351
|
Attar RM, Gilman MZ. Expression cloning of a novel zinc finger protein that binds to the c-fos serum response element. Mol Cell Biol 1992; 12:2432-43. [PMID: 1569959 PMCID: PMC364416 DOI: 10.1128/mcb.12.5.2432-2443.1992] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Induction of c-fos transcription by serum growth factors requires the serum response element (SRE). The SRE is a multifunctional element which responds to several positively and negatively acting signals. To identify cellular proteins that might mediate functions of the SRE, we screened a human cDNA expression library with an SRE probe. We report the isolation and characterization of SRE-ZBP, a previously unidentified SRE-binding protein. SRE-ZBP is a member of the C2H2 zinc finger family of proteins exemplified by TFIIIA and the Drosophila Krüppel protein. The seven tandemly repeated zinc finger motifs in SRE-ZBP are sufficient for high-affinity binding to the SRE. We show that SRE-ZBP is a nuclear protein and identify a candidate cellular protein encoded by the SRE-ZBP gene. Because we cannot detect any DNA-binding activity attributable to the endogenous protein, we propose that SRE-ZBP activity may be subject to posttranslational regulation. Like c-fos mRNA, SRE-ZBP mRNA is serum inducible in HeLa cells, but with slower kinetics. The role of SRE-ZBP in the regulation of c-fos transcription remains unestablished, but this protein binds to a region of the SRE where mutations lead to derepression.
Collapse
Affiliation(s)
- R M Attar
- Cold Spring Harbor Laboratory, New York 11724
| | | |
Collapse
|
352
|
Wang X, Lee G, Liebhaber S, Cooke N. Human cysteine-rich protein. A member of the LIM/double-finger family displaying coordinate serum induction with c-myc. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50405-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
353
|
Omichinski JG, Clore GM, Robien M, Sakaguchi K, Appella E, Gronenborn AM. High-resolution solution structure of the double Cys2His2 zinc finger from the human enhancer binding protein MBP-1. Biochemistry 1992; 31:3907-17. [PMID: 1567844 DOI: 10.1021/bi00131a004] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The high-resolution three-dimensional structure of a synthetic 57-residue peptide comprising the double zinc finger of the human enhancer binding protein MBP-1 has been determined in solution by nuclear magnetic resonance spectroscopy on the basis of 1280 experimental restraints. A total of 30 simulated annealing structures were calculated. The backbone atomic root-mean-square distributions about the mean coordinate positions are 0.32 and 0.33 A for the N- and C-terminal fingers, respectively, and the corresponding values for all atoms, excluding disordered surface side chains, are 0.36 and 0.40 A. Each finger comprises an irregular antiparallel sheet and a helix, with the zinc tetrahedrally coordinated to two cysteines and two histidines. The overall structure is nonglobular in nature, and the angle between the long axes of the helices is 47 +/- 5 degrees. The long axis of the antiparallel sheet in the N-terminal finger is approximately parallel to that of the helix in the C-terminal finger. Comparison of this structure with the X-ray structure of the Zif-268 triple finger complexed with DNA indicates that the relative orientation of the individual zinc fingers is clearly distinct in the two cases. This difference can be attributed to the presence of a long Lys side chain in the C-terminal finger of MBP-1 at position 40, instead of a short Ala or Ser side chain at the equivalent position in Zif-268. This finding suggests that different contacts may be involved in the binding of the zinc fingers of MBP-1 and Zif-268 to DNA, consistent with the findings from methylation interference experiments that the two fingers of MBP-1 contact 10 base pairs, while the three fingers of Zif-268 contact only 9 base pairs.
Collapse
Affiliation(s)
- J G Omichinski
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
354
|
Farber JM. A collection of mRNA species that are inducible in the RAW 264.7 mouse macrophage cell line by gamma interferon and other agents. Mol Cell Biol 1992; 12:1535-45. [PMID: 1372386 PMCID: PMC369595 DOI: 10.1128/mcb.12.4.1535-1545.1992] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify genes induced during macrophage activation, a cDNA library was prepared from cultures of the RAW 264.7 mouse macrophage cell line that had been treated with conditioned medium from mitogen-stimulated spleen cells, and the cDNA library was screened by differential plaque hybridization. Eleven cDNA clones, designated CRG-1 through CRG-11, corresponding to mRNA species inducible in RAW 264.7 cells by the spleen cell conditioned medium, were isolated. Inductions were not blocked by cycloheximide. All of the mRNAs were inducible by gamma interferon, and some were also inducible by alpha and beta interferons, by lipopolysaccharide, by phorbol 12-myristate 13-acetate, and by the calcium ionophore A23187. Sequencing of the cDNAs revealed that CRG-1, CRG-3, and CRG-5 are cDNAs of recently identified transcription factors IRF-1, zif/268, and LRF-1 respectively. As previously reported, CRG-2 and CRG-10 (MIG) encode new members of the platelet factor 4 family of cytokines. CRG-6 corresponds to a new member of a family of interferon-inducible genes clustered on mouse chromosome 1, CRG-9 corresponds to a prostaglandin synthase homolog, CRG-8 corresponds to beta 2-microglobulin, and CRG-4 corresponds to metallothionein II. CRG-11 contains sequences of a truncated L1Md repetitive element as well as nonrepetitive sequences. The nonrepetitive sequence of CRG-11 as well as the sequences of CRG-7 are not closely related to published sequences. The CRG genes and proteins are of interest because of their involvement in macrophage activation, because of their roles as mediators of the effects of gamma interferon and other pleiotropic agents, and because of their usefulness as tools for studying the signal pathways through which gamma interferon and other inducers exert their effects on gene and protein expression.
Collapse
Affiliation(s)
- J M Farber
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
355
|
A collection of mRNA species that are inducible in the RAW 264.7 mouse macrophage cell line by gamma interferon and other agents. Mol Cell Biol 1992. [PMID: 1372386 DOI: 10.1128/mcb.12.4.1535] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify genes induced during macrophage activation, a cDNA library was prepared from cultures of the RAW 264.7 mouse macrophage cell line that had been treated with conditioned medium from mitogen-stimulated spleen cells, and the cDNA library was screened by differential plaque hybridization. Eleven cDNA clones, designated CRG-1 through CRG-11, corresponding to mRNA species inducible in RAW 264.7 cells by the spleen cell conditioned medium, were isolated. Inductions were not blocked by cycloheximide. All of the mRNAs were inducible by gamma interferon, and some were also inducible by alpha and beta interferons, by lipopolysaccharide, by phorbol 12-myristate 13-acetate, and by the calcium ionophore A23187. Sequencing of the cDNAs revealed that CRG-1, CRG-3, and CRG-5 are cDNAs of recently identified transcription factors IRF-1, zif/268, and LRF-1 respectively. As previously reported, CRG-2 and CRG-10 (MIG) encode new members of the platelet factor 4 family of cytokines. CRG-6 corresponds to a new member of a family of interferon-inducible genes clustered on mouse chromosome 1, CRG-9 corresponds to a prostaglandin synthase homolog, CRG-8 corresponds to beta 2-microglobulin, and CRG-4 corresponds to metallothionein II. CRG-11 contains sequences of a truncated L1Md repetitive element as well as nonrepetitive sequences. The nonrepetitive sequence of CRG-11 as well as the sequences of CRG-7 are not closely related to published sequences. The CRG genes and proteins are of interest because of their involvement in macrophage activation, because of their roles as mediators of the effects of gamma interferon and other pleiotropic agents, and because of their usefulness as tools for studying the signal pathways through which gamma interferon and other inducers exert their effects on gene and protein expression.
