351
|
Jain S, Norinder U, Escher SE, Zdrazil B. Combining In Vivo Data with In Silico Predictions for Modeling Hepatic Steatosis by Using Stratified Bagging and Conformal Prediction. Chem Res Toxicol 2020; 34:656-668. [PMID: 33347274 PMCID: PMC7887803 DOI: 10.1021/acs.chemrestox.0c00511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatic steatosis (fatty liver) is a severe liver disease induced by the excessive accumulation of fatty acids in hepatocytes. In this study, we developed reliable in silico models for predicting hepatic steatosis on the basis of an in vivo data set of 1041 compounds measured in rodent studies with repeated oral exposure. The imbalanced nature of the data set (1:8, with the "steatotic" compounds belonging to the minority class) required the use of meta-classifiers-bagging with stratified under-sampling and Mondrian conformal prediction-on top of the base classifier random forest. One major goal was the investigation of the influence of different descriptor combinations on model performance (tested by predicting an external validation set): physicochemical descriptors (RDKit), ToxPrint features, as well as predictions from in silico nuclear receptor and transporter models. All models based upon descriptor combinations including physicochemical features led to reasonable balanced accuracies (BAs between 0.65 and 0.69 for the respective models). Combining physicochemical features with transporter predictions and further with ToxPrint features gave the best performing model (BAs up to 0.7 and efficiencies of 0.82). Whereas both meta-classifiers proved useful for this highly imbalanced toxicity data set, the conformal prediction framework also guarantees the error level and thus might be favored for future studies in the field of predictive toxicology.
Collapse
Affiliation(s)
- Sankalp Jain
- Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Ulf Norinder
- Unit of Toxicology Sciences, Swetox, Karolinska Institutet, SE-15136 Södertälje, Sweden
| | - Sylvia E Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625 Hannover, Germany
| | - Barbara Zdrazil
- Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
352
|
Li J, Li X, Liu D, Zhang S, Tan N, Yokota H, Zhang P. Phosphorylation of eIF2α signaling pathway attenuates obesity-induced non-alcoholic fatty liver disease in an ER stress and autophagy-dependent manner. Cell Death Dis 2020; 11:1069. [PMID: 33318479 PMCID: PMC7736876 DOI: 10.1038/s41419-020-03264-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder and frequently exacerbates in postmenopausal women. In NAFLD, the endoplasmic reticulum (ER) plays an important role in lipid metabolism, in which salubrinal is a selective inhibitor of eIF2α de-phosphorylation in response to ER stress. To determine the potential mechanism of obesity-induced NAFLD, we employed salubrinal and evaluated the effect of ER stress and autophagy on lipid metabolism. Ninety-five female C57BL/6 mice were randomly divided into five groups: standard chow diet, high-fat (HF) diet, HF with salubrinal, HF with ovariectomy, and HF with ovariectomy and salubrinal. All mice except for SC were given HF diet. After the 8-week obesity induction, salubrinal was subcutaneously injected for the next 8 weeks. The expression of ER stress and autophagy markers was evaluated in vivo and in vitro. Compared to the normal mice, the serum lipid level and adipose tissue were increased in obese mice, while salubrinal attenuated obesity by blocking lipid disorder. Also, the histological severity of hepatic steatosis and fibrosis in the liver and lipidosis was suppressed in response to salubrinal. Furthermore, salubrinal inhibited ER stress by increasing the expression of p-eIF2α and ATF4 with a decrease in the level of CHOP. It promoted autophagy by increasing LC3II/I and inhibiting p62. Correlation analysis indicated that lipogenesis in the development of NAFLD was associated with ER stress. Collectively, we demonstrated that eIF2α played a key role in obesity-induced NAFLD, and salubrinal alleviated hepatic steatosis and lipid metabolism by altering ER stress and autophagy through eIF2α signaling.
Collapse
Affiliation(s)
- Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Shiqi Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Nian Tan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China.
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, 46202, USA.
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
353
|
Understanding Mechanisms Underlying Non-Alcoholic Fatty Liver Disease (NAFLD) in Mental Illness: Risperidone and Olanzapine Alter the Hepatic Proteomic Signature in Mice. Int J Mol Sci 2020; 21:ijms21249362. [PMID: 33302598 PMCID: PMC7763698 DOI: 10.3390/ijms21249362] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Patients with severe mental illness have increased mortality, often linked to cardio-metabolic disease. Non-alcoholic fatty liver disease (NAFLD) incidence is higher in patients with schizophrenia and is exacerbated with antipsychotic treatment. NAFLD is associated with obesity and insulin resistance, both of which are induced by several antipsychotic medications. NAFLD is considered an independent risk factor for cardiovascular disease, the leading cause of death for patients with severe mental illness. Although the clinical literature clearly defines increased risk of NAFLD with antipsychotic therapy, the underlying mechanisms are not understood. Given the complexity of the disorder as well as the complex pharmacology associated with atypical antipsychotic (AA) medications, we chose to use a proteomic approach in healthy mice treated with a low dose of risperidone (RIS) or olanzapine (OLAN) for 28 days to determine effects on development of NAFLD and to identify pathways impacted by AA medications, while removing confounding intrinsic effects of mental illness. Both AA drugs caused development of steatosis in comparison with vehicle controls (p < 0.01) and affected multiple pathways relating to energy metabolism, NAFLD, and immune function. AA-associated alteration in autonomic function appears to be a unifying theme in the regulation of hepatic pathology.
Collapse
|
354
|
Yang W, Jiang C, Wang Z, Zhang J, Mao X, Chen G, Yao X, Liu C. Cyclocarya paliurus extract attenuates hepatic lipid deposition in HepG2 cells by the lipophagy pathway. PHARMACEUTICAL BIOLOGY 2020; 58:838-844. [PMID: 32878529 PMCID: PMC8641680 DOI: 10.1080/13880209.2020.1803365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
CONTEXT Cyclocarya paliurus (CP) (Batal.) Iljinsk (Cyclocaryaceae), a plant native to China, is the sole species in the genus Cyclocarya. Its leaves have been widely used as a remedy for hyperlipidaemia in traditional folk medicine. However, the mechanism underlying CP-induced lipolysis, especially in the liver, has not been entirely elucidated. OBJECTIVE This study investigates the effect of CP ethanol extract (CPE) on hepatic steatosis and the underlying molecular mechanisms involved. MATERIALS AND METHODS The effect of CPE at concentrations of 0, 6.25, 12.5, 25, 50, and 100 μg/mL on the viability of HepG2 cells was examined using the cell counting kit-8 (CCK-8) assay after incubation for 24 h. CPE-induced changes in intracellular lipid content were assessed by measuring the absorbance of oil red O staining at 520 nm, and the possible underlying mechanisms were further studied using quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis, western blotting, immunofluorescence studies and transmission electron microscopy. RESULTS The half-maximal inhibitory concentration (IC50) of CPE in HepG2 cells was 97.27 μg/mL. Treatment with 50 μg/mL CPE increased lipid clearance, which was associated with increased autophagy in HepG2 cells. CPE-induced autophagy involved downregulation of phosphorylation level of mammalian target of rapamycin (0.87 ± 0.08 vs. 1.31 ± 0.10). Fluorescent double staining and electron microscopy images showed lipid deposits within autolysosomes, thereby confirming the abovementioned findings. DISCUSSION AND CONCLUSIONS CPE can induce hepatic fat clearance through the autophagy-lysosome pathway known as lipophagy. CPE has potential as a functional food.
Collapse
Affiliation(s)
- Wanwei Yang
- Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Cuihua Jiang
- Laboratory of Translational Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Zhiguo Wang
- Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Jian Zhang
- Laboratory of Translational Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Xiaodong Mao
- Research Center of Endocrine and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Guofang Chen
- Research Center of Endocrine and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Xiaoming Yao
- Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
- CONTACT Xiaoming Yao
| | - Chao Liu
- Research Center of Endocrine and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
- Chao Liu Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, 100#, Shizi Street, Nanjing, Jiangsu, PR China
| |
Collapse
|
355
|
Wu ZY, Li YL, Chang B. Pituitary stalk interruption syndrome and liver changes: From clinical features to mechanisms. World J Gastroenterol 2020; 26:6909-6922. [PMID: 33311939 PMCID: PMC7701950 DOI: 10.3748/wjg.v26.i44.6909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Pituitary stalk interruption syndrome (PSIS) is a rare congenital abnormality characterized by thinning or disappearance of the pituitary stalk, hypoplasia of the anterior pituitary and an ectopic posterior pituitary. Although the etiology of PSIS is still unclear, gene changes and perinatal adverse events such as breech delivery may play important roles in the pathogenesis of PSIS. PSIS can cause multiple hormone deficiencies, such as growth hormone, which then cause a series of changes in the human body. On the one hand, hormone changes affect growth and development, and on the other hand, they could affect human metabolism and subsequently the liver resulting in nonalcoholic fatty liver disease (NAFLD). Under the synergistic effect of multiple mechanisms, the progression of NAFLD caused by PSIS is faster than that due to other causes. Therefore, in addition to early identification of PSIS, timely hormone replacement therapy and monitoring of relevant hormone levels, clinicians should routinely assess the liver function while managing PSIS.
Collapse
Affiliation(s)
- Ze-Yu Wu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yi-Ling Li
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
356
|
Verlinden W, Van Mieghem E, Depauw L, Vanwolleghem T, Vonghia L, Weyler J, Driessen A, Callens D, Roosens L, Dirinck E, Verrijken A, Gaal LV, Francque S. Non-Alcoholic Steatohepatitis Decreases Microsomal Liver Function in the Absence of Fibrosis. Biomedicines 2020; 8:E546. [PMID: 33261113 PMCID: PMC7760673 DOI: 10.3390/biomedicines8120546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022] Open
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is rising across the globe, with the presence of steatohepatitis leading to a more aggressive clinical course. Currently, the diagnosis of non-alcoholic steatohepatitis (NASH) is based on histology, though with the high prevalence of NAFLD, a non-invasive method is needed. The 13C-aminopyrine breath test (ABT) evaluates the microsomal liver function and could be a potential candidate. We aimed to evaluate a potential change in liver function in NASH patients and to evaluate the diagnostic power of ABT to detect NASH. We performed a retrospective analysis on patients suspected of NAFLD who underwent a liver biopsy and ABT. 440 patients were included. ABT did not decrease in patients with isolated liver steatosis but decreased significantly in the presence of NASH without fibrosis and decreased even further with the presence of significant fibrosis. The predictive power of ABT as a single test for NASH was low but improved in combination with ALT and ultrasonographic steatosis. We conclude that microsomal liver function of patients with NASH is significantly decreased, even in the absence of fibrosis. The ABT is thus a valuable tool in assessing the presence of NASH; and could be used as a supplementary diagnostic tool in clinical practice.
