351
|
Min BH, Augustin LB, Felsheim RF, Fuchs JA, Loh HH. Genomic structure analysis of promoter sequence of a mouse mu opioid receptor gene. Proc Natl Acad Sci U S A 1994; 91:9081-5. [PMID: 8090773 PMCID: PMC44751 DOI: 10.1073/pnas.91.19.9081] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have isolated mouse mu opioid receptor genomic clones (termed MOR) containing the entire amino acid coding sequence corresponding to rat MOR-1 cDNA, including additional 5' flanking sequence. The mouse MOR gene is > 53 kb long, and the coding sequence is divided by three introns, with exon junctions in codons 95 and 213 and between codons 386 and 387. The first intron is > 26 kb, the second is 0.8 kb, and the third is > 12 kb. Multiple transcription initiation sites were observed, with four major sites confirmed by 5' rapid amplification of cDNA ends and RNase protection located between 291 and 268 bp upstream of the translation start codon. Comparison of the 5' flanking sequence with a transcription factor database revealed putative cis-acting regulatory elements for transcription factors affected by cAMP, as well as those involved in the action of gluco- and mineralocorticoids, cytokines, and immune-cell-specific factors.
Collapse
Affiliation(s)
- B H Min
- Department of Pharmacology, University of Minnesota, Minneapolis 55455
| | | | | | | | | |
Collapse
|
352
|
de Vetten NC, Ferl RJ. Transcriptional regulation of environmentally inducible genes in plants by an evolutionary conserved family of G-box binding factors. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1994; 26:1055-68. [PMID: 7988731 DOI: 10.1016/0020-711x(94)90128-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. In reviewing a number of the most intensely studied environmentally inducible promoters it becomes clear that the presence of two cis-acting elements are critical for promoter activity, one of which is the G-box (CCACGTGG). A mutation in one of the two elements abolishes or severely reduces the ability of the promoter to respond to environmental changes. The sequence of the second cis-acting element, positioned nearby the G-box, is not conserved among the different inducible promoters, but may be similar among promoters induced by the same signal. The spacing between the G-box and the second cis-acting element appears to be critical, suggesting a direct interaction between the respective binding factors. We speculate on a potential role of the G-box promoter element in the signal induction of promoter activity. 2. From a number of plant species nuclear proteins interacting with the G-box have been identified. Recently, G-box Binding Factors (GBF) have been isolated by screening cDNA expression libraries with a characterized G-box cis-acting element as DNA probe. The deduced amino acid sequence of the GBF clones revealed that they possess the features of the basic leucine zipper class of trans-acting factors. By amino acid sequence comparison and limited mutational analysis, we define amino acids critical for G-box binding specificity. All GBFs isolated to date have a conserved proline-rich domain involved in transcriptional activation. A number of GBFs are inducible by a particular environmental signal. 3. Recently, a protein designated GF14 has been isolated that is associated with the GBF protein complex. The protein has homology to mammalian brain specific proteins, which seem to function as regulators of phosphorylation events. GBF activity is regulated by phosphorylation. The GF14 proteins may therefore impose an additional control on gene expression.
Collapse
Affiliation(s)
- N C de Vetten
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, Gainesville, FL 32611
| | | |
Collapse
|
353
|
Drummond IA, Rohwer-Nutter P, Sukhatme VP. The zebrafish egr1 gene encodes a highly conserved, zinc-finger transcriptional regulator. DNA Cell Biol 1994; 13:953-61. [PMID: 7917016 DOI: 10.1089/dna.1994.13.953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Egr family of transcriptional regulators comprises a group of genes that encode members of the Cys2-His2 class of zinc finger proteins. We have isolated a zebrafish egr1 homolog by screening a zebrafish genomic library with a mouse Egr1 zinc finger probe. Southern blotting indicated the existence of single zebrafish egr1 gene and, as in higher vertebrates, the presence of related members of a larger gene family. Sequence analysis of the zebrafish egr1 coding region revealed a high level of homology to the mouse, rat, and human egr1 genes with the notable exception of a polymorphic, triplet nucleotide repeat sequence in the region coding for the amino terminus of the Egr1 protein. The predicted DNA-binding, zinc finger domain protein sequence was strictly conserved. The 5' region of the zebrafish egr1 gene contained a variety of transcription factor binding sites, also present in the mouse gene, for serum response factor, CREB, and c-ets. The zebrafish egr1 transcript was approximately 3.4 kb in size and was expressed in adult zebrafish brain and muscle RNA, a pattern of expression similar to that observed in mice. The potential for zebrafish egr1 to function as a transcriptional regulator was tested by constructing an expression vector containing zebrafish egr1 coding sequences under the control of a cytomegalovirus promoter. This construct was found to activate transcription of a reporter plasmid bearing multiple Egr1 binding sites when transiently cotransfected into mouse 3T3 cells. Our results indicate that the structure, regulation, and function of the Egr1 gene have been highly conserved during vertebrate evolution and suggest an important role for this gene in growth and development.
Collapse
|
354
|
Malathi K, Ganesan K, Datta A. Identification of a putative transcription factor in Candida albicans that can complement the mating defect of Saccharomyces cerevisiae ste12 mutants. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31601-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
355
|
Molecular cloning of a novel human cDNA encoding a zinc finger protein that binds to the interleukin-3 promoter. Mol Cell Biol 1994. [PMID: 8035792 DOI: 10.1128/mcb.14.8.5099] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CT/GC-rich region (-76 to -47) is one transcriptional regulatory region of the interleukin-3 (IL-3) gene which confers basic transcriptional activity and responds to trans-activation by human T-cell leukemia virus type I-encoded Tax. We isolated three types of cDNAs encoding Cys2/His2-type zinc finger proteins that bind to this region. Two were identical to known transcription factors, EGR1 and EGR2, and the other clone, named DB1, encoded a novel protein of 516 amino acids with six zinc finger motifs. DB1 mRNA was present in human tissues, ubiquitously. Two constitutive transcripts of 4.0 and 4.8 kb in length were present in Jurkat cells. Electrophoretic mobility shift assay, with specific antibodies, showed that DB1 constitutively binds to this region whereas EGR1 binds in a T-cell activation-dependent manner. Overexpression of DB1 in Jurkat cells had no detectable effect on the transcription activity of the IL-3 promoter, in a transient-transfection assay. EGR1 and EGR2 increased IL-3 promoter activity when the transfected cells were stimulated with phorbol-12-myristate-13-acetate and A23187. When DB1 was cotransfected with a Tax expression vector, transcription activity of the IL-3 promoter induced by Tax was significantly increased, while EGR1 and EGR2 were without effect. These results suggest that EGR1 has a role in inducible transcription of the IL-3 gene, while DB1 sustains basal transcriptional activity and also cooperates with Tax to activate the IL-3 promoter.
Collapse
|
356
|
Stasiv YZ, Mashkova TD, Chernov BK, Sokolova IV, Itkes AV, Kisselev LL. Cloning of a cDNA encoding a human protein which binds a sequence in the c-myc gene similar to the interferon-stimulated response element. Gene 1994; 145:267-72. [PMID: 8056341 DOI: 10.1016/0378-1119(94)90018-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A human cDNA clone encoding a c-myc promoter-binding protein (IRLB) was selected by screening a human fibroblast lambda gt11 phage library with the hexamer oligodeoxyribonucleotide (oligo) 5'-GGCGGGAAAAAGAACGGA, corresponding to the protein-binding element of human c-myc similar to the interferon-stimulated response element (ISRE). The lambda gt11 phage clone, encoding a fusion protein which bound the probe oligo, was used to create an strain of Escherichia coli. The deduced amino-acid sequence of the cloned protein contains a putative alpha-helix which is expected to act as the DNA-binding domain. DNase footprinting analysis and oligo-binding specificity assays showed that the cloned factor recognizes the ISRE-like element of the P2 promoter region of human c-myc.
