulation of mitochondrial function involves dynamic exchange of components through mitochondrial fusion and fission. Sustained stress induces a selective autophagy - termed mitophagy - and ultimately leads to apoptosis. Together, these systems form a network that acts on the molecular, organellar, and cellular level. In this review, we highlight how these systems are regulated in an integrated context- and time-dependent network of mitochondrial quality control that is implicated in healthy aging.
Collapse
Affiliation(s)
- Ntsiki M Held
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
366
|
Wang X, Chrysovergis K, Kosak J, Kissling G, Streicker M, Moser G, Li R, Eling TE. hNAG-1 increases lifespan by regulating energy metabolism and insulin/IGF-1/mTOR signaling. Aging (Albany NY) 2015; 6:690-704. [PMID: 25239873 PMCID: PMC4169862 DOI: 10.18632/aging.100687] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) or GDF15 is a divergent member of the transforming growth factor beta (TGF-β) superfamily and mice expressing hNAG-1/hGDF15 have been shown to be resistant to HFD-induced obesity and inflammation. This study investigated if hNAG-1 increases lifespan in mice and its potential mechanisms. Here we report that female hNAG-1 mice had significantly increased both mean and median life spans in two transgenic lines, with a larger difference in life spans in mice on a HFD than on low fat diet. hNAG-1 mice displayed significantly reduced body and adipose tissue weight, lowered serum IGF-1, insulin and glucose levels, improved insulin sensitivity, and increased oxygen utilization, oxidative metabolism and energy expenditure. Gene expression analysis revealed significant differences in conserved gene pathways that are important regulators of longevity, including IGF-1, p70S6K, and PI3K/Akt signaling cascades. Phosphorylation of major components of IGF-1/mTOR signaling pathway was significantly lower in hNAG-1mice. Collectively, hNAG-1 is an important regulator of mammalian longevity and may act as a survival factor. Our study suggests that hNAG-1 has potential therapeutic uses in obesity-related diseases where life span is frequently shorter.
Collapse
Affiliation(s)
- Xingya Wang
- Laboratory of Molecular Carcinogenesis,National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park NC 27709, USA. College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, China 310053
| | - Kali Chrysovergis
- Laboratory of Molecular Carcinogenesis,National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park NC 27709, USA
| | - Justin Kosak
- Laboratory of Molecular Carcinogenesis,National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park NC 27709, USA
| | - Grace Kissling
- Biostatistics Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Mike Streicker
- Integrated Laboratory Systems, Inc., Morrisville, NC 27560, USA
| | - Glenda Moser
- Integrated Laboratory Systems, Inc., Morrisville, NC 27560, USA
| | - Ruifang Li
- Laboratory of Molecular Carcinogenesis,National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park NC 27709, USA
| | - Thomas E Eling
- Laboratory of Molecular Carcinogenesis,National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park NC 27709, USA
| |
Collapse
|
367
|
Sartorius T, Peter A, Heni M, Maetzler W, Fritsche A, Häring HU, Hennige AM. The brain response to peripheral insulin declines with age: a contribution of the blood-brain barrier? PLoS One 2015; 10:e0126804. [PMID: 25965336 PMCID: PMC4429020 DOI: 10.1371/journal.pone.0126804] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/07/2015] [Indexed: 01/26/2023] Open
Abstract
Objectives It is a matter of debate whether impaired insulin action originates from a defect at the neural level or impaired transport of the hormone into the brain. In this study, we aimed to investigate the effect of aging on insulin concentrations in the periphery and the central nervous system as well as its impact on insulin-dependent brain activity. Methods Insulin, glucose and albumin concentrations were determined in 160 paired human serum and cerebrospinal fluid (CSF) samples. Additionally, insulin was applied in young and aged mice by subcutaneous injection or intracerebroventricularly to circumvent the blood-brain barrier. Insulin action and cortical activity were assessed by Western blotting and electrocorticography radiotelemetric measurements. Results In humans, CSF glucose and insulin concentrations were tightly correlated with the respective serum/plasma concentrations. The CSF/serum ratio for insulin was reduced in older subjects while the CSF/serum ratio for albumin increased with age like for most other proteins. Western blot analysis in murine whole brain lysates revealed impaired phosphorylation of AKT (P-AKT) in aged mice following peripheral insulin stimulation whereas P-AKT was comparable to levels in young mice after intracerebroventricular insulin application. As readout for insulin action in the brain, insulin-mediated cortical brain activity instantly increased in young mice subcutaneously injected with insulin but was significantly reduced and delayed in aged mice during the treatment period. When insulin was applied intracerebroventricularly into aged animals, brain activity was readily improved. Conclusions This study discloses age-dependent changes in insulin CSF/serum ratios in humans. In the elderly, cerebral insulin resistance might be partially attributed to an impaired transport of insulin into the central nervous system.
Collapse
Affiliation(s)
- Tina Sartorius
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tuebingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (IDM), Tuebingen, Germany
- * E-mail:
| | - Andreas Peter
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tuebingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (IDM), Tuebingen, Germany
| | - Martin Heni
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tuebingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (IDM), Tuebingen, Germany
| | - Walter Maetzler
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| | - Andreas Fritsche
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tuebingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (IDM), Tuebingen, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tuebingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (IDM), Tuebingen, Germany
| | - Anita M. Hennige
- German Center for Diabetes Research (DZD), Tuebingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (IDM), Tuebingen, Germany
| |
Collapse
|
368
|
Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity. Proc Natl Acad Sci U S A 2015; 112:6748-53. [PMID: 25964318 DOI: 10.1073/pnas.1504239112] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces β3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity.
Collapse
|
369
|
Kim SR, Kubo T, Kuroda Y, Hojyo M, Matsuo T, Miyajima A, Usami M, Sekino Y, Matsushita T, Ishida S. Comparative metabolome analysis of cultured fetal and adult hepatocytes in humans. J Toxicol Sci 2015; 39:717-23. [PMID: 25242401 DOI: 10.2131/jts.39.717] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The liver is the central organ of metabolism, but its function varies during development from fetus to adult. In this study, we comprehensively analyzed and compared metabolites in fetal and adult hepatocytes, the major parenchymal cell in the liver, from human donors. We identified 211 metabolites (116 anions and 95 cations) by capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS) in the hepatocytes cultured in vitro. Principal component analysis and hierarchical clustering analysis of the relative amounts of metabolites clearly classified hepatocytes into 2 groups that were consistent with their origin, i.e., the fetus and adult. The amounts of most metabolites in the glycolysis/glyconeogenesis pathway, tricarboxylic acid cycle and urea cycle were lower in fetal hepatocytes than in adult hepatocytes. These results suggest different susceptibility of the fetal and adult liver to toxic insults affecting energy metabolism.
Collapse
Affiliation(s)
- Su-Ryang Kim
- Division of Pharmacology, National Institute of Health Sciences
| | | | | | | | | | | | | | | | | | | |
Collapse
|
370
|
Analytical protocols based on LC-MS, GC-MS and CE-MS for nontargeted metabolomics of biological tissues. Bioanalysis 2015; 6:1657-77. [PMID: 25077626 DOI: 10.4155/bio.14.119] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Invasive, site-specific metabolite information could be better obtained from tissues. Hence, highly sensitive mass spectrometry-based metabolomics coupled with separation techniques are increasingly in demand in clinical research for tissue metabolomics application. Applying these techniques to nontargeted tissue metabolomics provides identification of distinct metabolites. These findings could help us to understand alterations at the molecular level, which can also be applied in clinical practice as screening markers for early disease diagnosis. However, tissues as solid and heterogeneous samples pose an additional analytical challenge that should be considered in obtaining broad, reproducible and representative analytical profiles. This manuscript summarizes the state of the art in tissue (human and animal) treatment (quenching, homogenization and extraction) for nontargeted metabolomics with mass spectrometry.