Collapse
Affiliation(s)
- Wim Verlinden
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, 2610 Antwerp, Belgium; (E.V.M.); (L.D.); (T.V.); (L.V.); (J.W.)
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Antwerp, Belgium
| | - Eugénie Van Mieghem
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, 2610 Antwerp, Belgium; (E.V.M.); (L.D.); (T.V.); (L.V.); (J.W.)
| | - Laura Depauw
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, 2610 Antwerp, Belgium; (E.V.M.); (L.D.); (T.V.); (L.V.); (J.W.)
| | - Thomas Vanwolleghem
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, 2610 Antwerp, Belgium; (E.V.M.); (L.D.); (T.V.); (L.V.); (J.W.)
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Antwerp, Belgium
| | - Luisa Vonghia
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, 2610 Antwerp, Belgium; (E.V.M.); (L.D.); (T.V.); (L.V.); (J.W.)
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Antwerp, Belgium
| | - Jonas Weyler
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, 2610 Antwerp, Belgium; (E.V.M.); (L.D.); (T.V.); (L.V.); (J.W.)
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Antwerp, Belgium
| | - Ann Driessen
- Department of Pathology, Antwerp University Hospital, 2650 Antwerp, Belgium;
| | - Dirk Callens
- Department of Clinical Biology, Antwerp University Hospital, 2650 Antwerp, Belgium; (D.C.); (L.R.)
| | - Laurence Roosens
- Department of Clinical Biology, Antwerp University Hospital, 2650 Antwerp, Belgium; (D.C.); (L.R.)
| | - Eveline Dirinck
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650 Antwerp, Belgium; (E.D.); (A.V.); (L.V.G.)
| | - An Verrijken
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650 Antwerp, Belgium; (E.D.); (A.V.); (L.V.G.)
| | - Luc Van Gaal
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650 Antwerp, Belgium; (E.D.); (A.V.); (L.V.G.)
| | - Sven Francque
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, 2610 Antwerp, Belgium; (E.V.M.); (L.D.); (T.V.); (L.V.); (J.W.)
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Antwerp, Belgium
| |
Collapse
|
357
|
Ali H, Shafique Z, Sehar A, Yalamanchili S. Non-alcoholic Fatty Liver Disease Causing Platypnea-Orthodeoxia Syndrome. Cureus 2020; 12:e11727. [PMID: 33391955 PMCID: PMC7772170 DOI: 10.7759/cureus.11727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) with cryptogenic liver cirrhosis is uncommonly linked to platypnea-orthodeoxia syndrome (POS). Traditionally, this syndrome has been described in correlation to intracardiac shunting like patent foramen ovale. We report a case of a 70-year-old female, with a previous history of NAFLD and heart failure presenting with acute hypoxic respiratory failure secondary to fluid overload. Further investigations revealed cryptogenic presentation of POS, which was masked by her heart failure. The patient was not able to maintain her oxygen saturation levels in an upright position, with marked improvement when lying down. Her echocardiogram was significant for positive bubble study without any intracardiac shunt, hence making NAFLD as a cause of this rare presentation of POS a more likely diagnosis.
Collapse
|
358
|
Kobori M, Akimoto Y, Takahashi Y, Kimura T. Combined Effect of Quercetin and Fish Oil on Oxidative Stress in the Liver of Mice Fed a Western-Style Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13267-13275. [PMID: 32786869 DOI: 10.1021/acs.jafc.0c02984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To study the combined effect of the flavonoid quercetin and fish oil containing ω-3 fatty acids on preventing diet-induced metabolic syndrome, we fed mice with a control diet, a high-fat, high-sucrose, and high-cholesterol Western-style diet (Western diet), a Western diet supplemented with 0.05% quercetin, a Western diet containing 5% fish oil rich in docosahexaenoic acid (DHA) (DHA diet), or a DHA diet supplemented with 0.05% quercetin. After 18 weeks of feeding, fish oil potentiated the suppression of lipid peroxidation by quercetin in the liver but not in the epididymal adipose tissue. Fish oil but not quercetin suppressed the accumulation of non-esterified fatty acids and the expression of fatty acid synthase in the liver of Western-diet-fed mice. Thus, the combination of quercetin and DHA-rich fish oil may partly alleviate non-alcoholic fatty liver disease by reducing oxidative stress and suppressing fatty acid synthesis.
Collapse
Affiliation(s)
- Masuko Kobori
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| | - Yukari Akimoto
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| | - Yumiko Takahashi
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| | - Toshiyuki Kimura
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|
359
|
Research on the Mechanism of Qushi Huayu Decoction in the Intervention of Nonalcoholic Fatty Liver Disease Based on Network Pharmacology and Molecular Docking Technology. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1704960. [PMID: 33204683 PMCID: PMC7658690 DOI: 10.1155/2020/1704960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Objective To use network pharmacology and molecular docking technology in predicting the main active ingredients and targets of Qushi Huayu Decoction (QHD) treatment in Nonalcoholic Fatty Liver Disease (NAFLD) and explore the potential mechanisms of its multi-component-multi-target-multi-pathway. Materials and Methods The main chemical components of QHD were searched using traditional Chinese medicine system pharmacology technology platform (TCMSP) and PubChem database. The main chemical components of the prescription were ADMET screened by the ACD/Labs software. The main active ingredient was screened by 60% oral bioavailability, and 60% of “bad” ingredients were removed from the drug-like group. Swiss Target Prediction, the SEA, and HitPick systems were sequentially used to search for the target of each active ingredient, and a network map of the QHD's target of the active ingredient was constructed. Genome annotation database platforms (GeneCards, OMIM, and DisGeNET) were used to predict action targets related to fatty liver disease. “Drug-Disease-Target” network diagram could be visualized with the help of Cytoscape (3.7.1) software. UniProt and STRING database platforms were used to build a protein interaction network. The KEGG signal pathway and DAVID platform were analyzed for biological process enrichment. Results A total of 128 active ingredients and 275 corresponding targets in QHD were discovered through screening. 55 key target targets and 27 important signaling pathways were screened, such as the cancer pathway, P13K-AKT signaling pathway, PPAR signaling pathway, and other related signaling pathways. Conclusions The present study revealed the material basis of QHD and discussed the pharmacological mechanism of QHD in fatty liver, thus providing a scientific basis for the clinical application and experimental research of QHD in the future.
Collapse
|
360
|
Dorairaj V, Sulaiman SA, Abu N, Abdul Murad NA. Extracellular Vesicles in the Development of the Non-Alcoholic Fatty Liver Disease: An Update. Biomolecules 2020; 10:biom10111494. [PMID: 33143043 PMCID: PMC7693409 DOI: 10.3390/biom10111494] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a broad spectrum of liver damage disease from a simple fatty liver (steatosis) to more severe liver conditions such as non-alcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Extracellular vesicles (EVs) are a heterogeneous group of small membrane vesicles released by various cells in normal or diseased conditions. The EVs carry bioactive components in their cargos and can mediate the metabolic changes in recipient cells. In the context of NAFLD, EVs derived from adipocytes are implicated in the development of whole-body insulin resistance (IR), the hepatic IR, and fatty liver (steatosis). Excessive fatty acid accumulation is toxic to the hepatocytes, and this lipotoxicity can induce the release of EVs (hepatocyte-EVs), which can mediate the progression of fibrosis via the activation of nearby macrophages and hepatic stellate cells (HSCs). In this review, we summarized the recent findings of adipocyte- and hepatocyte-EVs on NAFLD disease development and progression. We also discussed previous studies on mesenchymal stem cell (MSC) EVs that have garnered attention due to their effects on preventing liver fibrosis and increasing liver regeneration and proliferation.
Collapse
|
361
|
Capone F, De Vincentis A, Ferraro E, Rossi M, Motolese F, Picardi A, Giannetti B, Di Battista G, Vespasiani-Gentilucci U, Di Lazzaro V. The PNPLA3 rs738409 variant can increase the risk of liver toxicity in multiple sclerosis patients treated with beta-interferon. Clin Neurol Neurosurg 2020; 197:106166. [PMID: 32877766 DOI: 10.1016/j.clineuro.2020.106166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Liver toxicity can limit the use of interferon-beta (IFNβ), a well-established treatment for multiple sclerosis (MS). Unfortunately, known risk-factors for IFNβ-associated liver toxicity are few and of limited clinical utility. Susceptibility to drug-induced toxicity is influenced by genetic factors affecting hepatic lipid metabolism and drug-metabolizing activity. METHODS We designed a retrospective, multicentre study to evaluate whether specific polymorphisms in genes involved in hepatic lipid metabolism are associated with a higher risk of developing IFNβ-induced hepatotoxicity. The following single nucleotide polymorphisms were examined: rs738409 C > G in PNPLA3; rs4880 C > T in SOD2; rs3750861 C > T in KLF6; rs13412852 C > T in LPIN1; rs58542926 C > T in TM6SF2. Liver toxicity was defined as a new increase of aspartate aminotransferase (AST) and/or alanine aminotransferase (ALT) plasma levels above the laboratory upper normal limit after the start of IFNβ treatment. RESULTS One-hundred-thirteen MS patients were enrolled and twenty-nine experienced liver toxicity. Logistic regression analysis revealed that the PNPLA3 variant was significantly associated with the occurrence of liver toxicity. No associations were found between other polymorphisms and liver toxicity. CONCLUSIONS The results of our exploratory study suggest that the PNPLA3 variant can help to identify those patients at higher risk of IFNβ toxicity. The stratification of the risk of liver toxicity could increase the safety of IFNβ therapy.