Collapse
Affiliation(s)
- Y Z Stasiv
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | | | | | | | | | |
Collapse
|
357
|
Koyano-Nakagawa N, Nishida J, Baldwin D, Arai K, Yokota T. Molecular cloning of a novel human cDNA encoding a zinc finger protein that binds to the interleukin-3 promoter. Mol Cell Biol 1994; 14:5099-107. [PMID: 8035792 PMCID: PMC359028 DOI: 10.1128/mcb.14.8.5099-5107.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The CT/GC-rich region (-76 to -47) is one transcriptional regulatory region of the interleukin-3 (IL-3) gene which confers basic transcriptional activity and responds to trans-activation by human T-cell leukemia virus type I-encoded Tax. We isolated three types of cDNAs encoding Cys2/His2-type zinc finger proteins that bind to this region. Two were identical to known transcription factors, EGR1 and EGR2, and the other clone, named DB1, encoded a novel protein of 516 amino acids with six zinc finger motifs. DB1 mRNA was present in human tissues, ubiquitously. Two constitutive transcripts of 4.0 and 4.8 kb in length were present in Jurkat cells. Electrophoretic mobility shift assay, with specific antibodies, showed that DB1 constitutively binds to this region whereas EGR1 binds in a T-cell activation-dependent manner. Overexpression of DB1 in Jurkat cells had no detectable effect on the transcription activity of the IL-3 promoter, in a transient-transfection assay. EGR1 and EGR2 increased IL-3 promoter activity when the transfected cells were stimulated with phorbol-12-myristate-13-acetate and A23187. When DB1 was cotransfected with a Tax expression vector, transcription activity of the IL-3 promoter induced by Tax was significantly increased, while EGR1 and EGR2 were without effect. These results suggest that EGR1 has a role in inducible transcription of the IL-3 gene, while DB1 sustains basal transcriptional activity and also cooperates with Tax to activate the IL-3 promoter.
Collapse
Affiliation(s)
- N Koyano-Nakagawa
- Department of Molecular and Development Biology, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
358
|
A direct role for protein kinase C and the transcription factor Jun/AP-1 in the regulation of the Alzheimer's beta-amyloid precursor protein gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31860-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
359
|
Liu IS, Chen JD, Ploder L, Vidgen D, van der Kooy D, Kalnins VI, McInnes RR. Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 1994; 13:377-93. [PMID: 7914735 DOI: 10.1016/0896-6273(94)90354-9] [Citation(s) in RCA: 302] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Few potential regulatory proteins of vertebrate retinal development have been identified. We describe a 39 kDa murine polypeptide (Chx10) with a homeodomain 82% identical to that of the nematode protein ceh-10. In the developing mouse, the Chx10 transcript is expressed throughout the anterior optic vesicle and all neuroblasts of the optic cup. In the mature retina, the Chx10 protein is restricted to the inner nuclear layer, in which its expression decreases from the outer to the inner margin. Chx10 transcripts are also detected in regions of the developing thalamus, hindbrain, and ventral spinal cord. The data suggest that Chx10 plays critical roles in the formation of the neuroretina and in the development and maintenance of the inner nuclear layer.
Collapse
Affiliation(s)
- I S Liu
- Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
360
|
Hauck W, Nédellec P, Turbide C, Stanners CP, Barnett TR, Beauchemin N. Transcriptional control of the human biliary glycoprotein gene, a CEA gene family member down-regulated in colorectal carcinomas. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:529-41. [PMID: 8055923 DOI: 10.1111/j.1432-1033.1994.tb19022.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biliary glycoprotein (BGP) isoantigens are derived by alternative splicing from a single gene and are the human homologs of rat C-CAM and the mouse Bgp species. These glycoproteins represent a family of cell-adhesion molecules. The mouse Bgp isoforms also act as receptors for the hepatitis viral capsid-protein. BGP is a member of the carcinoembryonic antigen (CEA) gene family, which belongs to the immunoglobulin supergene family, yet it displays restricted expression patterns and unique functions. Since the loss or reduced expression of BGP is associated with human colorectal carcinomas, the elements in its upstream regulatory region were analyzed. A cluster of transcriptional initiation sites and the minimal promoter, located within 150 bp upstream of the major transcriptional start site, were active in human colon carcinoma and hepatoma cells. Unlike the CEA gene, BGP gene transcription was not modulated by a silencer region; repetitive elements in the BGP upstream region were not involved in activation or repression. Footprinting experiments identified two cis-acting elements and mobility-shift assays demonstrated that these elements bound several transcription factors, among them, USF, HNF-4 and an AP-2-like factor. In cotransfection experiments, both the USF and HNF-4 transcription factors transactivate the BGP gene promoter and compete for the same regulatory element. The Sp1 transcription factor, shown to be involved in CEA gene transcriptional regulation, does not bind to the BGP gene promoter. We, therefore, propose that the relative distributions and interactions of these transcription factors mediate distinct transcriptional regulation of the BGP gene in colon and liver; this regulation could be distorted during the oncogenic process.
Collapse
Affiliation(s)
- W Hauck
- McGill Cancer Centre, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
361
|
|
362
|
Laping NJ, Teter B, Nichols NR, Rozovsky I, Finch CE. Glial fibrillary acidic protein: regulation by hormones, cytokines, and growth factors. Brain Pathol 1994; 4:259-75. [PMID: 7952267 DOI: 10.1111/j.1750-3639.1994.tb00841.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Levels of glial fibrillary acidic protein (GFAP), an astrocyte-specific intermediate filament protein, are altered during development and aging, GFAP also responds dynamically to neurodegenerative lesions. Changes in GFAP expression can occur at both transcriptional and translational levels. Modulators of GFAP expression include steroids, cytokines, and growth factors. GFAP expression also shows brain region-specific responses to sex steroids and of astrocyte-neuronal interactions. The 5'-upstream sequences of rat, mouse, and human are compared for the presence of response elements that are candidates for transcriptional regulation of GFAP. We propose that the regulation of the GFAP gene has evolved a system of controls that allow integrated responses to neuroendocrine and inflammatory modulators.
Collapse
Affiliation(s)
- N J Laping
- Neurogerontology Division, Andrus Gerontology Center, University of Southern California, Los Angeles 90089-0191
| | | | | | | | | |
Collapse
|
363
|
De Meirsman C, Schollen E, Jaspers M, Ongena K, Matthijs G, Marynen P, Cassiman JJ. Cloning and characterization of the promoter region of the murine alpha-4 integrin subunit. DNA Cell Biol 1994; 13:743-54. [PMID: 7772255 DOI: 10.1089/dna.1994.13.743] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To study the differential expression of the murine VLA-4 (alpha 4 beta 1) integrin, the 5'-flanking region of the gene for the alpha subunit (alpha 4m) was isolated and a cDNA for alpha 4m was obtained with reverse transcriptase polymerase chain reaction (RT-PCR). The cDNA sequence contained a difference in the signal peptide region compared to the previously described cDNA (Neuhaus et al., 1991). As a consequence, another start codon is predicted, resulting in a decrease in size of the signal peptide. This was confirmed by genomic sequencing. The promoter region was delimited by ribonuclease protection assay (RPA) and transfection experiments fusing 5'-upstream fragments to the luciferase gene. A fragment extending from -936 to +221 was capable of controlling the expected cell-type-specific expression. Sequence comparison of the mouse alpha 4m promoter region with the human alpha 4h promoter revealed little homology. Like most integrin subunits, alpha 4m lacks TATA anc CCAAT boxes. Putative recognition sites for DNA-binding nuclear factors (AP1, AP2, Sp1, and PU1) were identified. The characterization of the promoter region and further identification of the transcription regulatory elements should provide insight in the regulation of alpha 4m integrin gene expression.