Collapse
|
371
|
Kume S, Yamato M, Tamura Y, Jin G, Nakano M, Miyashige Y, Eguchi A, Ogata Y, Goda N, Iwai K, Yamano E, Watanabe Y, Soga T, Kataoka Y. Potential biomarkers of fatigue identified by plasma metabolome analysis in rats. PLoS One 2015; 10:e0120106. [PMID: 25793974 PMCID: PMC4368560 DOI: 10.1371/journal.pone.0120106] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/19/2015] [Indexed: 11/22/2022] Open
Abstract
In the present study, prior to the establishment of a method for the clinical diagnosis of chronic fatigue in humans, we validated the utility of plasma metabolomic analysis in a rat model of fatigue using capillary electrophoresis-mass spectrometry (CE-MS). In order to obtain a fatigued animal group, rats were placed in a cage filled with water to a height of 2.2 cm for 5 days. A food-restricted group, in which rats were limited to 10 g/d of food (around 50% of the control group), was also assessed. The food-restricted group exhibited weight reduction similar to that of the fatigued group. CE-MS measurements were performed to evaluate the profile of food intake-dependent metabolic changes, as well as the profile in fatigue loading, resulting in the identification of 48 metabolites in plasma. Multivariate analyses using hierarchical clustering and principal component analysis revealed that the plasma metabolome in the fatigued group showed clear differences from those in the control and food-restricted groups. In the fatigued group, we found distinctive changes in metabolites related to branched-chain amino acid metabolism, urea cycle, and proline metabolism. Specifically, the fatigued group exhibited significant increases in valine, leucine, isoleucine, and 2-oxoisopentanoate, and significant decreases in citrulline and hydroxyproline compared with the control and food-restricted groups. Plasma levels of total nitric oxide were increased in the fatigued group, indicating systemic oxidative stress. Further, plasma metabolites involved in the citrate cycle, such as cis-aconitate and isocitrate, were reduced in the fatigued group. The levels of ATP were significantly decreased in the liver and skeletal muscle, indicative of a deterioration in energy metabolism in these organs. Thus, this comprehensive metabolic analysis furthered our understanding of the pathophysiology of fatigue, and identified potential diagnostic biomarkers based on fatigue pathophysiology.
Collapse
Affiliation(s)
- Satoshi Kume
- Cellular Function Imaging Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
| | - Masanori Yamato
- Cellular Function Imaging Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
| | - Yasuhisa Tamura
- Cellular Function Imaging Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
| | - Guanghua Jin
- Cellular Function Imaging Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
| | - Masayuki Nakano
- Cellular Function Imaging Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yukiharu Miyashige
- Cellular Function Imaging Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
| | - Asami Eguchi
- Cellular Function Imaging Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
| | - Yoshiyuki Ogata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bio-Science, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Emi Yamano
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuyoshi Watanabe
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Pathophysiological and Health Science Team, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Yosky Kataoka
- Cellular Function Imaging Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| |
Collapse
|
372
|
Pathway-based factor analysis of gene expression data produces highly heritable phenotypes that associate with age. G3-GENES GENOMES GENETICS 2015; 5:839-47. [PMID: 25758824 PMCID: PMC4426370 DOI: 10.1534/g3.114.011411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 "pathway phenotypes" that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold ([Formula: see text]). These phenotypes are more heritable ([Formula: see text]) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors.
Collapse
|
373
|
Dimitrakopoulou K, Vrahatis AG, Bezerianos A. Integromics network meta-analysis on cardiac aging offers robust multi-layer modular signatures and reveals micronome synergism. BMC Genomics 2015; 16:147. [PMID: 25887273 PMCID: PMC4367845 DOI: 10.1186/s12864-015-1256-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/19/2015] [Indexed: 02/02/2023] Open
Abstract
Background The avalanche of integromics and panomics approaches shifted the deciphering of aging mechanisms from single molecular entities to communities of them. In this orientation, we explore the cardiac aging mechanisms – risk factor for multiple cardiovascular diseases - by capturing the micronome synergism and detecting longevity signatures in the form of communities (modules). For this, we developed a meta-analysis scheme that integrates transcriptome expression data from multiple cardiac-specific independent studies in mouse and human along with proteome and micronome interaction data in the form of multiple independent weighted networks. Modularization of each weighted network produced modules, which in turn were further analyzed so as to define consensus modules across datasets that change substantially during lifespan. Also, we established a metric that determines - from the modular perspective - the synergism of microRNA-microRNA interactions as defined by significantly functionally associated targets. Results The meta-analysis provided 40 consensus integromics modules across mouse datasets and revealed microRNA relations with substantial collective action during aging. Three modules were reproducible, based on homology, when mapped against human-derived modules. The respective homologs mainly represent NADH dehydrogenases, ATP synthases, cytochrome oxidases, Ras GTPases and ribosomal proteins. Among various observations, we corroborate to the involvement of miR-34a (included in consensus modules) as proposed recently; yet we report that has no synergistic effect. Moving forward, we determined its age-related neighborhood in which HCN3, a known heart pacemaker channel, was included. Also, miR-125a-5p/-351, miR-200c/-429, miR-106b/-17, miR-363/-92b, miR-181b/-181d, miR-19a/-19b, let-7d/-7f, miR-18a/-18b, miR-128/-27b and miR-106a/-291a-3p pairs exhibited significant synergy and their association to aging and/or cardiovascular diseases is supported in many cases by a disease database and previous studies. On the contrary, we suggest that miR-22 has not substantial impact on heart longevity as proposed recently. Conclusions We revised several proteins and microRNAs recently implicated in cardiac aging and proposed for the first time modules as signatures. The integromics meta-analysis approach can serve as an efficient subvening signature tool for more-oriented better-designed experiments. It can also promote the combinational multi-target microRNA therapy of age-related cardiovascular diseases along the continuum from prevention to detection, diagnosis, treatment and outcome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1256-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Aristidis G Vrahatis
- Department of Medical Physics, School of Medicine, University of Patras, Patras, 26500, Greece. .,Department of Computer Engineering and Informatics, University of Patras, Patras, 26500, Greece.
| | - Anastasios Bezerianos
- Department of Medical Physics, School of Medicine, University of Patras, Patras, 26500, Greece. .,Singapore Institute for Neurotechnology (SINAPSE), Center of Life Sciences, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
374
|
Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan J, Kim SJ, Mehta H, Hevener AL, de Cabo R, Cohen P. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab 2015; 21:443-54. [PMID: 25738459 PMCID: PMC4350682 DOI: 10.1016/j.cmet.2015.02.009] [Citation(s) in RCA: 492] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/08/2014] [Accepted: 02/09/2015] [Indexed: 01/08/2023]
Abstract
Mitochondria are known to be functional organelles, but their role as a signaling unit is increasingly being appreciated. The identification of a short open reading frame (sORF) in the mitochondrial DNA (mtDNA) that encodes a signaling peptide, humanin, suggests the possible existence of additional sORFs in the mtDNA. Here we report a sORF within the mitochondrial 12S rRNA encoding a 16-amino-acid peptide named MOTS-c (mitochondrial open reading frame of the 12S rRNA-c) that regulates insulin sensitivity and metabolic homeostasis. Its primary target organ appears to be the skeletal muscle, and its cellular actions inhibit the folate cycle and its tethered de novo purine biosynthesis, leading to AMPK activation. MOTS-c treatment in mice prevented age-dependent and high-fat-diet-induced insulin resistance, as well as diet-induced obesity. These results suggest that mitochondria may actively regulate metabolic homeostasis at the cellular and organismal level via peptides encoded within their genome.