Collapse
Affiliation(s)
- Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico di Roma, Rome, Italy.
| | - Antonio De Vincentis
- Unit of Internal Medicine, Geriatrics, and Hepatology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | | | - Mariagrazia Rossi
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico di Roma, Rome, Italy
| | - Francesco Motolese
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico di Roma, Rome, Italy
| | - Antonio Picardi
- Unit of Internal Medicine, Geriatrics, and Hepatology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Barbara Giannetti
- Transfusion Medicine and Cellular Therapy, Department of Medicine, University Campus Bio-Medico di Roma, Rome, Italy
| | | | - Umberto Vespasiani-Gentilucci
- Unit of Internal Medicine, Geriatrics, and Hepatology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
362
|
Jiang J, Wang A, Zhang X, Wang Y, Wang Q, Zhai M, Huang Y, Qi R. The isonicotinamide cocrystal promotes inhibitory effects of naringenin on nonalcoholic fatty liver disease in mice. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
363
|
Zhang X, Chen GY, Wang ZX, Li XH, Luo R, Li YG, Yang F, Zhou X, Jiang F, Wang YS. Nonalcoholic fatty liver disease impacts the control of the international normalized ratio in patients with atrial fibrillation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1008. [PMID: 32953808 PMCID: PMC7475506 DOI: 10.21037/atm-20-5387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background It is unclear whether the therapeutic effect of warfarin in patients with atrial fibrillation (AF) and normal liver function differs between those with and without nonalcoholic fatty liver disease (NAFLD). With this in mind, we aimed to evaluate the impact of NAFLD on the international normalized ratio (INR) control in warfarin-treated AF patients with normal liver function. Methods We enrolled 600 AF patients aged 28–94 (median 68) with normal liver function who were receiving daily warfarin therapy, 172 with NAFLD and 428 without. The INR and INR/warfarin dosage rate were measured. Four nested multivariable linear regression models adjusted for potential confounders were used to assess whether there were differences in INR and INR/warfarin dose rate between patients with and without NAFLD. Results The INR, the percentage of patients with INR within the target range of 2.0–3.0, and the INR/warfarin dose rate were lower in patients with NAFLD than those without. In the maximally adjusted multivariable linear regression models, the INR in NAFLD patients (0.22±0.07, P=0.003) was lower than in non-NAFLD patients, and the INR/warfarin dose rate was slightly lower (0.09±0.06, P=0.10) in NAFLD than in non-NAFLD patients. Conclusions Our findings suggest that among AF patients, the therapeutic effect of warfarin is impaired in patients who have NAFLD. Therefore, a slightly higher or personally optimized dosage of warfarin might be necessary among AF patients with NAFLD in order to achieve the INR target range.
Collapse
Affiliation(s)
- Xi Zhang
- Clinical Research & Innovation Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Yu Chen
- Clinical Research & Innovation Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhao-Xia Wang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine Chongming Branch, Shanghai, China
| | - Xue-Hai Li
- Clinical Research & Innovation Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Luo
- Clinical Research & Innovation Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Fan Yang
- Oceanus-plus Pharmaceutical Science and Technology Development Co., Ltd., Shanghai, China
| | - Xin Zhou
- Clinical Research & Innovation Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Yao-Sheng Wang
- Clinical Research & Innovation Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
364
|
Zhong X, Ke C, Cai Z, Wu H, Ye Y, Liang X, Yu L, Jiang S, Shen J, Wang L, Xie M, Wang G, Zhao X. LNK deficiency decreases obesity-induced insulin resistance by regulating GLUT4 through the PI3K-Akt-AS160 pathway in adipose tissue. Aging (Albany NY) 2020; 12:17150-17166. [PMID: 32911464 PMCID: PMC7521507 DOI: 10.18632/aging.103658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/22/2020] [Indexed: 01/24/2023]
Abstract
In recent years, LNK, an adapter protein, has been found to be associated with metabolic diseases, including hypertension and diabetes. We found that the expression of LNK in human adipose tissue was positively correlated with serum glucose and insulin in obese people. We examined the role of LNK in insulin resistance and systemic energy metabolism using LNK-deficient mice (LNK-/-). With consumption of a high-fat diet, wild type (WT) mice accumulated more intrahepatic triglyceride, higher serum triglyceride (TG), free fatty acid (FFA) and high sensitivity C-reactive protein (hsCRP) compared with LNK-/- mice. However, there was no significant difference between LNK-/- and WT mice under normal chow diet. Meanwhile, glucose transporter 4 (GLUT4) expression in adipose tissue and insulin-stimulated glucose uptake in adipocytes were increased in LNK-/- mice. LNK-/- adipose tissue showed activated reactivity for IRS1/PI3K/Akt/AS160 signaling, and administration of a PI3K inhibitor impaired glucose uptake. In conclusion, LNK plays a pivotal role in adipose glucose transport by regulating insulin-mediated IRS1/PI3K/Akt/AS160 signaling.
Collapse
Affiliation(s)
- Xiaozhu Zhong
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chuanfeng Ke
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhaoxi Cai
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Hao Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yang Ye
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaolin Liang
- Department of Pharmacology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liqun Yu
- Department of Gynecology, Aviation General Hospital, Beijing 100012, China
| | - Sushi Jiang
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Laiyou Wang
- Department of Pharmacology, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Department of Clinical Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Meiqing Xie
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Guanlei Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaomiao Zhao
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
365
|
Ferron PJ, Gicquel T, Mégarbane B, Clément B, Fromenty B. Treatments in Covid-19 patients with pre-existing metabolic dysfunction-associated fatty liver disease: A potential threat for drug-induced liver injury? Biochimie 2020; 179:266-274. [PMID: 32891697 PMCID: PMC7468536 DOI: 10.1016/j.biochi.2020.08.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Obese patients who often present metabolic dysfunction-associated fatty liver disease (MAFLD) are at risk of severe presentation of coronavirus disease 2019 (COVID-19). These patients are more likely to be hospitalized and receive antiviral agents and other drugs required to treat acute respiratory distress syndrome and systemic inflammation, combat bacterial and fungal superinfections and reverse multi-organ failure. Among these pharmaceuticals, antiretrovirals such as lopinavir/ritonavir and remdesivir, antibiotics and antifungal agents can induce drug-induced liver injury (DILI), whose mechanisms are not always understood. In the present article, we hypothesize that obese COVID-19 patients with MAFLD might be at higher risk for DILI than non-infected healthy individuals or MAFLD patients. These patients present several concomitant factors, which individually can favour DILI: polypharmacy, systemic inflammation at risk of cytokine storm, fatty liver and sometimes nonalcoholic steatohepatitis (NASH) as well as insulin resistance and other diseases linked to obesity. Hence, in obese COVID-19 patients, some drugs might cause more severe (and/or more frequent) DILI, while others might trigger the transition of fatty liver to NASH, or worsen pre-existing steatosis, necroinflammation and fibrosis. We also present the main mechanisms whereby drugs can be more hepatotoxic in MAFLD including impaired activity of xenobiotic-metabolizing enzymes, mitochondrial dysfunction, altered lipid homeostasis and oxidative stress. Although comprehensive investigations are needed to confirm our hypothesis, we believe that the current epidemic of obesity and related metabolic diseases has extensively contributed to increase the number of cases of DILI in COVID-19 patients, which may have participated in presentation severity and death.
Collapse
Affiliation(s)
- Pierre-Jean Ferron
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000, Rennes, France
| | - Thomas Gicquel
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000, Rennes, France; CHU Rennes, Laboratoire de toxicologie médico-légale, F-35000, Rennes, France
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, University of Paris, INSERM, UMRS, 1144, Paris, France
| | - Bruno Clément
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000, Rennes, France
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000, Rennes, France.
| |
Collapse
|
366
|
Nonalcoholic Fatty Liver Disease (NAFLD) and Hepatic Cytochrome P450 (CYP) Enzymes. Pharmaceuticals (Basel) 2020; 13:ph13090222. [PMID: 32872474 PMCID: PMC7560175 DOI: 10.3390/ph13090222] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive fat in the liver. An international consensus panel has recently proposed to rename the disease to metabolic dysfunction associated with fatty liver disease (MAFLD). The disease can range from simple steatosis (fat accumulation) to nonalcoholic steatohepatitis (NASH) which represents a severe form of NAFLD and is accompanied by inflammation, fibrosis, and hepatocyte damage in addition to significant steatosis. This review collates current knowledge of changes in human hepatic cytochrome P450 enzymes in NAFLD. While the expression of these enzymes is well studied in healthy volunteers, our understanding of the alterations of these proteins in NAFLD is limited. Much of the existing knowledge on the subject is derived from preclinical studies, and clinical translation of these findings is poor. Wherever available, the effect of NAFLD on these proteins in humans is debatable and currently lacks a consensus among different reports. Protein expression is an important in vitro physiological parameter controlling the pharmacokinetics of drugs and the last decade has seen a rise in the accurate estimation of these proteins for use with physiologically based pharmacokinetic (PBPK) modeling to predict drug pharmacokinetics in special populations. The application of label-free, mass spectrometry-based quantitative proteomics as a promising tool to study NAFLD-associated changes has also been discussed.
Collapse
|
367
|
Hu Y, Xu J, Chen Q, Liu M, Wang S, Yu H, Zhang Y, Wang T. Regulation effects of total flavonoids in Morus alba L. on hepatic cholesterol disorders in orotic acid induced NAFLD rats. BMC Complement Med Ther 2020; 20:257. [PMID: 32807146 PMCID: PMC7433163 DOI: 10.1186/s12906-020-03052-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mulberry leaves are the dried leaves of Morus alba L., flavonoids from mulberry leaves (MLF) has showed regulatory effect on abnormal lipid metabolism, but the regulatory mechanism of MLF on cholesterol metabolism is still missing. This study was designed to investigate the effect of MLF and its active metabolite quercetin on regulating cholesterol disorders. METHODS The mechanism of MLF on alleviating liver injury and regulating cholesterol was examined in dyslipidemic SD rats. The regulatory mechanism of quercetin for cholesterol disorders have also been detected through lipid laden HepG2 cell model. RESULTS Our results showed that MLF significantly inhibited lipid accumulation and alleviate hepatic injury in NAFLD rat model. The hepatic expression level of SREBP2, HMGCR and miR-33a were significantly down-regulated, while CYP7A1 was induced by MLF treatment. In vitro, Quercetin significantly decreased lipid accumulation in HepG2 cells. Mechanistically, quercetin could inhibit the mRNA and protein expression level of SREBP2 and HMGCR with or without LDL treatment. In addition, quercetin could also reduce the LXRβ while induced SR-BI mRNA expression. CONCLUSION Our findings indicate that MLF and quercetin could reduce the excessive cholesterol accumulation in vivo and in vitro. These cholesterol-regulating phenomenon might attribute to its effect on down-regulating the expression of lipid-related markers such as SREBP2 and HMGCR, which may exert a protective role in the NAFLD treatment.
Collapse
Affiliation(s)
- Yucheng Hu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jingqi Xu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Qian Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Mengyang Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Sijian Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Haiyang Yu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Tao Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
368
|
Abstract
To investigate the effects of probiotics on liver function, glucose and lipids metabolism, and hepatic fatty deposition in patients with non-alcoholic fatty liver disease (NAFLD).Totally 140 NAFLD cases diagnosed in our hospital from March 2017 to March 2019 were randomly divided into the observation group and control group, 70 cases in each. The control group received the diet and exercise therapy, while the observation group received oral probiotics based on the control group, and the intervention in 2 groups lasted for 3 months. The indexes of liver function, glucose and lipids metabolism, NAFLD activity score (NAS), and conditions of fecal flora in 2 groups were compared before and after the treatment.Before the treatment, there were no significant differences on alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamine transferase (GGT), total bilirubin (TBIL), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), insulin resistance index (HOMA-IR), NAFLD activity score (NAS), and conditions of fecal flora in 2 groups (P > .05). After the treatment, ALT, AST, GGT, TC, TG, HOMA-IR, NAS, and conditions of fecal flora in the observation group were better than those in the control group, and the observation group was better after treatment than before. All these above differences were statistically significant (P < .05).Probiotics can improve some liver functions, glucose and lipids metabolism, hepatic fatty deposition in patients with NAFLD, which will enhance the therapeutic effects of NAFLD.