Collapse
Affiliation(s)
- C De Meirsman
- Center for Human Genetics, University of Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
364
|
Chin L, Li L, Greengard P. Neuron-specific expression of the synapsin II gene is directed by a specific core promoter and upstream regulatory elements. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32338-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
365
|
Kannan P, Buettner R, Chiao PJ, Yim SO, Sarkiss M, Tainsky MA. N-ras oncogene causes AP-2 transcriptional self-interference, which leads to transformation. Genes Dev 1994; 8:1258-69. [PMID: 7926729 DOI: 10.1101/gad.8.11.1258] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Genetic alterations in elements of normal signal transduction mechanisms are known to be oncogenic events often resulting in aberrant activation of programs of gene transcription. We have investigated the effect of N-ras oncogene-induced tumorigenic transformation on the transcription factor AP-2. N-ras oncogene-induced transformation of human teratocarcinoma cells PA-1 results in sixfold elevated AP-2 mRNA levels. However, the level of AP-2-mediated trans-activation is dramatically inhibited in these cells. We show here that the high-level expression of AP-2 ultimately results in transcriptional "self-interference". The activation domain of AP-2, when fused to the DNA-binding domain of GAL4, is sufficient for self-interference. Non-N-ras PA-1 cells constitutively expressing AP-2 or GAL4-AP-2 fusion protein from an SV40 promoter exhibit reduced AP-2-mediated transcriptional activation, inhibition of differentiation, and promotion of anchorage-independent growth, properties that are similar to N-ras-transformed PA-1 cells. Thus, AP-2 is placed in the N-ras signal transduction pathway, and many of the biological effects of N-ras can be accomplished by overexpression of AP-2. This is the first evidence that inhibition of the activity of a transcription factor by self-interference contributes to a physiological process.
Collapse
Affiliation(s)
- P Kannan
- Department of Tumor Biology, University of Texas, M.D. Anderson Cancer Center, Houston 77030
| | | | | | | | | | | |
Collapse
|
366
|
Hauser F, Meyerhof W, Wulfsen I, Schönrock C, Richter D. Sequence analysis of the promoter region of the rat somatostatin receptor subtype 1 gene. FEBS Lett 1994; 345:225-8. [PMID: 8060391 DOI: 10.1016/0014-5793(94)00444-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Somatostatin receptor (SSTR) subtype genes are differentially expressed in brain and various peripheral tissues. RNA blotting and semiquantitative PCR analyses have revealed low levels of SSTR1 mRNA in the gastrointestinal tract and relatively high levels in GH3 anterior pituitary cells. As a first step in the investigation of the regulation of SSTR1 gene expression, we isolated a genomic fragment that contains the promoter region and determined the transcriptional initiation site. The SSTR1 gene lacks introns and TATA and CAAT motifs, but possesses several consensus recognition sequences for the transcription factors GCF and AP-2. The presence, also, of two Pit-1 binding sites could explain the high SSTR1 mRNA levels in GH3 cells.
Collapse
Affiliation(s)
- F Hauser
- Institut für Zellbiochemie und klinische Neurobiologie, UKE, Universität Hamburg, Germany
| | | | | | | | | |
Collapse
|
367
|
ERP, a new member of the ets transcription factor/oncoprotein family: cloning, characterization, and differential expression during B-lymphocyte development. Mol Cell Biol 1994. [PMID: 7909357 DOI: 10.1128/mcb.14.5.3292] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ets gene family encodes a group of proteins which function as transcription factors under physiological conditions and, if aberrantly expressed, can cause cellular transformation. We have recently identified two regulatory elements in the murine immunoglobulin heavy-chain (IgH) enhancer, pi and microB, which exhibit striking similarity to binding sites for ets-related proteins. To identify ets-related transcriptional regulators expressed in pre-B lymphocytes that may interact with either the pi or the microB site, we have used a PCR approach with degenerate oligonucleotides encoding conserved sequences in all members of the ets family. We have cloned the gene for a new ets-related transcription factor, ERP (ets-related protein), from the murine pre-B cell line BASC 6C2 and from mouse lung tissue. The ERP protein contains a region of high homology with the ETS DNA-binding domain common to all members of the ets transcription factor/oncoprotein family. Three additional smaller regions show homology to the ELK-1 and SAP-1 genes, a subgroup of the ets gene family that interacts with the serum response factor. Full-length ERP expresses only negligible DNA-binding activity by itself. Removal of the carboxy terminus enables ERP to interact with a variety of ets-binding sites including the E74 site, the IgH enhancer pi site, and the lck promoter ets site, suggesting a carboxy-terminal negative regulatory domain. At least three ERP-related transcripts are expressed in a variety of tissues. However, within the B-cell lineage, ERP is highly expressed primarily at early stages of B-lymphocyte development, and expression declines drastically upon B-cell maturation, correlating with the enhancer activity of the IgH pi site. These data suggest that ERP might play a role in B-cell development and in IgH gene regulation.
Collapse
|
368
|
Lopez M, Oettgen P, Akbarali Y, Dendorfer U, Libermann TA. ERP, a new member of the ets transcription factor/oncoprotein family: cloning, characterization, and differential expression during B-lymphocyte development. Mol Cell Biol 1994; 14:3292-309. [PMID: 7909357 PMCID: PMC358696 DOI: 10.1128/mcb.14.5.3292-3309.1994] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The ets gene family encodes a group of proteins which function as transcription factors under physiological conditions and, if aberrantly expressed, can cause cellular transformation. We have recently identified two regulatory elements in the murine immunoglobulin heavy-chain (IgH) enhancer, pi and microB, which exhibit striking similarity to binding sites for ets-related proteins. To identify ets-related transcriptional regulators expressed in pre-B lymphocytes that may interact with either the pi or the microB site, we have used a PCR approach with degenerate oligonucleotides encoding conserved sequences in all members of the ets family. We have cloned the gene for a new ets-related transcription factor, ERP (ets-related protein), from the murine pre-B cell line BASC 6C2 and from mouse lung tissue. The ERP protein contains a region of high homology with the ETS DNA-binding domain common to all members of the ets transcription factor/oncoprotein family. Three additional smaller regions show homology to the ELK-1 and SAP-1 genes, a subgroup of the ets gene family that interacts with the serum response factor. Full-length ERP expresses only negligible DNA-binding activity by itself. Removal of the carboxy terminus enables ERP to interact with a variety of ets-binding sites including the E74 site, the IgH enhancer pi site, and the lck promoter ets site, suggesting a carboxy-terminal negative regulatory domain. At least three ERP-related transcripts are expressed in a variety of tissues. However, within the B-cell lineage, ERP is highly expressed primarily at early stages of B-lymphocyte development, and expression declines drastically upon B-cell maturation, correlating with the enhancer activity of the IgH pi site. These data suggest that ERP might play a role in B-cell development and in IgH gene regulation.
Collapse
Affiliation(s)
- M Lopez
- Department of Medicine, Beth Israel Hospital, Boston, Massachusetts 02215
| | | | | | | | | |
Collapse
|
369
|
Kawamoto S. Evidence for an internal regulatory region in a human nonmuscle myosin heavy chain gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36579-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
370
|
Bauer R, Imhof A, Pscherer A, Kopp H, Moser M, Seegers S, Kerscher M, Tainsky MA, Hofstaedter F, Buettner R. The genomic structure of the human AP-2 transcription factor. Nucleic Acids Res 1994; 22:1413-20. [PMID: 8190633 PMCID: PMC307999 DOI: 10.1093/nar/22.8.1413] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The transcription factor AP-2 is encoded by a gene located on chromosome 6 near the HLA locus. Here we describe the genomic organization of the AP-2 gene including an initial characterization of the promoter. We have mapped two mRNA initiation sites, the entire exon-intron structure and located two polyadenylation sites. The mature AP-2 mRNA is spliced from 7 exons distributed over a region of 18 kb genomic DNA. A recently cloned inhibitory AP-2 protein is generated by alternative usage of a C-terminal exon. The proline-rich transactivation motif is encoded by a single exon within the N-terminal region in contrast to the complex DNA binding and dimerization motif which involves amino acid residues located on four different exons. The sites of mRNA initiation are located 220 and 271 bases upstream from the ATG translation start site. Although the promoter contains no canonical sequence motifs for basal transcription factors, such as TATA-, CCAAT- or SP-1 boxes, it mediates cell-type-specific expression of a CAT reporter gene in PA-1 human teratocarcinoma cells and is inactive in murine F9 teratocarcinoma cells. We demonstrate that the promoter of the AP-2 gene is subject to positive autoregulation by its own gene product. A consensus AP-2 binding site is located at position -622 with respect to the ATG. This site binds specifically to bacterially expressed AP-2 as well as to multiple proteins, including AP-2, present in PA-1 and HeLa cell nuclear extracts. A partial AP-2 promoter fragment including the AP-2 consensus binding site is approximately 5-fold transactivated by cotransfection of an AP-2 expression plasmid.