Collapse
Affiliation(s)
- Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Jennifer Zeng
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Brian G Drew
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Tamer Sallam
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Hemal Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
375
|
Hodgson R, Christophi C. What determines ageing of the transplanted liver? HPB (Oxford) 2015; 17:222-5. [PMID: 25263287 PMCID: PMC4333782 DOI: 10.1111/hpb.12339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Liver transplantation is used to treat patients with irreversible liver failure from a variety of causes. Long-term survival has been reported, particularly in the paediatric population, with graft survival longer than 20 years now possible. The goal for paediatric liver transplantation is to increase the longevity of grafts to match the normal life expectancy of the child. This paper reviews the literature on the current understanding of ageing of the liver and biomarkers that may predict long-term survival or aid in utilization of organs. METHODS Scientific papers published from 1950 to 2013 were sought and extracted from the MEDLINE, PubMed and University of Melbourne databases. RESULTS Hepatocytes appear resistant to the ageing process, but are affected by both replicative senescence and stress-related senescence. These processes may be exacerbated by the act of transplantation. The most studied biomarkers are telomeres and SMP-30. CONCLUSION There are many factors that play a role in the ageing of the liver. Further studies into biomarkers of ageing and their relationship to the chronological age of the liver are required to aid in predicting long-term graft survival and utilization of organs.
Collapse
Affiliation(s)
- Russell Hodgson
- Department of Surgery, University of MelbourneMelbourne, Victoria, Australia,Correspondence, Russell Hodgson, Department of Surgery, University of Melbourne, Studley Road, Level 8, Lance Townsend Building, Heidelberg, Melbourne, Vic. 3084, Australia. Tel.: +61 3 9496 5468. Fax: +61 3 9458 1650. E-mail:
| | - Chris Christophi
- Department of Surgery, University of MelbourneMelbourne, Victoria, Australia
| |
Collapse
|
376
|
|
377
|
James EL, Michalek RD, Pitiyage GN, de Castro AM, Vignola KS, Jones J, Mohney RP, Karoly ED, Prime SS, Parkinson EK. Senescent human fibroblasts show increased glycolysis and redox homeostasis with extracellular metabolomes that overlap with those of irreparable DNA damage, aging, and disease. J Proteome Res 2015; 14:1854-71. [PMID: 25690941 DOI: 10.1021/pr501221g] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular senescence can modulate various pathologies and is associated with irreparable DNA double-strand breaks (IrrDSBs). Extracellular senescence metabolomes (ESMs) were generated from fibroblasts rendered senescent by proliferative exhaustion (PEsen) or 20 Gy of γ rays (IrrDSBsen) and compared with those of young proliferating cells, confluent cells, quiescent cells, and cells exposed to repairable levels of DNA damage to identify novel noninvasive markers of senescent cells. ESMs of PEsen and IrrDSBsen overlapped and showed increased levels of citrate, molecules involved in oxidative stress, a sterol, monohydroxylipids, tryptophan metabolism, phospholipid, and nucleotide catabolism, as well as reduced levels of dipeptides containing branched chain amino acids. The ESM overlaps with the aging and disease body fluid metabolomes, supporting their utility in the noninvasive detection of human senescent cells in vivo and by implication the detection of a variety of human pathologies. Intracellular metabolites of senescent cells showed a relative increase in glycolysis, gluconeogenesis, the pentose-phosphate pathway, and, consistent with this, pyruvate dehydrogenase kinase transcripts. In contrast, tricarboxylic acid cycle enzyme transcript levels were unchanged and their metabolites were depleted. These results are surprising because glycolysis antagonizes senescence entry but are consistent with established senescent cells entering a state of low oxidative stress.
Collapse
Affiliation(s)
| | - Ryan D Michalek
- ‡Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, North Carolina 27713, United States
| | | | | | - Katie S Vignola
- ‡Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, North Carolina 27713, United States
| | - Janice Jones
- ‡Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, North Carolina 27713, United States
| | - Robert P Mohney
- ‡Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, North Carolina 27713, United States
| | - Edward D Karoly
- ‡Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, North Carolina 27713, United States
| | | | | |
Collapse
|
378
|
Age-related proteostasis and metabolic alterations in Caspase-2-deficient mice. Cell Death Dis 2015; 6:e1615. [PMID: 25611376 PMCID: PMC4669765 DOI: 10.1038/cddis.2014.567] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 12/21/2022]
Abstract
Ageing is a complex biological process for which underlying biochemical changes are still largely unknown. We performed comparative profiling of the cellular proteome and metabolome to understand the molecular basis of ageing in Caspase-2-deficient (Casp2−/−) mice that are a model of premature ageing in the absence of overt disease. Age-related changes were determined in the liver and serum of young (6–9 week) and aged (18–24 month) wild-type and Casp2−/− mice. We identified perturbed metabolic pathways, decreased levels of ribosomal and respiratory complex proteins and altered mitochondrial function that contribute to premature ageing in the Casp2−/− mice. We show that the metabolic profile changes in the young Casp2−/− mice resemble those found in aged wild-type mice. Intriguingly, aged Casp2−/− mice were found to have reduced blood glucose and improved glucose tolerance. These results demonstrate an important role for caspase-2 in regulating proteome and metabolome remodelling during ageing.
Collapse
|
379
|
Martin B, Chadwick W, Janssens J, Premont RT, Schmalzigaug R, Becker KG, Lehrmann E, Wood WH, Zhang Y, Siddiqui S, Park SS, Cong WN, Daimon CM, Maudsley S. GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging. Front Endocrinol (Lausanne) 2015; 6:191. [PMID: 26834700 PMCID: PMC4716144 DOI: 10.3389/fendo.2015.00191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023] Open
Abstract
Aging represents one of the most complicated and highly integrated somatic processes. Healthy aging is suggested to rely upon the coherent regulation of hormonal and neuronal communication between the central nervous system and peripheral tissues. The hypothalamus is one of the main structures in the body responsible for sustaining an efficient interaction between energy balance and neurological activity and therefore likely coordinates multiple systems in the aging process. We previously identified, in hypothalamic and peripheral tissues, the G protein-coupled receptor kinase interacting protein 2 (GIT2) as a stress response and aging regulator. As metabolic status profoundly affects aging trajectories, we investigated the role of GIT2 in regulating metabolic activity. We found that genomic deletion of GIT2 alters hypothalamic transcriptomic signatures related to diabetes and metabolic pathways. Deletion of GIT2 reduced whole animal respiratory exchange ratios away from those related to primary glucose usage for energy homeostasis. GIT2 knockout (GIT2KO) mice demonstrated lower insulin secretion levels, disruption of pancreatic islet beta cell mass, elevated plasma glucose, and insulin resistance. High-dimensionality transcriptomic signatures from islets isolated from GIT2KO mice indicated a disruption of beta cell development. Additionally, GIT2 expression was prematurely elevated in pancreatic and hypothalamic tissues from diabetic-state mice (db/db), compared to age-matched wild type (WT) controls, further supporting the role of GIT2 in metabolic regulation and aging. We also found that the physical interaction of pancreatic GIT2 with the insulin receptor and insulin receptor substrate 2 was diminished in db/db mice compared to WT mice. Therefore, GIT2 appears to exert a multidimensional "keystone" role in regulating the aging process by coordinating somatic responses to energy deficits.