Collapse
|
356
|
Mackman N, Imes S, Maske WH, Taylor B, Lusis AJ, Drake TA. Structure of the murine tissue factor gene. Chromosome location and conservation of regulatory elements in the promoter. ACTA ACUST UNITED AC 1992; 12:474-83. [PMID: 1348427 DOI: 10.1161/01.atv.12.4.474] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tissue factor (TF) is a transmembrane glycoprotein that mediates cellular initiation of the coagulation serine protease cascades. Moreover, expression of TF in human atherosclerotic plaques is likely to play a significant role in the thrombotic complications associated with plaque rupture. In this study the complete murine TF gene, Cf-3, was isolated from mouse NIH 3T3 cells and was found to consist of six exons spanning about 11 kilobase pairs (kbp) of DNA. A major transcriptional start site was located 24 bp downstream of a TATA box. Cf-3 was mapped to chromosome 3 by analysis of an intersubspecies test cross. Conserved transcription factor-binding sites were identified by comparison of 5' flanking regions of the murine and human TF genes. A region of the TF promoter required for constitutive expression exhibited 85% identity in DNA sequence and included two conserved binding sites for Sp1. Furthermore, two AP-1 sites and an NF-kappa B site were conserved in a 56-bp region necessary for transcriptional activation in response to bacterial lipopolysaccharide. These highly conserved regions of the TF promoter, which contain several binding sites for well-characterized transcription factors, are likely to be functionally important in the complex pattern of TF gene expression observed in a variety of cell types.
Collapse
Affiliation(s)
- N Mackman
- Department of Immunology, Scripps Research Institute, La Jolla, CA 92037
| | | | | | | | | | | |
Collapse
|
357
|
Barker PA, Murphy RA. The nerve growth factor receptor: a multicomponent system that mediates the actions of the neurotrophin family of proteins. Mol Cell Biochem 1992; 110:1-15. [PMID: 1315923 DOI: 10.1007/bf02385000] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3) are members of a family of structurally related proteins termed neurotrophins that promote the growth and survival of neurons in the central and peripheral nervous systems. Each of these proteins bind to at least two membrane receptors. One is the low affinity nerve growth factor receptor (p75), which binds each member of the neurotrophin family. The other is one of a family of tyrosine kinase receptors--trkA binds only NGF, the related trkB receptor binds BDNF and NT-3, and trkC binds NT-3 alone. This article reviews kinetic and biochemical information on p75 and its relationship to the trk gene products.
Collapse
Affiliation(s)
- P A Barker
- Department of Anatomy and Cell Biology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
358
|
Sukhatme VP. The Egr transcription factor family: from signal transduction to kidney differentiation. Kidney Int 1992; 41:550-3. [PMID: 1573826 DOI: 10.1038/ki.1992.79] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- V P Sukhatme
- University of Chicago, Pritzker School of Medicine, Department of Medicine, (Nephrology), Illinois
| |
Collapse
|
359
|
Cloning of a negative transcription factor that binds to the upstream conserved region of Moloney murine leukemia virus. Mol Cell Biol 1992. [PMID: 1309593 DOI: 10.1128/mcb.12.1.38] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The long terminal repeat of Moloney murine leukemia virus (MuLV) contains the upstream conserved region (UCR). The UCR core sequence, CGCCATTTT, binds a ubiquitous nuclear factor and mediates negative regulation of MuLV promoter activity. We have isolated murine cDNA clones encoding a protein, referred to as UCRBP, that binds specifically to the UCR core sequence. Gel mobility shift assays demonstrate that the UCRBP fusion protein expressed in bacteria binds the UCR core with specificity identical to that of the UCR-binding factor in the nucleus of murine and human cells. Analysis of full-length UCRBP cDNA reveals that it has a putative zinc finger domain composed of four C2H2 zinc fingers of the GLI subgroup and an N-terminal region containing alternating charges, including a stretch of 12 histidine residues. The 2.4-kb UCRBP message is expressed in all cell lines examined (teratocarcinoma, B- and T-cell, macrophage, fibroblast, and myocyte), consistent with the ubiquitous expression of the UCR-binding factor. Transient transfection of an expressible UCRBP cDNA into fibroblasts results in down-regulation of MuLV promoter activity, in agreement with previous functional analysis of the UCR. Recently three groups have independently isolated human and mouse UCRBP. These studies show that UCRBP binds to various target motifs that are distinct from the UCR motif: the adeno-associated virus P5 promoter and elements in the immunoglobulin light- and heavy-chain genes, as well as elements in ribosomal protein genes. These results indicate that UCRBP has unusually diverse DNA-binding specificity and as such is likely to regulate expression of many different genes.
Collapse
|
360
|
Wilson T, Day M, Pexton T, Padgett K, Johnston M, Milbrandt J. In vivo mutational analysis of the NGFI-A zinc fingers. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50584-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
361
|
Lazo PS, Dorfman K, Noguchi T, Mattéi MG, Bravo R. Structure and mapping of the fosB gene. FosB downregulates the activity of the fosB promoter. Nucleic Acids Res 1992; 20:343-50. [PMID: 1741260 PMCID: PMC310376 DOI: 10.1093/nar/20.2.343] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have determined the genomic structure of the fosB gene and shown that it consists of 4 exons and 3 introns at positions also found in the c-fos gene. By deletion analysis we have characterized a region upstream of the TATA box which is the promoter region of the gene. Several consensus sequences have been identified, including an SRE and AP-1 binding site whose relative positions are identical to those in the 5' upstream region of the c-fos gene. We have also shown that FosB and c-Fos can downregulate the activity of the fosB promoter to a similar extent. The fosB gene is located in the [A1-B1] region of mouse chromosome 7.
Collapse
Affiliation(s)
- P S Lazo
- Department of Molecular Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543-74000
| | | | | | | | | |
Collapse
|
362
|
Pollwein P, Masters CL, Beyreuther K. The expression of the amyloid precursor protein (APP) is regulated by two GC-elements in the promoter. Nucleic Acids Res 1992; 20:63-8. [PMID: 1738605 PMCID: PMC310326 DOI: 10.1093/nar/20.1.63] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The structure of the promoter of the human APP gene resembles that of housekeeping genes, with the presence of a GC-rich region and the lack of a canonical TATA box. Since analysis of the expression of the APP gene, especially at the transcriptional level, might reveal factors or elements, which influence amyloid formation in Alzheimer's disease, a 5' deletion analysis of the APP promoter was performed, leading to the identification of an activating DNA fragment (Ac), acting also on a heterologous promoter. DNaseI-footprint analysis revealed three protected regions on the Ac fragment. Further gene transfer experiments showed, that at least two elements, designated A and C, confer transcriptional activity in HeLa cells. Whereas the proximal element A is a 19bp long GC-rich DNA sequence, the distal element C is a GC-palindrome with the sequence 5'GCGGCGCCGC.
Collapse
Affiliation(s)
- P Pollwein
- Center for Molecular Biology Heidelberg (ZMBH), University of Heidelberg, FRG
| | | | | |
Collapse
|
363
|
Affiliation(s)
- S Faisst
- Oncologie Moléculaire, Institut Pasteur de Lille, France
| | | |
Collapse
|
364
|
den Hertog J, de Groot RP, de Laat SW, Kruijer W. EGF-induced jun B-expression in transfected P19 embryonal carcinoma cells expressing EGF-receptors is dependent on Jun D. Nucleic Acids Res 1992; 20:125-30. [PMID: 1738590 PMCID: PMC310335 DOI: 10.1093/nar/20.1.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The TPA-inducible transcription factor AP-1, consisting of homo- or hetero-dimers of members of the Jun- and Fos-families, regulates transcription of a wide variety of genes containing the TPA response element (TRE). In P19 embryonal carcinoma (EC) cells, Jun D is the only component of AP-1 expressed, while in these cells until now none of the members of the jun- and fos-families have been found to be inducable by external stimuli. Here we demonstrate that Jun B is the only member of the Jun- and Fos-families that is induced by Epidermal Growth Factor (EGF) in transfected murine P19 EC cells, expressing functional human EGF receptors (hEGF-Rs). Induction of jun B can be mimicked in wild type P19 EC cells by the synergistic action of the phorbol ester TPA and the calcium ionophore A23187, through activation of signal transduction pathways, that are activated simultaneously by EGF. The EGF induced jun B expression in the hEGF-R expressing P19 EC cells is mediated by an inverted repeat (IR) sequence in the jun B promoter, previously shown to be responsive to both PKC and PKA signal transduction. Transactivation of the IR sequence by EGF can be blocked completely by prior expression of antisense Jun D, but not by antisense c-Jun. These studies therefore implicate Jun D in the regulation of immediate early gene expression by external stimuli.