Collapse
Affiliation(s)
| | - Hui Su
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | | |
Collapse
|
369
|
Jiang X, Zheng J, Zhang S, Wang B, Wu C, Guo X. Advances in the Involvement of Gut Microbiota in Pathophysiology of NAFLD. Front Med (Lausanne) 2020; 7:361. [PMID: 32850884 PMCID: PMC7403443 DOI: 10.3389/fmed.2020.00361] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis and progresses to non-steatohepatitis (NASH) when the liver displays overt inflammatory damage. Increasing evidence has implicated critical roles for dysbiosis and microbiota-host interactions in NAFLD pathophysiology. In particular, microbiota alter intestine absorption of nutrients and intestine permeability, whose dysregulation enhances the delivery of nutrients, endotoxin, and microbiota metabolites to the liver and exacerbates hepatic fat deposition and inflammation. While how altered composition of gut microbiota attributes to NAFLD remains to be elucidated, microbiota metabolites are shown to be involved in the regulation of hepatocyte fat metabolism and liver inflammatory responses. In addition, intestinal microbes and circadian coordinately adjust metabolic regulation in different stages of life. During aging, altered composition of gut microbiota, along with circadian clock dysregulation, appears to contribute to increased incidence and/or severity of NAFLD.
Collapse
Affiliation(s)
- Xiaofan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shixiu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baozhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
370
|
Machado AS, Oliveira JR, Lelis DDF, de Paula AMB, Guimarães ALS, Andrade JMO, Brandi IV, Santos SHS. Oral Probiotic Bifidobacterium Longum Supplementation Improves Metabolic Parameters and Alters the Expression of the Renin-Angiotensin System in Obese Mice Liver. Biol Res Nurs 2020; 23:100-108. [PMID: 32700545 DOI: 10.1177/1099800420942942] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Obesity and non-alcoholic fatty liver disease (NAFLD) have been increasing at an alarming rate worldwide. Bifidobacterium longum (BL), a common member of the human gut microbiota, has important health benefits through several mechanisms. OBJECTIVES We evaluated the BL supplementation effects on body metabolism and renin-angiotensin components hepatic expression in mice fed a high-fat diet. METHODS Thirty-two male mice were divided into four groups: standard diet + placebo (ST), standard diet + Bifidobacterium longum (ST + BL), high-fat diet + placebo (HFD) and high-fat diet + Bifidobacterium longum (HFD + BL). Following the obesity induction period, the ST + BL and HFD + BL groups were supplemented with Bifidobacterium longum for 4 weeks. Then, body, biochemical, histological and molecular parameters were evaluated. RESULTS HFD + BL mice had a significant decrease in adipose tissue mass and blood glucose levels, as well as a significant reduction in blood glucose during an intraperitoneal glucose tolerance test. The treatment also resulted in reduced levels of total cholesterol and hepatic fat accumulation. Moreover, we observed an increase in angiotensin converting enzyme 2 (ACE2) and Mas receptor (MASR) expression levels in BL-treated obese mice. CONCLUSIONS These data demonstrate that BL may have the potential to prevent obesity and NAFLD by modulating the mRNA expression of renin-angiotensin system components.
Collapse
Affiliation(s)
- Amanda S Machado
- Laboratory of Health Science, Postgraduation Program in Health Sciences, 153595Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Janaína R Oliveira
- Laboratory of Health Science, Postgraduation Program in Health Sciences, 153595Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Deborah de F Lelis
- Laboratory of Health Science, Postgraduation Program in Health Sciences, 153595Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Alfredo M B de Paula
- Laboratory of Health Science, Postgraduation Program in Health Sciences, 153595Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - André L S Guimarães
- Laboratory of Health Science, Postgraduation Program in Health Sciences, 153595Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - João M O Andrade
- Laboratory of Health Science, Postgraduation Program in Health Sciences, 153595Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Igor V Brandi
- Institute of Agricultural Sciences, Food Engineering, 28114Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Sérgio H S Santos
- Laboratory of Health Science, Postgraduation Program in Health Sciences, 153595Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil.,Institute of Agricultural Sciences, Food Engineering, 28114Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
371
|
Stanke-Labesque F, Gautier-Veyret E, Chhun S, Guilhaumou R. Inflammation is a major regulator of drug metabolizing enzymes and transporters: Consequences for the personalization of drug treatment. Pharmacol Ther 2020; 215:107627. [PMID: 32659304 PMCID: PMC7351663 DOI: 10.1016/j.pharmthera.2020.107627] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Inflammation is an evolutionary process that allows survival against acute infection or injury. Inflammation is also a pathophysiological condition shared by numerous chronic diseases. In addition, inflammation modulates important drug-metabolizing enzymes and transporters (DMETs), thus contributing to intra- and interindividual variability of drug exposure. A better knowledge of the impact of inflammation on drug metabolism and its related clinical consequences would help to personalize drug treatment. Here, we summarize the kinetics of inflammatory mediators and the underlying transcriptional and post-transcriptional mechanisms by which they contribute to the inhibition of important DMETs. We also present an updated overview of the effect of inflammation on the pharmacokinetic parameters of most of the drugs that are DMET substrates, for which therapeutic drug monitoring is recommended. Furthermore, we provide opinions on how to integrate the inflammatory status into pharmacogenetics, therapeutic drug monitoring, and population pharmacokinetic strategies to improve the personalization of drug treatment for each patient.
Collapse
Affiliation(s)
- Françoise Stanke-Labesque
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble 38000, France; Laboratory of Pharmacology-Pharmacogenetics-Toxicology, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, France.
| | - Elodie Gautier-Veyret
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble 38000, France; Laboratory of Pharmacology-Pharmacogenetics-Toxicology, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, France
| | - Stephanie Chhun
- Faculty of Medicine, Paris University, Paris, France; Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France; AP-HP, Paris Centre, Laboratory of Immunology, Necker-Enfants Malades Hospital, Paris, France
| | - Romain Guilhaumou
- Clinical Pharmacology and Pharmacovigilance Unit, AP-HM, Marseille, France; Aix Marseille Univ, INSERM, INS Inst Neurosci Syst, Marseille, France
| |
Collapse
|
372
|
Sanai FM, Abaalkhail F, Hasan F, Farooqi MH, Nahdi NA, Younossi ZM. Management of nonalcoholic fatty liver disease in the Middle East. World J Gastroenterol 2020; 26:3528-3541. [PMID: 32742124 PMCID: PMC7366060 DOI: 10.3748/wjg.v26.i25.3528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) in the Middle East is increasing in parallel to an increase in the prevalence of associated risk factors such as obesity, metabolic syndrome, and type 2 diabetes mellitus. About 20% to 30% of the patients progress to develop nonalcoholic steatohepatitis (NASH), a histological subtype of NAFLD, with features of hepatocyte injury such as hepatocyte ballooning. NASH can progress to fibrosis, cirrhosis, and even hepatocellular carcinoma. NAFLD thus causes a substantial burden on healthcare systems and it is imperative that appropriate strategies are discussed at a regional level to facilitate effective management tailored to the needs of the region. To fulfil this unmet need, expert gastroenterologists, hepatologists, and endocrinologists from the region came together in three advisory board meetings that were conducted in Saudi Arabia, United Arab Emirates, and Kuwait, to discuss current local challenges in NAFLD screening and diagnosis, and the different available management options. The experts discussed the disease burden of NAFLD/NASH in the Middle East; screening, diagnosis, and referral patterns in NAFLD; and available treatment options for NAFLD and NASH. This paper summarizes the discussions and opinion of the expert panel on the management of NAFLD/NASH and also presents an extensive literature review on the topic.
Collapse
Affiliation(s)
- Faisal M Sanai
- Gastroenterology Unit, Department of Medicine, King Abdulaziz Medical City, Jeddah 21423, Saudi Arabia
| | - Faisal Abaalkhail
- Department of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Liver Transplant, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Fuad Hasan
- Department of Internal Medicine, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | | | - Nawal Al Nahdi
- Department of Gastroenterology and Hepatology, Dubai Health Authority, Rashid hospital, Dubai 00000, United Arab Emirates
| | - Zobair M Younossi
- Department of Medicine, Inova Fairfax Medical Campus, Falls Church, VA 22042, United States
| |
Collapse
|
373
|
Usman M, Bakhtawar N. Vitamin E as an Adjuvant Treatment for Non-alcoholic Fatty Liver Disease in Adults: A Systematic Review of Randomized Controlled Trials. Cureus 2020; 12:e9018. [PMID: 32775098 PMCID: PMC7405968 DOI: 10.7759/cureus.9018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease. It is characterized by a variety of pathologies, ranging from benign fatty liver to extensive fibrosis and even hepatocellular cancer. Among the several potential risk factors, insulin resistance and increased oxidative stress are the most important. Vitamin E is an antioxidant with a potential to be used as a treatment for NAFLD. Therefore, we carried out a structured systematic review of all RCTs conducted between 2010 and January 2020. After screening, eight RCTs were included. Our systematic review showed that vitamin E has clinical utility in improving biochemical (ALT and AST levels) and histological abnormalities in NAFLD (hepatic steatosis and lobular inflammation). However, vitamin E does not seem to have significant effects on liver fibrosis. Still, vitamin E has the potential to be used as an adjuvant for the treatment of NAFLD, and its use in clinical practice should be advocated.