Collapse
Affiliation(s)
- R Bauer
- Department of Pathology, University of Regensburg Medical School, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Westaway D, Zuliani V, Cooper CM, Da Costa M, Neuman S, Jenny AL, Detwiler L, Prusiner SB. Homozygosity for prion protein alleles encoding glutamine-171 renders sheep susceptible to natural scrapie. Genes Dev 1994; 8:959-69. [PMID: 7926780 DOI: 10.1101/gad.8.8.959] [Citation(s) in RCA: 183] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Natural scrapie has been viewed both as a recessive trait and as a contagious disease modulated by a host locus. To address this conundrum, we determined the structure of the sheep prion protein (PrP) gene, which contains three exons and extends over 20 kb of DNA. In the United States 86.4% of scrapie cases occur in Suffolk sheep, and within this breed 49 +/- 6% (+/- S.D., n = 69) of healthy animals carry one or more PrP alleles encoding Arg (R)-171. Four scrapie-affected sheep were homozygous for wild-type PrP open reading frames encoding the alternative Gln (Q)-171 allele. Analysis of additional cases revealed that all were Q/Q-171 homozygotes (n = 31), yielding a probability of 0.000004 that PrP genotype is unrelated to susceptibility. These data imply that homozygosity for Q-171 codons is necessary but not sufficient for the development of natural scrapie, echo reports of recessive manifestation, and parallel over-representation of PRNP codon 129 homozygotes in Creutzfeldt-Jakob disease of humans. Whereas progress has been substantial regarding experimental scrapie in rodents, the occurrence and spread of disease in flocks of sheep has remained enigmatic. Appreciation of the relationship between codon 171 genotype and susceptibility may help define the molecular basis of natural scrapie.
Collapse
Affiliation(s)
- D Westaway
- Department of Neurology, University of California, San Francisco 94143
| | | | | | | | | | | | | | | |
Collapse
|
372
|
Zhang D, Hetherington C, Tan S, Dziennis S, Gonzalez D, Chen H, Tenen D. Sp1 is a critical factor for the monocytic specific expression of human CD14. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78141-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
373
|
Human GATA-3 trans-activation, DNA-binding, and nuclear localization activities are organized into distinct structural domains. Mol Cell Biol 1994. [PMID: 8114750 DOI: 10.1128/mcb.14.3.2201] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GATA-3 is a zinc finger transcription factor which is expressed in a highly restricted and strongly conserved tissue distribution pattern in vertebrate organisms, specifically, in a subset of hematopoietic cells, in cells within the central and peripheral nervous systems, in the kidney, and in placental trophoblasts. Tissue-specific cellular genes regulated by GATA-3 have been identified in T lymphocytes and the placenta, while GATA-3-regulated genes in the nervous system and kidney have not yet been defined. We prepared monoclonal antibodies with which we could dissect the biochemical and functional properties of human GATA-3. The results of these experiments show some anticipated phenotypes, for example, the definition of discrete domains required for specific DNA-binding site recognition (amino acids 303 to 348) and trans activation (amino acids 30 to 74). The signaling sequence for nuclear localization of human GATA-3 is a property conferred by sequences within and surrounding the amino finger (amino acids 249 to 311) of the protein, thereby assigning a function to this domain and thus explaining the curious observation that this zinc finger is dispensable for DNA binding by the GATA family of transcription factors.
Collapse
|
374
|
Yang Z, Gu L, Romeo PH, Bories D, Motohashi H, Yamamoto M, Engel JD. Human GATA-3 trans-activation, DNA-binding, and nuclear localization activities are organized into distinct structural domains. Mol Cell Biol 1994; 14:2201-12. [PMID: 8114750 PMCID: PMC358580 DOI: 10.1128/mcb.14.3.2201-2212.1994] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
GATA-3 is a zinc finger transcription factor which is expressed in a highly restricted and strongly conserved tissue distribution pattern in vertebrate organisms, specifically, in a subset of hematopoietic cells, in cells within the central and peripheral nervous systems, in the kidney, and in placental trophoblasts. Tissue-specific cellular genes regulated by GATA-3 have been identified in T lymphocytes and the placenta, while GATA-3-regulated genes in the nervous system and kidney have not yet been defined. We prepared monoclonal antibodies with which we could dissect the biochemical and functional properties of human GATA-3. The results of these experiments show some anticipated phenotypes, for example, the definition of discrete domains required for specific DNA-binding site recognition (amino acids 303 to 348) and trans activation (amino acids 30 to 74). The signaling sequence for nuclear localization of human GATA-3 is a property conferred by sequences within and surrounding the amino finger (amino acids 249 to 311) of the protein, thereby assigning a function to this domain and thus explaining the curious observation that this zinc finger is dispensable for DNA binding by the GATA family of transcription factors.
Collapse
Affiliation(s)
- Z Yang
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| | | | | | | | | | | | | |
Collapse
|
375
|
A novel cis-acting element controlling the rat CYP2D5 gene and requiring cooperativity between C/EBP beta and an Sp1 factor. Mol Cell Biol 1994. [PMID: 8289814 DOI: 10.1128/mcb.14.2.1383] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rat CYP2D5 gene encodes a cytochrome P450 and is expressed in liver cells. Its expression commences a few days after birth, and maximal mRNA levels are achieved when animals reach puberty. Transfection and DNA binding studies were performed to investigate the mechanism controlling developmentally programmed, liver-specific expression of CYP2D5. Transfection studies using a series of CYP2D5 upstream DNA chloramphenicol acetyltransferase gene fusion constructs identified a segment of DNA between nucleotides -55 and -156 that conferred transcriptional activity in HepG2 cells. Activity was markedly increased by cotransfection with a vector expressing C/EBP beta but was unaffected by vectors producing other liver-enriched transcription factors (C/EBP alpha, HNF-1 alpha, and DBP). DNase I footprinting revealed a region protected by both HepG2 and liver cell nuclear extracts between nucleotides -83 and -112. This region displayed some sequence similarity to the Sp1 consensus sequence and was able to bind the Sp1 protein, as assessed by a gel mobility shift assay. The role of Sp1 in CYP2D5 transcription was confirmed by trans activation of the 2D5-CAT construct in Drosophila melanogaster cells by using an Sp1 expression vector. C/EBP beta alone was unable to directly bind the -83 to -112 region of the promoter but was able to produce a ternary complex when combined with HepG2 nuclear extracts or recombinant human Sp1. C/EBP alpha was unable to substitute for C/EBP beta in forming this ternary complex. A poor C/EBP binding site is present adjacent to the Sp1 site, and mutagenesis of this site abolished formation of the ternary complex with the CYP2D5 regulatory region. These result establish that two transcription factors can work in conjunction, possibly by protein-protein interaction, to activate the CYP2D5 gene.
