351
|
Ignjatović NL, Janković R, Uskoković V, Uskoković DP. Effects of hydroxyapatite@poly-lactide- co-glycolide nanoparticles combined with Pb and Cd on liver and kidney parenchyma after the reconstruction of mandibular bone defects. Toxicol Res (Camb) 2019; 8:287-296. [PMID: 30997028 DOI: 10.1039/c9tx00007k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/04/2019] [Indexed: 12/28/2022] Open
Abstract
Reconstruction of bone defects with the use of biomaterials based on hydroxyapatite (HAp) has been a popular approach in medicine and dentistry. Most often the process of new bone formation is analyzed with the focus only on the region of the reconstructed defect. The effects of the therapy on distant organs have been rarely reported in the literature, especially not in synergy with the exposure to other bioactive chemicals. In this study, reconstruction of the mandibular bone in vivo using poly-lactide-co-glycolide-coated HAp (HAp/PLGA) nanoparticles was monitored with a simultaneous histopathological analysis of distant organs, specifically kidney and liver parenchyma. Heavy metals are among the most prominent environmental pollutants and have a high affinity for the crystal lattice of HAp, where they get incorporated by replacing calcium ions. Lead (Pb) and cadmium (Cd) are two such metals that can be found in food, water and air, but are most commonly present in cigarette smoke, the frequent contaminant of hospital settings in the developing world. The influence of their presence in the repaired bone on the content of calcium (Ca) in the reconstructed bone defect was analyzed, along with the histopathological changes in liver and kidneys. A study performed on 24 female Wistar rats demonstrated that the reconstruction of mandibular bone defects using HAp/PLGA particles induced an increase in the content of Ca in the newly created bone without causing any pathological changes to the liver and the kidneys. The presence of Pb and Cd in the defects reconstructed with HAp/PLGA nanoparticles impeded the regenerative process and led to a severe and irreversible damage to the liver and kidney parenchyma.
Collapse
Affiliation(s)
- Nenad L Ignjatović
- Institute of Technical Sciences , Serbian Academy of Science and Arts , Knez Mihailova 35/IV , P.O. Box 377 , 11000 Belgrade , Serbia . ;
| | - Radmila Janković
- University of Belgrade , School of Medicine , Institute of Pathology , Belgrade , Serbia
| | - Vuk Uskoković
- University of Illinois , Department of Bioengineering , Chicago , IL , USA
| | - Dragan P Uskoković
- Institute of Technical Sciences , Serbian Academy of Science and Arts , Knez Mihailova 35/IV , P.O. Box 377 , 11000 Belgrade , Serbia . ;
| |
Collapse
|
352
|
De Guglielmo V, Puoti R, Notariale R, Maresca V, Ausió J, Troisi J, Verrillo M, Basile A, Febbraio F, Piscopo M. Alterations in the properties of sperm protamine-like II protein after exposure of Mytilus galloprovincialis (Lamarck 1819) to sub-toxic doses of cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:600-606. [PMID: 30496991 DOI: 10.1016/j.ecoenv.2018.11.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/17/2018] [Accepted: 11/16/2018] [Indexed: 05/25/2023]
Abstract
Protamine-like proteins (PL-II, PL-III and PL-IV) represent the major basic nuclear component of Mytilus galloprovincialis L sperm chromatin. The present study investigates the effects induced on the properties of PL-II protein after exposure of Mytilus galloprovincialis L for 24 h to 1.5 and 5 µM CdCl2. We found cadmium accumulation in protamine-like proteins with a linear grow up with the exposition dose. In particular, after 5 µM CdCl2 mussels exposure, the mobility of PL-II band changed in SDS-PAGE, suggesting structural rearrangement in presence of cadmium. Structural analysis using fluorescent probes, indicated that at 5 µM CdCl2 the complete conformational change of PL-II protein was reached. In the same condition of mussels exposure of 5 µM CdCl2, PL-II protein changed its DNA binding mode, which determined a closer DNA binding, because higher amount of NaCl were required for PL-II protein release by sperm nuclei. These results supported the hypothesis that mussel exposure to this CdCl2 dose, although lower to toxic ones, affects the properties of this protein and as a consequence chromatin organization of spermatozoa that is essential for the success of fertilization.
Collapse
Affiliation(s)
- Virgilia De Guglielmo
- University of Naples Federico II, Dept. of Biology, via Cinthia, 80126 Naples, Italy
| | - Raffaela Puoti
- University of Naples Federico II, Dept. of Biology, via Cinthia, 80126 Naples, Italy
| | - Rosaria Notariale
- University of Naples Federico II, Dept. of Biology, via Cinthia, 80126 Naples, Italy
| | - Viviana Maresca
- University of Naples Federico II, Dept. of Biology, via Cinthia, 80126 Naples, Italy
| | - Juan Ausió
- University of Victoria, Dept. of Biochemistry & Microbiology, Victoria, British Columbia, Canada
| | - Jacopo Troisi
- Theoreo srl-spin-off dell'Universita` degli Studi di Salerno, 84090 Salerno, Italy
| | - Mariavittoria Verrillo
- University of Naples Federico II, Dept. of Agricultural Sciences, Via Università 100, 84055 Portici, Italy
| | - Adriana Basile
- University of Naples Federico II, Dept. of Biology, via Cinthia, 80126 Naples, Italy
| | - Ferdinando Febbraio
- CNR, Institute of Protein Biochemistry, via Pietro Castellino 111, 80131 Naples, Italy.
| | - Marina Piscopo
- University of Naples Federico II, Dept. of Biology, via Cinthia, 80126 Naples, Italy.
| |
Collapse
|
353
|
Nesovic-Ostojic J, Kovacevic S, Spasic S, Lopicic S, Todorovic J, Dincic M, Stanojevic M, Savin M, Milovanovic A, Cemerikic D. Modulation of luminal L-alanine transport in proximal tubular cells of frog kidney induced by low micromolar Cd 2+ concentration. Comp Biochem Physiol C Toxicol Pharmacol 2019; 216:38-42. [PMID: 30414954 DOI: 10.1016/j.cbpc.2018.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/25/2022]
Abstract
The kidneys are recognized as a major target of cadmium-induced toxicity. However, all mechanisms that are involved in the early stages of cadmium nephrotoxicity, particularly considering low micromolar concentrations of cadmium ions (Cd2+) are still unknown. Therefore, the aim of this study was to investigate the effects of peritubular acute exposure to micromolar Cd2+ concentration (2.3 μmol/L) on the rapid depolarization and the rate of slow repolarization of peritubular membrane potential difference (PD), induced by luminal application of L-alanine in proximal tubular cells of frog kidney. The results showed that the luminal application of L-alanine rapidly depolarized the peritubular membrane PD of -42.00 ± 11.68 mV by 23.89 ± 4.15 mV with an average rate of slow repolarization of 5.64 ± 0.81 mV/min. Additionally, peritubular acute exposure to Cd2+ induced change in rapid depolarization of peritubular membrane PD of -53.33 ± 13.01 mV by 18.78 ± 3.31 mV (P < 0.01) after luminal application of L-alanine. Also, peritubular acute exposure to Cd2+ led to statistically significant decrease in the rate of slow repolarization of peritubular membrane PD (3.53 ± 0.35 mV/min; P < 0.05). In conclusion, these results suggest that peritubular acute exposure to low micromolar Cd2+ concentration decreased the rapid depolarization and the rate of slow repolarization of peritubular membrane PD induced by luminal application of L-alanine. This is followed by reduced luminal sodium-coupled transport of L-alanine and this change may be one of the possible mechanisms involved in the early stages of Cd2+-induced nephrotoxicity.
Collapse
Affiliation(s)
| | - Sanjin Kovacevic
- Institute of Pathophysiology, Medical Faculty, University of Belgrade, Serbia
| | - Svetolik Spasic
- Institute of Pathophysiology, Medical Faculty, University of Belgrade, Serbia
| | - Srdjan Lopicic
- Institute of Pathophysiology, Medical Faculty, University of Belgrade, Serbia
| | - Jasna Todorovic
- Institute of Pathophysiology, Medical Faculty, University of Belgrade, Serbia
| | - Marko Dincic
- Institute of Pathophysiology, Medical Faculty, University of Belgrade, Serbia
| | - Marija Stanojevic
- Institute of Pathophysiology, Medical Faculty, University of Belgrade, Serbia
| | - Marina Savin
- Clinic of Nephrology, Clinical Center of Serbia, Medical Faculty, University of Belgrade, Serbia
| | - Aleksandar Milovanovic
- Insitute of Occupational Health, Clinical Center of Serbia, Medical Faculty, University of Belgrade, Serbia
| | - Dusan Cemerikic
- Institute of Pathophysiology, Medical Faculty, University of Belgrade, Serbia
| |
Collapse
|
354
|
Toxic Effect of Acute Cadmium and Lead Exposure in Rat Blood, Liver, and Kidney. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16020274. [PMID: 30669347 PMCID: PMC6351928 DOI: 10.3390/ijerph16020274] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 11/17/2022]
Abstract
Background: Cadmium and lead are widespread and non-biodegradable pollutants of great concern to human health. In real life scenarios, we are exposed to mixtures of chemicals rather than single chemicals, and it is therefore of paramount importance to assess their toxicity. In this study, we investigated the toxicity of Cd and Pb alone and as a mixture in an animal model of acute exposure. Methods: Experimental groups received a single treatment of aqueous solution of Cd-chloride (15 and 30 mg/kg body weight (b.w.) and Pb-acetate (150 mg/kg b.w.), while the mixture group received 15 mg Cd/kg b.w. and 150 mg Pb/kg b.w. Toxic effects of individual metals and their mixture were investigated on hematological and biochemical parameters, and the redox status in the plasma, liver, and kidneys of treated Wistar rats. Results: Tissue-specific changes were recorded in various parameters of oxidative damage, while the accumulation of metals in tissues accompanied the disturbances of both hematological and biochemical parameters. It was observed that the level of toxic metals in tissues had a different distribution pattern after mixture and single exposure. Conclusions: Comprehensive observations suggest that exposure to Cd and Pb mixtures produces more pronounced effects compared to the response observed after exposure to single metal solutions. However, further research is needed to confirm toxicokinetic or toxicodynamic interactions between these two toxic metals in the organisms.