Collapse
Affiliation(s)
- Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Wayne Chadwick
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jonathan Janssens
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Richard T. Premont
- Department of Medicine, Gastroenterology Division, Duke University, Durham, NC, USA
| | - Robert Schmalzigaug
- Department of Medicine, Gastroenterology Division, Duke University, Durham, NC, USA
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, National Institutes of Health, Baltimore, MD, USA
| | - Elin Lehrmann
- Gene Expression and Genomics Unit, National Institutes of Health, Baltimore, MD, USA
| | - William H. Wood
- Gene Expression and Genomics Unit, National Institutes of Health, Baltimore, MD, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institutes of Health, Baltimore, MD, USA
| | - Sana Siddiqui
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Sung-Soo Park
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Wei-na Cong
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Caitlin M. Daimon
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- *Correspondence: Stuart Maudsley,
| |
Collapse
|
380
|
Sheedfar F, Sung MM, Aparicio-Vergara M, Kloosterhuis NJ, Miquilena-Colina ME, Vargas-Castrillón J, Febbraio M, Jacobs RL, de Bruin A, Vinciguerra M, García-Monzón C, Hofker MH, Dyck JR, Koonen DPY. Increased hepatic CD36 expression with age is associated with enhanced susceptibility to nonalcoholic fatty liver disease. Aging (Albany NY) 2014; 6:281-95. [PMID: 24751397 PMCID: PMC4032795 DOI: 10.18632/aging.100652] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CD36 has been associated with obesity and diabetes in human liver diseases, however, its role in age-associated nonalcoholic fatty liver disease (NAFLD) is unknown. Therefore, liver biopsies were collected from individuals with histologically normal livers (n=30), and from patients diagnosed with simple steatosis (NAS; n=26). Patients were divided into two groups according to age and liver biopsy samples were immunostained for CD36. NAFLD parameters were examined in young (12-week) and middle-aged (52-week) C57BL/6J mice, some fed with chow-diet and some fed with low-fat (LFD; 10% kcal fat) or high-fat diet (HFD; 60% kcal fat) for 12-weeks. CD36 expression was positively associated with age in individuals with normal livers but not in NAS patients. However, CD36 was predominantly located at the plasma membrane of hepatocytes in aged NAS patients as compared to young. In chow-fed mice, aging, despite an increase in hepatic CD36 expression, was not associated with the development of NAFLD. However, middle-aged mice did exhibit the development of HFD-induced NAFLD, mediated by an increase of CD36 on the membrane. Enhanced CD36-mediated hepatic fat uptake may contribute to an accelerated progression of NAFLD in mice and humans. Therapies to prevent the increase in CD36 expression and/or CD36 from anchoring at the membrane may prevent the development of NAFLD.
Collapse
Affiliation(s)
- Fareeba Sheedfar
- University of Groningen, University Medical Center Groningen, Molecular Genetics, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Kim S, Cheon HS, Song JC, Yun SM, Park SI, Jeon JP. Aging-related Changes in Mouse Serum Glycerophospholipid Profiles. Osong Public Health Res Perspect 2014; 5:345-50. [PMID: 25562043 PMCID: PMC4281626 DOI: 10.1016/j.phrp.2014.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 01/25/2023] Open
Abstract
Objectives Metabolic dysfunction is a common hallmark of the aging process and aging-related pathogenesis. Blood metabolites have been used as biomarkers for many diseases, including cancers, complex chronic diseases, and neurodegenerative diseases. Methods In order to identify aging-related biomarkers from blood metabolites, we investigated the specific metabolite profiles of mouse sera from 4-month-old and 21-month-old mice by using a combined flow injection analysis–tandem mass spectrometry and liquid chromatography–tandem mass spectrometry. Results Among the 156 metabolites detected, serum levels of nine individual metabolites were found to vary with aging. Specifically, lysophosphatidylcholine (LPC) acyl (a) C24:0 levels in aged mice were decreased compared to that in young mice, whereas phosphatidylcholine (PC) acyl-alkyl (ae) C38:4, PC ae C40:4, and PC ae C42:1 levels were increased. Three classes of metabolites (amino acids, LPCs, and PCs) differed in intraclass correlation patterns of the individual metabolites between sera from young and aged mice. Additionally, the ratio of LPC a C24:0 to PC ae C38:4 was decreased in the aged mice, whereas the ratio of PC ae C40:4 to LPC a C24:0 was increased, supporting the aging-related metabolic changes of glycerophospholipids. Conclusion The ratios of the individual metabolites PC and LPC could serve as potential biomarkers for aging and aging-related diseases.
Collapse
Affiliation(s)
- Seungwoo Kim
- Division of Brain Diseases, Korea National Institute of Health, Cheongju, Korea
| | - Hyo-Soon Cheon
- Division of Brain Diseases, Korea National Institute of Health, Cheongju, Korea
| | - Jae-Chun Song
- Division of Brain Diseases, Korea National Institute of Health, Cheongju, Korea
| | - Sang-Moon Yun
- Division of Brain Diseases, Korea National Institute of Health, Cheongju, Korea
| | - Sang Ick Park
- Division of Brain Diseases, Korea National Institute of Health, Cheongju, Korea
| | - Jae-Pil Jeon
- Division of Brain Diseases, Korea National Institute of Health, Cheongju, Korea
| |
Collapse
|
382
|
Ryu D, Jo YS, Lo Sasso G, Stein S, Zhang H, Perino A, Lee JU, Zeviani M, Romand R, Hottiger MO, Schoonjans K, Auwerx J. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab 2014; 20:856-869. [PMID: 25200183 DOI: 10.1016/j.cmet.2014.08.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/30/2014] [Accepted: 07/29/2014] [Indexed: 01/01/2023]
Abstract
Mitochondrial activity is controlled by proteins encoded by both nuclear and mitochondrial DNA. Here, we identify Sirt7 as a crucial regulator of mitochondrial homeostasis. Sirt7 deficiency in mice induces multisystemic mitochondrial dysfunction, which is reflected by increased blood lactate levels, reduced exercise performance, cardiac dysfunction, hepatic microvesicular steatosis, and age-related hearing loss. This link between SIRT7 and mitochondrial function is translatable in humans, where SIRT7 overexpression rescues the mitochondrial functional defect in fibroblasts with a mutation in NDUFSI. These wide-ranging effects of SIRT7 on mitochondrial homeostasis are the consequence of the deacetylation of distinct lysine residues located in the hetero- and homodimerization domains of GABPβ1, a master regulator of nuclear-encoded mitochondrial genes. SIRT7-mediated deacetylation of GABPβ1 facilitates complex formation with GABPα and the transcriptional activation of the GABPα/GABPβ heterotetramer. Altogether, these data suggest that SIRT7 is a dynamic nuclear regulator of mitochondrial function through its impact on GABPβ1 function.
Collapse
Affiliation(s)
- Dongryeol Ryu
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Young Suk Jo
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Giuseppe Lo Sasso
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sokrates Stein
- Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hongbo Zhang
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alessia Perino
- Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jung Uee Lee
- Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Massimo Zeviani
- Unit of Molecular Neurogenetics, the Carlo Besta Institute of Neurology IRCCS, 20133 Milan, Italy; MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, UK
| | - Raymond Romand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 10142, 67404 Illkirch Cedex, France
| | - Michael O Hottiger
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, 8057 Zurich, Switzerland
| | - Kristina Schoonjans
- Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
383
|
Schurich A, Henson SM. The Many Unknowns Concerning the Bioenergetics of Exhaustion and Senescence during Chronic Viral Infection. Front Immunol 2014; 5:468. [PMID: 25309548 PMCID: PMC4174864 DOI: 10.3389/fimmu.2014.00468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/12/2014] [Indexed: 11/13/2022] Open
Abstract
The immune system cannot be continuously reactivated throughout the lifetime of an organism; there is a finite point at which repeated antigenic challenge leads to the loss of lymphocyte function or the cells themselves. Antigen-specific T cells can be compromised in two ways through the distinct processes of replicative senescence and exhaustion. Senescence is initiated by a DNA damage response whereas exhaustion triggers inhibitory receptors to dampen the immune response. These two distinct pathways not only differ in their initiation but also growing evidence suggests that their biogenergetics is also different. Here, we review recent findings uncovering the metabolism of these unique states.