Collapse
|
376
|
Rambaldi I, Kovàcs EN, Featherstone MS. A proline-rich transcriptional activation domain in murine HOXD-4 (HOX-4.2). Nucleic Acids Res 1994; 22:376-82. [PMID: 7907418 PMCID: PMC523592 DOI: 10.1093/nar/22.3.376] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The product of the murine Hoxd-4 (Hox-4.2) gene is a transcription factor that acts upon an autoregulatory element in Hoxd-4 upstream sequences (1). Using this activity as an assay in transient transfections of P19 embryonal carcinoma (EC) cells, we performed a mutational analysis to map functional domains in the HOXD-4 protein. The importance of the homeodomain was shown by a single amino acid change in this region that abolished activity. Deletion analysis revealed that many evolutionarily conserved regions outside of the homeodomain were dispensable for activation in our assay. Fusions to the GAL4 DNA-binding domain mapped a transcriptional activation function to the HOXD-4 proline-rich N-terminus. The proline-rich transcription factor AP2 squelched activation by HOXD-4 and by GAL4/HOXD-4 N-terminus fusion proteins. Together, these results suggest that HOXD-4 harbors a transcriptional activation domain of the proline-rich type.
Collapse
Affiliation(s)
- I Rambaldi
- McGill Cancer Centre, Montréal, Québec, Canada
| | | | | |
Collapse
|
377
|
Maouche L, Cartron JP, Chretien S. Different domains regulate the human erythropoietin receptor gene transcription. Nucleic Acids Res 1994; 22:338-46. [PMID: 8127671 PMCID: PMC523586 DOI: 10.1093/nar/22.3.338] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To analyse the 5'-flanking sequences required for the tissue specific transcription of the human erythropoietin receptor (hEpo-R) gene, a DNA region spanning nucleotides -1050 to +135 relative to the transcription initiation site (+1) was explored. Our studies indicate that a minimum promoter (-76/+33) containing GATA and SP1 binding sites at positions -45 and -20 is not sufficient to confer erythroid specific expression to a reporter gene. Erythroid specificity of the promoter was observed either with the (-1050/+33 construct) which contains a cluster of Alu repetitive elements or with the addition of the 135 bp down to the transcription initiation site (-76/+135 construct) which exert a negative control on the promoter activity with a major effect in non erythroid tissues. The latter region can be subdivided on two distinct domains: the +1/+78 region that exerts a positive effect and the +79/+135 region that has a negative effect on the Epo-R promoter activity measured by CAT assays. The first region contains three CANNTG motifs, whereas the second contains an SP1/CACCC motif at position +85. These findings reveal a complex regulation of the hEpo-R gene and provide a working model useful to explain how the minimal promoter, containing GATA/SP1, can be positively and negatively regulated during erythroid differentiation.
Collapse
Affiliation(s)
- L Maouche
- Institut National de Transfusion Sanguine, Paris, France
| | | | | |
Collapse
|
378
|
Lee YH, Yano M, Liu SY, Matsunaga E, Johnson PF, Gonzalez FJ. A novel cis-acting element controlling the rat CYP2D5 gene and requiring cooperativity between C/EBP beta and an Sp1 factor. Mol Cell Biol 1994; 14:1383-94. [PMID: 8289814 PMCID: PMC358493 DOI: 10.1128/mcb.14.2.1383-1394.1994] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The rat CYP2D5 gene encodes a cytochrome P450 and is expressed in liver cells. Its expression commences a few days after birth, and maximal mRNA levels are achieved when animals reach puberty. Transfection and DNA binding studies were performed to investigate the mechanism controlling developmentally programmed, liver-specific expression of CYP2D5. Transfection studies using a series of CYP2D5 upstream DNA chloramphenicol acetyltransferase gene fusion constructs identified a segment of DNA between nucleotides -55 and -156 that conferred transcriptional activity in HepG2 cells. Activity was markedly increased by cotransfection with a vector expressing C/EBP beta but was unaffected by vectors producing other liver-enriched transcription factors (C/EBP alpha, HNF-1 alpha, and DBP). DNase I footprinting revealed a region protected by both HepG2 and liver cell nuclear extracts between nucleotides -83 and -112. This region displayed some sequence similarity to the Sp1 consensus sequence and was able to bind the Sp1 protein, as assessed by a gel mobility shift assay. The role of Sp1 in CYP2D5 transcription was confirmed by trans activation of the 2D5-CAT construct in Drosophila melanogaster cells by using an Sp1 expression vector. C/EBP beta alone was unable to directly bind the -83 to -112 region of the promoter but was able to produce a ternary complex when combined with HepG2 nuclear extracts or recombinant human Sp1. C/EBP alpha was unable to substitute for C/EBP beta in forming this ternary complex. A poor C/EBP binding site is present adjacent to the Sp1 site, and mutagenesis of this site abolished formation of the ternary complex with the CYP2D5 regulatory region. These result establish that two transcription factors can work in conjunction, possibly by protein-protein interaction, to activate the CYP2D5 gene.
Collapse
Affiliation(s)
- Y H Lee
- Laboratory of Molecular Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
379
|
Gill G, Pascal E, Tseng ZH, Tjian R. A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation. Proc Natl Acad Sci U S A 1994; 91:192-6. [PMID: 8278363 PMCID: PMC42912 DOI: 10.1073/pnas.91.1.192] [Citation(s) in RCA: 439] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Activation of transcription by the promoter-specific factor Sp1 requires coactivators that are tightly associated with the TATA-box-binding protein (TBP) in the TFIID complex. Recent work has shown that the two glutamine-rich activation domains of Sp1, A and B, can interact with at least one component of this complex, the TBP-associated factor dTAFII110. Here we report the mapping of a region of Sp1 with alternating glutamine and hydrophobic residues which is required for the interaction with dTAFII110 and is important for mediating transcriptional activation. Substitution of bulky hydrophobic residues within this region decreased both interaction with dTAFII110 and transcriptional activation in Drosophila cells. In contrast, mutation of glutamine residues in this region had no effect. Thus, the strength of the Sp1-TAF interaction correlates with the potency of Sp1 as a transcriptional activator, indicating that this activator-TAF interaction is an important part of the mechanism of transcriptional activation. Sequence comparison of three activation domains shown to bind dTAFII110 suggests that different activators that utilize dTAFII110 as a coactivator may share common sequence features that we have determined to be important for the Sp1-dTAFII110 interaction.
Collapse
Affiliation(s)
- G Gill
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
380
|
Hyder SM, Stancel GM. In vitro interaction of uterine estrogen receptor with the estrogen response element present in the 3'-flanking region of the murine c-fos protooncogene. J Steroid Biochem Mol Biol 1994; 48:69-79. [PMID: 8136308 DOI: 10.1016/0960-0760(94)90252-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Estradiol treatment rapidly stimulates transcription of the c-fos protooncogene in the rodent uterus, and transfection analysis previously identified an estrogen response element (ERE) in the 3'-flanking region of the murine gene with the sequence GGTCAnnnCAGCC. We now report that endogenous estrogen receptor (ER) obtained from either mouse or rat uterus binds to this 3'-ERE. Unoccupied receptor, receptor occupied with estradiol and receptor occupied with the antiestrogen tamoxifen all bind to this element, and the binding of receptor exhibits strict sequence specificity. By using a competition binding assay, the affinity of the ER for the c-fos-ERE is estimated to be approximately an order of magnitude less than the affinity for the consensus ERE (GGTCAnnnTGACC) found in the Xenopus and chicken vitellogenin genes. Differences in the electrophoretic mobilities of the c-fos and vitellogenin EREs bound to the ER in band-shift assays also suggest subtle structural differences in the two complexes. Mutations in either half-site of the c-fos-ERE destroy ER binding, suggesting that the receptor binds to this sequence as either a homo- or heterodimer. The 3'-fos-ERE region exhibits some homologies to both AP1 and AP2 consensus sites, but neither AP1-like proteins present in uterine extracts nor recombinant AP2 bind this protooncogene sequence. The finding that the ERE present in the 3'-region of the murine c-fos gene interacts with receptors present in the mouse and rat uterus supports a role for this element in the physiological regulation of c-fos expression in the uterus by estrogens.