Collapse
|
355
|
Das SC, Al-Naemi HA. Cadmium Toxicity: Oxidative Stress, Inflammation and Tissue Injury. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/odem.2019.74012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
356
|
Mascarenhas S, Mutnuri S, Ganguly A. Silica - A trace geogenic element with emerging nephrotoxic potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:297-317. [PMID: 30029111 DOI: 10.1016/j.scitotenv.2018.07.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/14/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Silica is a trace-geogenic compound with limited-bioavailability. It inflicts health-perils like pulmonary-silicosis and chronic kidney disease (CKD), when available via anthropogenic-disturbances. Amidst silica-imposed pathologies, pulmonary toxicological-mechanisms are well-described, ignoring the renal-pathophysiological mechanisms. Hence, the present-study aimed to elucidate cellular-cum-molecular toxicological-mechanisms underlying silica-induced renal-pathology in-vitro. Various toxicity-assessments were used to study effects of silica on the physiological-functions of HK-cells (human-kidney proximal-tubular cells - the toxin's prime target) on chronic (1-7 days) sub-toxic (80 mg/L) and toxic (100-120 mg/L) dosing. Results depicted that silica triggered dose-cum-time dependent cytotoxicity/cell-death (MTT-assay) that significantly increased on long-term dosing with ≥100 mg/L silica; establishing the nephrotoxic-potential of this dose. Contrarily, insignificant cell-death on sub-toxic (80 mg/L) dosing was attributed to rapid intracellular toxin-clearance at lower-doses preventing toxic-effects. The proximal-tubular (HK-cells) cytotoxicity was found to be primarily mediated by silica-triggered incessant oxidative-stress (elevated ROS).·This enhanced ROS inflicted severe inflammation and subsequent fibrosis, evident from increased pro-inflammatory-cum-fibrogenic cytokines generation (IL-1β, IL-2, IL-6, TNF-α and TGF-β). Simultaneously, ROS induced persistent DNA-damage (Comet-assay) that stimulated G2/M arrest for p53-mediated damage-repair, aided by checkpoint-promoter (Chk1) activation and mitotic-inducers (i.e. Cdc-25, Cdk1, cyclinB1) inhibition. However, DNA-injuries surpassed the cellular-repair, which provoked the p53-gene to induce mitochondrial-mediated apoptotic cell-death via activation of Bax, cytochrome-c and caspase-cascade (9/3). This persistent apoptotic cell-death and simultaneous incessant inflammation culminated in the development of tubular-atrophy and fibrosis, the major pathological-manifestations of CKD. These findings provided novel-insights into the pathological-mechanisms (cellular and molecular) of silica-induced CKD, inflicted on chronic toxic-dosing (≥100 mg/L).Thereby, encouraging the development of therapeutic-strategies (e.g. anti-oxidant treatment) for specific molecular-targets (e.g. ROS) to retard silica-induced CKD-progression, for reduction in the global-CKD burden.
Collapse
Affiliation(s)
- Starlaine Mascarenhas
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, NH 17 B, Zuarinagar, Goa 403 726, India.
| | - Srikanth Mutnuri
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, NH 17 B, Zuarinagar, Goa 403 726, India.
| | - Anasuya Ganguly
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, NH 17 B, Zuarinagar, Goa 403 726, India.
| |
Collapse
|
357
|
Dżugan M, Trybus W, Lis M, Wesołowska M, Trybus E, Kopacz-Bednarska A, Król T. Cadmium-induced ultrastructural changes in primary target organs of developing chicken embryos (Gallus domesticus). J Trace Elem Med Biol 2018; 50:167-174. [PMID: 30262276 DOI: 10.1016/j.jtemb.2018.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/08/2018] [Accepted: 06/18/2018] [Indexed: 11/18/2022]
Abstract
The aim of this study was to evaluate ultrastructural changes in kidney and liver tissue of chicken embryos exposed in ovo to cadmium. Embryonated eggs were injected on the 4th day of incubation with cadmium at the dose of 0, 2, 4 and 8 μg/egg (80 eggs/group). The samples of kidney and liver tissues were collected from embryos at the 14th and 18th day of incubation (E14 and E18) and at hatching day (D1). The tissue structure was evaluated by transmission electron microscopy (Tecnai G2 Spirit). The results indicate that hepatocytes responded to damage caused by toxic cadmium activity with a significant disturbance in the structure of mitochondria and a considerable expansion of the lysososmal system, while glomerular cells additionally reacted with an increased proliferation of peroxisomes. The range of changes observed on the subcellular level was dependent on the dose of cadmium, embryogenesis stage and cell type.
Collapse
Affiliation(s)
- Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Faculty of Biology and Agriculture, University of Rzeszów, ul. Ćwiklińskiej 1, 35-601 Rzeszów, Poland.
| | - Wojciech Trybus
- Department of Cell Biology and Electronic Microscopy, Institute of Biology, The Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce, Poland
| | - Marcin Lis
- Department of Veterinary and Animal Reproduction and Welfare, University of Agriculture, Aleja Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Monika Wesołowska
- Department of Chemistry and Food Toxicology, Faculty of Biology and Agriculture, University of Rzeszów, ul. Ćwiklińskiej 1, 35-601 Rzeszów, Poland
| | - Ewa Trybus
- Department of Cell Biology and Electronic Microscopy, Institute of Biology, The Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce, Poland
| | - Anna Kopacz-Bednarska
- Department of Cell Biology and Electronic Microscopy, Institute of Biology, The Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce, Poland
| | - Teodora Król
- Department of Cell Biology and Electronic Microscopy, Institute of Biology, The Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce, Poland
| |
Collapse
|
358
|
Maynar M, Llerena F, Bartolomé I, Alves J, Grijota FJ, Robles MC, Muñoz D. Influence of an exercise until exhaustion in serum and urinary concentrations of toxic minerals among professional athletes, a preliminary approach. J Trace Elem Med Biol 2018; 50:312-319. [PMID: 30262297 DOI: 10.1016/j.jtemb.2018.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 01/09/2023]
Abstract
The aim of the present survey was to determine differences in the serum and urinary concentrations of several toxic trace elements (As, Be, Cd, Cs and Pb) between long distance runners and non-sportsmen living in the same area of Extremadura (Spain) in basal conditions as well as after the performance of a maximal effort test until exhaustion. 21 Spanish national long-distance runners were recruited before the start of their training season and 26 untrained students. All of them had similar ages. The effort test consisted in running on a treadmill incrementally in stages, until exhaustion. Serum and urine analysis of trace metals was performed by inductively coupled plasma mass spectrometry (ICP-MS). In the statistics the urine and blood basal concentrations was analyzed first using Student t test. Then the differences between the pre and post-test values were analyzed using Wilcoxon test. The serum concentrations of Be (p < 0.001), Cd (p < 0.01), Cs (p < 0.001) and Pb (p < 0.001) were higher in the athletes than the control groups in basal conditions. In relation to the exercise, the results showed that there were lower serum concentrations of Be, Cd and Pb after the test, but without statistically significance, in both groups. Cs (p < 0.001) concentrations were statistically lower after the exercise tests in both groups, but if the parameters were corrected in relation to hematocrit and hemoglobin concentrations the differences were significant only among the athletes. In urine, the concentrations of Be (p < 0.001) and Cd (p < 0.01) were higher among athletes than among controls, being the opposite case for urinary Pb values. In relation to the exercise-induced effect of the test, the results showed that among controls only Cd values were modified, but if creatinine corrections are applied this difference does not reach statistical significance. However, sportsmen suffered a diminution in Be values, that can be observed only if urine values are corrected. Also, an increase in Cd, both in corrected and normal values, was observed, fact that occurred also in the case of Cs, but only if urinary values are corrected. It can be concluded that an incremental exercise to exhaustion among elite athletes of long distance modalities can produce changes in serum and urinary concentrations of toxic trace elements which may reflect an adaptive mechanism to prevent toxicity, and which could be an interesting outcome for physicians in the treatment and prevention of toxic situations.
Collapse
Affiliation(s)
- M Maynar
- Department of Physiology, School of Sport Sciences, University of Extremadura, Spain.
| | - F Llerena
- Department of Medical-Surgical Therapeutics, School of Medicine, University of Extremadura, Spain
| | - I Bartolomé
- Department of Physiology, School of Sport Sciences, University of Extremadura, Spain
| | - J Alves
- Department of Physiology, School of Sport Sciences, University of Extremadura, Spain
| | - F J Grijota
- Department of Didactics of Musical, Plastic and Corporal Expression, School of Teacher Training, University of Extremadura, Spain
| | - M C Robles
- Department of Physical Education and Sport, Sport Sciences Faculty, University of Extremadura, Cáceres, Spain
| | - D Muñoz
- Department of Physical Education and Sport, Sport Sciences Faculty, University of Extremadura, Cáceres, Spain
| |
Collapse
|
359
|
Wang J, Wei B, Peng Y, Huang T, Yang H, Peng X, Xie C, Xu X, Sun Z, Wang Z, Lv Z, Song Q. Transcriptome analysis reveals the molecular response to cadmium toxicity in P. pseudoannulata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34294-34305. [PMID: 30291617 DOI: 10.1007/s11356-018-3269-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Cadmium (Cd) can be transferred and accumulated in spiders, posing a survival risk to them. To analyze potential biological damage caused by Cd accumulation and relevant detoxification strategies employed by spiders in response to Cd exposure, we conducted transcriptome analysis of the 5th instar spider P. pseudoannulata, a common spider species playing a vital role in natural pest control in agricultural fields of southern China. We obtained 92,778 unigenes with an average length of 1104 bp and identified 302, 655, and 424 differentially expressed genes (DEGs) in the spiders fed with Cd-containing fruit flies for 2, 5, and 8 days, respectively. Results showed that the body mass of Cd-containing P. pseudoannulata were reduced when compared with controls, presumably due to delayed maturation of tissues and organs. Meanwhile, functional analysis of DEGs indicated that Cd may have a negative effect on neural signal transduction and molt cycle of the spider. For defense strategies, detoxification enzymes like glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), and P450, and typical proteins like heat shock protein and metallothionein were all differentially expressed in response to Cd stress. Besides, innate immune responses like toll-like receptor signaling pathways were also upregulated. Multiple critical Cd-responsive genes involved in biological damage, detoxification, and immune response were identified, providing referable foundation for further research on Cd toxicity to P. pseudoannulata.
Collapse
Affiliation(s)
- Juan Wang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, 410128, Hunan, China
| | - Baoyang Wei
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, 410128, Hunan, China
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Ting Huang
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, 410128, Hunan, China
| | - Huilin Yang
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, 410128, Hunan, China
| | - Xianjin Peng
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Xiang Xu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zhiying Sun
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, 410128, Hunan, China
| | - Zhi Wang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, 410128, Hunan, China.
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
360
|
Liao Z, Cao H, Dai X, Xing C, Xu X, Nie G, Zhang C. Molybdenum and Cadmium exposure influences the concentration of trace elements in the digestive organs of Shaoxing duck (Anas platyrhyncha). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:75-83. [PMID: 30098508 DOI: 10.1016/j.ecoenv.2018.07.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/25/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
To investigate the toxic effects of Molybdenum (Mo) and Cadmium (Cd) on trace elements in digestive organs of Shaoxing duck (Anas platyrhyncha), 120 Shaoxing ducks were randomly divided into control group and 5 treatment groups which were treated with a commercial diet containing different dosages of Mo and Cd. On the 60th and 120th days, the beak, esophagus, glandular stomach, muscular stomach, small intestine, large intestine and feces were collected to determine contents of Mo, Cd, copper (Cu), iron (Fe), zinc (Zn) and selenium (Se), then correlation analysis was performed. The results showed that Cd content in digestive organs significantly increased in co-treated groups compared to single treated groups and Mo concentration increased in Mo-treated groups compared to control group, whereas Cu, Fe, Zn and Se concentrations in digestive organs decreased in co-treated groups. Furthermore, Cd and Mo were mainly accumulated in the small intestine and esophagus, respectively. There was a strongly positive correlation between Cd and Mo while they had negative correlation with Cu, Fe, Zn and Se, respectively. In feces, Mo and Fe contents in high dose of Mo group and high Mo combined with Cd group were significantly higher than those in control group, and Cu content in all treated groups significantly increased and Cd, Zn and Se concentrations had no difference. The results indicated that dietary Mo or/and Cd might disturb homeostasis of trace elements in digestive organs of Shaoxing duck. Moreover, the two elements presented a synergistic relationship.
Collapse
Affiliation(s)
- Zhiyue Liao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiongwei Xu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, No. 665 Yuping West street, Economic and Technological Development District, Nanchang 330032, Jiangxi, PR China.