Collapse
Affiliation(s)
- Anna Schurich
- Division of Infection and Immunity, University College London , London , UK
| | - Sian M Henson
- Division of Infection and Immunity, University College London , London , UK
| |
Collapse
|
384
|
Henson SM, Lanna A, Riddell NE, Franzese O, Macaulay R, Griffiths SJ, Puleston DJ, Watson AS, Simon AK, Tooze SA, Akbar AN. p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8⁺ T cells. J Clin Invest 2014; 124:4004-16. [PMID: 25083993 PMCID: PMC4151208 DOI: 10.1172/jci75051] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/13/2014] [Indexed: 01/09/2023] Open
Abstract
T cell senescence is thought to contribute to immune function decline, but the pathways that mediate senescence in these cells are not clear. Here, we evaluated T cell populations from healthy volunteers and determined that human CD8+ effector memory T cells that reexpress the naive T cell marker CD45RA have many characteristics of cellular senescence, including decreased proliferation, defective mitochondrial function, and elevated levels of both ROS and p38 MAPK. Despite their apparent senescent state, we determined that these cells secreted high levels of both TNF-α and IFN-γ and showed potent cytotoxic activity. We found that the senescent CD45RA-expressing population engaged anaerobic glycolysis to generate energy for effector functions. Furthermore, inhibition of p38 MAPK signaling in senescent CD8+ T cells increased their proliferation, telomerase activity, mitochondrial biogenesis, and fitness; however, the extra energy required for these processes did not arise from increased glucose uptake or oxidative phosphorylation. Instead, p38 MAPK blockade in these senescent cells induced an increase in autophagy through enhanced interactions between p38 interacting protein (p38IP) and autophagy protein 9 (ATG9) in an mTOR-independent manner. Together, our findings describe fundamental metabolic requirements of senescent primary human CD8+ T cells and demonstrate that p38 MAPK blockade reverses senescence via an mTOR-independent pathway.
Collapse
Affiliation(s)
- Sian M. Henson
- Division of Infection and Immunity, University College London, London, United Kingdom. Department of Systems Medicine, University of Tor Vergata, Rome, Italy. MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom. Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Alessio Lanna
- Division of Infection and Immunity, University College London, London, United Kingdom. Department of Systems Medicine, University of Tor Vergata, Rome, Italy. MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom. Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Natalie E. Riddell
- Division of Infection and Immunity, University College London, London, United Kingdom. Department of Systems Medicine, University of Tor Vergata, Rome, Italy. MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom. Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Ornella Franzese
- Division of Infection and Immunity, University College London, London, United Kingdom. Department of Systems Medicine, University of Tor Vergata, Rome, Italy. MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom. Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Richard Macaulay
- Division of Infection and Immunity, University College London, London, United Kingdom. Department of Systems Medicine, University of Tor Vergata, Rome, Italy. MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom. Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Stephen J. Griffiths
- Division of Infection and Immunity, University College London, London, United Kingdom. Department of Systems Medicine, University of Tor Vergata, Rome, Italy. MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom. Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Daniel J. Puleston
- Division of Infection and Immunity, University College London, London, United Kingdom. Department of Systems Medicine, University of Tor Vergata, Rome, Italy. MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom. Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Alexander Scarth Watson
- Division of Infection and Immunity, University College London, London, United Kingdom. Department of Systems Medicine, University of Tor Vergata, Rome, Italy. MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom. Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Anna Katharina Simon
- Division of Infection and Immunity, University College London, London, United Kingdom. Department of Systems Medicine, University of Tor Vergata, Rome, Italy. MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom. Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Sharon A. Tooze
- Division of Infection and Immunity, University College London, London, United Kingdom. Department of Systems Medicine, University of Tor Vergata, Rome, Italy. MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom. Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Arne N. Akbar
- Division of Infection and Immunity, University College London, London, United Kingdom. Department of Systems Medicine, University of Tor Vergata, Rome, Italy. MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom. Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| |
Collapse
|
385
|
Hoffman JM, Soltow QA, Li S, Sidik A, Jones DP, Promislow DEL. Effects of age, sex, and genotype on high-sensitivity metabolomic profiles in the fruit fly, Drosophila melanogaster. Aging Cell 2014; 13:596-604. [PMID: 24636523 PMCID: PMC4116462 DOI: 10.1111/acel.12215] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2014] [Indexed: 12/24/2022] Open
Abstract
Researchers have used whole-genome sequencing and gene expression profiling to identify genes associated with age, in the hope of understanding the underlying mechanisms of senescence. But there is a substantial gap from variation in gene sequences and expression levels to variation in age or life expectancy. In an attempt to bridge this gap, here we describe the effects of age, sex, genotype, and their interactions on high-sensitivity metabolomic profiles in the fruit fly, Drosophila melanogaster. Among the 6800 features analyzed, we found that over one-quarter of all metabolites were significantly associated with age, sex, genotype, or their interactions, and multivariate analysis shows that individual metabolomic profiles are highly predictive of these traits. Using a metabolomic equivalent of gene set enrichment analysis, we identified numerous metabolic pathways that were enriched among metabolites associated with age, sex, and genotype, including pathways involving sugar and glycerophospholipid metabolism, neurotransmitters, amino acids, and the carnitine shuttle. Our results suggest that high-sensitivity metabolomic studies have excellent potential not only to reveal mechanisms that lead to senescence, but also to help us understand differences in patterns of aging among genotypes and between males and females.
Collapse
Affiliation(s)
| | - Quinlyn A. Soltow
- Division of Pulmonary Allergy & Critical Care Medicine Department of Medicine Emory University Atlanta GA 30322USA
- Department of Medicine Clinical Biomarkers Laboratory Emory University Atlanta GA 30322USA
- ClinMet Inc. 3210 Merryfield Row San Diego CA 92121USA
| | - Shuzhao Li
- Division of Pulmonary Allergy & Critical Care Medicine Department of Medicine Emory University Atlanta GA 30322USA
| | - Alfire Sidik
- Department of Genetics University of Georgia Athens GA 30602USA
| | - Dean P. Jones
- Division of Pulmonary Allergy & Critical Care Medicine Department of Medicine Emory University Atlanta GA 30322USA
- Department of Medicine Clinical Biomarkers Laboratory Emory University Atlanta GA 30322USA
- Center for Health Discovery & Well Being Emory University Atlanta GA 30322 USA
| | | |
Collapse
|
386
|
Riera CE, Huising MO, Follett P, Leblanc M, Halloran J, Van Andel R, de Magalhaes Filho CD, Merkwirth C, Dillin A. TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling. Cell 2014; 157:1023-36. [PMID: 24855942 DOI: 10.1016/j.cell.2014.03.051] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/06/2014] [Accepted: 03/20/2014] [Indexed: 01/11/2023]
Abstract
The sensation of pain is associated with increased mortality, but it is unknown whether pain perception can directly affect aging. We find that mice lacking TRPV1 pain receptors are long-lived, displaying a youthful metabolic profile at old age. Loss of TRPV1 inactivates a calcium-signaling cascade that ends in the nuclear exclusion of the CREB-regulated transcriptional coactivator CRTC1 within pain sensory neurons originating from the spinal cord. In long-lived TRPV1 knockout mice, CRTC1 nuclear exclusion decreases production of the neuropeptide CGRP from sensory endings innervating the pancreatic islets, subsequently promoting insulin secretion and metabolic health. In contrast, CGRP homeostasis is disrupted with age in wild-type mice, resulting in metabolic decline. We show that pharmacologic inactivation of CGRP receptors in old wild-type animals can restore metabolic health. These data suggest that ablation of select pain sensory receptors or the inhibition of CGRP are associated with increased metabolic health and control longevity.