Collapse
Affiliation(s)
- J den Hertog
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht
| | | | | | | |
Collapse
|
365
|
Rorsman F, Betsholtz C. Characterization of the mouse PDGF A-chain gene. Evolutionary conservation of gene structure, nucleotide sequence and alternative splicing. Growth Factors 1992; 6:303-13. [PMID: 1340209 DOI: 10.3109/08977199209021542] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mouse platelet-derived growth factor (PDGF) A-chain gene has been structurally characterized and compared with its human counterpart. The organization of the two genes is similar. Both consist of 7 exons spaced by 6 introns of corresponding sizes. As in the human gene, exon 6 encodes a sequence which is alternatively spliced. When present, it codes for an alternative C-terminus of the A-chain. In intron 5, conserved stretches of nucleotides, potentially involved in the regulation of the alternative splicing, are identified. The untranslated sequences show a high degree of nucleotide sequence identity and several conserved consensus binding sites for transcription factors are identified within the 5' untranslated as well as in the 5' flanking region.
Collapse
Affiliation(s)
- F Rorsman
- Department of Pathology, University Hospital, Uppsala, Sweden
| | | |
Collapse
|
366
|
Flanagan JR, Becker KG, Ennist DL, Gleason SL, Driggers PH, Levi BZ, Appella E, Ozato K. Cloning of a negative transcription factor that binds to the upstream conserved region of Moloney murine leukemia virus. Mol Cell Biol 1992; 12:38-44. [PMID: 1309593 PMCID: PMC364067 DOI: 10.1128/mcb.12.1.38-44.1992] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The long terminal repeat of Moloney murine leukemia virus (MuLV) contains the upstream conserved region (UCR). The UCR core sequence, CGCCATTTT, binds a ubiquitous nuclear factor and mediates negative regulation of MuLV promoter activity. We have isolated murine cDNA clones encoding a protein, referred to as UCRBP, that binds specifically to the UCR core sequence. Gel mobility shift assays demonstrate that the UCRBP fusion protein expressed in bacteria binds the UCR core with specificity identical to that of the UCR-binding factor in the nucleus of murine and human cells. Analysis of full-length UCRBP cDNA reveals that it has a putative zinc finger domain composed of four C2H2 zinc fingers of the GLI subgroup and an N-terminal region containing alternating charges, including a stretch of 12 histidine residues. The 2.4-kb UCRBP message is expressed in all cell lines examined (teratocarcinoma, B- and T-cell, macrophage, fibroblast, and myocyte), consistent with the ubiquitous expression of the UCR-binding factor. Transient transfection of an expressible UCRBP cDNA into fibroblasts results in down-regulation of MuLV promoter activity, in agreement with previous functional analysis of the UCR. Recently three groups have independently isolated human and mouse UCRBP. These studies show that UCRBP binds to various target motifs that are distinct from the UCR motif: the adeno-associated virus P5 promoter and elements in the immunoglobulin light- and heavy-chain genes, as well as elements in ribosomal protein genes. These results indicate that UCRBP has unusually diverse DNA-binding specificity and as such is likely to regulate expression of many different genes.
Collapse
Affiliation(s)
- J R Flanagan
- Department of Internal Medicine, University of Iowa, Iowa City 52242
| | | | | | | | | | | | | | | |
Collapse
|
367
|
Regulation of the Egr-1 gene by tumor necrosis factor and interferons in primary human fibroblasts. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48437-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
368
|
Murphy TH, Worley PF, Nakabeppu Y, Christy B, Gastel J, Baraban JM. Synaptic regulation of immediate early gene expression in primary cultures of cortical neurons. J Neurochem 1991; 57:1862-72. [PMID: 1719131 DOI: 10.1111/j.1471-4159.1991.tb06396.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuronal stimulation can rapidly activate several immediate early genes that code for transcription factors. We have used primary cortical cultures to study the regulation of four of these genes, c-fos, c-jun, jun-B, and zif268. Immunocytochemical studies with antibodies to Jun-B, c-Jun, and c-Fos demonstrate intense staining in the nuclei of a subset of cortical neurons in mature cultures (21-25 days in vitro) but not young cultures (3-7 days in vitro). To assess whether this immunoreactivity may be induced by spontaneous synaptic activity that develops with a similar profile, we examined the effects of agents that reduce this synaptic activity. Tetrodotoxin or N-methyl-D-aspartate receptor antagonists suppress basal immunoreactivity to Jun-B and c-Fos, but not c-Jun, indicating that the basal level of c-Jun expression is not dependent on electrical activity. Picrotoxin, an agent that increases synaptic excitation indirectly by blocking inhibitory synaptic currents mediated by gamma-aminobutyric acidA receptors, markedly increases the percentage of neurons displaying immunoreactivity to c-Fos, c-Jun, Jun-B, and Zif268. Northern analysis suggests that the increases in immunostaining induced by picrotoxin are secondary to a rapid increase in mRNA for these proteins. These findings provide evidence for rapid transcriptional regulation of immediate early genes in cortical neurons by synaptic activity.
Collapse
Affiliation(s)
- T H Murphy
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | | | |
Collapse
|
369
|
Müller HJ, Skerka C, Bialonski A, Zipfel PF. Clone pAT 133 identifies a gene that encodes another human member of a class of growth factor-induced genes with almost identical zinc-finger domains. Proc Natl Acad Sci U S A 1991; 88:10079-83. [PMID: 1658795 PMCID: PMC52871 DOI: 10.1073/pnas.88.22.10079] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We report the structure and regulation of a gene represented by clone pAT 133, which is induced upon transition from a resting state (G0) through the early phase of the cell cycle (G1). The pAT 133 gene is immediately induced, with FOS-like kinetics, in human T cells and in fibroblasts. Primary structure analysis showed that the encoded protein contains three tandem zinc-finger sequences of the type Cys2-Xaa12-His2. This zinc-finger region, which is thought to bind DNA in a sequence-specific manner, is similar (greater than 80% on the amino acid level) to two previously described transcription factors pAT 225/EGR1 and pAT 591/EGR2. Except for the conserved zinc-finger domains, the amino acid sequences of the three proteins are distinct. This structural similarity suggests that the pAT 133 gene encodes a transcription factor with a specific biological function. Comparing the regulation of these related zinc-finger-encoding genes showed coordinate induction upon mitogenic stimulation of resting T lymphocytes and of resting fibroblasts. However, upon transition from a proliferating (G1) to a resting state of the cell cycle the three genes were differently regulated. In human histiocytic U937 cells mRNA of clone pAT 133 was constitutively expressed, whereas mRNA of pAT 225/EGR1 was induced upon induction of terminal differentiation. In contrast mRNA representing pAT 591/EGR2 was not expressed in these cells. This difference in gene regulation suggests distinct biological roles in the control of cell proliferation for the respective proteins.