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
361
|
Elbaghdady HAM, Alwaili MA, El-Demerdash RS. Regenerative potential of bone marrow mesenchymal stem cells on cadmium chloride-induced hepato-renal injury and testicular dysfunction in sprague dawley rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:41-49. [PMID: 30096602 DOI: 10.1016/j.ecoenv.2018.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
The effect of bone marrow-derived mesenchymal stem cells on cadmium-induced liver and kidney damage was studied in Sprague Dawley rats. The study employed three animal groups: Group 1 served as control animals; Group 2 rats were dosed intra-peritoneally with 2 mg of cadmium chloride per kg body weight, and Group 3 rats were again dosed with a single intraperitoneal injection of 2 mg of cadmium chloride per kg body weight two doses of 106 cells each intravenously. Finally, the animals were killed using halothane inhalation anesthesia. Semen analysis (total sperm count, viability, motility, and % of normal sperm), biochemical estimations (serum total protein, uric acid, creatinine, levels of enzymes ALT, AST, and ALP, and levels of hormones LH, FSH, Inhibin, and testosterone), and histopathological analysis of liver and kidney tissue sections (using hematoxylene and eosin stains) were conducted. The results showed that when compared to controls, cadmium exposure drastically decreased total sperm count, viability, motility, and % of normal sperm, decreased serum total protein, increased serum uric acid and creatinine levels, increased levels of ALT, AST, and ALP enzymes, decreased levels of testosterone and inhibin, increased levels of LH and FSH, and caused significant histopathological abnormalities in both kidney and liver tissues. Treatment with stem cells ameliorated the effects of cadmium-induced toxicity significantly (p < 0.05) of the histopathological and biochemical parameters. In conclusion, the study reinforces previous findings that bone marrow mesenchymal stem cells can ameliorate the toxic effects of cadmium chloride and may be used as a potential therapeutic strategy for cadmium-induced adverse effects.
Collapse
Affiliation(s)
- Heba Allah M Elbaghdady
- Zoology Department, Environmental Sciences Division, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt; Department of Biological Sciences, Princes Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Maha A Alwaili
- Department of Biological Sciences, Princes Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Deanship of Scientific Research, Princes Nora Bint Abdulrahman University, Saudi Arabia
| | | |
Collapse
|
362
|
Kim H, Lee J, Woo HD, Kim DW, Choi IJ, Kim YI, Kim J. Association between dietary cadmium intake and early gastric cancer risk in a Korean population: a case-control study. Eur J Nutr 2018; 58:3255-3266. [PMID: 30498867 DOI: 10.1007/s00394-018-1868-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE Foods such as grains and vegetables are the dominant sources of exposure to cadmium, which has been classified as a carcinogen by various public health agencies. Cadmium exposure is a growing concern due to its associations with numerous harmful health effects, including gastric cancer risk. The objective of this study was to investigate the association of dietary cadmium intake and the consumption of cadmium-contributing foods with early gastric cancer risk. METHODS A case-control study including 1245 subjects (cases, 415; controls, 830) was conducted in Korea. The dietary cadmium intake and the consumption of cadmium-contributing foods were assessed using a semi-quantitative food frequency questionnaire. RESULTS After adjustment for covariates, the gastric cancer risk was increased for participants in the highest tertile of cadmium intake [odds ratios (ORs) 1.33, 95% confidence intervals (95% CIs) 0.94-1.88], but there was no significance. Both female (ORs 2.71, 95% CIs 1.37-5.36) and male (ORs 1.63, 95% CIs 1.07-2.50) participants in the highest tertile of rice consumption had a higher gastric cancer risk than did those in the lowest tertile. Men in the highest tertile of crab consumption had a gastric cancer risk 2.23 times greater than that of men in the lowest tertile (ORs 2.23, 95% CIs 1.21-4.13), but a difference was not seen in women. CONCLUSIONS Future studies examining the causal effects of dietary cadmium intake and the consumption of cadmium-contributing foods on early gastric cancer risk in large-scale prospective cohorts are recommended.
Collapse
Affiliation(s)
- Hyejin Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, South Korea
| | - Jeonghee Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, South Korea
| | - Hae Dong Woo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, South Korea
| | - Dong Woo Kim
- Department of Home Economics, Korea National Open University, 86, Daehak-ro, Jongno-gu, Seoul, South Korea
| | - Il Ju Choi
- Center for Gastric Cancer, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, South Korea
| | - Young-Il Kim
- Center for Gastric Cancer, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, South Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, South Korea.
| |
Collapse
|
363
|
Mostafa DG, Ahmed SF, Hussein OA. Protective effect of tetrahydrobiopterin on hepatic and renal damage after acute cadmium exposure in male rats. Ultrastruct Pathol 2018; 42:516-531. [PMID: 30595070 DOI: 10.1080/01913123.2018.1559566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/29/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022]
Abstract
Cadmium (Cd) has been recognized as one of the most important environmental and industrial pollutants. This study investigated the impact of acute exposure to Cd on oxidative stress and the inflammatory marker interleukin-6 (IL-6) in the plasma of rats and the histological picture of liver and kidney, as well as to examine the potential protective effect of tetrahydrobiopterin (BH4). METHODS Rats were divided into control group, Cd group that received a single intraperitoneal (i.p.) dose of 4 mg/kg b.w. of CdCl2 and BH4+ Cd group that received a single dose of BH4 (20 mg/kg, i.p.) and subsequently exposed to a single dose of Cd 24 h after the BH4 treatment. RESULTS Cd increased the plasma levels of hepatic enzymes (ALT and AST), urea, creatinine, malondialdehyde (MDA), and IL-6 and decreased the superoxide dismutase (SOD) activity. Also, it induced histopathological alterations in the liver with severe degeneration, especially in centrilobular zones. Renal tubular epithelium showed vacuolated cytoplasm and dense nuclei. VEGF expression was mild. Ultrastuctural changes were seen in some renal tubules. The nuclei appeared distorted with electron dense chromatin. Mitochondria with destructed cristae were observed. BH4 pretreatment had protective effects, since it significantly reduced the levels of IL-6 and ameliorated the alteration in oxidative status biomarkers induced by Cd. Improvement of histopathological alterations was observed in Cd-groups. The nuclei were vesicular euchromatic, intact mitochondria and normal appearance of the filtration membrane. Moderate expression of VEGF was noted. CONCLUSION This study has provided clear evidence for the protective efficacy of BH4 against experimental Cd toxicity.
Collapse
Affiliation(s)
- Dalia G Mostafa
- a Department of Medical Physiology, Faculty of Medicine , Assiut University , Assiut , Egypt
- b Department of Medical Physiology, College of Medicine , King Khalid University , Abha , Saudi Arabia
| | - Salwa Fares Ahmed
- c Department of Histology, Faculty of Medicine , Assiut University , Assiut , Egypt
| | - Ola A Hussein
- c Department of Histology, Faculty of Medicine , Assiut University , Assiut , Egypt
| |
Collapse
|
364
|
Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol In Vitro 2018; 54:310-316. [PMID: 30389602 DOI: 10.1016/j.tiv.2018.10.017] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/12/2018] [Accepted: 10/29/2018] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the effects of excessive copper (Cu)-induced cytotoxicity on oxidative stress and mitochondrial apoptosis in chicken hepatocytes. Chicken hepatocytes were cultured in medium in the absence and presence of copper sulfate (CuSO4) (10, 50, 100 μM), in N-acetyl-L-cysteine (NAC) (1 mM), and the combination of CuSO4 and NAC for 24 h. Morphologic observation and function, reactive oxygen species (ROS) level, antioxidant indices, nitric oxide (NO) content, mitochondrial membrane potential (MMP), and apoptosis-related mRNA and protein levels were determined. These results indicated that excessive Cu could induce release of intracellular lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT); increase levels of ROS, superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), lipid peroxidation (LPO), and NO; decrease glutathione (GSH) content and MMP; upregulated Bak1, Bax, CytC, and Caspase3 mRNA and protein expression, inhibited Bcl2 mRNA and protein expression, and induced cell apoptosis in a dose effect. The Cu-caused changes of all above factors were alleviated by treatment with NAC. These results suggested that excessive Cu could induce oxidative stress and apoptosis via mitochondrial pathway in chicken hepatocytes.
Collapse
|
365
|
Zhang J, Wang Y, Fu L, Wang B, Ji YL, Wang H, Xu DX. Chronic cadmium exposure induced hepatic cellular stress and inflammation in aged female mice. J Appl Toxicol 2018; 39:498-509. [PMID: 30375035 DOI: 10.1002/jat.3742] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/11/2018] [Accepted: 09/25/2018] [Indexed: 01/04/2023]
Abstract
Previous studies have revealed that acute cadmium (Cd) exposure led to inflammation in different organs through an oxidative stress mechanism. However, whether chronic Cd exposure induces inflammation in liver and the mechanistic link between inflammation and cell stress remains unclear. In the present study, we investigated the effects of chronic Cd exposure on hepatic cellular stress and inflammatory responses. Female CD1 mice were administrated with CdCl2 (10 and 100 mg/L) in drinking water for 57 weeks. Our results showed that the mRNA levels of Inos and the protein content of HO-1, markers of oxidative stress, were markedly increased in Cd-treated mice. In addition, the protein level of GRP78, the chaperone of endoplasmic reticulum (ER) stress, was significantly increased in Cd-treated mice. The expression of the proteins CHOP and peIF2α, two proteins downstream of ER stress, was also upregulated in the Cd-100 mg/L and Cd-10 mg/L group, respectively. Moreover, there were increased inflammatory cells existing in liver after Cd administration. Besides, there was a significant elevation in the mRNA level of Mip-2, Il-10 and Il-12 in the Cd-100 mg/L group. The mRNA level of Tgf-β was also upregulated in Cd-treated mice. Moreover, we also found that the number of Ki67-positive hepatic cells was increased in the Cd-10 mg/L group. Hence, our results indicated that chronic Cd exposure induced oxidative stress, ER stress, inflammatory responses and proliferation in the liver of aged female mice.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Lin Fu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Bo Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Yan-Li Ji
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.,Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| |
Collapse
|
366
|
Yang LP, Zhu J, Wang P, Zeng J, Tan R, Yang YZ, Liu ZM. Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:10-18. [PMID: 29783107 DOI: 10.1016/j.ecoenv.2018.05.026] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Koelreuteria paniculata were cultivated in nutrient solution with different concentrations of Cd (0, 50, 150, 250 and 500 µM) and sampled after 90 days. The resistance, translocation, accumulation and stress responses in Koelreuteria paniculata were investigated by hydroponic experiments. The results showed that Koelreuteria paniculata is an efficient Cd excluder that can tolerate high concentrations of Cd (up to 150-250 µM of Cd). The concentration of Cd never exceeds 5 ppm in leaves and 10 ppm in roots. The high concentration of Cd (≥ 250 µM) had a toxic effect on K. paniculata and significantly restricted the plant growth. The accumulation ability of Cd by different plant tissues followed the sequence of roots > leaves > stems. The bioconcentration factors and translocation factors both were less than 1. Cd has the highest content in the cell wall and is migrated to soluble fractions and organelles at high concentrations. Undissolved Cd phosphate, pectates and protein-bound Cd were the predominant forms. The low concentration of Cd (≤150 µM) promoted the synthesis of soluble proteins, AsA and GSH, while high concentration of Cd clearly inhibited the physiological and biochemical process, caused membrane lipid peroxidation and severe membrane damages, and increased MDA and H2O2 contents. POD, CAT and SOD exhibited positive and effective responses to low concentration Cd stress, but could not remove the toxicity caused by high concentration Cd stress. The content of IAA, GA and ZT decreased and ABA content was significantly increased under high-concentration Cd stress.