Collapse
Affiliation(s)
- Céline E Riera
- Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; The Glenn Center for Aging Research, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark O Huising
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Patricia Follett
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; The Glenn Center for Aging Research, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mathias Leblanc
- The Glenn Center for Aging Research, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jonathan Halloran
- Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roger Van Andel
- Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Carsten Merkwirth
- The Glenn Center for Aging Research, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrew Dillin
- Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; The Glenn Center for Aging Research, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
387
|
Turner N, Zafarana E, Becheri D, Mottino G, Biganzoli L. Breast cancer in the elderly: which lessons have we learned? Future Oncol 2014; 9:1871-81. [PMID: 24295417 DOI: 10.2217/fon.13.140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Management of older breast cancer patients is challenging due to a lack of good quality evidence regarding the role of adjuvant chemotherapy. Older women can benefit as much from adjuvant chemotherapy as younger women, although they have an increased risk of toxicities. Decisions regarding adjuvant chemotherapy should be made based on tumor biology and biological age, rather than chronological age. Geriatrician assessment can detect subtle functional deficits that may impact on the ability of the patient to tolerate chemotherapy; however, implementation of comprehensive geriatric assessment in the oncology setting is challenging. Instead, numerous frailty screening tools are in development. Future advances should incorporate more accurate and efficient means for determining the biological age of elderly breast cancer patients, which will better define the risk:benefit ratio of adjuvant chemotherapy.
Collapse
Affiliation(s)
- Natalie Turner
- Sandro Pitigliani' Medical Oncology Unit, Department of Oncology, Hospital of Prato, Istituto Toscano Tumori, Piazza dell'Ospedale 2, Prato, Italy
| | | | | | | | | |
Collapse
|
388
|
Pontoizeau C, Mouchiroud L, Molin L, Mergoud-Dit-Lamarche A, Dallière N, Toulhoat P, Elena-Herrmann B, Solari F. Metabolomics analysis uncovers that dietary restriction buffers metabolic changes associated with aging in Caenorhabditis elegans. J Proteome Res 2014; 13:2910-9. [PMID: 24819046 PMCID: PMC4059273 DOI: 10.1021/pr5000686] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Dietary restriction (DR) is one of
the most universal means of
extending lifespan. Yet, whether and how DR specifically affects the
metabolic changes associated with aging is essentially unknown. Here,
we present a comprehensive and unbiased picture of the metabolic variations
that take place with age at the whole organism level in Caenorhabditis elegans by using 1H high-resolution
magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) analysis
of intact worms. We investigate metabolic variations potentially important
for lifespan regulation by comparing the metabolic fingerprint of
two previously described genetic models of DR, the long-lived eat-2(ad465) and slcf-1(tm2258) worms,
as single mutants or in combination with a genetic suppressor of their
lifespan phenotype. Our analysis shows that significant changes in
metabolite profiles precede the major physiological decline that accompanies
aging and that DR protects from some of those metabolic changes. More
specifically, low phosphocholine (PCho) correlates with high life
expectancy. A mutation in the tumor suppressor gene PTEN/DAF-18, which
suppresses the beneficial effects of DR in both C.
elegans and mammals, increases both PCho level and
choline kinase expression. Furthermore, we show that choline kinase
function in the intestine can regulate lifespan. This study highlights
the relevance of NMR metabolomic approaches for identifying potential
biomarkers of aging.
Collapse
Affiliation(s)
- Clément Pontoizeau
- Centre de RMN à très hauts champs, Institut des sciences analytiques, CNRS/ENS Lyon/UCB Lyon1 , 5 rue de la Doua, 69100 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
389
|
MALDI Mass Spectrometry Imaging for Visualizing In Situ Metabolism of Endogenous Metabolites and Dietary Phytochemicals. Metabolites 2014; 4:319-46. [PMID: 24957029 PMCID: PMC4101509 DOI: 10.3390/metabo4020319] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/17/2014] [Accepted: 05/04/2014] [Indexed: 01/28/2023] Open
Abstract
Understanding the spatial distribution of bioactive small molecules is indispensable for elucidating their biological or pharmaceutical roles. Mass spectrometry imaging (MSI) enables determination of the distribution of ionizable molecules present in tissue sections of whole-body or single heterogeneous organ samples by direct ionization and detection. This emerging technique is now widely used for in situ label-free molecular imaging of endogenous or exogenous small molecules. MSI allows the simultaneous visualization of many types of molecules including a parent molecule and its metabolites. Thus, MSI has received much attention as a potential tool for pathological analysis, understanding pharmaceutical mechanisms, and biomarker discovery. On the other hand, several issues regarding the technical limitations of MSI are as of yet still unresolved. In this review, we describe the capabilities of the latest matrix-assisted laser desorption/ionization (MALDI)-MSI technology for visualizing in situ metabolism of endogenous metabolites or dietary phytochemicals (food factors), and also discuss the technical problems and new challenges, including MALDI matrix selection and metabolite identification, that need to be addressed for effective and widespread application of MSI in the diverse fields of biological, biomedical, and nutraceutical (food functionality) research.
Collapse
|
390
|
Wijnen WJ, van der Made I, van den Oever S, Hiller M, de Boer BA, Picavet DI, Chatzispyrou IA, Houtkooper RH, Tijsen AJ, Hagoort J, van Veen H, Everts V, Ruijter JM, Pinto YM, Creemers EE. Cardiomyocyte-specific miRNA-30c over-expression causes dilated cardiomyopathy. PLoS One 2014; 9:e96290. [PMID: 24789369 PMCID: PMC4008570 DOI: 10.1371/journal.pone.0096290] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/07/2014] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) regulate many aspects of cellular function and their deregulation has been implicated in heart disease. MiRNA-30c is differentially expressed in the heart during the progression towards heart failure and in vitro studies hint to its importance in cellular physiology. As little is known about the in vivo function of miRNA-30c in the heart, we generated transgenic mice that specifically overexpress miRNA-30c in cardiomyocytes. We show that these mice display no abnormalities until about 6 weeks of age, but subsequently develop a severely dilated cardiomyopathy. Gene expression analysis of the miRNA-30c transgenic hearts before onset of the phenotype indicated disturbed mitochondrial function. This was further evident by the downregulation of mitochondrial oxidative phosphorylation (OXPHOS) complexes III and IV at the protein level. Taken together these data indicate impaired mitochondrial function due to OXPHOS protein depletion as a potential cause for the observed dilated cardiomyopathic phenotype in miRNA-30c transgenic mice. We thus establish an in vivo role for miRNA-30c in cardiac physiology, particularly in mitochondrial function.
Collapse
Affiliation(s)
- Wino J. Wijnen
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
- Interuniversitair Cardiologisch Instituut Nederland (ICIN-NHI), Utrecht, The Netherlands
| | | | | | - Monika Hiller
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Bouke A. de Boer
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Daisy I. Picavet
- Department of Cell Biology and Histology, Leeuwenhoek Center of Advanced Microscopy (LCAM), Academic Medical Center, Amsterdam, The Netherlands
| | - Iliana A. Chatzispyrou
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Anke J. Tijsen
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Jaco Hagoort
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Henk van Veen
- Department of Cell Biology and Histology, Leeuwenhoek Center of Advanced Microscopy (LCAM), Academic Medical Center, Amsterdam, The Netherlands
| | - Vincent Everts
- Department of Cell Biology and Histology, Leeuwenhoek Center of Advanced Microscopy (LCAM), Academic Medical Center, Amsterdam, The Netherlands
| | - Jan M. Ruijter
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Yigal M. Pinto
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Esther E. Creemers
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
391
|
Moon JY, Shin HJ, Son HH, Lee J, Jung U, Jo SK, Kim HS, Kwon KH, Park KH, Chung BC, Choi MH. Metabolic changes in serum steroids induced by total-body irradiation of female C57B/6 mice. J Steroid Biochem Mol Biol 2014; 141:52-9. [PMID: 24462676 DOI: 10.1016/j.jsbmb.2014.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 01/08/2014] [Accepted: 01/11/2014] [Indexed: 11/22/2022]
Abstract
The short- and long-term effects of a single exposure to gamma radiation on steroid metabolism were investigated in mice. Gas chromatography-mass spectrometry was used to generate quantitative profiles of serum steroid levels in mice that had undergone total-body irradiation (TBI) at doses of 0Gy, 1Gy, and 4Gy. Following TBI, serum samples were collected at the pre-dose time point and 1, 3, 6, and 9 months after TBI. Serum levels of progestins, progesterone, 5β-DHP, 5α-DHP, and 20α-DHP showed a significant down-regulation following short-term exposure to 4Gy, with the exception of 20α-DHP, which was significantly decreased at each of the time points measured. The corticosteroids 5α-THDOC and 5α-DHB were significantly elevated at each of the time points measured after exposure to either 1 or 4Gy. Among the sterols, 24S-OH-cholestoerol showed a dose-related elevation after irradiation that reached significance in the high dose group at the 6- and 9-month time points.