Collapse
Affiliation(s)
- H J Müller
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
370
|
Herdegen T, Kovary K, Leah J, Bravo R. Specific temporal and spatial distribution of JUN, FOS, and KROX-24 proteins in spinal neurons following noxious transsynaptic stimulation. J Comp Neurol 1991; 313:178-91. [PMID: 1761754 DOI: 10.1002/cne.903130113] [Citation(s) in RCA: 295] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We present the first comparative investigation of the basal and transsynaptically induced expression of c-JUN, JUN B, JUN D, c-FOS, FOS B, and KROX-24 proteins in the spinal cord, using immunocytochemistry with specific antibodies. We demonstrate that electrical stimulation of the sciatic nerve at A delta/C-fiber (not A alpha/beta-fiber) intensity strongly induces the expression of these immediate-early gene-encoded proteins. Basal immunoreactivity was found for c-JUN in motoneurons, for JUN D in almost every cell of the gray matter, and for KROX-24 in the superficial dorsal horn. One hour after electrical stimulation of the sciatic nerve at A delta/C-fiber intensity, expression of all proteins except JUN D reached its maximum. Initially immunoreactivity was restricted to the ipsilateral dorsal horn, but after 4 hours appeared contralaterally. Expression of JUN D was increased only after 4 hours. Within the dorsal horn, the expression of c-JUN, JUN B, FOS B, and KROX-24 was mainly restricted to the superficial layers. Immunoreactivity decreased to basal levels between 8 and 16 hours. c-FOS and JUN D were expressed in both the superficial and deep dorsal horn; in the latter, c-FOS and JUN D persisted longer. Induced JUN D was present the longest and was still visible after 32 hours. In motoneurons of the ipsilateral ventral horn, c-JUN, JUN D, and c-FOS appeared after 8 hours. Surgical exposure of the sciatic nerve evoked a strikingly prolonged expression of all proteins compared to that following electrical stimulation of the sciatic nerve. Our results demonstrate that stimulation of nociceptive A delta- and C-fibers induces early and late expression of proteins encoded by immediate-early genes with a specific temporal and spatial distribution of the expression of each protein. Furthermore, the extent of protein expression reflects the intensity of noxious stimulation.
Collapse
Affiliation(s)
- T Herdegen
- Physiologisches Institut, Universität Heidelberg, Germany
| | | | | | | |
Collapse
|
371
|
The murine adenosine deaminase promoter requires an atypical TATA box which binds transcription factor IID and transcriptional activity is stimulated by multiple upstream Sp1 binding sites. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54702-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
372
|
Ackerman SL, Minden AG, Williams GT, Bobonis C, Yeung CY. Functional significance of an overlapping consensus binding motif for Sp1 and Zif268 in the murine adenosine deaminase gene promoter. Proc Natl Acad Sci U S A 1991; 88:7523-7. [PMID: 1881892 PMCID: PMC52333 DOI: 10.1073/pnas.88.17.7523] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The murine adenosine deaminase (ADA) gene has a (G + C)-rich promoter that can support diverse tissue-specific gene expression. By using deletion and mutation analyses, we have identified a cis-acting "repressor" element located immediately upstream of the proximal Sp1 binding site in the ADA gene promoter. This repressor element was localized to a binding site for the immediate-early, serum-responsive, DNA binding factor Zif268. This Zif268 binding site partially overlaps a binding site for the general transcription activator Sp1. Disruption of the Zif268 binding site without disturbing the Sp1 binding motif abolished Zif268 binding and resulted in significantly elevated promoter function. Conversely, disruption of the proximal consensus Sp1 binding motif without disturbing the Zif268 binding site resulted in a loss of Sp1 binding at that region and greatly reduced promoter activity. Our results suggest that one function of Zif268 may be to down-regulate this type of mammalian gene promoter by competing with Sp1 for binding to the overlapping binding motif.
Collapse
Affiliation(s)
- S L Ackerman
- Department of Genetics, University of Illinois College of Medicine, Chicago 60612
| | | | | | | | | |
Collapse
|
373
|
Machida CM, Scott JD, Ciment G. NGF-induction of the metalloproteinase-transin/stromelysin in PC12 cells: involvement of multiple protein kinases. J Biophys Biochem Cytol 1991; 114:1037-48. [PMID: 1908468 PMCID: PMC2289118 DOI: 10.1083/jcb.114.5.1037] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In previous work, we found that nerve growth factor (NGF) induced expression of the mRNA transcript encoding the metalloproteinase transin/stromelysin in PC12 cells. Transin was found, moreover, to be a "late" gene product whose expression correlated with neurites extension. In this study, various aspects of the NGF intracellular signaling pathway in PC12 cells are investigated. We show that the protein kinase inhibitor staurosporine, but not various other kinase inhibitors, specifically blocked the NGF induction of transin. Preliminary characterization of this staurosporine-sensitive kinase suggest that it does not correspond to a tyrosine kinase, nor various serine kinases, and that it is involved both at the transcriptional and posttranscriptional levels of transin gene regulation. In contrast to these effects of staurosporine, various activators of protein kinases C and A augmented the NGF induction of transin. Similar effects of these kinase inhibitors and activators were also observed with the expression of various immediate-early genes that have been proposed to mediate the transcriptional effects of NGF, including c-fos and c-jun. These data suggest, therefore, that the NGF induction of transin mRNA expression involves multiple protein kinases acting at a number of postreceptor regulatory steps in the NGF signaling pathway.
Collapse
Affiliation(s)
- C M Machida
- Department of Cell Biology and Anatomy, Oregon Health Sciences University, Portland 97201-3098
| | | | | |
Collapse
|
374
|
The early response gene NGFI-C encodes a zinc finger transcriptional activator and is a member of the GCGGGGGCG (GSG) element-binding protein family. Mol Cell Biol 1991. [PMID: 2072895 DOI: 10.1128/mcb.11.8.3835] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned NGFI-C, a nerve growth factor-induced early-response gene which encodes a Cys2/His2 zinc finger protein. RNA blot analysis demonstrates that NGFI-C mRNA is induced within minutes of stimulation of PC12 cells by nerve growth factor and is similarly activated in brain after a Metrazol-induced seizure. The cDNA sequence predicts a protein that contains three zinc fingers which show striking homology to the DNA-binding regions of three previously reported zinc finger proteins, NGFI-A, Krox-20, and the Wilms' tumor gene product. NGFI-C binds to the previously described DNA-binding site of these three proteins, which is GCGGGGGCG. Cotransfection experiments revealed that NGFI-C strongly activates transcription from this site in mammalian cells. The isolation of another early-response gene that encodes a member of the G(C/G)G or GSG element-binding family should provide an opportunity to investigate the relative contributions of a family of transcription factors to the cell's response to changes in its environment.
Collapse
|
375
|
Holt PR, DuBois RN. In vivo immediate early gene expression induced in intestinal and colonic mucosa by feeding. FEBS Lett 1991; 287:102-4. [PMID: 1715281 DOI: 10.1016/0014-5793(91)80025-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since the gut responds rapidly to food intake, the levels of expression of several immediate early genes were measured in mucosa from small and large intestine of rats starved for 3 days or refed. Within 1 h of refeeding, jejunal and ileal c-fos, jun B and zif/268 mRNA and colonic zif/268 dramatically increased. The zif/268 gene in jejunum corresponded in size to the full-length cDNA but, in ileum, an RNA band of about 1.2 kb in size increased greatly after feeding. This represents a physiologic in vivo model for the study of gene regulation associated with intestinal epithelial cellular responses to feeding.
Collapse
Affiliation(s)
- P R Holt
- Division of Gastroenterology, St. Luke's/Roosevelt Hospital Center, New York, NY 10025
| | | |
Collapse
|
376
|
Crosby SD, Puetz JJ, Simburger KS, Fahrner TJ, Milbrandt J. The early response gene NGFI-C encodes a zinc finger transcriptional activator and is a member of the GCGGGGGCG (GSG) element-binding protein family. Mol Cell Biol 1991; 11:3835-41. [PMID: 2072895 PMCID: PMC361165 DOI: 10.1128/mcb.11.8.3835-3841.1991] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have cloned NGFI-C, a nerve growth factor-induced early-response gene which encodes a Cys2/His2 zinc finger protein. RNA blot analysis demonstrates that NGFI-C mRNA is induced within minutes of stimulation of PC12 cells by nerve growth factor and is similarly activated in brain after a Metrazol-induced seizure. The cDNA sequence predicts a protein that contains three zinc fingers which show striking homology to the DNA-binding regions of three previously reported zinc finger proteins, NGFI-A, Krox-20, and the Wilms' tumor gene product. NGFI-C binds to the previously described DNA-binding site of these three proteins, which is GCGGGGGCG. Cotransfection experiments revealed that NGFI-C strongly activates transcription from this site in mammalian cells. The isolation of another early-response gene that encodes a member of the G(C/G)G or GSG element-binding family should provide an opportunity to investigate the relative contributions of a family of transcription factors to the cell's response to changes in its environment.