Collapse
Affiliation(s)
- S M Hyder
- Department of Pharmacology, University of Texas Medical School, Houston 77225
| | | |
Collapse
|
381
|
Tamai K, Li K, Uitto J. Identification of a DNA-binding protein (keratinocyte transcriptional protein-1) recognizing a keratinocyte-specific regulatory element in the 230-kDa bullous pemphigoid antigen gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42377-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
382
|
Magnaldo T, Bernerd F, Freedberg IM, Ohtsuki M, Blumenberg M. Transcriptional regulators of expression of K#16, the disease-associated keratin. DNA Cell Biol 1993; 12:911-23. [PMID: 7506038 DOI: 10.1089/dna.1993.12.911] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In most malignant and benign skin diseases, the normal pattern of keratin expression is altered. Among other phenotypic changes, the expression of hyperproliferation- and activation-associated keratins K#16 and K#6 is induced. Because the molecular mechanisms and the nuclear regulators involved in this induction are unknown, we have characterized the transcriptional regulators of expression of the keratin K#16 promoter. Our previous studies have shown that the transcription of K#16 is strongly and specifically induced in epidermal keratinocytes by epidermal growth factor (EGF), through the EGF-responsive element (RE). In the present work, using an electrophoretic mobility-shift assay, we have found several nuclear protein binding sites that have been identified as an Sp1 site, an AP2 site, the EGF-RE, and an enhancer element. The function of each site was assessed in transfection assays using specific deletions. Both the Sp1 and EGF-RE sites are essential for K#16 promoter activity. The site that functions as an independent enhancer, E, was found adjacent to and interacting with a sequence recognized by the AP2 transcription factor. This knowledge of the nuclear regulators of expression of the disease-associated K#16 keratin provides insight into the molecular parameters that might be important in skin diseases.
Collapse
Affiliation(s)
- T Magnaldo
- Ronald O. Perelman Department of Dermatology, NYU Medical Center, New York 10016
| | | | | | | | | |
Collapse
|
383
|
Murakami A, Grinberg D, Thurlow J, Dickson C. Identification of positive and negative regulatory elements involved in the retinoic acid/cAMP induction of Fgf-3 transcription in F9 cells. Nucleic Acids Res 1993; 21:5351-9. [PMID: 8265348 PMCID: PMC310570 DOI: 10.1093/nar/21.23.5351] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The proto-oncogene Fgf-3 has been implicated as an important signalling molecule in vertebrate development. In the mouse, it is expressed for a limited time at a multitude of sites from embryonic day 7 to birth. Transcription of Fgf-3 initiates at three promoter regions resulting in the generation of various mRNAs which nevertheless all encode the same protein products. A 1.7kb DNA fragment which encompasses these regions was joined to the CAT reporter gene and shown to function as a promoter in embryonal carcinoma cells. In stable transfectants the promoter retains its retinoic acid inducibility, initiating transcription at the same cap-sites as the endogenous gene. In differentiated F9 cells, transient transfection of progressive and targeted deletion mutants of the promoter region has revealed at least two positive and three negative regulatory elements. With one exception, loss of these elements was shown to dramatically affect promoter activity in stable transfectants of F9 cells. However the promoter remained inducible by retinoic acid to differing degrees, apart from deletions encompassing PS-4A which essentially abolished promoter activity in both undifferentiated and differentiated cells. The sequences of these potential regulatory regions were further defined using DNase-I footprinting, revealing some similarities to consensus binding sites for known transcription factors.
Collapse
Affiliation(s)
- A Murakami
- Imperial Cancer Research Fund Laboratories, London, UK
| | | | | | | |
Collapse
|
384
|
Transcriptional activity of the zinc finger protein NGFI-A is influenced by its interaction with a cellular factor. Mol Cell Biol 1993. [PMID: 8413279 DOI: 10.1128/mcb.13.11.6858] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NGFI-A is an immediate-early gene that encodes a transcription factor whose DNA-binding domain is composed of three zinc fingers. To define the domains responsible for its transcriptional activity, a mutational analysis was conducted with an NGFI-A molecule in which the zinc fingers were replaced by the GAL4 DNA-binding domain. In a cotransfection assay, four activation domains were found within NGFI-A. Three of the activation domains are similar to those characterized previously: one contains a large number of acidic residues, another is enriched in proline and glutamine residues, and another has some sequence homology to a domain found in Krox-20. The fourth bears no resemblance to previously described activation domains. NGFI-A also contains an inhibitory domain whose removal resulted in a 15-fold increase in NGFI-A activity. This increase in activity occurred in all mammalian cell types tested but not in Drosophila S2 cells. Competition experiments in which increasing amounts of the inhibitory domain were cotransfected along with NGFI-A demonstrated a dose-dependent increase in NGFI-A activity. A point mutation within the inhibitory domain of the competitor (I293F) abolished this property. When the analogous mutation was introduced into native NGFI-A, a 17-fold increase in activity was observed. The inhibitory effect therefore appears to be the result of an interaction between this domain and a titratable cellular factor which is weakened by this mutation. Downmodulation of transcription factor activity through interaction with a cellular factor has been observed in several other systems, including the regulation of transcription factor E2F by retinoblastoma protein, and in studies of c-Jun.
Collapse
|
385
|
Fogel-Petrovic M, Kramer DL, Ganis B, Casero RA, Porter CW. Cloning and sequence analysis of the gene and cDNA encoding mouse spermidine/spermine N1-acetyltransferase--a gene uniquely regulated by polyamines and their analogs. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1216:255-64. [PMID: 8241266 DOI: 10.1016/0167-4781(93)90152-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The polyamine catabolizing enzyme, spermidine/spermine N1-acetyltransferase (SSAT), has been implicated as a critical determinant of polyamine pool maintenance. SSAT has recently been shown to be positively regulated in human cell lines by polyamines and their analogs at the level of mRNA accumulation. Mouse LA-4 lung adenoma cells treated with either spermine or the spermine analog, N1,N12-bis(ethyl)spermine, produced a 2.3 and 6.5-fold increase, respectively, in SSAT mRNA. Prior evidence for transcriptional control of the enzyme prompted investigation of SSAT gene structure and its regulatory elements. The mouse SSAT gene was isolated as a 3650 bp EcoRI fragment from a lambda-J1 Mus saxicola genomic library by hybridization with human SSAT cDNA. An additional 431 bp downstream from the 3' EcoRI site were sequenced from a BamHI fragment (total gene sequence, 4066 bp). The gene contains six exons and five introns. Sequence analysis of the 774 bp of the 5' non-coding region revealed the absence of TATAA or CCAAT sequence motifs and the presence of a number of binding motifs in the 5' region of the gene with consensus binding sequences for transcription factors SP1, AP1, E2F, AP2, PEA-3 and others. The deduced amino acid sequence of the coding region differs from that of the human SSAT cDNA by five amino acids. The 527 bp of the 3' non-coding region contains four possible polyadenylation signal sites of which only one displays a typical consensus sequence. A 940 bp SSAT cDNA was isolated from Mus domesticus (BALB-C) liver lambda gt11 cDNA library. It contains a 5' untranslated region 89 bp in length and a 3' untranslated region 376 bp in length. The amino acid sequence deduced from Mus domesticus differs from that of Mus saxicola by one amino acid, from the hamster cDNA, by four amino acids and from the human cDNA by six amino acids. Further elucidation of the structural features of the SSAT gene may reveal how it is positively regulated by polyamines and their analogs.