Collapse
Affiliation(s)
- Muhammad Usman
- Internal Medicine, Leicester Royal Infirmary, Leicester, GBR.,Internal Medicine, Kettering General Hospital, Kettering, GBR
| | | |
Collapse
|
374
|
Cheng X, Liu N, Liu H, Huang N, Sun X, Zhang G. Bioinformatic and biochemical findings disclosed anti-hepatic steatosis mechanism of calycosin. Bioorg Chem 2020; 100:103914. [PMID: 32417523 DOI: 10.1016/j.bioorg.2020.103914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
As revealed in previous reports, calycosin is a functional flavonoid characterized with identified pharmacological activities. Most of evidences are used to demonstrate the anti-cancer benefits of calycosin, however, the existing study of anti-fatty liver medicated by calycosin is limitedly reported. Recently, an emerging avenue based on network pharmacology may contribute to excavate the biological targets and molecular mechanisms of calycosin for anti-fatty liver. In confirmatory experiments, the human and animal studies were subjected to verify some of bioinformatic results. Accordingly, bioinformatic data based on network pharmacology suggested that discoverable biotargets of calycosin for anti-fatty liver were aldehyde dehydrogenase (ALDH2), Niemann pick C1 (NPC1), high mobility group protein 1 (HMGB1), bilirubin UDP glucuronosyltransferase 1 (UGT1A1), mitogen-activated protein kinase 3 (MAPK3), epidermal growth factor receptor (EGFR), hydroxytryptamine receptor 2 (HTR2), migration inhibitory factor (MIF), cytochrome P450, family 19A1 (CYP19A1). Furthermore, all significant biological characteristics and mechanisms of to treat fatty liver were revealed in several. In human findings, the blood tests showed changed glucose and lipid contents, elevated insulin resistance and inflammatory stress. And fatty liver sections from patients resulted in negative expressions of ALDH2, NPC1, and positive HMGB1 expression. In a study in vivo, calycosin-treated high fat diet (HFD)-fed mice exhibited reduced liver weights, decreased fasting serum glucose and insulin, liver functional transaminases, blood lipids, metabolic enzymes, and inflammatory cytokines. And the data in gene tests displayed up-regulations of ALDH2, NPC1 mRNAs, and down-regulation of HMGB1 mRNA in calycosin-treated liver samples. Together, the current bioinformatic data demonstrate biological targets, functions and mechanisms of calycosin for anti-fatty liver. Interestingly, these bioinformatic findings can be partially verified with clinical and animal samples.
Collapse
Affiliation(s)
- Xuebing Cheng
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Na Liu
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | | | - Na Huang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Guangdong Zhang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
375
|
Ma M, Duan R, Shen L, Liu M, Ji Y, Zhou H, Li C, Liang T, Li X, Guo L. The lncRNA Gm15622 stimulates SREBP-1c expression and hepatic lipid accumulation by sponging the miR-742-3p in mice. J Lipid Res 2020; 61:1052-1064. [PMID: 32229588 PMCID: PMC7328049 DOI: 10.1194/jlr.ra120000664] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Excessive lipid deposition is a hallmark of NAFLD. Although much has been learned about the enzymes and metabolites involved in NAFLD, few studies have focused on the role of long noncoding RNAs (lncRNAs) in hepatic lipid accumulation. Here, using in vitro and in vivo models of NAFLD, we found that the lncRNA Gm15622 is highly expressed in the liver of obese mice fed a HFD and in murine liver (AML-12) cells treated with free fatty acids. Investigating the molecular mechanism in the liver-enriched expression of Gm15622 and its effects on lipid accumulation in hepatocytes and on NAFLD pathogenesis, we found that Gm15622 acts as a sponge for the microRNA miR-742-3p. This sponging activity increased the expression of the transcriptional regulator SREBP-1c and promoted lipid accumulation in the liver of the HFD mice and AML-12 cells. Moreover, further results indicated that metformin suppresses Gm15622 and alleviates NAFLD-associated lipid deposition in mice. In conclusion, we have identified an lncRNA Gm15622/miR-742-3p/SREBP-1c regulatory circuit associated with NAFLD in mice, a finding that significantly advances our insight into how lipid metabolism and accumulation are altered in this metabolic disorder. Our results also suggest that Gm15622 may be a potential therapeutic target for managing NAFLD.
Collapse
Affiliation(s)
- Minjuan Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Rui Duan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Lulu Shen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Mengting Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Yaya Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Hao Zhou
- Changzhou Institute of Innovation and Development, Nanjing Normal University, Nanjing 210023, China
| | - Changxian Li
- Hepatobiliary Center, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
- Changzhou Institute of Innovation and Development, Nanjing Normal University, Nanjing 210023, China
| | - Xiangcheng Li
- Hepatobiliary Center, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Guo
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
376
|
High-altitude chronic hypoxia ameliorates obesity-induced non-alcoholic fatty liver disease in mice by regulating mitochondrial and AMPK signaling. Life Sci 2020; 252:117633. [DOI: 10.1016/j.lfs.2020.117633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022]
|
377
|
Role of Extracellular Vesicles in the Pathophysiology, Diagnosis and Tracking of Non-Alcoholic Fatty Liver Disease. J Clin Med 2020; 9:jcm9072032. [PMID: 32610455 PMCID: PMC7409057 DOI: 10.3390/jcm9072032] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, affecting approximately one-third of the global population. Most affected individuals experience only simple steatosis—an accumulation of fat in the liver—but a proportion of these patients will progress to the more severe form of the disease, non-alcoholic steatohepatitis (NASH), which enhances the risk of cirrhosis and hepatocellular carcinoma. Diagnostic approaches to NAFLD are currently limited in accuracy and efficiency; and liver biopsy remains the only reliable way to confirm NASH. This technique, however, is highly invasive and poses risks to patients. Hence, there is an increasing demand for improved minimally invasive diagnostic tools for screening at-risk individuals and identifying patients with more severe disease as well as those likely to progress to such stages. Recently, extracellular vesicles (EVs)—small membrane-bound particles released by virtually all cell types into circulation—have emerged as a rich potential source of biomarkers that can reflect liver function and pathological processes in NAFLD. Of particular interest to the diagnosis and tracking of NAFLD is the potential to extract microRNAs miR-122 and miR-192 from EVs circulating in blood, particularly when using an isolation technique that selectively captures hepatocyte-derived EVs.
Collapse
|
378
|
Xiao Z, Chu Y, Qin W. IGFBP5 modulates lipid metabolism and insulin sensitivity through activating AMPK pathway in non-alcoholic fatty liver disease. Life Sci 2020; 256:117997. [PMID: 32585242 DOI: 10.1016/j.lfs.2020.117997] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
AIMS Non-alcoholic fatty liver disease (NAFLD) characterized by excessive hepatic fat deposition is an increasing public health issue worldwide. Insulin resistance is a pivotal factor in NAFLD progression. Studies have found that IGFBP5 was related to insulin sensitivity. Nevertheless, the role of IGFBP5 in NAFLD remains unclear. MATERIALS AND METHODS NAFLD models were established in vitro and in vivo by treating HepG2 cells with free fatty acids (FFA) and feeding mice with high-fat diet (HFD), respectively. IGFBP5 expression was then analyzed in these models. The effects and mechanism of IGFBP5 on lipid lipogenesis, fatty acid β-oxidation, and insulin resistance were investigated following IGFBP5 overexpression. Additionally, AMPK inhibitor compound C was used to treat HepG2 cells to confirm whether IGFBP5 functioned via activating AMPK pathway. KEY FINDINGS IGFBP5 expression was decreased in both NAFLD models. IGFBP5 overexpression reduced levels of lipogenesis-associated proteins (SREBP-1c, FAS and ACC1), elevated expression of fatty acid β-oxidation-related genes (PPARα, CPT1A and ACOX1), decreased intracellular lipid droplets, promoted glucose uptake and glycogenesis, and activated IRS1/Akt and AMPK pathways. Administration of IGFBP5 vectors also decreased body weight and relieved liver damage in HFD-treated mice. In contrast, compound C abrogated the influences of IGFBP5 overexpression on cell models. SIGNIFICANCE IGFBP5 dampened hepatic lipid accumulation and insulin resistance in NAFLD development via activating AMPK pathway. This study indicates that IGFBP5 may be a novel therapeutic agent for NAFLD.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Yafei Chu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Wangsen Qin
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| |
Collapse
|
379
|
Zhao L, Chen F, Zhang Y, Yue L, Guo H, Ye G, Shi F, Lv C, Jing B, Tang H, Yin Z, Fu H, Lin J, Li Y, Wang X. Involvement of P450s and nuclear receptors in the hepatoprotective effect of quercetin on liver injury by bacterial lipopolysaccharide. Immunopharmacol Immunotoxicol 2020; 42:211-220. [PMID: 32253952 DOI: 10.1080/08923973.2020.1742154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/08/2020] [Indexed: 10/24/2022]
Abstract
Objective: Quercetin (Que), a flavonoid, possesses anti-inflammatory and antioxidant properties. It has been shown to protect against liver injury induced by various factors. This study was designed to investigate the underlying mechanism of its protective effect against lipopolysaccharide (LPS)- induced liver damage.Methods: Mice were pretreated with Que for 7 consecutive days and then exposed to LPS. To study the hepatoprotective effect of Que, oxidative stress parameters, inflammatory cytokine levels in liver and serum liver function indexes were examined. Protein and mRNA expression of nuclear orphan receptors and cytochrome P450 enzymes were measured by Western Blotting and qPCR, respectively.Results: Que significantly reduced circulating ALT, AST, ALP, and ameliorated LPS-induced histological alterations. In addition, Que obviously decreased markers of oxidative stress and pro-inflammatory cytokines. Furthermore, Que carried out the hepatoprotective effect via regulation of the expression of nuclear orphan receptors (CAR, PXR) and cytochrome P450 enzymes (CYP1A2, CYP2E1, CYP2D22, CYP3A11).Conclusions: Our findings suggested that Que pretreatment could ameliorate LPS-induced liver injury.
Collapse
Affiliation(s)
- Ling Zhao
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Fang Chen
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yuanli Zhang
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Ling Yue
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Hongrui Guo
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Gang Ye
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Fei Shi
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Cheng Lv
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bo Jing
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Huaqiao Tang
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhongqiong Yin
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Hualin Fu
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Jvchun Lin
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yinglun Li
- Institute of Animal Veterinary, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| |
Collapse
|
380
|
de Gregorio E, Colell A, Morales A, Marí M. Relevance of SIRT1-NF-κB Axis as Therapeutic Target to Ameliorate Inflammation in Liver Disease. Int J Mol Sci 2020; 21:E3858. [PMID: 32485811 PMCID: PMC7312021 DOI: 10.3390/ijms21113858] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammation is an adaptive response in pursuit of homeostasis reestablishment triggered by harmful conditions or stimuli, such as an infection or tissue damage. Liver diseases cause approximately 2 million deaths per year worldwide and hepatic inflammation is a common factor to all of them, being the main driver of hepatic tissue damage and causing progression from non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH), cirrhosis and, ultimately, hepatocellular carcinoma (HCC). The metabolic sensor SIRT1, a class III histone deacetylase with strong expression in metabolic tissues such as the liver, and transcription factor NF-κB, a master regulator of inflammatory response, show an antagonistic relationship in controlling inflammation. For this reason, SIRT1 targeting is emerging as a potential strategy to improve different metabolic and/or inflammatory pathologies. In this review, we explore diverse upstream regulators and some natural/synthetic activators of SIRT1 as possible therapeutic treatment for liver diseases.