Collapse
Affiliation(s)
- S D Crosby
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | |
Collapse
|
377
|
The ras-related gene rhoB is an immediate-early gene inducible by v-Fps, epidermal growth factor, and platelet-derived growth factor in rat fibroblasts. Mol Cell Biol 1991. [PMID: 1710770 DOI: 10.1128/mcb.11.7.3682] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A set of genes is rapidly inducible when quiescent fibroblasts are stimulated by growth factors or by the activation of temperature-sensitive retroviral protein-tyrosine kinases. Most of these so-called immediate-early genes were cloned by differential cDNA hybridization. DNA sequence analysis identified many of them as putative members of the growth factor or of the transcription factor gene family, suggesting a role in signal transmission during the G0-to-G1 transition. In this study, we identified one of the genes that are rapidly inducible by the retroviral protein-tyrosine kinases v-Src and v-Fps of Rous sarcoma virus and Fujinami sarcoma virus, respectively, as the rhoB gene, a member of the ras gene superfamily whose products are GTP-binding proteins, rhoB is transiently activated at the transcriptional level by v-Fps and by epidermal growth factor. Its labile RNA is inducible in the presence of cycloheximide but not of actinomycin D. rhoB is strongly induced by epidermal growth factor and by platelet-derived growth factor both in subconfluent, serum-starved and in density-arrested Rat-2 fibroblasts. Fetal calf serum is a poor inducer, particularly in density-arrested cells, and phorbol esters do not increase rhoB expression at all. These data suggest that rhoB is inducible by protein-tyrosine kinases through a pathway not involving the activation of protein kinase C. Neither the closely related rhoC and rhoA genes nor the distantly related c-H-ras gene is rapidly inducible by mitogens. Thus, rhoB is the first known member of the small GTP-binding proteins among the immediate-early genes.
Collapse
|
378
|
In vitro analysis of the tissue plasminogen activator promoter reveals a GC box-binding activity present in murine brain but undetectable in kidney and liver. Mol Cell Biol 1991. [PMID: 1710025 DOI: 10.1128/mcb.11.6.3139] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tissue plasminogen activator (t-PA) mRNA levels are high in murine brain, lower in kidney, and undetectable in liver. Differences in t-PA mRNA levels are regulated in part at the transcriptional level. Brain, kidney, and liver nuclear extracts direct regulated transcription from the murine t-PA promoter in a manner that reflects the relative levels of t-PA gene expression in these tissues in vivo. Analysis of mutants has defined two GC box motifs as important elements for regulated transcription in vitro. Upon investigation of protein-DNA binding, we detected an activity in brain extracts which was not detected in kidney or liver extracts. An Sp1-like factor also binds to this region in all three tissue types. DNA interference experiments show that the brain-enriched binding activity and the Sp1-like factor contact the same GC-rich sequences. These studies provide additional evidence that brain-enriched DNA-binding activities can interact with sequences also recognized by ubiquitous transcription factors.
Collapse
|
379
|
Jähner D, Hunter T. The ras-related gene rhoB is an immediate-early gene inducible by v-Fps, epidermal growth factor, and platelet-derived growth factor in rat fibroblasts. Mol Cell Biol 1991; 11:3682-90. [PMID: 1710770 PMCID: PMC361128 DOI: 10.1128/mcb.11.7.3682-3690.1991] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A set of genes is rapidly inducible when quiescent fibroblasts are stimulated by growth factors or by the activation of temperature-sensitive retroviral protein-tyrosine kinases. Most of these so-called immediate-early genes were cloned by differential cDNA hybridization. DNA sequence analysis identified many of them as putative members of the growth factor or of the transcription factor gene family, suggesting a role in signal transmission during the G0-to-G1 transition. In this study, we identified one of the genes that are rapidly inducible by the retroviral protein-tyrosine kinases v-Src and v-Fps of Rous sarcoma virus and Fujinami sarcoma virus, respectively, as the rhoB gene, a member of the ras gene superfamily whose products are GTP-binding proteins, rhoB is transiently activated at the transcriptional level by v-Fps and by epidermal growth factor. Its labile RNA is inducible in the presence of cycloheximide but not of actinomycin D. rhoB is strongly induced by epidermal growth factor and by platelet-derived growth factor both in subconfluent, serum-starved and in density-arrested Rat-2 fibroblasts. Fetal calf serum is a poor inducer, particularly in density-arrested cells, and phorbol esters do not increase rhoB expression at all. These data suggest that rhoB is inducible by protein-tyrosine kinases through a pathway not involving the activation of protein kinase C. Neither the closely related rhoC and rhoA genes nor the distantly related c-H-ras gene is rapidly inducible by mitogens. Thus, rhoB is the first known member of the small GTP-binding proteins among the immediate-early genes.
Collapse
Affiliation(s)
- D Jähner
- Molecular Biology and Virology Laboratory, Salk Institute, San Diego, California 92186
| | | |
Collapse
|
380
|
Egr-1, a serum-inducible zinc finger protein, regulates transcription of the rat cardiac alpha-myosin heavy chain gene. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98762-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
381
|
Worley PF, Christy BA, Nakabeppu Y, Bhat RV, Cole AJ, Baraban JM. Constitutive expression of zif268 in neocortex is regulated by synaptic activity. Proc Natl Acad Sci U S A 1991; 88:5106-10. [PMID: 1828891 PMCID: PMC51820 DOI: 10.1073/pnas.88.12.5106] [Citation(s) in RCA: 206] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcription factors are rapidly and transiently induced in brain by excitatory stimuli and may be important in coordinating changes in gene expression underlying neuronal plasticity. In contrast to their transient induction after stimulation, certain transcription factors display stable, relatively high basal levels of expression in brain. Here we demonstrate that this "constitutive" expression of the transcription factor zif268 in cortex is driven by natural synaptic activity. Blockade of afferent visual activity with intraocular injections of tetrodotoxin results in rapid, dramatic reductions of Zif268 mRNA and immunoreactivity in visual cortex. Moreover, dark-adaptation for several days lowers zif268 expression in visual cortex, and expression rapidly returns to control levels upon subsequent light exposure. Several other transcription factors, which are induced in cortical neurons by excitatory stimuli, appear less responsive to changes in natural sensory input. These studies suggest that transcription factors play a role not only in responses to artificial stimuli but also in the normal maintenance of cortical physiology. Anatomic markers for zif268 may be useful in mapping normal cortical activity in brain.
Collapse
Affiliation(s)
- P F Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | | | |
Collapse
|
382
|
Pecorino LT, Darrow AL, Strickland S. In vitro analysis of the tissue plasminogen activator promoter reveals a GC box-binding activity present in murine brain but undetectable in kidney and liver. Mol Cell Biol 1991; 11:3139-47. [PMID: 1710025 PMCID: PMC360162 DOI: 10.1128/mcb.11.6.3139-3147.1991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tissue plasminogen activator (t-PA) mRNA levels are high in murine brain, lower in kidney, and undetectable in liver. Differences in t-PA mRNA levels are regulated in part at the transcriptional level. Brain, kidney, and liver nuclear extracts direct regulated transcription from the murine t-PA promoter in a manner that reflects the relative levels of t-PA gene expression in these tissues in vivo. Analysis of mutants has defined two GC box motifs as important elements for regulated transcription in vitro. Upon investigation of protein-DNA binding, we detected an activity in brain extracts which was not detected in kidney or liver extracts. An Sp1-like factor also binds to this region in all three tissue types. DNA interference experiments show that the brain-enriched binding activity and the Sp1-like factor contact the same GC-rich sequences. These studies provide additional evidence that brain-enriched DNA-binding activities can interact with sequences also recognized by ubiquitous transcription factors.