Collapse
Affiliation(s)
- Lan Peng Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Jing Zeng
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Rong Tan
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yu Zhong Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Zhi Ming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| |
Collapse
|
367
|
Torkova AA, Lisitskaya KV, Filimonov IS, Glazunova OA, Kachalova GS, Golubev VN, Fedorova TV. Physicochemical and functional properties of Cucurbita maxima pumpkin pectin and commercial citrus and apple pectins: A comparative evaluation. PLoS One 2018; 13:e0204261. [PMID: 30235297 PMCID: PMC6147495 DOI: 10.1371/journal.pone.0204261] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
The physicochemical characteristics and functional properties of pumpkin (Cucurbita maxima D. var. Cabello de Ángel) pectin obtained by cavitation facilitated extraction from pumpkin pulp have been evaluated and compared with commercial citrus and apple pectins. C. maxima pectin had an Mw value of 90 kDa and a high degree (72%) of esterification. The cytoprotective and antioxidant effects of citrus, apple and pumpkin pectin samples with different concentrations were studied in vitro in cell lines HT-29 (human colon adenocarcinoma) and MDCK1 (canine kidney epithelium). All pectin samples exhibited cytoprotective effect in HT-29 and MDCK1 cells after incubation with toxic concentrations of cadmium and mercury for 4 h. Pumpkin pectin increased the proliferation of cadmium-treated MDCK1 cells by 210%. The studied pectins also inhibited oxidative stress induced by 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH) in cell cultures, as determined by measuring the production of intracellular reactive species using dihydrochlorofluorescein diacetate (DCFH-DA). Pectin from pumpkin pomace had the highest (p < 0.05) protective effect against reactive oxygen species generation in MDCK1 cells induced by AAPH. Distinctive features of pumpkin pectin were highly branched RG-I regions, the presence of RG-II regions and the highest galacturonic acid content among the studied samples of pectins. This correlates with a considerable protective effect of C. maxima pectin against oxidative stress and cytotoxicity induced by heavy metal ions. Thus, C. maxima pectin can be considered as a source of new functional foods of agricultural origin.
Collapse
Affiliation(s)
- Anna A. Torkova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Ksenia V. Lisitskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan S. Filimonov
- Federal State-Owned Unitary Enterprise «All-Russian Research Institute for Optical and Physical Measurements», Moscow, Russia
| | - Olga A. Glazunova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Galina S. Kachalova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Russian National Research Center “Kurchatov Institute”, Moscow, Russia
| | | | - Tatyana V. Fedorova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
368
|
Ni W, Yang W, Yu J, Li Z, Jin L, Liu J, Zhang Y, Wang L, Ren A. Umbilical Cord Concentrations of Selected Heavy Metals and Risk for Orofacial Clefts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10787-10795. [PMID: 30134103 DOI: 10.1021/acs.est.8b02404] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although arsenic (As), cadmium (Cd), lead (Pb), and nickel (Ni) have the ability to induce orofacial clefts (OFCs) in rodents, evidence is absent from human epidemiological investigations with markers of in utero exposure. We investigated the associations between concentrations of As, Cd, Pb, and Ni in umbilical cord tissues and risk of OFCs, and the interactions between each pair of metals on OFC risk in a case-control study. Umbilical cord concentrations of metals were determined by inductively coupled plasma mass spectrometry in 92 OFC cases and 200 nonmalformed controls. Concentrations above the median of all subjects was associated with an elevated OFC risk of 8.36-fold for As, 7.22-fold for Cd, 15.32-fold for Pb, and 6.79-fold for Ni. Concentrations of As, Cd, Pb, and Ni were also associated with risks for OFC subtypes. When metal concentrations were divided into tertiles by levels of metal concentrations of all subjects, dose-response relationships of risks for total OFCs and subtypes with As, Cd, Pb, and Ni concentrations were demonstrated. Significant synergistic interaction between As and Ni on the risk of OFCs was also observed. Therefore, elevated in utero exposure to As, Cd, Pb, and Ni may increase the risks of OFCs in newborns.
Collapse
Affiliation(s)
- Wenli Ni
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Peking University , Beijing 100191 , China
| | - Wenlei Yang
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Peking University , Beijing 100191 , China
| | - Jinhui Yu
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Peking University , Beijing 100191 , China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Peking University , Beijing 100191 , China
| | - Lei Jin
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Peking University , Beijing 100191 , China
| | - Jufen Liu
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Peking University , Beijing 100191 , China
| | - Yali Zhang
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Peking University , Beijing 100191 , China
| | - Linlin Wang
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Peking University , Beijing 100191 , China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, NHC Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Peking University , Beijing 100191 , China
| |
Collapse
|
369
|
Zhang R, Liu Y, Xing L, Zhao N, Zheng Q, Li J, Bao J. The protective role of selenium against cadmium-induced hepatotoxicity in laying hens: Expression of Hsps and inflammation-related genes and modulation of elements homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:205-212. [PMID: 29753822 DOI: 10.1016/j.ecoenv.2018.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/02/2018] [Accepted: 05/05/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to examine the potential role of high selenium (Se) diets in alleviating chronic cadmium (Cd) hepatic toxicity in laying hens. In the present study, 128 healthy 31-week-old laying hens were fed a diet supplemented with Se (Na2SeO3, 2 mg/kg), Cd (CdCl2, 150 mg/kg), or both Se and Cd (150 mg/kg of CdCl2 and 2 mg/kg of Na2SeO3) for 90 days. The expression levels of heat shock proteins (Hsps, including Hsp60, Hsp70 and Hsp90) and inflammation-related factors, including nuclear factor-kappa B p50 (NF-κB), cyclooxygenase-2 (COX-2), prostaglandin E synthases (PTGES), interleukin 1-beta (IL-1β), and tumor necrosis factor-α (TNF-α) were investigated. The concentrations of 28 elements were also determined. The results indicated that Cd treatment significantly increased the mRNA and protein expression levels of Hsps and significantly improved the expression of inflammation-related genes. Moreover, Cd addition to the diets resulted in disturbances in the systemic balance of 13 elements, leading to decrease in the concentrations of Cr, Mn, Sr, Ba, and Hg and increase in Li, B, Ca, Ti, Fe, Cu, Mo, and Cd concentrations. Treatment with Se significantly alleviated Cd-induced hepatic toxicity, as evidenced by a reduction in Hsp60, Hsp70, Hsp90, NF-κB, COX-2, PTGES, TNF-α, and IL-1β expression. Additionally, Se and Cd co-treatment alleviated the changes in Li, B, Ca, Fe, Ti, Cu, Mo, Cd, Cr, Se, Sr, Ba, and Hg concentrations, which was in contrast to that upon Cd induction. The study indicated that Se could help against the negative effects of Cd and may be related to the alleviation of Cd-induced Hsps stress and the inflammatory responses along with modulating the element homeostasis.
Collapse
Affiliation(s)
- Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yanhong Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ning Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qimin Zheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
370
|
Chasapis CT. Preliminary results from structural systems biology approach in Tetrahymena thermophila reveal novel perspectives for this toxicological model. Arch Microbiol 2018; 201:51-59. [PMID: 30194464 DOI: 10.1007/s00203-018-1571-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 11/29/2022]
Abstract
Tetrahymena is a unicellular microbial eukaryotic organism that has been used extensively in toxicology and environmental research. This work attempts to model for the first time the wiring of proteins involved in cellular mechanisms of Cd toxicity in Tetrahymena thermophila. 1975 high-confidence PPIs between 68 Cd-binding proteins and 422 partners were inferred through a novel structural systems biology approach that utilizes comparative analysis between Tetrahymena and other eukaryotes for which experimentally supported protein interactomes exist. The PPIs of the potential network were confirmed by known domain interactions in the Protein Data Bank and its topological characteristics were compared with publicly available experimental information for T. thermophila. To experimentally validate the robustness of the proposed PPI network, the interaction between the two most interconnected hub proteins was detected through GST pull-down assay. Potential effects on Tetrahymena's cellular and metabolic processes by PPIs involving Cd-binding proteins were uncovered. Furthermore, 244 PPIs in which Cd-binding proteins or/and their partners are encoded by orthologs of human disease genes in T. thermophila, but not in yeast, were identified and analyzed. The findings suggest that Tetrahymena could be possibly a useful model for an improved understanding of molecular mechanisms of Cd toxicity in human diseases.
Collapse
Affiliation(s)
- Christos T Chasapis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), 26504, Patras, Greece.
| |
Collapse
|
371
|
Yu Z, Hao R, Zhang L, Zhu Y. Effects of TiO 2, SiO 2, Ag and CdTe/CdS quantum dots nanoparticles on toxicity of cadmium towards Chlamydomonas reinhardtii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018. [PMID: 29533210 DOI: 10.1016/j.ecoenv.2018.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanoparticles (NPs) are inevitably released into the aquatic environment for being widely used and may affect the toxicity of other contaminants already present in the environment, such as trace metals. However, the effects of NPs on the ecotoxicity of cadmium (Cd), a common environmental trace metal pollutant, are not well explored. In this study, effects of four widely used NPs TiO2 (n-TiO2), SiO2 (n-SiO2), Ag (n-Ag) and CdTe/CdS core/shell quantum dots (QD) on the toxicity of Cd to the freshwater algae Chlamydomonas reinhardtii were assessed respectively. Cd reduced the algae biomass, impaired the photosynthetic activities, and led to intracellular oxidative stress of algae. At non-toxic concentrations, both n-TiO2 (100 mg L-1) and n-SiO2 (400 mg L-1) attenuated the toxicity of Cd towards the algae for reducing the intracellular Cd contents, and the former was more pronounced. QD (0.5 mg L-1) increased the toxicity of Cd to algae, but n-Ag (0.2 mg L-1) had no significant influence on the Cd toxicity to algae. The microscopic observations on the ultrastructure of algae cells presented the same phenomena and n-TiO2, n-SiO2 aggregations were clearly observed outside the cell wall. Furthermore, the regulation of NPs to the Cd toxicity towards algae was related to the intracellular nitric oxide (NO), an important signaling molecule, rather than the phototaxis of algae. Above all, this study provided a basic understanding about the difference in joint toxicity of different kinds of NPs and Cd to aquatic organisms.
Collapse
Affiliation(s)
- Zhen Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Rui Hao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Liang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yi Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
372
|
Mortensen LH, Rønn R, Vestergård M. Bioaccumulation of cadmium in soil organisms - With focus on wood ash application. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:452-462. [PMID: 29605665 DOI: 10.1016/j.ecoenv.2018.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/23/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Harvesting whole-tree biomass for biofuel combustion intensifies removal of nutrients from the ecosystem. This can be partly amended by applying ash from the combustion back to the system and thus recycle the nutrients. However, besides being rich in inorganic nutrients, ash also contains trace amounts of heavy metals. Due to the risk of toxic effects and trophic transfer of heavy metals, especially cadmium, legislation usually restricts the use of ash as a soil amendment. In order to provide researchers and governmental agencies with a tool to assess the risk of cadmium bioaccumulation in specific soil systems after ash application, we review: 1) the properties of ash; 2) the chemical and toxic properties of cadmium; 3) the key factors affecting cadmium bioavailability, cadmium uptake-, storage- and elimination-abilities in soil organisms and the risk of cadmium accumulation and biomagnification in the soil food web; 4) how ash impact on soil can change the risk of cadmium bioaccumulation. We conclude that for assessing the risk of cadmium bioaccumulation for specific sites, it is necessary to consider both the type and composition of ash, the soil conditions and organism composition on the site. On a general basis, we conclude that granulated ashes low in cadmium content, applied to low pH soils with high organic matter content, in systems with low abundances of earthworms, isopods and gastropods, will have a low risk of cadmium accumulation.