Collapse
Affiliation(s)
- Estefanía de Gregorio
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain;
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain;
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, CIBEREHD, 08036 Barcelona, Spain;
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain;
| |
Collapse
|
381
|
Tsai CC, Chen YJ, Yu HR, Huang LT, Tain YL, Lin IC, Sheen JM, Wang PW, Tiao MM. Long term N-acetylcysteine administration rescues liver steatosis via endoplasmic reticulum stress with unfolded protein response in mice. Lipids Health Dis 2020; 19:105. [PMID: 32450865 PMCID: PMC7249367 DOI: 10.1186/s12944-020-01274-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
Background Fat accumulation in the liver contributes to the development of non-alcoholic fatty liver disease (NAFLD). N-acetylcysteine (NAC) is an antioxidant, acting both directly and indirectly via upregulation of cellular antioxidants. We examined the mechanisms of liver steatosis after 12 months high fat (HF) diet and tested the ability of NAC to rescue liver steatosis. Methods Seven-week-old C57BL/6 (B6) male mice were administered HF diet for 12 months (HF group). Two other groups received HF diet for 12 months accompanied by NAC for 12 months (HFD + NAC(1–12)) or 6 months (HFD + NAC(1–6)). The control group was fed regular diet for 12 months (CD group). Results Liver steatosis was more pronounced in the HF group than in the CD group after 12 month feeding. NAC intake for 6 or 12 months decreased liver steatosis in comparison with HF diet (p < 0.05). Furthermore, NAC treatment also reduced cellular apoptosis and caspase-3 expression. In the unfolded protein response (UPR) pathway, the expression of ECHS1, HSP60, and HSP70 was decreased in the HFD group (p < 0.05) and rescued by NAC therapy. With regards to the endoplasmic reticulum (ER) stress, Phospho-PERK (p-PERK) and ATF4 expression was decreased in the HF group, and only the HFD + NAC(1–12), but not HFD + NAC(1–6) group, showed significant improvement. Conclusion HF diet for 12 months induces significant liver steatosis via altered ER stress and UPR pathway activity, as well as liver apoptosis. NAC treatment rescues the liver steatosis and apoptosis induced by HF diet.
Collapse
Affiliation(s)
- Ching-Chou Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan.,Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Yu-Jen Chen
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan.,Department of Obstetrics and Gynecology, Chiayi Chang Gung Memorial Hospital, Chiayi County, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi County, Taiwan
| | - Pei-Wen Wang
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan.
| |
Collapse
|
382
|
Dalaijamts C, Cichocki JA, Luo YS, Rusyn I, Chiu WA. PBPK modeling of impact of nonalcoholic fatty liver disease on toxicokinetics of perchloroethylene in mice. Toxicol Appl Pharmacol 2020; 400:115069. [PMID: 32445755 DOI: 10.1016/j.taap.2020.115069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD), a major cause of chronic liver disease in the Western countries with increasing prevalence worldwide, may substantially affect chemical toxicokinetics and thereby modulate chemical toxicity. OBJECTIVES This study aims to use physiologically-based pharmacokinetic (PBPK) modeling to characterize the impact of NAFLD on toxicokinetics of perchloroethylene (perc). METHODS Quantitative measures of physiological and biochemical changes associated with the presence of NAFLD induced by high-fat or methionine/choline-deficient diets in C57B1/6 J mice are incorporated into a previously developed PBPK model for perc and its oxidative and conjugative metabolites. Impacts on liver fat and volume, as well as blood:air and liver:air partition coefficients, are incorporated into the model. Hierarchical Bayesian population analysis using Markov chain Monte Carlo simulation is conducted to characterize uncertainty, as well as disease-induced variability in toxicokinetics. RESULTS NAFLD has a major effect on toxicokinetics of perc, with greater oxidative and lower conjugative metabolism as compared to healthy mice. The NAFLD-updated PBPK model accurately predicts in vivo metabolism of perc through oxidative and conjugative pathways in all tissues across disease states and strains, but underestimated parent compound concentrations in blood and liver of NAFLD mice. CONCLUSIONS We demonstrate the application of PBPK modeling to predict the effects of pre-existing disease conditions as a variability factor in perc metabolism. These results suggest that non-genetic factors such as diet and pre-existing disease can be as influential as genetic factors in altering toxicokinetics of perc, and thus are likely contribute substantially to population variation in its adverse effects.
Collapse
Affiliation(s)
- Chimeddulam Dalaijamts
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Joseph A Cichocki
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Yu-Syuan Luo
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
383
|
Qi Y, Zhang Z, Liu S, Aluo Z, Zhang L, Yu L, Li Y, Song Z, Zhou L. Zinc Supplementation Alleviates Lipid and Glucose Metabolic Disorders Induced by a High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5189-5200. [PMID: 32290656 DOI: 10.1021/acs.jafc.0c01103] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Zinc deficiency is a risk factor for the development of obesity and diabetes. Studies have shown lower serum zinc levels in obese individuals and those with diabetes. We speculate that zinc supplementation can alleviate obesity and diabetes and, to some extent, their complications. To test our hypothesis, we investigated the effects of zinc supplementation on mice with high-fat diet (HFD)-induced hepatic steatosis in vivo and in vitro by adding zinc to the diet of mice and the medium of HepG2 cells. Both results showed that high levels of zinc could alleviate the glucose and lipid metabolic disorders induced by a HFD. High zinc can reduce glucose production, promote glucose absorption, reduce lipid deposition, improve HFD-induced liver injury, and regulate energy metabolism. This study provides novel insight into the treatment of non-alcoholic fatty liver disease and glucose metabolic disorder.
Collapse
Affiliation(s)
- Yilin Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhier Aluo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Lifang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Lin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
384
|
Li D, Zhao D, Du J, Dong S, Aldhamin Z, Yuan X, Li W, Du H, Zhao W, Cui L, Liu L, Fu N, Nan Y. Heme oxygenase-1 alleviated non-alcoholic fatty liver disease via suppressing ROS-dependent endoplasmic reticulum stress. Life Sci 2020; 253:117678. [PMID: 32376267 DOI: 10.1016/j.lfs.2020.117678] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/13/2020] [Indexed: 12/22/2022]
Abstract
AIMS The endoplasmic reticulum (ER) stress response plays a crucial role in the development of nonalcoholic steatohepatitis (NASH). Heme oxygenase-1 (HO-1) exerts beneficial effects against oxidative injury in NASH. This study is aimed to clarify whether HO-1 is an effective therapeutic strategy for NASH via regulation of ER stress. METHODS The C57BL/6J mice were fed with methionine-choline deficient (MCD) for 4 weeks and high fat-high carbohydrate-high cholesterol (HFD) diet for 16 weeks, with hemin or zinc protoporphyrin IX (ZnPP-IX), respectively. The LO-2 cells were cultured in palmitic medium, with transfected pEX-HO-1 or sh-HO-1 plasmid for 24 h. Meanwhile, thirty NASH patients and 15 health controls were enrolled. The ER ultrastructure was observed by transmission electron microscopy (TEM) and confocal microscopy. The expressions of mRNAs and proteins of HO-1, ER stress related genes were detected by real time PCR, western blot and immunohistochemical staining, respectively. RESULTS The swelled and broken rough endoplasmic reticulums were observed in MCD and HFD fed mice. The reactive hepatic expression of HO-1 was related with the increased ROS production and ER stress, companied with upregulation of GRP78, p-IRE1, PERK, ATF6. Through hemin administration, hepatocyte apoptosis was suppressed companied down-regulation of CHOP, caspase12 and up-regulation of BCL2. Conserved results were exhibited in ZnPP-IX administrated mice and HO-1 silent cells. Consistent results were observed in the NASH Patients. CONCLUSIONS HO-1 could serve as a protective factor in the progression of nutritional steatohepatitis by suppresses hepatocyte excessive ER stress and might be a potential target for therapy of nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Dongdong Li
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, 050051 Shijiazhuang, China; Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, China
| | - Dandan Zhao
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, 050051 Shijiazhuang, China; Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, China
| | - Jinghua Du
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, 050051 Shijiazhuang, China; Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, China
| | - Shiming Dong
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, 050051 Shijiazhuang, China; Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, China
| | - Zaid Aldhamin
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, 050051 Shijiazhuang, China; Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, China
| | - Xiwei Yuan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, 050051 Shijiazhuang, China; Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, China
| | - Wencong Li
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, 050051 Shijiazhuang, China; Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, China
| | - Huijuan Du
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, 050051 Shijiazhuang, China; Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, China
| | - Wen Zhao
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, 050051 Shijiazhuang, China; Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, China
| | - Luyao Cui
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, 050051 Shijiazhuang, China; Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, China
| | - Lingdi Liu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, 050051 Shijiazhuang, China; Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, China
| | - Na Fu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, 050051 Shijiazhuang, China; Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, 050051 Shijiazhuang, China; Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, China.
| |
Collapse
|
385
|
Heme Oxygenase-1 Suppresses Wnt Signaling Pathway in Nonalcoholic Steatohepatitis-Related Liver Fibrosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4910601. [PMID: 32461992 PMCID: PMC7212281 DOI: 10.1155/2020/4910601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/29/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Methods Mice were fed with a methionine-choline-deficient (MCD) diet for 8 weeks to induce steatohepatitis-related liver fibrosis and were treated with HO-1 inducer Hemin and inhibitor ZnPP. Mouse sera were collected for the biochemical analysis, and livers were obtained for further histological observation and gene expression analysis. HSC-T6 cells were cultured for the in vitro study and were administrated with Hemin and si-HO-1 to induce or inhibit the expression of HO-1. qPCR and Western blot were used to assess the mRNA and protein levels of genes. Results MCD-fed mice developed marked macrovesicular steatosis, focal necrosis, and inflammatory infiltration and pericellular fibrosis in liver sections. Administration of Hemin could significantly ameliorate the severity of steatosis, inflammation, and fibrosis and also could decrease the serum ALT and AST. We demonstrated that HO-1 induction was able to downregulate the key regulator of the canonical Wnt pathway Wnt1 and the noncanonical Wnt pathway Wnt5a. The downstream factors of the Wnt pathway β-catenin and NFAT5 were inhibited by Hemin, but GSK-3β was upregulated compared to the MCD group, which were consistent with the in vitro study. Hemin markedly inhibited the TGF-β1/Smad signaling pathway in both in vivo and in vitro studies. Conclusion Our study demonstrated that HO-1 inhibited the activation of canonical and noncanonical Wnt signaling pathways in NASH-related liver fibrosis. Thus, these results may suggest a new therapeutic strategy for NASH-related liver fibrosis.