Collapse
Affiliation(s)
- L T Pecorino
- Program in Cellular and Developmental Biology, State University of New York, Stony Brook 11794-8651
| | | | | |
Collapse
|
383
|
Abstract
Extracellular ligands regulate the induction of several genes without the need for de novo protein synthesis. A subset of these so-called immediate-early response genes (IEG) encode transcription factors. This report focuses on the Egr group of zinc finger transcription factors. Their characterization should provide important insights into how cells respond to diverse extracellular signals.
Collapse
Affiliation(s)
- V P Sukhatme
- Department of Medicine (Nephrology), Howard Hughes Medical Institute, Chicago, IL 60637
| |
Collapse
|
384
|
Abraham WC, Dragunow M, Tate WP. The role of immediate early genes in the stabilization of long-term potentiation. Mol Neurobiol 1991; 5:297-314. [PMID: 1688055 DOI: 10.1007/bf02935553] [Citation(s) in RCA: 194] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Immediate early genes (IEGs) are a class of genes that show rapid and transient but protein synthesis-independent increases in expression to extracellular signals such as growth factors and neurotransmitters. Many IEGs code for transcription factors that have been suggested to govern the growth and differentiation of many cell types by regulating the expression of other genes. IEGs are expressed in adult neurons both constitutively and in response to afferent activity, and it has been suggested that during learning, IEGs may play a role in the signal cascade, resulting in the expression of genes critical for the consolidation of long-term memory. Long-term potentiation (LTP) is a persistent, activity-dependent form of synaptic plasticity that stands as a good candidate for the mechanism of associative memory. A number of IEGs coding for transcription factors have been shown to transiently increase transcription in the dentate gyrus of rats following LTP-inducing afferent stimulation. These include zif/268 (also termed NGFI-A, Krox-24, TIS-8, and egr-l), c-fos-related genes, c-jun, junB, and junD. Of these, zif/268 appears to be the most specifically related to LTP since it is evoked under virtually all LTP-inducing situations and shows a remarkably high correlation with the duration of LTP. There are a number of outstanding questions regarding the role of zif/268 and other IEGs in LTP, including which second messenger systems are important for activating them, which "late effector" genes are regulated by them, and the exact role these genes play, if any, in the stabilization and maintenance of LTP.
Collapse
Affiliation(s)
- W C Abraham
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
385
|
Abstract
In this study we demonstrate that retinoic acid (RA) increases the expression of transcription factor zif268 mRNA in primary cultures of fetal rat calvarial cells and in simian virus 40-immortalized clonal rat calvarial preosteoblastic cells (RCT-1), which differentiate in response to RA, but not in the more differentiated RCT-3 and ROS 17/2.8 cells. The increased expression of zif268 mRNA is rapid (maximal within 1 h), transient (returns to basal levels by 3 h), detectable at RA doses of 10(-12)M, and independent of protein synthesis. The relative stimulation of zif268 mRNA by RA was much larger than that of other early genes, including c-fos, c-jun, and junB. The rate of transcription of RA-stimulated RCT-1 cells, estimated by nuclear run-on assays, was elevated, suggesting that RA regulation of zif268 gene transcription was at least in part transcriptional. Moreover, RA stimulated the transcriptional activity of a Zif268CAT (chloramphenicol acetyltransferase) plasmid containing 632 bp of zif268 5' regulatory sequences in RCT-1 cells but not in the more differentiated RCT-3 cells. These in vitro data support the in vivo observations which localize zif268 and RA receptor-gamma transcripts to bone and cartilage during development, suggesting that both RA and zif268 may play a role in osteoblast differentiation.
Collapse
|
386
|
A GC-rich element confers epidermal growth factor responsiveness to transcription from the gastrin promoter. Mol Cell Biol 1991. [PMID: 2017173 DOI: 10.1128/mcb.11.5.2686] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epidermal growth factor (EGF) and transforming growth factor alpha are important determinants of mucosal integrity in the gastrointestinal tract, and they act both directly and indirectly to prevent ulceration in the stomach. Consistent with this physiological role, EGF stimulates transcription of gastrin, a peptide hormone which regulates gastric acid secretion and mucosal growth. EGF stimulation of gastrin transcription is mediated by a GC-rich gastrin EGF response element (gERE) (GGGGCGGGGTGGGGGG) which lies between -54 and -68 in the human gastrin promoter. The gERE sequence also confers weaker responsiveness to phorbol ester stimulation. The gERE sequence differs from previously described EGF response elements. The gERE DNA sequence specifically interacts with a GH4 DNA-binding protein distinct from previously described transcription factors (Egr-1 and AP2) which bind GC-rich sequences and mediate transcriptional activation by growth factors. Furthermore, the gERE element does not bind the Sp1 transcription factor even though the gERE sequence contains a high-affinity Sp1-binding site (GGCGGG).
Collapse
|
387
|
Abstract
The zinc finger DNA-binding motif occurs in many proteins that regulate eukaryotic gene expression. The crystal structure of a complex containing the three zinc fingers from Zif268 (a mouse immediate early protein) and a consensus DNA-binding site has been determined at 2.1 angstroms resolution and refined to a crystallographic R factor of 18.2 percent. In this complex, the zinc fingers bind in the major groove of B-DNA and wrap part way around the double helix. Each finger has a similar relation to the DNA and makes its primary contacts in a three-base pair subsite. Residues from the amino-terminal portion of an alpha helix contact the bases, and most of the contracts are made with the guanine-rich strand of the DNA. This structure provides a framework for understanding how zinc fingers recognize DNA and suggests that this motif may provide a useful basis for the design of novel DNA-binding proteins.
Collapse
Affiliation(s)
- N P Pavletich
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | |
Collapse
|
388
|
Merchant JL, Demediuk B, Brand SJ. A GC-rich element confers epidermal growth factor responsiveness to transcription from the gastrin promoter. Mol Cell Biol 1991; 11:2686-96. [PMID: 2017173 PMCID: PMC360038 DOI: 10.1128/mcb.11.5.2686-2696.1991] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epidermal growth factor (EGF) and transforming growth factor alpha are important determinants of mucosal integrity in the gastrointestinal tract, and they act both directly and indirectly to prevent ulceration in the stomach. Consistent with this physiological role, EGF stimulates transcription of gastrin, a peptide hormone which regulates gastric acid secretion and mucosal growth. EGF stimulation of gastrin transcription is mediated by a GC-rich gastrin EGF response element (gERE) (GGGGCGGGGTGGGGGG) which lies between -54 and -68 in the human gastrin promoter. The gERE sequence also confers weaker responsiveness to phorbol ester stimulation. The gERE sequence differs from previously described EGF response elements. The gERE DNA sequence specifically interacts with a GH4 DNA-binding protein distinct from previously described transcription factors (Egr-1 and AP2) which bind GC-rich sequences and mediate transcriptional activation by growth factors. Furthermore, the gERE element does not bind the Sp1 transcription factor even though the gERE sequence contains a high-affinity Sp1-binding site (GGCGGG).