Collapse
Affiliation(s)
- Louise Hindborg Mortensen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark.
| | - Regin Rønn
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; Arctic Station, University of Copenhagen, Qeqertarsuaq, Greenland.
| | - Mette Vestergård
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark; Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark.
| |
Collapse
|
373
|
S. Abd El-Aziz G, N. Mustafa H, Abdulraouf Saleh H, M.O. El-Fark2 M. Zingiber Officinale Alleviates Maternal and Fetal Hepatorenal Toxicity Induced by Prenatal Cadmium. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bpj/1500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was designed to address the protective effects of Zingiber officinale on the toxic outcomes of prenatal Cadmium administration on pregnancy outcome. Pregnant female Sprague-Dawley rats were randomly divided into four groups (eight rats/each), control group received distilled water, 2nd group treated with 8.8 mg of CdCl2/kg b. wt, 3rd group treated with 250 mg of Zingiber officinale/kg b. wt, and 4th group treated with 250 mg of Zingiber officinale/kg b. wt, followed by 8.8 mg of CdCl2/kg b.wt. Daily body weight of pregnant was recorded from GD1-GD20, and then pregnant rats were sacrificed at GD20. Samples of maternal and fetal livers and kidneys were processed for histological examination. Administration of Cd to pregnant rats showed adverse effects on pregnant mothers and their fetuses; reduced maternal weight gain, reduced absolute organ weights, reduced fetal growth parameters and placental weights together with altered histological appearance of the maternal and fetal livers and kidneys. While co-administration of Zingiber officinale showed an improvement of these toxic alterations. Zingiber officinale through its antioxidant activity could be beneficial against toxic outcomes of Cd exposure during pregnancy.
Collapse
Affiliation(s)
- Gamal S. Abd El-Aziz
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hesham N. Mustafa
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hamid Abdulraouf Saleh
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magdy M.O. El-Fark2
- Department of Anatomy, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
374
|
Shan Z, Wei Z, Shaikh ZA. Suppression of ferroportin expression by cadmium stimulates proliferation, EMT, and migration in triple-negative breast cancer cells. Toxicol Appl Pharmacol 2018; 356:36-43. [PMID: 30030096 DOI: 10.1016/j.taap.2018.07.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 01/17/2023]
Abstract
Cadmium (Cd) has been linked to a variety of cancers, including breast cancer; however, the molecular mechanism of its carcinogenic activity is not fully understood. To this end, the present study investigated the roles of ferroportin (FPN), a prognostic marker of breast cancer, in Cd-induced stimulation of cell proliferation and cell migration. Triple-negative MDA-MB-231 cells were treated with 1-3 μM Cd. The cells exhibited significant reduction in FPN expression and concomitant increase in iron concentration. Cells treated with Cd for 8 weeks displayed elevated proliferative and migratory activities which were inversely related with FPN expression. Reduced FPN expression also resulted in EMT as indicated by an increase in the expression of E-cadherin, and a decrease in the expression of N-cadherin, Twist and Slug. Further investigation revealed that Cd suppressed FPN expression at least partially by activating TGF-β, a known regulator of FPN expression. Taken together, these results indicate that Cd-induced stimulation of MDA-MB-231 cell proliferation, EMT, and migration is brought about by suppression of FPN expression and associated disruption of iron homeostasis.
Collapse
Affiliation(s)
- Zhongguo Shan
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Zhengxi Wei
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Zahir A Shaikh
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
375
|
Protective Effect of Increased Zinc Supply against Oxidative Damage of Sublingual Gland in Chronic Exposure to Cadmium: Experimental Study on Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3732842. [PMID: 30116477 PMCID: PMC6079320 DOI: 10.1155/2018/3732842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/20/2018] [Indexed: 12/31/2022]
Abstract
Cadmium is one of the main chemical pollutants found in the daily environment of developed countries. Cigarettes are a significant source of that metal, which makes it important in terms of oral cavity health. The aim of this study was to determine if increased supply of zinc in chronic exposure to cadmium might protect the sublingual gland structure against oxidative damage. The experiment took 12 months and was conducted on 72 adult male rats. They were randomized into 9 groups. Eight groups received cadmium in drinking water (as CdCl2) at 5 or 50 mg Cd/dm3 and/or zinc (as ZnCl2) at 30 or 60 mg Zn/dm3. The control group received regular water. In the sublingual gland of all animal groups, levels of oxidative parameters were measured. The oxidative stress index was calculated as a TOS/TAS ratio. Cadmium exposure at 5 mg and 50 mg Cd/dm3 induced oxidative stress in the sublingual glands of the rats. Cadmium reduced the TAS and GSH levels and increased LPO, H2O2, TOS, and OSI. In cadmium exposure conditions, increasing the supply of zinc by 79% or 151%, as compared to the standard dietary intake of this microelement, completely prevented the reduction of TAS and GSH levels and accumulation of LPO, H2O2, and TOS in the examined gland at both exposure levels to that metal. The outcome data confirm the protective effect of increased zinc intake on the sublingual gland tissue in chronic cadmium exposure.
Collapse
|
376
|
Gao M, Li C, Xu M, Liu Y, Cong M, Liu S. LncRNA MT1DP Aggravates Cadmium-Induced Oxidative Stress by Repressing the Function of Nrf2 and is Dependent on Interaction with miR-365. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800087. [PMID: 30027041 PMCID: PMC6051394 DOI: 10.1002/advs.201800087] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/16/2018] [Indexed: 05/09/2023]
Abstract
Although cadmium (Cd)-induced hepatoxicity is well established, pronounced knowledge gaps remain existed regarding the inherent cellular signaling that dictates Cd toxicity. Specifically, the molecular basis for determining the equilibrium between prosurvival and proapoptotic signaling remains poorly understood. Thus, it is recently revealed that long non-coding RNA (lncRNA) MT1DP, a pseudogene in the metallothionein (MT) family, promoted Cd-induced cell death through activating the RhoC-CCN1/2-AKT pathway and modulating MT1H induction. Here, first the dependency of MT1DP induction on MTF1, an important transcriptional factor in driving the mRNA expression of MT1 members is defined. Additionally, a bridge molecule between MT1DP and nuclear factor erythroid 2-related factor 2 (Nrf2) is established: miR-365. Mechanistically, MT1DP induction under Cd stress decreases the nuclear factor erythroid 2-related factor 2 (Nrf2) level to evoke oxidative stress through the elevation of miR-365, which acted to repress the Nrf2 level via direct binding to its 3'UTR. In contrast to the competing endogenous RNA (ceRNA) mechanism, a new mechanism is proposed: MT1DP elevated the miR-365 level though stabilizing its RNA via direct binding. Collectively, the combined data demonstrate a crucial role of MT1DP in reducing the Nrf2-mediated protection of cells, and this is dependent on the interplay with miR-365. Hence, the study further expands the knowledge of inducible endogenous lncRNA in modulating oxidative stress.
Collapse
Affiliation(s)
- Ming Gao
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- College of Resources and Environment University of Chinese Academy of SciencesBeijing100049China
| | - Changying Li
- Liver Research CenterBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- College of Resources and Environment University of Chinese Academy of SciencesBeijing100049China
| | - Yun Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- Key Labora tory of Ion Beam BioengineeringHefei Institutes of Physical ScienceChinese Academy of Sciences and Anhui ProvinceHefeiAnhui230031China
| | - Min Cong
- Liver Research CenterBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- College of Resources and Environment University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
377
|
Biochemical mechanisms of free-radical damage to the nuclear genome by cadmium. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
378
|
Monteiro C, Ferreira de Oliveira JMP, Pinho F, Bastos V, Oliveira H, Peixoto F, Santos C. Biochemical and transcriptional analyses of cadmium-induced mitochondrial dysfunction and oxidative stress in human osteoblasts. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:705-717. [PMID: 29913117 DOI: 10.1080/15287394.2018.1485122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cadmium (Cd) accumulation is known to occur predominantly in kidney and liver; however, low-level long-term exposure to Cd may also result in bone damage. Few studies have addressed Cd-induced toxicity in osteoblasts, particularly upon cell mitochondrial energy processing and putative associations with oxidative stress in bone. To assess the influence of Cd treatment on mitochondrial function and oxidative status in osteoblast cells, human MG-63 cells were treated with Cd (up to 65 μM) for 24 or 48 h. Intracellular reactive oxygen species (ROS), lipid and protein oxidation and antioxidant defense mechanisms such as total antioxidant activity (TAA) and gene expression of antioxidant enzymes were analyzed. In addition, Cd-induced effects on mitochondrial function were assessed by analyzing the activity of enzymes involved in mitochondrial respiration, membrane potential (ΔΨm), mitochondrial morphology and adenylate energy charge. Treatment with Cd increased oxidative stress, concomitantly with lipid and protein oxidation. Real-time polymerase chain reaction (qRT-PCR) analyses of antioxidant genes catalase (CAT), glutathione peroxidase 1 (GPX1), glutathione S-reductase (GSR), and superoxide dismutase (SOD1 and SOD2) exhibited a trend toward decrease in transcripts in Cd-stressed cells, particularly a downregulation of GSR. Longer treatment with Cd (48 h) resulted in energy charge states significantly below those commonly observed in living cells. Mitochondrial function was affected by ΔΨm reduction. Inhibition of mitochondrial respiratory chain enzymes and citrate synthase also occurred following Cd treatment. In conclusion, Cd induced mitochondrial dysfunction which appeared to be associated with oxidative stress in human osteoblasts.
Collapse
Affiliation(s)
- Cristina Monteiro
- a Department of Biology & CESAM , University of Aveiro, Campus Universitário , Aveiro , Portugal
| | - José Miguel P Ferreira de Oliveira
- b LAQV/REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
| | - Francisco Pinho
- a Department of Biology & CESAM , University of Aveiro, Campus Universitário , Aveiro , Portugal
| | - Verónica Bastos
- c Department of Biology & LAQV/REQUIMTE , Faculty of Sciences of University of Porto , Porto , Portugal
| | - Helena Oliveira
- a Department of Biology & CESAM , University of Aveiro, Campus Universitário , Aveiro , Portugal
| | - Francisco Peixoto
- d Biology and Environment Department , Chemistry Research Center, University of Trás-os-Montes & Alto Douro , Portugal
| | - Conceição Santos
- c Department of Biology & LAQV/REQUIMTE , Faculty of Sciences of University of Porto , Porto , Portugal
| |
Collapse
|
379
|
Sayanthooran S, Gunerathne L, Abeysekera TDJ, Magana-Arachchi DN. Transcriptome analysis supports viral infection and fluoride toxicity as contributors to chronic kidney disease of unknown etiology (CKDu) in Sri Lanka. Int Urol Nephrol 2018; 50:1667-1677. [PMID: 29808448 DOI: 10.1007/s11255-018-1892-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/10/2018] [Indexed: 01/22/2023]
Abstract
PURPOSE Chronic kidney disease of unknown etiology (CKDu), having epidemic characteristics, is being diagnosed increasingly in certain tropical regions of the world, mainly Latin America and Sri Lanka. They have been observed primarily in farming communities and current hypotheses point toward many environmental and occupational triggers. CKDu does not have common etiologies of chronic kidney disease (CKD) such as hypertension, diabetes, or autoimmune disease. We aimed to understand the molecular processes underlying CKDu in Sri Lanka using transcriptome analysis. METHODS RNA extracted from whole blood was reverse transcribed and used for microarray analysis using the Human HT-12 v.4 array (Illumina). Pathway analysis was carried out using ingenuity pathway analysis (IPA-Qiagen). Microarray results were validated using real-time PCR of five selected genes. RESULTS Pathways related to innate immune response, including interferon signaling, inflammasome signaling and TREM1 signaling had the most significant positive activation z scores, where as EIF2 signaling and mTOR signaling had the most significant negative activation z scores. Pathways previously linked to fluoride toxicity; G-protein activation, Cdc42 signaling, Rac signaling and RhoA signaling were activated in CKDu patients. The most significantly activated biological functions were cell death, cell movement and antimicrobial response. Significant toxicological functions were mitochondrial dysfunction, oxidative stress and apoptosis. CONCLUSIONS Based on the molecular pathway analysis in CKDu patients and review of literature, viral infections and fluoride toxicity appear to be contributing to the molecular mechanisms underlying CKDu.