Collapse
|
386
|
Chen R, Zuo Z, Li Q, Wang H, Li N, Zhang H, Yu X, Liu Z. DHA substitution overcomes high-fat diet-induced disturbance in the circadian rhythm of lipid metabolism. Food Funct 2020; 11:3621-3631. [PMID: 32292967 DOI: 10.1039/c9fo02606a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Disruptions to circadian rhythm have been associated with an increased risk of nonalcoholic fatty liver disease (NAFLD). DHA has been found to affect both circadian rhythm and lipid metabolism. In this study, the relationship between DHA substitution and improvements in lipid metabolism and circadian clock regulation was studied. Male C57BL/6 mice were fed a control, a high fat or a DHA substituted diet for 12 weeks. Biochemical analysis and H&E staining showed that the high-fat diet (HFD) could induce NAFLD, and DHA substitution (AOH) could attenuate NAFLD. The qPCR results showed that the expressions of core clock genes Clock and Bmal1 were significantly higher at zeitgeber (ZT) 0 (7:00 am) than those at ZT12 (7:00 pm) in the control group, while this difference in day and night disappeared in the HFD group, but was observed in the AOH group. Western blotting results indicated that the expressions of rhythm output molecules (RORα and REV-ERBα) and their downstream protein INSIG2 all showed the corresponding circadian changes. SREBP-regulated proteins were significantly increased in the HFD group at both ZT0 and ZT12, but decreased in the AOH group accompanied by the corresponding changes in the protein expressions of HMGCR, LXR, CYP7A1 and CYP27A1. Altogether, HFD can decrease or disrupt circadian rhythm fluctuation by up-regulating the expression of core circadian rhythm genes Clock and Bmal1 at ZT12, and induce metabolic abnormalities through the INSIG2-SREBP pathway regulated by RORα and REV-ERBα. DHA substitution seems to restore circadian rhythm similar to the normal circadian rhythm of "night-high, day-low" through the metabolic pathway regulated by rhythmic nuclear receptors, improving the lipid metabolism rhythm and reducing liver fat.
Collapse
Affiliation(s)
- Rulong Chen
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | | | | | | | | | | | | | | |
Collapse
|
387
|
Qian CL, Ding CL, Tang HL, Qi ZT, Wang W. Retinoic acid induced 16 deficiency exacerbates high-fat diet-induced steatohepatitis in mice. Cell Biochem Funct 2020; 38:753-760. [PMID: 32289885 DOI: 10.1002/cbf.3542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/12/2020] [Accepted: 03/29/2020] [Indexed: 01/14/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) associated with obesity may progress to non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma (HCC). Retinoic acid induced 16 (RAI16) plays an important role in cell apoptosis and is also a potential marker for HCC. Here we aimed to test the effect of RAI16 deficiency on liver pathology in high-fat diet (HFD) fed mice. Wild type (WT) and RAI16 knockout (RAI16-/-) C57BL/6 mice were fed with HFD or chow for up to 12 months. With consumption of HFD diet, RAI16-/- mice on HFD developed much more excess fatty liver within 4 months than WT mice on HFD. The expressions of fatty acid synthesis associated molecules Ppar-γ, Srebp-1c and Fas were further increased in RAI16-/- mice compared with WT mice on HFD. Macrophage infiltration related molecules Mcp-1 and F4/80 and pro-inflammatory factor Lcn2 were significantly increased in RAI16-/- mice compared with WT mice on HFD. Conclusively, RAI16 deficiency exacerbated HFD-induced liver injury, associated with increased inflammation. These findings indicate that RAI16 plays an important role in HFD-induced liver pathology and might be considered as a target for treatment of NAFLD. SIGNIFICANCE: 1. RAI16-/- mice on HFD developed much more excess fatty liver. 2. RAI16-/- mice showed more macrophage infiltration and proinflammation.
Collapse
Affiliation(s)
- Chun-Lin Qian
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Cui-Ling Ding
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Hai-Lin Tang
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Zhong-Tian Qi
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Wen Wang
- Department of Microbiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
388
|
Wang J, He W, Tsai PJ, Chen PH, Ye M, Guo J, Su Z. Mutual interaction between endoplasmic reticulum and mitochondria in nonalcoholic fatty liver disease. Lipids Health Dis 2020; 19:72. [PMID: 32284046 PMCID: PMC7155254 DOI: 10.1186/s12944-020-01210-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common metabolic syndrome. Imbalances between liver lipid output and input are the direct causes of NAFLD, and hepatic steatosis is the pathological premise and basis for NAFLD progression. Mutual interaction between endoplasmic reticulum stress (ERS) and oxidative stress play important roles in NAFLD pathogenesis. Notably, mitochondria-associated membranes (MAMs) act as a structural bridges for functional clustering of molecules, particularly for Ca2+, lipids, and reactive oxygen species (ROS) exchange. Previous studies have examined the crucial roles of ERS and ROS in NAFLD and have shown that MAM structural and functional integrity determines normal ER- mitochondria communication. Upon disruption of MAM integrity, miscommunication directly or indirectly causes imbalances in Ca2+ homeostasis and increases ERS and oxidative stress. Here, we emphasize the involvement of MAMs in glucose and lipid metabolism, chronic inflammation and insulin resistance in NAFLD and summarize MAM-targeting drugs and compounds, most of which achieve their therapeutic or ameliorative effects on NAFLD by improving MAM integrity. Therefore, targeting MAMs may be a viable strategy for NAFLD treatment. This review provides new ideas and key points for basic NAFLD research and drug development centred on mitochondria and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Jin Wang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wanping He
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ping-Ju Tsai
- King-Prebiotics Biotechnology (TW) Co., LTD, 2F.-1, No. 250, Zhongshan Rd., Linkou Dist, New Taipei City, 24446, Taiwan
| | - Pei-Hsuan Chen
- King-Prebiotics Biotechnology (TW) Co., LTD, 2F.-1, No. 250, Zhongshan Rd., Linkou Dist, New Taipei City, 24446, Taiwan
| | - Manxiang Ye
- New Francisco (Yunfu City) Biotechnology Co, Ltd Swan-kan-chiau Ind. Dist., Kaofong Village, Yunfu City, Guangdong, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
389
|
Sahin E, Bagci R, Bektur Aykanat NE, Kacar S, Sahinturk V. Silymarin attenuated nonalcoholic fatty liver disease through the regulation of endoplasmic reticulum stress proteins GRP78 and XBP-1 in mice. J Food Biochem 2020; 44:e13194. [PMID: 32189355 DOI: 10.1111/jfbc.13194] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an important health problem. The prevalence of NAFLD is increasing, especially in the Western countries. Although there are several intracellular pathways in NAFLD, endoplasmic reticulum (ER) stress has recently gained importance. Silymarin is an important liver-protective biological molecule. In light of this information, we investigated mice for the effect of silymarin on ER stress in the NAFLD model. In our study, the mice were randomly divided into six groups: Control, silymarin 100 and 200 mg/kg sham, fructose-induced NAFLD, and NAFLD + silymarin groups. After the last administrations, liver and blood samples were taken and hematoxylin-eosin, as well as Oil red O staining, were performed. As a result, the body and liver weights, lipid profile, AST, ALT, and glucose levels, along with the ER stress markers, increased in the NAFLD-only group. Silymarin treatments reversed most of these changes. Particularly, 200 mg/kg silymarin was more effective. PRACTICAL APPLICATIONS: According to the results, silymarin attenuated NAFLD by decreasing the ER stress proteins GRP78 and XBP-1. Silymarin may be therapeutic in the treatment of NAFLD as well as other ER-stress-based diseases. Silymarin can also be taken with food for prophylactic purposes.
Collapse
Affiliation(s)
- Erhan Sahin
- Faculty of Medicine, Histology and Embryology Department, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ridvan Bagci
- Faculty of Medicine, Histology and Embryology Department, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Nuriye Ezgi Bektur Aykanat
- Faculty of Medicine, Histology and Embryology Department, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Sedat Kacar
- Faculty of Medicine, Histology and Embryology Department, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Varol Sahinturk
- Faculty of Medicine, Histology and Embryology Department, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
390
|
Xu H, Chen GF, Ma YS, Zhang HW, Zhou Y, Liu GH, Chen DY, Ping J, Liu YH, Mou X, Fu D. Hepatic Proteomic Changes and Sirt1/AMPK Signaling Activation by Oxymatrine Treatment in Rats With Non-alcoholic Steatosis. Front Pharmacol 2020; 11:216. [PMID: 32210812 PMCID: PMC7076077 DOI: 10.3389/fphar.2020.00216] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background Currently, active ingredients of herbal extracts that can suppress lipid accumulation in the liver have been considered a potential treatment option for non-alcoholic fatty liver disease. Methods Steatosis rat model was created by high fat and high sucrose diet feeding and treated with oxymatrine (OMT). Serum biochemical parameters, liver histology and lipid profiles were examined. Hepatic differentially expressed proteins (DEPs) which were significantly changed by OMT treatment were identified by iTRAQ analysis. The expressions of representative DEPs, Sirt1 and AMPKα were evaluated by western blotting. Results OMT significantly reduced the body weight and liver weight of steatosis animals, decreased the serum levels of triglyceride and total cholesterol as well as the hepatic triglyceride and free fatty acid levels, and effectively alleviated fatty degeneration in the liver. A list of OMT-related DEPs have been screened and evaluated by bioinformatics analysis. OMT significantly decreased the expressions of L-FABP, Plin2, FASN and SCD1 and increased Sirt1 expression and AMPKα phosphorylation in the liver of rats with steatosis. Conclusion The present study has confirmed the significant efficacy of OMT for improving steatosis and revealed hepatic proteomic changes and Sirt1/AMPK signaling activation by OMT treatment in rats with steatosis.