Collapse
Affiliation(s)
- J L Merchant
- Gastrointestinal Unit, Massachusetts General Hospital, Boston
| | | | | |
Collapse
|
389
|
Suva LJ, Ernst M, Rodan GA. Retinoic acid increases zif268 early gene expression in rat preosteoblastic cells. Mol Cell Biol 1991; 11:2503-10. [PMID: 1708092 PMCID: PMC360019 DOI: 10.1128/mcb.11.5.2503-2510.1991] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this study we demonstrate that retinoic acid (RA) increases the expression of transcription factor zif268 mRNA in primary cultures of fetal rat calvarial cells and in simian virus 40-immortalized clonal rat calvarial preosteoblastic cells (RCT-1), which differentiate in response to RA, but not in the more differentiated RCT-3 and ROS 17/2.8 cells. The increased expression of zif268 mRNA is rapid (maximal within 1 h), transient (returns to basal levels by 3 h), detectable at RA doses of 10(-12)M, and independent of protein synthesis. The relative stimulation of zif268 mRNA by RA was much larger than that of other early genes, including c-fos, c-jun, and junB. The rate of transcription of RA-stimulated RCT-1 cells, estimated by nuclear run-on assays, was elevated, suggesting that RA regulation of zif268 gene transcription was at least in part transcriptional. Moreover, RA stimulated the transcriptional activity of a Zif268CAT (chloramphenicol acetyltransferase) plasmid containing 632 bp of zif268 5' regulatory sequences in RCT-1 cells but not in the more differentiated RCT-3 cells. These in vitro data support the in vivo observations which localize zif268 and RA receptor-gamma transcripts to bone and cartilage during development, suggesting that both RA and zif268 may play a role in osteoblast differentiation.
Collapse
Affiliation(s)
- L J Suva
- Department of Bone Biology and Osteoporosis Research, Merck, Sharp and Dohme Research Laboratories, West Point, Pennsylvania 19486
| | | | | |
Collapse
|
390
|
Christy RJ, Kaestner KH, Geiman DE, Lane MD. CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. Proc Natl Acad Sci U S A 1991; 88:2593-7. [PMID: 2006196 PMCID: PMC51279 DOI: 10.1073/pnas.88.6.2593] [Citation(s) in RCA: 315] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Differentiation of 3T3-L1 preadipocytes into adipocytes is accompanied by increased expression of the nuclear protein C/EBP (CCAAT/enhancer binding protein) and by transcriptional activation of a group of adipose-specific genes. We report here the isolation of the murine C/EBP gene and the characterization of its promoter. Consistent with its proposed role in coordinating transcription during preadipocyte differentiation, an increase in the rate of transcription of the C/EBP gene precedes that of several adipose-specific genes whose promoters are transactivated by C/EBP. DNase I cleavage-inhibition patterns (footprinting) of the C/EBP gene promoter by nuclear factors from differentiated and undifferentiated 3T3-L1 cells identified two sites of differential factor binding. One site in the C/EBP gene promoter between nucleotides -252 and -239 binds a nuclear factor(s) present in preadipocytes that is lost or modified upon differentiation. Another site, between nucleotides -203 and -176, exhibits different but overlapping footprints by nuclear factors present in differentiated and undifferentiated cells. Gel retardation analysis with oligonucleotides corresponding to these sites revealed protein-oligonucleotide complexes containing these differentially expressed nuclear factors. The factor present in differentiated cells that binds at this site was identified as C/EBP (possibly in heterodimeric form with a homologous leucine-zipper protein), suggesting that C/EBP may regulate expression of its own gene.
Collapse
Affiliation(s)
- R J Christy
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | |
Collapse
|
391
|
Hallahan DE, Sukhatme VP, Sherman ML, Virudachalam S, Kufe D, Weichselbaum RR. Protein kinase C mediates x-ray inducibility of nuclear signal transducers EGR1 and JUN. Proc Natl Acad Sci U S A 1991; 88:2156-60. [PMID: 1900938 PMCID: PMC51188 DOI: 10.1073/pnas.88.6.2156] [Citation(s) in RCA: 168] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cellular response to ionizing radiation includes growth arrest and DNA repair followed by proliferation. Induction of immediate early response genes may participate in signal transduction preceding these phenotypic responses. We analyzed mRNA expression for different classes of immediate early genes (JUN, EGR1, and FOS) after cellular x-irradiation. Increased expression of the EGR1 and JUN genes was observed within 0.5-3 hr following x-ray exposure. Preincubation with cycloheximide was associated with superinduction of JUN and EGR1 in x-irradiated cells. Inhibition of protein kinase C activity by prolonged stimulation with phorbol 12-myristate 13-acetate or the protein kinase inhibitor H7 prior to irradiation attenuated the increase in EGR1 and JUN transcripts. FOS expression was not coregulated with that of EGR1 following x-irradiation, suggesting a distinct regulatory pathway of this gene as compared with its regulation following serum and phorbol ester. These data implicate the EGR1 and JUN proteins as signal transducers during the cellular response to radiation injury and suggest that this effect is mediated in part by a protein kinase C-dependent pathway.
Collapse
Affiliation(s)
- D E Hallahan
- Department of Radiation and Cellular Oncology, Howard Hughes Medical Institute, University of Chicago, IL 60637
| | | | | | | | | | | |
Collapse
|
392
|
Bonventre JV, Sukhatme VP, Bamberger M, Ouellette AJ, Brown D. Localization of the protein product of the immediate early growth response gene, Egr-1, in the kidney after ischemia and reperfusion. CELL REGULATION 1991; 2:251-60. [PMID: 1859855 PMCID: PMC361761 DOI: 10.1091/mbc.2.3.251] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Egr-1 is an "immediate early" gene that is induced by growth factors and agents that induce differentiation and encodes a protein with a "zinc-finger" motif. This protein is believed to be involved in transcriptional regulation. Because the fate of the kidney, and hence the organism, after an ischemic insult is dependent upon cellular repair, differentiation, and proliferation, we examined whether there was expression of the Egr-1 protein after an ischemic insult to the rat kidney. We have previously reported that Egr-1 mRNA accumulates to high levels in mouse kidneys after 30 min of ischemia and 1 h of reperfusion. In the present study, performed in rats, we show that Egr-1 mRNA transiently accumulates to very high levels after 40 min of ischemia and 1 h of reperfusion, is decreased by 3 h, and is nondetectable by 24 h of reperfusion. Reperfusion is required for Egr-1 protein accumulation to occur. The Egr-1 protein was localized by immunohistochemical techniques primarily to the nuclei of the thick ascending limbs and principal cells of the collecting ducts in the cortex and medulla. The subcellular localization was exclusively nuclear. There was some staining of the glomerular tuft and staining was particularly prominent in the parietal epithelial cells. In parallel to the accumulation of Egr-1 mRNA, the expression of the protein was transient and was no longer apparent after 5 h of reperfusion. The Egr-1 protein may play an important role in regulation of the response to ischemia of those segments of the nephron that are highly susceptible to oxygen deprivation and have a high level of intrinsic plasticity. It is possible that this protein may modulate cellular processes important for the ultimate ability of these critical nephron segments to recover from an ischemic insult.
Collapse
Affiliation(s)
- J V Bonventre
- Medical Service, Massachusetts General Hospital, Boston 02114
| | | | | | | | | |
Collapse
|
393
|
Takimoto Y, Wang ZY, Kobler K, Deuel TF. Promoter region of the human platelet-derived growth factor A-chain gene. Proc Natl Acad Sci U S A 1991; 88:1686-90. [PMID: 1848007 PMCID: PMC51089 DOI: 10.1073/pnas.88.5.1686] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The platelet-derived growth factor (PDGF) A- and B-chain genes are widely expressed in mammalian tissues and their homodimeric gene products appear to regulate the autocrine growth of both normal and transformed cells. In this study, we analyzed the 5' flanking sequences of the human PDGF A-chain gene to seek elements important to regulating its transcription. The promoter region was exceptionally G + C-rich and contained a "TATA box" but no "CAAT box." The transcription start site was identified 845 base pairs 5' to the translation initiation site by S1 nuclease mapping and by primer extension. Both in vitro transcription and transient expression of the chloramphenicol acetyltransferase gene linked to the PDGF A-chain 5' flanking sequences established that the putative promoter region was active, and RNase H mapping established that the three characteristic mRNAs (1.9, 2.3, and 2.8 kilobases) used the same transcription start site, which was used in normal endothelial cells and in two human tumor cell lines that express high levels of A-chain transcripts. The results established an exceptionally G + C-rich promoter region and a single transcription start site active for each of the three mRNAs of the PDGF A-chain gene. DNA sites of potential importance in mediating the activation of the PDGF A-chain gene in normal cells and in transformed cell lines expressing high levels of PDGF A chain were identified.