Collapse
Affiliation(s)
- Saravanabavan Sayanthooran
- Molecular Microbiology and Human Diseases, National Institute of Fundamental Studies, Kandy, 20000, Sri Lanka
| | | | - Tilak D J Abeysekera
- Centre for Education, Research and Training on Kidney Diseases (CERTKID), Faculty of Medicine, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Dhammika N Magana-Arachchi
- Molecular Microbiology and Human Diseases, National Institute of Fundamental Studies, Kandy, 20000, Sri Lanka.
| |
Collapse
|
380
|
Abstract
Over recent years, many environmental pollutant chemicals have been shown to possess the ability to interfere in the functioning of the endocrine system and have been termed endocrine disrupting chemicals (EDCs). These compounds exist in air as volatile or semi-volatile compounds in the gas phase or attached to particulate matter. They include components of plastics (phthalates, bisphenol A), components of consumer goods (parabens, triclosan, alkylphenols, fragrance compounds, organobromine flame retardants, fluorosurfactants), industrial chemicals (polychlorinated biphenyls), products of combustion (polychlorinated dibenzodioxins/furans, polyaromatic hydrocarbons), pesticides, herbicides, and some metals. This review summarizes current knowledge concerning the sources of EDCs in air, measurements of levels of EDCs in air, and the potential for adverse effects of EDCs in air on human endocrine health.
Collapse
|
381
|
Hernández-Aquino E, Muriel P. Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World J Gastroenterol 2018; 24:1679-1707. [PMID: 29713125 PMCID: PMC5922990 DOI: 10.3748/wjg.v24.i16.1679] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/04/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are caused by different etiological agents, mainly alcohol consumption, viruses, drug intoxication or malnutrition. Frequently, liver diseases are initiated by oxidative stress and inflammation that lead to the excessive production of extracellular matrix (ECM), followed by a progression to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). It has been reported that some natural products display hepatoprotective properties. Naringenin is a flavonoid with antioxidant, antifibrogenic, anti-inflammatory and anticancer properties that is capable of preventing liver damage caused by different agents. The main protective effects of naringenin in liver diseases are the inhibition of oxidative stress, transforming growth factor (TGF-β) pathway and the prevention of the transdifferentiation of hepatic stellate cells (HSC), leading to decreased collagen synthesis. Other effects include the inhibition of the mitogen activated protein kinase (MAPK), toll-like receptor (TLR) and TGF-β non-canonical pathways, the inhibition of which further results in a strong reduction in ECM synthesis and deposition. In addition, naringenin has shown beneficial effects on nonalcoholic fatty liver disease (NAFLD) through the regulation of lipid metabolism, modulating the synthesis and oxidation of lipids and cholesterol. Moreover, naringenin protects from HCC, since it inhibits growth factors such as TGF-β and vascular endothelial growth factor (VEGF), inducing apoptosis and regulating MAPK pathways. Naringenin is safe and acts by targeting multiple proteins. However, it possesses low bioavailability and high intestinal metabolism. In this regard, formulations, such as nanoparticles or liposomes, have been developed to improve naringenin bioavailability. We conclude that naringenin should be considered in the future as an important candidate in the treatment of different liver diseases.
Collapse
Affiliation(s)
- Erika Hernández-Aquino
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 07000, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 07000, Mexico
| |
Collapse
|
382
|
Flavocoxid, a Natural Antioxidant, Protects Mouse Kidney from Cadmium-Induced Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9162946. [PMID: 29849925 PMCID: PMC5932425 DOI: 10.1155/2018/9162946] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/15/2018] [Accepted: 02/25/2018] [Indexed: 12/18/2022]
Abstract
Background Cadmium (Cd), a diffused environmental pollutant, has adverse effects on urinary apparatus. The role of flavocoxid, a natural flavonoid with antioxidant activity, on the morphological and biochemical changes induced in vivo by Cd in mice kidney was evaluated. Methods C57 BL/6J mice received 0.9% NaCl alone, flavocoxid (20 mg/kg/day i.p.) alone, Cd chloride (CdCl2) (2 mg/kg/day i.p.) alone, or CdCl2 plus flavocoxid (2 mg/kg/day i.p. plus 20 mg/kg/day i.p.) for 14 days. The kidneys were processed for biochemical, structural, ultrastructural, and morphometric evaluation. Results Cd treatment alone significantly increased urea nitrogen and creatinine, iNOS, MMP-9, and pERK 1/2 expression and protein carbonyl; reduced GSH, GR, and GPx; and induced structural and ultrastructural changes in the glomeruli and in the tubular epithelium. After 14 days of treatment, flavocoxid administration reduced urea nitrogen and creatinine, iNOS, MMP-9, and pERK 1/2 expression and protein carbonyl; increased GSH, GR, and GPx; and showed an evident preservation of the glomerular and tubular structure and ultrastructure. Conclusions A protective role of flavocoxid against Cd-induced oxidative damages in mouse kidney was demonstrated for the first time. Flavocoxid may have a promising antioxidant role against environmental Cd harmful effects on glomerular and tubular lesions.
Collapse
|
383
|
Chen X, Dai Y, Wang Z, Zhu G, Ding X, Jin T. The association between serum vitamin D levels and renal tubular dysfunction in a general population exposed to cadmium in China. PLoS One 2018; 13:e0195682. [PMID: 29634781 PMCID: PMC5892922 DOI: 10.1371/journal.pone.0195682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/27/2018] [Indexed: 12/25/2022] Open
Abstract
Cadmium exposure can cause renal tubular dysfunction. Recent studies show that vitamin D can play multiple roles in the body. However, the association between serum vitamin D levels and renal tubular dysfunction in a general population exposed to cadmium has not been clarified. We performed study to assess the effects of cadmium on serum 25(OH) D levels and the association between serum 25(OH) D levels and renal tubular dysfunction in a population environmentally exposed to cadmium. A total of 133 subjects living in control area and two cadmium polluted areas were included in the present study. Cadmium in urine (UCd) and blood (BCd), urinary β2Microglobulin (UBMG), urinary retinol binding protein (URBP) and serum 25 (OH) D were determined. Logistic regression was used to estimate the association between 25 (OH) D and prevalence of renal tubular dysfunction. No significant differences were observed in serum 25(OH) D levels among the four quartile of UCd and BCd after adjusting with cofounders. After adjusted with the confounders, the odds ratio (OR) of subjects with 25(OH) D ≥ 40 ng/ml were 0.20 (95%CI: 0.1–0.8) if UBMG was chosen as indicators of renal dysfunction and 0.28 (95%CI: 0.1–1.1) if URBP was chosen as indicators of renal dysfunction, compared with those with 25(OH) D < 30 ng/ml, respectively. Similar results were observed in those subjects living in cadmium polluted areas or with high level of UCd or BCd. Our data indicated that cadmium exposure did not affect serum 25(OH) D level and high 25 (OH) D levels were associated with a decreased risk of renal tubular dysfunction induced by cadmium.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai Key Laboratory of kidney and dialysis, Shanghai, China
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Dai
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai Key Laboratory of kidney and dialysis, Shanghai, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoying Zhu
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai Key Laboratory of kidney and dialysis, Shanghai, China
- * E-mail: (XD); (TJ)
| | - Taiyi Jin
- Department of Occupational Medicine, School of Public Health, Fudan University, Shanghai, China
- * E-mail: (XD); (TJ)
| |
Collapse
|
384
|
Abstract
Tobacco smoking is the most preventable cause of morbidity and mortality. In just a few short years, electronic cigarettes (e-cigarettes) have become increasingly popular, especially for younger individuals. Many people believe that e-cigarettes are safe. The inhaled aerosols of e-cigarettes contain numerous potential toxicities, some of which could be dangerous for health with long-term use. The safety of prolonged aerosol exposure is not known. The use of e-cigarettes as a harm-reduction tool at stopping tobacco smoking is not uniformly successful. E-cigarettes may be safer than tobacco products, but repeated prolonged exposure to their aerosols has its own considerable potential risk. The long-term health consequences of their use remain to be established. Physicians should vigorously discourage the use of e-cigarettes and tobacco products, with special emphasis on abstinence for younger people and during pregnancy or lactation.
Collapse
Affiliation(s)
- Gulay Tegin
- From the University of Louisville School of Medicine, Louisville, Kentucky
| | | | - Simrat Kaur Sarai
- From the University of Louisville School of Medicine, Louisville, Kentucky
| | - Steven Lippmann
- From the University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
385
|
Alkharashi NAO, Periasamy VS, Athinarayanan J, Alshatwi AA. Assessment of sulforaphane-induced protective mechanisms against cadmium toxicity in human mesenchymal stem cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10080-10089. [PMID: 29383641 DOI: 10.1007/s11356-018-1228-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Cd is a hazardous substance and carcinogen that is present in the environment; it is known to cause toxic effects in living organisms. Sulforaphane is a naturally available phytochemical with antioxidant, anti-inflammatory, and anticarcinogenic properties. However, the effects of sulforaphane on Cd toxicity in human mesenchymal stem cells (hMSCs) are unknown. In the present study, we investigated the molecular mechanisms of the effects of sulforaphane on Cd toxicity in hMSCs by using MTT assays, acridine orange/ethidium bromide staining, Hoechst staining, LysoRed staining, assessment of mitochondrial membrane potential, and gene expression analysis. Cd decreased hMSC viability in a dose-dependent manner with an IC50 value of 56.5 μM. However, sulforaphane did not induce any significant reduction in cell viability. Nuclear morphological analysis revealed that Cd induced necrotic cell death. Additionally, Cd caused mitochondrial membrane potential loss in hMSCs. The treatment of Cd-exposed cells with sulforaphane (Cd-sulforaphane co-treatment) resulted in a significant recovery of the cell viability and nuclear morphological changes compared with that of cells treated with Cd only. The gene expression pattern of cells co-treated with Cd-sulforaphane was markedly different from that of Cd-treated cells, owing to the reduction in Cd toxicity. Our results clearly indicated that sulforaphane reduced Cd-induced toxic effects in hMSCs. Overall, the results of our study suggested that sulforaphane-rich vegetables and fruits can help to improve human health through amelioration of the molecular effects of Cd poisoning.