Collapse
Affiliation(s)
- Ju-Yeon Moon
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Hee-June Shin
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeonbuk 580-185, Republic of Korea
| | - Hyun-Hwa Son
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Jeongae Lee
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Uhee Jung
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeonbuk 580-185, Republic of Korea
| | - Sung-Kee Jo
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeonbuk 580-185, Republic of Korea
| | - Hyun Sik Kim
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Chungcheongbuk-do 363-883, Republic of Korea
| | - Kyung-Hoon Kwon
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Chungcheongbuk-do 363-883, Republic of Korea
| | - Kyu Hwan Park
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Chungcheongbuk-do 363-883, Republic of Korea
| | - Bong Chul Chung
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Man Ho Choi
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea.
| |
Collapse
|
392
|
Avanesov AS, Ma S, Pierce KA, Yim SH, Lee BC, Clish CB, Gladyshev VN. Age- and diet-associated metabolome remodeling characterizes the aging process driven by damage accumulation. eLife 2014; 3:e02077. [PMID: 24843015 PMCID: PMC4003482 DOI: 10.7554/elife.02077] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aging is thought to be associated with increased molecular damage, but representative markers vary across conditions and organisms, making it difficult to assess properties of cumulative damage throughout lifespan. We used nontargeted metabolite profiling to follow age-associated trajectories of >15,000 metabolites in Drosophila subjected to control and lifespan-extending diets. We find that aging is associated with increased metabolite diversity and low-abundance molecules, suggesting they include cumulative damage. Remarkably, the number of detected compounds leveled-off in late-life, and this pattern associated with survivorship. Fourteen percent of metabolites showed age-associated changes, which decelerated in late-life and long-lived flies. In contrast, known metabolites changed in abundance similarly to nontargeted metabolites and transcripts, but did not increase in diversity. Targeted profiling also revealed slower metabolism and accumulation of lifespan-limiting molecules. Thus, aging is characterized by gradual metabolome remodeling, and condition- and advanced age-associated deceleration of this remodeling is linked to mortality and molecular damage.DOI: http://dx.doi.org/10.7554/eLife.02077.001.
Collapse
Affiliation(s)
- Andrei S Avanesov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Siming Ma
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | | | - Sun Hee Yim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Byung Cheon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | | | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States Broad Institute, Cambridge, United States
| |
Collapse
|
393
|
Chatzispyrou IA, Houtkooper RH. The two-faced progeria gene and its implications in aging and metabolism. EMBO Rep 2014; 15:470-1. [PMID: 24723686 DOI: 10.1002/embr.201438776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Premature aging syndromes have gained much attention, not only because of their devastating symptoms but also because they might hold a key to some of the mechanisms underlying aging. The Hutchinson-Gilford progeria syndrome (HGPS) is caused by a mutation in the LMNA gene, which normally produces lamins A and C through alternative splicing. Due to this mutation, HGPS patients express an incompletely processed form of lamin A called progerin. In this issue of EMBO Reports, the Tazi group demonstrates how mice expressing different LMNA isoforms present opposite phenotypes in longevity, fat storage and mitochondrial function.
Collapse
Affiliation(s)
- Iliana A Chatzispyrou
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
394
|
Garvey SM, Dugle JE, Kennedy AD, McDunn JE, Kline W, Guo L, Guttridge DC, Pereira SL, Edens NK. Metabolomic profiling reveals severe skeletal muscle group-specific perturbations of metabolism in aged FBN rats. Biogerontology 2014; 15:217-32. [PMID: 24652515 PMCID: PMC4019835 DOI: 10.1007/s10522-014-9492-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/11/2014] [Indexed: 02/06/2023]
Abstract
Mammalian skeletal muscles exhibit age-related adaptive and pathological remodeling. Several muscles in particular undergo progressive atrophy and degeneration beyond median lifespan. To better understand myocellular responses to aging, we used semi-quantitative global metabolomic profiling to characterize trends in metabolic changes between 15-month-old adult and 32-month-old aged Fischer 344 × Brown Norway (FBN) male rats. The FBN rat gastrocnemius muscle exhibits age-dependent atrophy, whereas the soleus muscle, up until 32 months, exhibits markedly fewer signs of atrophy. Both gastrocnemius and soleus muscles were analyzed, as well as plasma and urine. Compared to adult gastrocnemius, aged gastrocnemius showed evidence of reduced glycolytic metabolism, including accumulation of glycolytic, glycogenolytic, and pentose phosphate pathway intermediates. Pyruvate was elevated with age, yet levels of citrate and nicotinamide adenine dinucleotide were reduced, consistent with mitochondrial abnormalities. Indicative of muscle atrophy, 3-methylhistidine and free amino acids were elevated in aged gastrocnemius. The monounsaturated fatty acids oleate, cis-vaccenate, and palmitoleate also increased in aged gastrocnemius, suggesting altered lipid metabolism. Compared to gastrocnemius, aged soleus exhibited far fewer changes in carbohydrate metabolism, but did show reductions in several glycolytic intermediates, fumarate, malate, and flavin adenine dinucleotide. Plasma biochemicals showing the largest age-related increases included glycocholate, heme, 1,5-anhydroglucitol, 1-palmitoleoyl-glycerophosphocholine, palmitoleate, and creatine. These changes suggest reduced insulin sensitivity in aged FBN rats. Altogether, these data highlight skeletal muscle group-specific perturbations of glucose and lipid metabolism consistent with mitochondrial dysfunction in aged FBN rats.
Collapse
Affiliation(s)
- Sean M Garvey
- Abbott Nutrition R&D, 3300 Stelzer Road, Bldg RP4-2, Columbus, OH, 43219, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
395
|
Zhao J, Zhu Y, Uppal K, Tran VT, Yu T, Lin J, Matsuguchi T, Blackburn E, Jones D, Lee ET, Howard BV. Metabolic profiles of biological aging in American Indians: the Strong Heart Family Study. Aging (Albany NY) 2014; 6:176-86. [PMID: 24799415 PMCID: PMC4012935 DOI: 10.18632/aging.100644] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Short telomere length, a marker of biological aging, has been associated with age-related metabolic disorders. Telomere attrition induces profound metabolic dysfunction in animal models, but no study has examined the metabolome of telomeric aging in human. Here we studied 423 apparently healthy American Indians participating in the Strong Family Heart Study. Leukocyte telomere length (LTL) was measured by qPCR. Metabolites in fasting plasma were detected by untargeted LC/MS. Associations of LTL with each metabolite and their combined effects were examined using generalized estimating equation adjusting for chronological age and other aging-related factors. Multiple testing was corrected using the q-value method (q<0.05). Of the 1,364 distinct m/z features detected, nineteen metabolites in the classes of glycerophosphoethanolamines, glycerophosphocholines, glycerolipids, bile acids, isoprenoids, fatty amides, or L-carnitine ester were significantly associated with LTL, independent of chronological age and other aging-related factors. Participants with longer (top tertile) and shorter (bottom tertile) LTL were clearly separated into distinct groups using a multi-marker score comprising of all these metabolites, suggesting that these newly detected metabolites could be novel metabolic markers of biological aging. This is the first study to interrogate the human metabolome of telomeric aging. Our results provide initial evidence for a metabolic control of LTL and may reveal previously undescribed new roles of various lipids in the aging process.