Collapse
Affiliation(s)
- Y Takimoto
- Department of Medicine, Jewish Hospital, Washington University Medical Center, St. Louis, MO 63110
| | | | | | | |
Collapse
|
394
|
Liu JW, Lacy J, Sukhatme VP, Coleman DL. Granulocyte-macrophage colony-stimulating factor induces transcriptional activation of Egr-1 in murine peritoneal macrophages. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67687-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
395
|
An Id-related helix-loop-helix protein encoded by a growth factor-inducible gene. Proc Natl Acad Sci U S A 1991; 88:1815-9. [PMID: 2000388 PMCID: PMC51116 DOI: 10.1073/pnas.88.5.1815] [Citation(s) in RCA: 272] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
An mRNA encoding a helix-loop-helix protein that we have named HLH462 is induced in mouse 3T3 cells as part of the immediate early transcriptional response to growth factors and other signaling agents. The RNA is present in a number of mouse tissues and in the developing mouse fetus. The HLH462 gene has been mapped by interspecific backcross analysis to the distal region of mouse chromosome 4. In its helix-loop-helix region HLH462 is closely related to the Id protein and the Drosophila emc protein. Like Id, HLH462 lacks a basic region required for DNA binding, and it inhibits the DNA-binding activities of other helix-loop-helix proteins. On the basis of its structural and functional similarity to Id, we suggest that HLH462 may inhibit the activities of helix-loop-helix transcription factors during the cellular growth response and during development.
Collapse
|
396
|
de Groot RP, Auwerx J, Karperien M, Staels B, Kruijer W. Activation of junB by PKC and PKA signal transduction through a novel cis-acting element. Nucleic Acids Res 1991; 19:775-81. [PMID: 1708123 PMCID: PMC333710 DOI: 10.1093/nar/19.4.775] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The product of the junB gene, a gene homologous to the proto-oncogene c-jun, is a component of transcription factor AP-1. JunB expression is modulated by a wide variety of extracellular stimuli, such as serum, growth factors, phorbol esters (TPA) and activators of protein kinase A (PKA). In order to study the molecular basis of this complex regulation, we have cloned the mouse junB gene from a genomic testis library, and characterized the junB promoter. Here we show that the junB promoter is activated by serum, TPA, and activated PKA. Sequences located between -91 and -44 are necessary for induction. These sequences contain a CAAT box, a G-C rich region and a previously undescribed inverted repeat (IR). The IR element can mediate induction by TPA and PKA when coupled to a heterologous promoter, and specifically binds a protein of 110 kD.
Collapse
Affiliation(s)
- R P de Groot
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht
| | | | | | | | | |
Collapse
|
397
|
Miller FD, Mathew TC, Toma JG. Regulation of nerve growth factor receptor gene expression by nerve growth factor in the developing peripheral nervous system. J Cell Biol 1991; 112:303-12. [PMID: 1671048 PMCID: PMC2288812 DOI: 10.1083/jcb.112.2.303] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nerve growth factor (NGF) is a target-derived neurotrophic protein that promotes the survival and growth of developing sympathetic and sensory neurons. We have examined NGF receptor gene expression in these neurons after NGF administration. Northern blot and in situ hybridization analyses demonstrated that NGF given systemically to neonatal rats increased levels of NGF receptor mRNA in sympathetic neurons within the superior cervical ganglion. This increase was accompanied by a differential regulation of genes associated with neurotransmitter phenotype; tyrosine hydroxylase mRNA was increased, but neuropeptide Y mRNA was not. NGF receptor mRNA levels were also increased in L4-L5 dorsal root ganglia, although this mRNA was not expressed uniformly in sensory neurons of control or NGF-treated animals. Levels of T alpha 1 alpha-tubulin mRNA, a marker of neuronal growth, also increased. In contrast to developing neurons, systemic NGF did not increase NGF receptor mRNA in nonneuronal cells of the sciatic nerve. To determine if NGF regulated NGF receptor gene expression at the transcriptional level, we examined PC12 cells. NGF treatment for 6 h increased NGF receptor mRNA fourfold; this increase was inhibited by cycloheximide. Nuclear run-off transcription assays demonstrated that the increase in steady-state NGF receptor mRNA levels was mediated at the transcriptional level. In contrast, although NGF treatment increased steady-state tyrosine hydroxylase mRNA levels, this effect was not blocked by cycloheximide, and was not due to increased transcription. These data raise the possibility that transcriptional regulation of NGF receptor gene expression by target-derived NGF could be a molecular mechanism for potentiating NGF's effects on neurons during developmental periods of neuronal competition and cell death.
Collapse
MESH Headings
- Adrenergic Fibers/metabolism
- Animals
- Animals, Newborn
- Blotting, Northern
- Cycloheximide/pharmacology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Ganglia, Sympathetic/cytology
- Ganglia, Sympathetic/metabolism
- Gene Expression Regulation
- Genes
- Nerve Growth Factors/pharmacology
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Strains
- Receptors, Cell Surface/genetics
- Receptors, Nerve Growth Factor
- Sciatic Nerve/cytology
- Transcription, Genetic
- Tubulin/genetics
- Tumor Cells, Cultured
- Tyrosine 3-Monooxygenase/genetics
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- F D Miller
- Department of Anatomy and Cell Biology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
398
|
Koskinen PJ, Sistonen L, Bravo R, Alitalo K. Immediate early gene responses of NIH 3T3 fibroblasts and NMuMG epithelial cells to TGF beta-1. Growth Factors 1991; 5:283-93. [PMID: 1777237 DOI: 10.3109/08977199109000292] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transforming growth factor beta has a wide range of physiological effects on cell growth and metabolism. We have previously reported on the rapid induction of jun transcription factors in TGF beta-treated cells. Here we show that the early genomic response to TGF beta-1 includes activation of a broad spectrum of serum-inducible genes both in NIH 3T3 fibroblasts and in NMuMG epithelial cells, which are growth-stimulated and growth-inhibited by TGF beta, respectively. Of particular interest is the presence of a putative nuclear DNA-binding receptor (N10) and zinc finger transcription factors (Krox 20 and Krox 24) among the TGF beta-induced genes. In addition to the stimulatory effects of TGF beta, expression of a few genes including c-myc is decreased in both types of cells. In cells transformed by neu or ras oncogenes the immediate early mRNA responses to TGF beta are deregulated. Our results suggest that certain transcription factors are required for both positive and negative regulation of cell proliferation by TGF beta, and that their relative concentrations may determine the subsequent cellular responses.
Collapse
Affiliation(s)
- P J Koskinen
- Department of Virology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
399
|
LAU LESTERF, NATHANS DANIEL. Genes induced by serum growth factors. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/b978-0-444-81382-4.50019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
400
|
Ragona G, Edwards SA, Mercola DA, Adamson ED, Calogero A. The transcriptional factor Egr-1 is synthesized by baculovirus-infected insect cells in an active, DNA-binding form. DNA Cell Biol 1991; 10:61-6. [PMID: 1991050 DOI: 10.1089/dna.1991.10.61] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Egr-1 (zfp-6) gene encodes a zinc-finger-containing nuclear protein that is rapidly and transiently induced in quiescent cells treated with mitogens. We have constructed baculovirus vectors that synthesize mouse Egr-1 protein initiating at two putative ATG start sites. The ATG site producing the larger protein (Mr, 80,000) is similar, if not identical, to Egr-1 synthesized by serum-stimulated quiescent mouse fibroblasts, thus identifying the likely site for translation. The protein synthesized by the insect cells is active as assayed by its ability to bind to a specific DNA sequence that has been identified as an Egr-1 binding site. The insect cell system will allow further studies of the structure and function of the Egr-1 product, a protein that appears to be an important "master switch" for other genes.
Collapse
Affiliation(s)
- G Ragona
- Department of Experimental Medicine, Universita Degli Studi di Roma, Italy
| | | | | | | | | |
Collapse
|