Collapse
Affiliation(s)
- Nouf Abdulkareem Omer Alkharashi
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
- Department of Home Economics, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Vaiyapuri Subbarayan Periasamy
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Jegan Athinarayanan
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Ali A Alshatwi
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia.
| |
Collapse
|
386
|
Jamwal A, Lemire D, Driessnack M, Naderi M, Niyogi S. Interactive effects of chronic dietary selenomethionine and cadmium exposure in rainbow trout (Oncorhynchus mykiss): A preliminary study. CHEMOSPHERE 2018; 197:550-559. [PMID: 29407817 DOI: 10.1016/j.chemosphere.2018.01.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/08/2017] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
The present study investigated the interactive effects of dietary cadmium (Cd) and selenium (Se) on the tissue-specific (liver, kidney, and muscle) accumulation of these two elements, hepatic oxidative stress response, and morphometrics in rainbow trout (Oncorhynchus mykiss) during chronic exposure. Fish were exposed to elevated dietary Cd (45 μg g-1 dry wt.), and medium (10 μg g-1 dry wt.) or high (45 μg g-1 dry wt.) dietary selenium (added as selenomethionine), both alone and in combination, for 30 days. Exposure to dietary Cd alone caused oxidative stress in fish as reflected by reduced thiol redox (GSH:GSSG), increased lipid peroxidation, and induction of anti-oxidative enzymes (catalase, superoxide dismutase, and glutathione peroxidase) in the liver. Also, an increase in tissue-specific Cd burden and impaired morphometrics (hepato-somatic index and condition factor) were also recorded in fish following exposure to dietary Cd. In contrast, the dietary co-exposure to Cd and Se (at both medium and high doses) resulted in a decrease in Cd burden in the liver and kidney of fish. However, co-exposure to medium, but not high, dose of dietary Se completely alleviated Cd-induced oxidative stress and impaired morphometrics in fish, indicating that the reduced Cd tissue burden might not have been the primary factor behind the amelioration of Cd toxicity by Se. Overall, our study demonstrated that the protective effect of Se against the chronic Cd toxicity in fish is mainly mediated by the anti-oxidative properties of Se, but this protective effect is dose-specific and occurs only at a moderate exposure dose.
Collapse
Affiliation(s)
- Ankur Jamwal
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada.
| | - Danielle Lemire
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
| | - Melissa Driessnack
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada
| | - Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada
| |
Collapse
|
387
|
Fidder BN, Reátegui-Zirena EG, Salice CJ. Diet quality affects chemical tolerance in the freshwater snail Lymnaea stagnalis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1158-1167. [PMID: 29266349 DOI: 10.1002/etc.4064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/14/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Organisms generally select high-quality diets to obtain maximal energy while devoting the least amount of time and energy. Diets, however, can vary in natural systems. In ecotoxicological testing, the effect of diet type on organismal responses to toxicants has not been explored despite the potential for dietary effects to influence toxicological endpoints. We first evaluated diet quality using growth rate and sensitivity to the fungicide pyraclostrobin of Lymnaea stagnalis fed lettuce (common laboratory diet), turtle pellets (high nutrient composition), and a combination diet of both food items. We also measured the macronutrient content of snails raised on the multiple diets to determine how diet may have impacted energy allocation patterns. Finally, we evaluated whether snails discernibly preferred a particular diet. Snails fed high-nutrient and combination diets grew larger overall than snails fed a lettuce-only diet. Snails fed the high-nutrient and combination diets, both juvenile and adult, were significantly more tolerant to pyraclostrobin than snails fed lettuce. When measured for macronutrient content, snails raised on high-nutrient and combination diets had significantly higher carbohydrate content than snails fed lettuce. Despite the strong effects of diet type, snails did not exhibit a clear diet choice in preference trials. Dietary composition clearly influences growth rate, sensitivity, and macronutrient content of Lymnaea stagnalis. These results suggest that the nutritional environment has potentially strong impacts on toxicant sensitivity. Environ Toxicol Chem 2018;37:1158-1167. © 2017 SETAC.
Collapse
Affiliation(s)
- Bridgette N Fidder
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, USA
| | - Evelyn G Reátegui-Zirena
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, USA
| | - Christopher J Salice
- Environmental Science and Studies Program, Towson University, Towson, Maryland, USA
| |
Collapse
|
388
|
Tinkov AA, Gritsenko VA, Skalnaya MG, Cherkasov SV, Aaseth J, Skalny AV. Gut as a target for cadmium toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:429-434. [PMID: 29310086 DOI: 10.1016/j.envpol.2017.12.114] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 05/23/2023]
Abstract
The primary objective of the present study was to review the impact of Cd exposure on gut microbiota and intestinal physiology, as well as to estimate whether gut may be considered as the target for Cd toxicity. The review is based on literature search in available databases. The existing data demonstrate that the impact of Cd on gut physiology is two-sided. First, Cd exposure induces a significant alteration of bacterial populations and their relative abundance in gut (increased Bacteroidetes-to-Firmicutes ratio), accompanied by increased lipopolysaccharide (LPS) production, reflecting changed metabolic activity of the intestinal microbiome. Second, in intestinal wall Cd exposure induces inflammatory response and cell damage including disruption of tight junctions, ultimately leading to increased gut permeability. Together with increased LPS production, impaired barrier function causes endotoxinemia and systemic inflammation. Hypothetically, Cd-induced increase gut permeability may also result in increased bacterial translocation. On the one hand, bacteriolysis may be associated with aggravation of endotoxemia. At the same time, together with Cd-induced impairment of macrophage inflammatory response, increased bacterial translocation may result in increased susceptibility to infections. Such a supposition is generally in agreement with the finding of higher susceptibility of Cd-exposed mice to infections. The changed microbiome metabolic activity and LPS-induced systemic inflammation may have a significant impact on target organs. The efficiency of probiotics in at least partial prevention of the local (intestinal) and systemic toxic effects of cadmium confirms the role of altered gut physiology in Cd toxicity. Therefore, probiotic treatment may be considered as the one of the strategies for prevention of Cd toxicity in parallel with chelation, antioxidant, and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl 150000, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 10/2, Moscow 117198, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, 460008, Russia.
| | - Viktor A Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, 460008, Russia
| | - Margarita G Skalnaya
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 10/2, Moscow 117198, Russia
| | - Sergey V Cherkasov
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, 460008, Russia
| | - Jan Aaseth
- Innlandet Hospital Trust, 2226 Kongsvinger, Norway; Inland Norway University of Applied Sciences, Terningen Arena, 2411 Elverum, Norway
| | - Anatoly V Skalny
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl 150000, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 10/2, Moscow 117198, Russia; Orenburg State University, Pobedy Ave., 13, Orenburg 460018, Russia
| |
Collapse
|
389
|
Kaur G, Pinkston R, Mclemore B, Dorsey WC, Batra S. Immunological and toxicological risk assessment of e-cigarettes. Eur Respir Rev 2018; 27:170119. [PMID: 29491036 PMCID: PMC9489161 DOI: 10.1183/16000617.0119-2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/13/2017] [Indexed: 11/05/2022] Open
Abstract
Knowledge of the long-term toxicological and immunological effects of e-cigarette (e-cig) aerosols remains elusive due to the relatively short existence of vaping. Therefore, we performed a systematic search of articles published in public databases and analysed the research evidence in order to provide critical information regarding e-cig safety. Electronic nicotine delivery systems (or e-cigs) are an alternative to traditional cigarettes for the delivery of nicotine and are typically filled with glycerol or propylene glycol-based solutions known as e-liquids. Though present in lower quantities, e-cig aerosols are known to contain many of the harmful chemicals found in tobacco smoke. However, due to the paucity of experimental data and contradictory evidence, it is difficult to draw conclusive outcomes regarding toxicological, immunological and clinical impacts of e-cig aerosols. Excessive vaping has been reported to induce inflammatory responses including mitogen-activated protein kinase, Janus tyrosine kinase/signal transducer and activator of transcription and nuclear factor-κB signalling, similar to that induced by tobacco smoke. Based on recent evidence, prolonged exposure to some constituents of e-cig aerosols might result in respiratory complications such as asthma, chronic obstructive pulmonary disease and inflammation. Future studies are warranted that focus on establishing correlations between e-cig types, generations and e-liquid flavours and immunological and toxicological profiles to broaden our understanding about the effects of vaping.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory of Pulmonary Immuno-toxicology, Dept of Environmental Toxicology, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, USA
- Both authors contributed equally
| | - Rakeysha Pinkston
- Laboratory of Pulmonary Immuno-toxicology, Dept of Environmental Toxicology, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, USA
- Both authors contributed equally
| | - Benathel Mclemore
- Laboratory of Pulmonary Immuno-toxicology, Dept of Environmental Toxicology, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, USA
| | - Waneene C Dorsey
- Dept of Biological Sciences, College of Arts and Sciences, Grambling State University, Grambling, LA, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-toxicology, Dept of Environmental Toxicology, Health Research Center, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, USA
| |
Collapse
|
390
|
Fan L, Deng M, Lin C, Xu C, Liu Y, Shi Z, Wang Y, Xu Z, Li L, He M. A multifunctional composite Fe 3O 4/MOF/l-cysteine for removal, magnetic solid phase extraction and fluorescence sensing of Cd(ii). RSC Adv 2018; 8:10561-10572. [PMID: 35540440 PMCID: PMC9078926 DOI: 10.1039/c8ra00070k] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/12/2018] [Indexed: 11/21/2022] Open
Abstract
Fe3O4/MOF (metal organic framework)/l-cysteine was synthesized and applied for the removal of Cd(ii) from wastewater. The adsorption kinetics and isotherms were investigated, and the results indicated that the adsorption obeyed the pseudo-second-order kinetic model and Langmuir isotherm. The maximum adsorption capacity was calculated to be 248.24 mg g-1. Fe3O4/MOF/l-cysteine was further applied to determine trace amounts of Cd(ii) in real water samples using ICP-AES (inductively coupled plasma-atomic emission spectroscopy) based on magnetic solid-phase extraction (MSPE). The determination limit was 10.6 ng mL-1. Additionally, Fe3O4/MOF/l-cysteine can also be used as a fluorescent sensor for "turn-off" detection of Cd(ii), and the detection limit was 0.94 ng mL-1.
Collapse
Affiliation(s)
- Lu Fan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062 People's Republic of China +86-27-88663043 +86-27-88662747
| | - Min Deng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062 People's Republic of China +86-27-88663043 +86-27-88662747
| | - Caixue Lin
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062 People's Republic of China +86-27-88663043 +86-27-88662747
| | - Chen Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062 People's Republic of China +86-27-88663043 +86-27-88662747
| | - Yana Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062 People's Republic of China +86-27-88663043 +86-27-88662747
| | - Zhennan Shi
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062 People's Republic of China +86-27-88663043 +86-27-88662747
| | - Yingxi Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062 People's Republic of China +86-27-88663043 +86-27-88662747
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062 People's Republic of China +86-27-88663043 +86-27-88662747
| | - Ling Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062 People's Republic of China +86-27-88663043 +86-27-88662747
| | - Man He
- Department of Chemistry, Wuhan University Wuhan City Hubei Province 430074 People's Republic of China +86-27-68754685 +86-27-68756759
| |
Collapse
|
391
|
Wilczek G, Wiśniewska K, Kozina B, Wilczek P, Rost-Roszkowska M, Stalmach M, Skowronek M, Kaszuba F. Effects of food contaminated with cadmium and copper on hemocytes of Steatoda grossa (Araneae: Theridiidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 149:267-274. [PMID: 29253786 DOI: 10.1016/j.ecoenv.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to evaluate the metabolic condition of Steatoda grossa (Theridiidae) spider, from their hemocytes, after a short-term (four-week) exposure to cadmium and copper in sublethal doses by administering them into the body of the preys. The ultrastructure of the dominant types of hemocytes, such as granulocytes, plasmatocytes and prohemocytes, was evaluated using transmission electron microscope (TEM). Quantitative evaluation of apoptotic and necrotic cells, as well as the ones with depolarized mitochondria in hemolymph, was performed using flow cytometry, while ATP concentration and ADP/ATP ratio in hemocytes were measured by luminescent methods. Cadmium, unlike copper, demonstrated proapoptotic and pronecrotic activity. Low ATP levels and high ADP/ATP ratio in hemocytes indicate a disturbance in the energy metabolism of cells and may account for their qualitative and quantitative degenerative changes. The intensification of death processes in hemocytes after an exposure to cadmium-contaminated food may impair the ability of these cells to fight infectious diseases. Copper at the applied dosage was safe for the spiders without causing visible changes in the hemocyte ultrastructure and in the level of analyzed cell death indices.