Collapse
Affiliation(s)
- M Fogel-Petrovic
- Grace Cancer Drug Center, Roswell Park Cancer Institute, Buffalo, NY 14263-0001
| | | | | | | | | |
Collapse
|
386
|
Russo MW, Matheny C, Milbrandt J. Transcriptional activity of the zinc finger protein NGFI-A is influenced by its interaction with a cellular factor. Mol Cell Biol 1993; 13:6858-65. [PMID: 8413279 PMCID: PMC364748 DOI: 10.1128/mcb.13.11.6858-6865.1993] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
NGFI-A is an immediate-early gene that encodes a transcription factor whose DNA-binding domain is composed of three zinc fingers. To define the domains responsible for its transcriptional activity, a mutational analysis was conducted with an NGFI-A molecule in which the zinc fingers were replaced by the GAL4 DNA-binding domain. In a cotransfection assay, four activation domains were found within NGFI-A. Three of the activation domains are similar to those characterized previously: one contains a large number of acidic residues, another is enriched in proline and glutamine residues, and another has some sequence homology to a domain found in Krox-20. The fourth bears no resemblance to previously described activation domains. NGFI-A also contains an inhibitory domain whose removal resulted in a 15-fold increase in NGFI-A activity. This increase in activity occurred in all mammalian cell types tested but not in Drosophila S2 cells. Competition experiments in which increasing amounts of the inhibitory domain were cotransfected along with NGFI-A demonstrated a dose-dependent increase in NGFI-A activity. A point mutation within the inhibitory domain of the competitor (I293F) abolished this property. When the analogous mutation was introduced into native NGFI-A, a 17-fold increase in activity was observed. The inhibitory effect therefore appears to be the result of an interaction between this domain and a titratable cellular factor which is weakened by this mutation. Downmodulation of transcription factor activity through interaction with a cellular factor has been observed in several other systems, including the regulation of transcription factor E2F by retinoblastoma protein, and in studies of c-Jun.
Collapse
Affiliation(s)
- M W Russo
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
387
|
Valarché I, Tissier-Seta JP, Hirsch MR, Martinez S, Goridis C, Brunet JF. The mouse homeodomain protein Phox2 regulates Ncam promoter activity in concert with Cux/CDP and is a putative determinant of neurotransmitter phenotype. Development 1993; 119:881-96. [PMID: 7910552 DOI: 10.1242/dev.119.3.881] [Citation(s) in RCA: 215] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transcriptional regulation of the gene encoding the cell adhesion receptor NCAM (neural cell adhesion molecule), a putative effector molecule of a variety of morphogenetic events, is likely to involve important regulators of morphogenesis. Here we identify two mouse homeodomain proteins that bind to an upstream regulatory element in the Ncam promoter: Cux, related to Drosophila cut and human CDP, and Phox2, a novel protein with a homeodomain related to that of the Drosophila paired gene. In transient transfection experiments, Cux was found to be a strong inhibitor of Ncam promoter activity, and this inhibition could be relieved by simultaneously overexpressing Phox2. These results suggest that the Ncam gene might be a direct target of homeodomain proteins and provide a striking example of regulatory cross-talk between homeodomain proteins of different classes. Whereas the expression pattern of Cux/CDP includes many NCAM-negative sites, Phox2 expression was restricted to cells also expressing Ncam or their progenitors. The localisation data thus strongly reinforce the notion that Phox2 plays a role in transcriptional activation of Ncam in Phox2-positive cell types. In the peripheral nervous system, Phox2 was strongly expressed in all ganglia of the autonomic nervous system and more weakly in some cranial sensory ganglia, but not in the sensory ganglia of the trunk. Phox2 transcripts were detected in the primordia of sympathetic ganglia as soon as they form. Phox2 expression in the brain was confined to spatially restricted domains in the hindbrain, which correspond to the noradrenergic and adrenergic nuclei once they are identifiable. All Phox2-expressing components of the peripheral nervous system are at least transiently adrenergic or noradrenergic. In the developing brain, Phox2 was expressed at all known locations of (nor)adrenergic neurones and of their precursors. These results suggest that Phox2, in addition to regulating the NCAM gene, may be part of the regulatory cascade that controls the differentiation of neurons towards this neurotransmitter phenotype.
Collapse
Affiliation(s)
- I Valarché
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | | | | | | | | | |
Collapse
|
388
|
Nüsing RM, Hirata M, Kakizuka A, Eki T, Ozawa K, Narumiya S. Characterization and chromosomal mapping of the human thromboxane A2 receptor gene. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74595-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
389
|
Bai G, Kusiak JW. Cloning and analysis of the 5' flanking sequence of the rat N-methyl-D-aspartate receptor 1 (NMDAR1) gene. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1152:197-200. [PMID: 8399301 DOI: 10.1016/0005-2736(93)90249-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We cloned and analyzed a 3.8 kb EcoRI fragment of the rat NMDAR1 gene. It contains 3 kb of promoter/enhancer region, exon 1 and a portion of intron 1. Two major transcription start sites were identified at -276 and -238 from the first nucleotide in codon 1. One GSG and two SP1 motifs, but no TATA/CAAT boxes, exist in the region proximal to the transcription start sites. Our results suggest that NMDAR1 has the characteristics of a housekeeping gene and may be regulated by immediate-early genes.
Collapse
Affiliation(s)
- G Bai
- National Institute on Aging, National Institutes of Health, Molecular Neurobiology Unit, Baltimore, MD 21224
| | | |
Collapse
|
390
|
Abstract
POU domain proteins have been implicated in the regulation of a number of lineage-specific genes. Among the first POU domain proteins described were the immunoglobulin octamer-binding proteins Oct-1 and Oct-2. It was therefore of special interest when we identified a novel lymphoid POU domain protein in Southwestern (DNA-protein) screens of T-cell lambda gt11 libraries. This novel POU protein, TCF beta 1, binds in a sequence-specific manner to a critical motif in the T-cell receptor (TCR) beta enhancer. Sequence analysis revealed that TCF beta 1 represents a new class of POU domain proteins which are distantly related to other POU proteins. TCF beta 1 is encoded by multiple exons whose organization is distinct from that of other POU domain proteins. The expression of TCF beta 1 in a tissue-restricted manner and its ability to bind to multiple motifs in the TCR beta enhancer support a role in regulating TCR beta gene expression. The expression of TCF beta 1 in both B and T cells and the ability of recombinant TCF beta 1 to bind octamer and octamer-related motifs suggest that TCF beta 1 has additional roles in lymphoid cell function. The ability of TCF beta 1 to transactivate in a sequence-specific manner is consistent with a role for regulating lymphoid gene expression.
Collapse
|
391
|
Sers C, Kirsch K, Rothbächer U, Riethmüller G, Johnson JP. Genomic organization of the melanoma-associated glycoprotein MUC18: implications for the evolution of the immunoglobulin domains. Proc Natl Acad Sci U S A 1993; 90:8514-8. [PMID: 8378324 PMCID: PMC47387 DOI: 10.1073/pnas.90.18.8514] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The cell surface glycoprotein MUC18, a member of the immunoglobulin superfamily and homologous to several cell adhesion molecules, is associated with tumor progression and the development of metastasis in human malignant melanoma. Immunohistochemical and Northern blot analysis revealed that expression of the antigen is restricted to advanced primary and metastatic melanomas and to cell lines of the neuroectodermal lineage. The genomic sequence encoding the cell surface antigen spans approximately 14 kb and consists of 16 exons. The organization of the gene, which is related to that of the neural cell adhesion molecule N-CAM, shows a structure where each immunoglobulin-related domain is encoded by more than one exon. Sequencing of the putative MUC18 promoter region revealed a G + C-rich promoter lacking conventional TATA and CAAT boxes. Several motifs for binding of transcription factor Sp1 are present in the regulatory region, and only a single transcription start site within a presumed initiator sequence was identified. Sequence elements which might confer melanocyte-specific expression were not detected. Instead, recognition sequences for the transcription factors CREB, AP-2, and c-Myb, as well as CArG-box motifs, were observed. These elements may contribute to the differential regulation of the MUC18 gene in normal and malignant tissues and suggest a role for this putative adhesion molecule in neural crest cells during embryonic development.