Collapse
Affiliation(s)
- Hong Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Gao-Feng Chen
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Shui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong-Wei Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Yang Zhou
- Liver Cirrhosis Section, Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang-Hui Liu
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dong-Ya Chen
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Jian Ping
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Hui Liu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Xin Mou
- Department of Endocrinology, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
391
|
Mosedale M, Watkins PB. Understanding Idiosyncratic Toxicity: Lessons Learned from Drug-Induced Liver Injury. J Med Chem 2020; 63:6436-6461. [PMID: 32037821 DOI: 10.1021/acs.jmedchem.9b01297] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiosyncratic adverse drug reactions (IADRs) encompass a diverse group of toxicities that can vary by drug and patient. The complex and unpredictable nature of IADRs combined with the fact that they are rare makes them particularly difficult to predict, diagnose, and treat. Common clinical characteristics, the identification of human leukocyte antigen risk alleles, and drug-induced proliferation of lymphocytes isolated from patients support a role for the adaptive immune system in the pathogenesis of IADRs. Significant evidence also suggests a requirement for direct, drug-induced stress, neoantigen formation, and stimulation of an innate response, which can be influenced by properties intrinsic to both the drug and the patient. This Perspective will provide an overview of the clinical profile, mechanisms, and risk factors underlying IADRs as well as new approaches to study these reactions, focusing on idiosyncratic drug-induced liver injury.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - Paul B Watkins
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
392
|
Li Y, Wang J, Huang C, Shen M, Zhan H, Xu K. RNA N6-methyladenosine: a promising molecular target in metabolic diseases. Cell Biosci 2020; 10:19. [PMID: 32110378 PMCID: PMC7035649 DOI: 10.1186/s13578-020-00385-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine is a prevalent and abundant transcriptome modification, and its methylation regulates the various aspects of RNAs, including transcription, translation, processing and metabolism. The methylation of N6-methyladenosine is highly associated with numerous cellular processes, which plays important roles in the development of physiological process and diseases. The high prevalence of metabolic diseases poses a serious threat to human health, but its pathological mechanisms remain poorly understood. Recent studies have reported that the progression of metabolic diseases is closely related to the expression of RNA N6-methyladenosine modification. In this review, we aim to summarize the biological and clinical significance of RNA N6-methyladenosine modification in metabolic diseases, including obesity, type 2 diabetes, non-alcoholic fatty liver disease, hypertension, cardiovascular diseases, osteoporosis and immune-related metabolic diseases.
Collapse
Affiliation(s)
- Yan Li
- 1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Jiawen Wang
- 1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Chunyan Huang
- Houjie Hospital of Dongguan, Dongguan, 523945 Guangdong China
| | - Meng Shen
- Chengdu Tumor Hospital, Chengdu, 610041 Sichuan China
| | - Huakui Zhan
- 1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Keyang Xu
- 4Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310023 Zhejiang China
| |
Collapse
|
393
|
Beneficial Effects of Lactobacillus plantarum Strains on Non-Alcoholic Fatty Liver Disease in High Fat/High Fructose Diet-Fed Rats. Nutrients 2020; 12:nu12020542. [PMID: 32093158 PMCID: PMC7071439 DOI: 10.3390/nu12020542] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggests that probiotics are beneficial in non-alcoholic fatty liver disease (NAFLD). This study aimed to explore the effects of two Lactobacillus plantarum strains, ATG-K2 and ATG-K6 (isolated from Korean fermented cabbage), in a rat model of high fat/high fructose (HF/HF) diet-induced NAFLD. Rats with NAFLD were randomized into four groups (HF/HF diet control, (HC); HF/HF diet with silymarin, (PC); HF/HF diet with ATG-K2, (K2); and HF/HF diet with ATG-K6, (K6)) with healthy rats on a normal diet serving as the negative control. After treatment, histopathological and biochemical analyses of the blood and liver tissue were conducted. In addition, fecal microbiota was analyzed using the MiSeq platform. Compared with HC rats, K2 and K6 rats experienced significantly lower body weight gain, displayed decreased hepatic lipid accumulation, had lower serum levels of aspartate aminotransferase and alanine aminotransferase, and showed increased antioxidant enzyme activities. Moreover, de novo lipogenesis-related genes were downregulated following K2 and K6 administration. The fecal microbiota of K2 and K6 rats contained a higher proportion of Bacteriodetes and a lower proportion of Fimicutes than that of HC rats. Taken together, our results suggest that L. plantarum strains ATG-K2 and ATG-K6 are potential therapeutic agents for NAFLD.
Collapse
|
394
|
Zhang R, Chu K, Zhao N, Wu J, Ma L, Zhu C, Chen X, Wei G, Liao M. Corilagin Alleviates Nonalcoholic Fatty Liver Disease in High-Fat Diet-Induced C57BL/6 Mice by Ameliorating Oxidative Stress and Restoring Autophagic Flux. Front Pharmacol 2020; 10:1693. [PMID: 32116684 PMCID: PMC7011087 DOI: 10.3389/fphar.2019.01693] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022] Open
Abstract
Corilagin (Cori) possesses multiple biological activities. To determine whether Cori can exert protective effects against nonalcoholic fatty liver disease (NAFLD) and its potential mechanisms. C57BL/6 mice were fed with high-fat diet (HFD) alone or in combination with Cori (20 mg/kg, i.p.) and AML12 cells were exposed to 200 μM PA/OA with or without Cori (10 μM or 20 μM). Phenotypes and key indicators relevant to NAFLD were examined both in vivo and in vitro. In this study, Cori significantly ameliorated hepatic steatosis, confirmed by improved serum lipid profiles, and hepatic TC, TG contents, and the gene expression related to lipid metabolism in livers of HFD mice. Moreover, Cori attenuated HFD-mediated autophagy (including mitophagy) blockage by restoring autophagic flux, evidenced by increased number of autophagic double vesicles containing mitochondria, elevated LC3II protein levels, decreased p62 protein levels, as well as enhanced colocalization of autophagy-related protein (LC3, Parkin) and mitochondria. In accordance with this, Cori also reduced the accumulation of ROS and MDA levels, and enhanced the activities of antioxidative enzymes including SOD, GSH-Px, and CAT. In addition, Cori treatment improved mitochondrial dysfunction, evidenced by increased mitochondrial membrane potential (ΔΨm). In parallel with this, Cori decreased mitochondrial DNA oxidative damage, while increased mitochondrial biogenesis related transcription factors expression, mitochondrial DNA content and oxygen consumption rate (OCR). In conclusion, these results demonstrate that Cori is a potential candidate for the treatment of NAFLD via diminishing oxidative stress, restoring autophagic flux, as well as improving mitochondrial functions.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kexin Chu
- Department of Radiation Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Nengjiang Zhao
- Department of Traditional Chinese Medicine Studio, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jingjing Wu
- Department of Breast, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Ma
- Department of Breast, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenfang Zhu
- Department of General Surgery, The Ninth People's Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Xia Chen
- Department of Endocrinology and Metabolism, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Gang Wei
- Department of Endocrinology and Metabolism, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Diabetes, Shanghai Institute for Diabetes, Shanghai Clinical Medical Centre of Diabetes, Shanghai Key Clinical Centre of Metabolic Diseases, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Mingjuan Liao
- Department of Traditional Chinese Medicine, The Ninth People's Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
395
|
Liang C, Li Y, Bai M, Huang Y, Yang H, Liu L, Wang S, Yu C, Song Z, Bao Y, Yi J, Sun L, Li Y. Hypericin attenuates nonalcoholic fatty liver disease and abnormal lipid metabolism via the PKA-mediated AMPK signaling pathway in vitro and in vivo. Pharmacol Res 2020; 153:104657. [PMID: 31982488 DOI: 10.1016/j.phrs.2020.104657] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/12/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide and constitutes a major risk factor for progression to cirrhosis, liver failure and hepatocellular carcinoma (HCC). The occurrence of NAFLD is closely associated with abnormal lipid metabolism and implies a high risk of type 2 diabetes and cardiovascular disease. Therefore, specific and effective drugs for the prevention and treatment of NAFLD are necessary. Hypericin (HP) is one of the main active ingredients of Hypericum perforatum L., and we previously revealed its protective role in islet β-cells and its effects against type 2 diabetes. In this study, we aimed to explore the preventive and therapeutic effects of HP against NAFLD and the underlying mechanisms in vitro and in vivo. Here, we demonstrated that HP improved cell viability by reducing apoptosis and attenuated lipid accumulation in hepatocytes both in vitro and in vivovia attenuating oxidative stress, inhibiting lipogenesis and enhancing lipid oxidization. Thus, HP exhibited significant preventive and therapeutic effects against HFHS-induced NAFLD and dyslipidemia in mice. Furthermore, we demonstrated that HP directly bound to PKACα and activated PKA/AMPK signaling to elicit its effects against NAFLD, suggesting that PKACα is one of the drug targets of HP. In addition, the enhancing effect of HP on lipolysis in adipocytes through the activation of PKACα was also elucidated. Together, the conclusions indicated that HP, of which one of the targets is PKACα, has the potential to be used as a preventive or therapeutic drug against NAFLD or abnormal lipid metabolism in the future.
Collapse
Affiliation(s)
- Chen Liang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China; Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yan Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Miao Bai
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Hang Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lei Liu
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Shuyue Wang
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Zhenbo Song
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Jingwen Yi
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China.
| | - Yuxin Li
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
396
|
Park JS, Song J, Park JS, Lee S, Lee J, Park HJ, Kim WK, Yoon S, Chun HS. 3,4-Dichloroaniline promotes fatty liver in zebrafish larvae. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-019-00066-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
397
|
Ryu KJ, Park H, Park JS, Lee YW, Kim SY, Kim H, Jeong Y, Kim YJ, Yi KW, Shin JH, Hur JY, Kim T. Vasomotor Symptoms: More Than Temporary Menopausal Symptoms. J Menopausal Med 2020; 26:147-153. [PMID: 33423402 PMCID: PMC7797223 DOI: 10.6118/jmm.20030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 01/10/2023] Open
Abstract
Vasomotor symptoms (VMS), such as hot flashes and night sweating, are classic menopausal symptoms experienced by a majority of perimenopausal and postmenopausal women. VMS have received a great deal of attention due to their relationship with cardiometabolic risk. Further, accumulating evidence indicates that VMS are associated with an increased risk of several chronic diseases, including metabolic syndrome, type 2 diabetes mellitus, nonalcoholic fatty liver diseases, and osteoporosis in perimenopausal and postmenopausal women. These findings suggest VMS as biomarkers of impaired cardiometabolic conditions rather than just temporary symptoms in menopausal women, warranting further studies to confirm the casual relationship of VMS with these diseases and the exact underlying mechanism in this context.
Collapse
Affiliation(s)
- Ki Jin Ryu
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Hyuntae Park
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea.
| | | | - Yeon Woo Lee
- Korea University College of Medicine, Seoul, Korea
| | | | - Hayun Kim
- Korea University College of Medicine, Seoul, Korea
| | - Youngmi Jeong
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Yong Jin Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Kyong Wook Yi
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Jung Ho Shin
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Jun Young Hur
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Tak Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
398
|
A review of the pharmacology and toxicology of aucubin. Fitoterapia 2020; 140:104443. [DOI: 10.1016/j.fitote.2019.104443] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
|
399
|
Bachar SC, Bachar R, Jannat K, Jahan R, Rahmatullah M. Hepatoprotective natural products. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2020:207-249. [DOI: 10.1016/bs.armc.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
400
|
|