Collapse
Affiliation(s)
- Grażyna Wilczek
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland.
| | - Kamila Wiśniewska
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - Bartosz Kozina
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - Piotr Wilczek
- Bioengineering Laboratory, Heart Prosthesis Institute FRK, Wolności 345a, Zabrze 41-800, Poland
| | - Magdalena Rost-Roszkowska
- Department of Embriology and Histology of Animals, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - Monika Stalmach
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - Magdalena Skowronek
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - Florentyna Kaszuba
- Department of Embriology and Histology of Animals, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| |
Collapse
|
392
|
Liu H, Xia W, Xu S, Zhang B, lu B, Huang Z, Zhang H, Jiang Y, Liu W, Peng Y, Sun X, Li Y. Cadmium body burden and pregnancy-induced hypertension. Int J Hyg Environ Health 2018; 221:246-251. [DOI: 10.1016/j.ijheh.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022]
|
393
|
Kamenova K, Gluhcheva Y, Vladov I, Stoykova S, Ivanova J. Ameliorative effect of the anticancer agent salinomycin on cadmium-induced hepatotoxicity and renal dysfunction in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3616-3627. [PMID: 29164462 DOI: 10.1007/s11356-017-0755-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
This study presents experimental data on the effects of the tetraethylammonium salt of salinomycinic acid (Sal) on Cd-induced hepatotoxicity and renal dysfunction in Cd-treated mice compared to those of meso-2,3-dimercaptosuccinic acid (DMSA). Forty 60-day-old male ICR mice were randomized into five groups: control group (untreated mice), Cd group (Cd(II) acetate 20 mg/kg body weight provided orally once per day for 14 days), Cd + DMSA group (exposed to Cd(II) acetate as the Cd-exposed group followed by DMSA 20 mg/kg body weight provided orally once per day for 14 days), and Cd + Sal group (exposed to Cd(II) acetate as the Cd-exposed group followed by Sal 20 mg/kg body weight once per day for 14 days). Cd intoxication of mice induced significant liver and kidney injury and a significant elevation of the concentration of Cd in both organs. Treatment of Cd-exposed mice with DMSA or Sal restored the levels of the renal and hepatic functional markers and significantly decreased the concentration of the toxic metal ion in both organs. Administration of Sal improved Cd-induced alterations of the endogenous levels of the essential metal ions. Histological studies revealed that the antibiotic more effectively ameliorated the Cd effect on the liver morphology compared to DMSA. Taken together, the results confirm that the anticancer agent salinomycin is a promising antidote to Cd poisoning.
Collapse
Affiliation(s)
- Kalina Kamenova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 J. Bourchier Ave, 1164, Sofia, Bulgaria
| | - Yordanka Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Ivelin Vladov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Silviya Stoykova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 J. Bourchier Ave, 1164, Sofia, Bulgaria
| | - Juliana Ivanova
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", Kozjak Str., 1, 1407, Sofia, Bulgaria.
| |
Collapse
|
394
|
Elkhadragy MF, Al-Olayan EM, Al-Amiery AA, Abdel Moneim AE. Protective Effects of Fragaria ananassa Extract Against Cadmium Chloride-Induced Acute Renal Toxicity in Rats. Biol Trace Elem Res 2018; 181:378-387. [PMID: 28567583 DOI: 10.1007/s12011-017-1062-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 12/14/2022]
Abstract
For experiments of cadmium toxicity in animal models, cadmium (II) chloride is often used due to its solubility in water and its ability to produce high concentrations of cadmium at the target site. The present study was designed to investigate the potential inhibitory effect of the Fragaria ananassa fruit extract on cadmium (II) chloride-induced renal toxicity in rats. Tested animals were pretreated with the extract of F. ananassa and injected with cadmium (II) chloride (6.5-mg/kg body weight) for 5 days. Cadmium (II) chloride significantly increased kidney cadmium concentration, kidney weight, lipid peroxidation, and nitric oxide production. Plasma uric acid, urea, and creatinine levels also increased significantly, indicative of kidney dysfunction. These effects were accompanied by significantly decreased levels of nonenzymatic and enzymatic antioxidant molecules (i.e., glutathione content and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase). Moreover, messenger RNA (mRNA) expression of the antiapoptotic protein, Bcl-2, and the antioxidant proteins, superoxide dismutase 2 and glutathione reductase, were downregulated markedly, whereas mRNA expression of tumor necrosis factor-α was upregulated significantly in kidney tissues of cadmium-treated rats. Histology of kidney tissue demonstrated severe, adverse changes that reflected cadmium-induced tissue damage. Pretreatment of rats with the extract of F. ananassa ameliorated all aforementioned cadmium (II) chloride-induced changes. In conclusion, the present study showed acute renal toxicity in rats treated with cadmium (II) chloride. The study also revealed that pretreatment with the extract of F. ananassa could protect the kidney against cadmium (II) chloride-induced acute renal toxicity.
Collapse
Affiliation(s)
- Manal F Elkhadragy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ebtesam M Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Al-Amiery
- Environmental Research Center, University of Technology, Baghdad, Iraq
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
395
|
Dai X, Xing C, Cao H, Luo J, Wang T, Liu P, Guo X, Hu G, Zhang C. Alterations of mitochondrial antioxidant indexes and apoptosis in duck livers caused by Molybdenum or/and cadmium. CHEMOSPHERE 2018; 193:574-580. [PMID: 29169133 DOI: 10.1016/j.chemosphere.2017.11.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) and high Molybdenum (Mo) can lead to adverse reactions on animals, but the co-induced toxicity of Mo and Cd to liver in ducks was not well understood. To investigate the co-induced toxic effects of Mo combined with Cd on mitochondrial oxidative stress and apoptosis in duck livers. 240 healthy 11-day-old ducks were randomly divided into 6 groups (control, LMo group, HMo group, Cd group, LMoCd group and HMoCd group). After being treated for 30, 60, 90 and 120 days, liver mitochondrial antioxidant indexes, ceruloplasmin (CP), metallothionein (MT), Bak-1 and Caspase-3 genes mRNA expression levels, and ultrastructural changes were evaluated. The results showed that total antioxidative capacity (T-AOC), catalase (CAT), superoxide dismutase (SOD) and xanthine oxidase (XOD) activities in experimental groups were decreased, whereas malondialdehyde (MDA) content and nitric oxide synthase (NOS) activity were increased compared with control group, and these changes of co-treated groups were more obvious in the later period of the experiment. The mRNA expression levels of CP, Bak-1 and Caspase-3 were up-regulated in experimental groups compared with control group and showed significant difference between co-treated groups and single treated groups. The mRNA expression level of MT in Cd group was higher than that in co-treated groups. Additionally, ultrastructural changes showed karyopyknosis, mitochondrial swelling, vacuolation and disruption of mitochondrial cristae in co-treated groups. Taken together, it was suggested that dietary Mo and Cd might lead to mitochondrial oxidative stress and apoptosis in duck livers, and it showed a possible synergistic relationship between the two elements.
Collapse
Affiliation(s)
- Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Tiancheng Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
396
|
Karimi O, Hesaraki S, Mortazavi SP. The Effect of Cadmium on the Ultrastructure and Metallothionein Levels in the Liver and Kidneys of Japanese quail. IRANIAN JOURNAL OF TOXICOLOGY 2018. [DOI: 10.29252/arakmu.12.2.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
397
|
Wongmekiat O, Peerapanyasut W, Kobroob A. Catechin supplementation prevents kidney damage in rats repeatedly exposed to cadmium through mitochondrial protection. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:385-394. [PMID: 29356841 DOI: 10.1007/s00210-018-1468-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022]
Abstract
Nephrotoxicity is recognized as a serious disorder affected by chronic cadmium exposure. Imbalance between radical generation and elimination is considered a critical factor involved in the initiation and progression of renal injury caused by this heavy metal. The present study investigated the possible protection by catechin, a natural phenolic antioxidant, against cadmium nephrotoxicity and elucidated its potential mechanism. Male Wistar rats were assigned to receive vehicle, cadmium (CdCl2 2 mg/kg, i.p.) and cadmium plus catechin (25, 50, and 100 mg/kg, orally, respectively). After 4 weeks of treatment, rats exposed to cadmium demonstrated a marked rise in blood urea nitrogen and creatinine, a fall in creatinine clearance, and renal pathologies like severe tubular damage, apoptosis, and abnormal mitochondrial structure. Significant increases in malondialdehyde, nitric oxide, and tumor necrosis factor-alpha, while reductions in antioxidant thiols, superoxide dismutase, and catalase, were also detected in the kidney tissues of cadmium-intoxicated rats. These alterations were associated with mitochondrial dysfunction as supported by an increase in mitochondrial reactive oxygen species production and a decline in mitochondrial membrane potential. Treatment with catechin significantly attenuated all the changes caused by cadmium. These findings suggest that catechin effectively protects the kidney against toxic effect of cadmium, presumably through its antioxidant, anti-inflammation, and mitochondrial protection. The study outcomes not only add evidence to reinforce the medical benefits of catechin but also, most importantly, give rise to a prospect of developing renal preventive strategy for individuals who are at risk of cadmium contamination by means of catechin supplementation.
Collapse
Affiliation(s)
- Orawan Wongmekiat
- Renal Physiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | | | - Anongporn Kobroob
- Department of Physiology, Faculty of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| |
Collapse
|
398
|
Abstract
Cadmium (Cd) is a highly toxic heavy metal that accumulates in living system and as such is currently one of the most important occupational and environmental pollutants. Cd reaches into the environment by anthropogenic mobilization and it is absorbed from tobacco consumption or ingestion of contaminated substances. Its extremely long biological half-life (approximately 20–30 years in humans) and low rate of excretion from the body cause cadmium storage predominantly in soft tissues (primarily, liver and kidneys) with a diversity of toxic effects such as nephrotoxicity, hepatotoxicity, endocrine and reproductive toxicities. Moreover, a Cd-dependent neurotoxicity has been also related to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and multiple sclerosis. At the cellular level, Cd affects cell proliferation, differentiation, apoptosis and other cellular activities. Among all these mechanisms, the Cd-dependent interference in DNA repair mechanisms as well as the generation of reactive oxygen species, seem to be the most important causes of its cellular toxicity. Nevertheless, there is still much to find out about its mechanisms of action and ways to reduce health risks. This article gives a brief review of the relevant mechanisms that it would be worth investigating in order to deep inside cadmium toxicity.
Collapse
Affiliation(s)
| | - Gabriele Morucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
399
|
|
400
|
|