Collapse
Affiliation(s)
- Jinying Zhao
- Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA 70112; USA
| | - Yun Zhu
- Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA 70112; USA
| | - Karan Uppal
- Division of Pulmonary, Emory University School of Medicine, Atlanta, GA 30322; USA
| | - ViLinh T. Tran
- Division of Pulmonary, Emory University School of Medicine, Atlanta, GA 30322; USA
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322; USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Tet Matsuguchi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Elizabeth Blackburn
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Dean Jones
- Division of Pulmonary, Emory University School of Medicine, Atlanta, GA 30322; USA
| | - Elisa T. Lee
- Center for American Indian Health Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; USA
| | - Barbara V. Howard
- Medstar Research Institute and Georgetown and Howard Universities Centers for Translational Sciences, Washington, DC 20007
| |
Collapse
|
396
|
Lee SJ, Yi T, Ahn SH, Lim DK, Hong JY, Cho YK, Lim J, Song SU, Kwon SW. Senescing Human Bone-Marrow-Derived Clonal Mesenchymal Stem Cells Have Altered Lysophospholipid Composition and Functionality. J Proteome Res 2014; 13:1438-49. [DOI: 10.1021/pr400990k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Seul Ji Lee
- College
of Pharmacy, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151742, Korea
| | - TacGhee Yi
- HomeoTherapy, Co. Ltd., 3ga, Sinheung-dong, Incheon 400-711, Korea
| | - Soo Hyun Ahn
- Department
of Statistics, Seoul National University, Seoul, Korea
| | - Dong Kyu Lim
- College
of Pharmacy, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151742, Korea
| | - Ji Yeon Hong
- College
of Pharmacy, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151742, Korea
| | - Yun Kyoung Cho
- HomeoTherapy, Co. Ltd., 3ga, Sinheung-dong, Incheon 400-711, Korea
| | - Johan Lim
- Department
of Statistics, Seoul National University, Seoul, Korea
| | - Sun U. Song
- HomeoTherapy, Co. Ltd., 3ga, Sinheung-dong, Incheon 400-711, Korea
| | - Sung Won Kwon
- College
of Pharmacy, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151742, Korea
| |
Collapse
|
397
|
Calvani R, Brasili E, Praticò G, Capuani G, Tomassini A, Marini F, Sciubba F, Finamore A, Roselli M, Marzetti E, Miccheli A. Fecal and urinary NMR-based metabolomics unveil an aging signature in mice. Exp Gerontol 2014; 49:5-11. [DOI: 10.1016/j.exger.2013.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/08/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023]
|
398
|
Abstract
In recent years, the role of acetylation has gained ground as an essential modulator of intermediary metabolism in skeletal muscle. Imbalance in energy homeostasis or chronic cellular stress, due to diet, aging, or disease, translate into alterations in the acetylation levels of key proteins which govern bioenergetics, cellular substrate use, and/or changes in mitochondrial content and function. For example, cellular stress induced by exercise or caloric restriction can alter the coordinated activity of acetyltransferases and deacetylases to increase mitochondrial biogenesis and function in order to adapt to low energetic levels. The natural duality of these enzymes, as metabolic sensors and effector proteins, has helped biologists to understand how the body can integrate seemingly distinct signaling pathways to control mitochondrial biogenesis, insulin sensitivity, glucose transport, reactive oxygen species handling, angiogenesis, and muscle satellite cell proliferation/differentiation. Our review will summarize the recent developments related to acetylation-dependent responses following metabolic stress in skeletal muscle.
Collapse
Affiliation(s)
- Keir Menzies
- Laboratory of Integrative and Systems Physiology (LISP/NCEM), Institute of Bioengineering, Life science faculty, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology (LISP/NCEM), Institute of Bioengineering, Life science faculty, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
- Correspondence: Johan Auwerx: Laboratory of Integrative and Systems Physiology (LISP), École Polytechnique Fédérale de Lausanne (EPFL), Station 15, CH-1015 Lausanne, Switzerland; Phone: +41 (0) 21 693 9522; Fax: +41 (0) 21 693 9600;
| |
Collapse
|
399
|
Metabolomics signature improves the prediction of cardiovascular events in elderly subjects. Atherosclerosis 2013; 232:260-4. [PMID: 24468136 DOI: 10.1016/j.atherosclerosis.2013.10.029] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023]
Abstract
AIMS Age is one of the most important determinants of cardiovascular health, therefore the management of cardiovascular diseases (CVD) in elderly people entails great challenge. A possible explanation of vascular senescence process is the mitochondrial damage and dysfunction. We hypothesized that metabolomic profiling would identify biomarkers predicting major cardiovascular events (MACEs) in elderly people, improving the clinical standard cardiovascular risk factors. METHODS AND RESULTS Targeted-mass-spectrometry-based profiling of 49 metabolites was performed in a group of very old participants (n = 67, mean age = 85 ± 3 years) with a high rate of previous CVD (68%). Principal Component Analysis, Random Survival Forest analysis and Cox proportional hazards regression modeling were used to evaluate the relation between the metabolite factors and recurring MACEs. We tested discrimination ability and reclassification of clinical and metabolomic models. At follow-up (median = 3.5 years), 17 MACEs occurred (5 cardiovascular deaths, 1 nonfatal myocardial infarction, 7 nonfatal strokes and 4 peripheral artery surgeries) (incidence = 7.3% person-years). Metabolite factor 1, composed by medium- and long-chain acylcarnitines, and factor 7 (alanine) were independently associated with MACEs, after adjustment for clinical CV covariates [HR = 1.77 (95%CI = 1.11-2.81, p = 0.016) and HR = 2.18 (95%CI = 1.17-4.07, p = 0.014), respectively]. However, only factor 1 significantly increases the prediction accuracy of the Framingham Recurring-Coronary-Heart-Disease-Score, with a significant improvement in discrimination (integrated discrimination improvement = 7%, p = 0.01) and correctly reclassifying 41% of events and 37% of non-events resulting in a cNRI = 0.79 (p = 0.005). CONCLUSIONS Aging mitochondrial dysfunction evaluated by metabolomic profiling is associated with MACEs, independently of standard predictors.
Collapse
|
400
|
Loss of P2X7 nucleotide receptor function leads to abnormal fat distribution in mice. Purinergic Signal 2013; 10:291-304. [PMID: 24222214 DOI: 10.1007/s11302-013-9388-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/10/2013] [Indexed: 12/26/2022] Open
Abstract
The P2X7 receptor is an ATP-gated cation channel expressed by a number of cell types. We have shown previously that disruption of P2X7 receptor function results in downregulation of osteogenic markers and upregulation of adipogenic markers in calvarial cell cultures. In the present study, we assessed whether loss of P2X7 receptor function results in changes to adipocyte distribution and lipid accumulation in vivo. Male P2X7 loss-of-function (KO) mice exhibited significantly greater body weight and epididymal fat pad mass than wild-type (WT) mice at 9 months of age. Fat pad adipocytes did not differ in size, consistent with adipocyte hyperplasia rather than hypertrophy. Histological examination revealed ectopic lipid accumulation in the form of adipocytes and/or lipid droplets in several non-adipose tissues of older male KO mice (9-12 months of age). Ectopic lipid was observed in kidney, extraorbital lacrimal gland and pancreas, but not in liver, heart or skeletal muscle. Specifically, lacrimal gland and pancreas from 12-month-old male KO mice had greater numbers of adipocytes in perivascular, periductal and acinar regions. As well, lipid droplets accumulated in the renal tubular epithelium and lacrimal acinar cells. Blood plasma analyses revealed diminished total cholesterol levels in 9- and 12-month-old male KO mice compared with WT controls. Interestingly, no differences were observed in female mice. Moreover, there were no significant differences in food consumption between male KO and WT mice. Taken together, these data establish novel in vivo roles for the P2X7 receptor in regulating adipogenesis and lipid metabolism in an age- and sex-dependent manner.
Collapse
|