Collapse
Affiliation(s)
- C Sers
- Institute of Immunology, University of Munich, Germany
| | | | | | | | | |
Collapse
|
392
|
Messier H, Brickner H, Gaikwad J, Fotedar A. A novel POU domain protein which binds to the T-cell receptor beta enhancer. Mol Cell Biol 1993; 13:5450-60. [PMID: 8102789 PMCID: PMC360255 DOI: 10.1128/mcb.13.9.5450-5460.1993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
POU domain proteins have been implicated in the regulation of a number of lineage-specific genes. Among the first POU domain proteins described were the immunoglobulin octamer-binding proteins Oct-1 and Oct-2. It was therefore of special interest when we identified a novel lymphoid POU domain protein in Southwestern (DNA-protein) screens of T-cell lambda gt11 libraries. This novel POU protein, TCF beta 1, binds in a sequence-specific manner to a critical motif in the T-cell receptor (TCR) beta enhancer. Sequence analysis revealed that TCF beta 1 represents a new class of POU domain proteins which are distantly related to other POU proteins. TCF beta 1 is encoded by multiple exons whose organization is distinct from that of other POU domain proteins. The expression of TCF beta 1 in a tissue-restricted manner and its ability to bind to multiple motifs in the TCR beta enhancer support a role in regulating TCR beta gene expression. The expression of TCF beta 1 in both B and T cells and the ability of recombinant TCF beta 1 to bind octamer and octamer-related motifs suggest that TCF beta 1 has additional roles in lymphoid cell function. The ability of TCF beta 1 to transactivate in a sequence-specific manner is consistent with a role for regulating lymphoid gene expression.
Collapse
Affiliation(s)
- H Messier
- Division of Molecular Biology, La Jolla Institute for Allergy and Immunology, California 92037
| | | | | | | |
Collapse
|
393
|
Sax CM, Stover DM, Ilagan JG, Zehner ZE, Piatigorsky J. Functional analysis of chicken vimentin distal promoter regions in cultured lens cells. Gene 1993; 130:277-81. [PMID: 8359695 DOI: 10.1016/0378-1119(93)90431-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Synthesis of the cytoskeletal intermediate filament protein vimentin (Vim) in the lens is unexpected due to the mesenchymal preference of Vim-encoding gene (Vim) expression and the epithelial origin of the lens. Previous studies indicated that chicken Vim gene expression in cultured lens cells is regulated by both positive- and negative-acting sequence elements within the first -767 nucleotides (nt) of its promoter. Here, we demonstrate the existence of additional upstream chicken Vim promoter elements which function in transfected lens cells. Sequences within the nt -1360/-1156 region repressed promoter activity in transfected lens cells to levels lower than that observed for the previously defined more proximal repressor elements. The -1612/-1360 region activated promoter activity to levels similar to those observed for the strongest previously defined proximal promoter. The nt sequence analysis of the upstream promoter region revealed the presence of multiple consensus repressor and activator transcription-factor-binding sites. Several of these sites have been implicated for lens expression of enzyme-crystallin-encoding genes (cry), suggesting that Vim expression may share features with the cry genes for recruitment and high-level expression in the lens.
Collapse
Affiliation(s)
- C M Sax
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
394
|
Tamai K, Sawamura D, Do HC, Tamai Y, Li K, Uitto J. The human 230-kD bullous pemphigoid antigen gene (BPAG1). Exon-intron organization and identification of regulatory tissue specific elements in the promoter region. J Clin Invest 1993; 92:814-22. [PMID: 8349819 PMCID: PMC294919 DOI: 10.1172/jci116655] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The 230-kD bullous pemphigoid antigen (BPAG1), a hemidesmosomal protein, is encoded by a gene at the human chromosomal locus 6p11-12. We have elucidated the exon-intron organization of the entire human BPAG1 gene, including approximately 2.6 kb of 5'-flanking DNA. Seven overlapping genomic clones, spanning approximately 20 kb, contained the entire approximately 9 kb coding sequence of BPAG1 and consisted of 22 separate exons, which varied from 78 to 2,810 bp in size. The 5' flanking region of DNA, upstream from the ATG initiation codon for translation, was found to contain several putative transcriptional response elements. Most interestingly, two motifs potentially conferring keratinocyte specific expression to the gene were detected. The presence of such elements was suggested by approximately 20-fold higher expression of a promoter/chloramphenicol acetyl transferase (CAT) construct in normal human epidermal keratinocytes that express the endogenous gene, as compared to several non-expressing cell types. Transient transfections with 5'-deletion clones of the promoter/reporter gene (CAT) constructs identified a region containing a putative tissue specific element, KRE2, which also conferred tissue specificity to the expression of the truncated promoter downstream from this element, however, a mutated derivative of KRE2 was not functional. Detailed knowledge of the structure and regulation of the BPAG1 gene will aid in further elucidation of diseases affecting the cutaneous basement membrane zone.
Collapse
Affiliation(s)
- K Tamai
- Department of Dermatology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | | | |
Collapse
|
395
|
An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation by AP-2. Mol Cell Biol 1993. [PMID: 8321221 DOI: 10.1128/mcb.13.7.4174] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AP-2 is a retinoic acid-inducible and developmentally regulated activator of transcription. We have cloned an alternative AP-2 transcript (AP-2B) from the human teratocarcinoma cell line PA-1, which encodes a protein differing in the C terminus from the previously isolated AP-2 protein (AP-2A). This protein contains the activation domain of AP-2 and part of the DNA binding domain but lacks the dimerization domain which is necessary for DNA binding. Analysis of overlapping genomic clones spanning the entire AP-2 gene proves that AP-2A and AP-2B transcripts are alternatively spliced from the same gene. Both transient and stable transfection experiments show that AP-2B inhibits AP-2 transactivator function, as measured by an AP-2-responsive chloramphenicol acetyltransferase reporter plasmid. Furthermore, constitutive AP-2B expression in PA-1 cells causes a retinoic acid-resistant phenotype, anchorage-independent growth in soft agar, and tumorigenicity in nude mice, in a fashion similar to transformation of these cells by oncogenes. To determine the mechanism by which AP-2B exerts its inhibitory function, we purified bacterially expressed AP-2A and AP-2B proteins. While bacterial AP-2B does not bind an AP-2 consensus site, it strongly inhibits binding of the endogenous AP-2 present in PA-1 cell nuclear extracts. However, DNA sequence-specific binding of bacterially expressed AP-2A cannot be inhibited by bacterially expressed AP-2B. Therefore, inhibition of AP-2 activity by the protein AP-2B may require an additional factor or modification supplied by nuclear extracts.
Collapse
|
396
|
Buettner R, Kannan P, Imhof A, Bauer R, Yim SO, Glockshuber R, Van Dyke MW, Tainsky MA. An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation by AP-2. Mol Cell Biol 1993; 13:4174-85. [PMID: 8321221 PMCID: PMC359967 DOI: 10.1128/mcb.13.7.4174-4185.1993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AP-2 is a retinoic acid-inducible and developmentally regulated activator of transcription. We have cloned an alternative AP-2 transcript (AP-2B) from the human teratocarcinoma cell line PA-1, which encodes a protein differing in the C terminus from the previously isolated AP-2 protein (AP-2A). This protein contains the activation domain of AP-2 and part of the DNA binding domain but lacks the dimerization domain which is necessary for DNA binding. Analysis of overlapping genomic clones spanning the entire AP-2 gene proves that AP-2A and AP-2B transcripts are alternatively spliced from the same gene. Both transient and stable transfection experiments show that AP-2B inhibits AP-2 transactivator function, as measured by an AP-2-responsive chloramphenicol acetyltransferase reporter plasmid. Furthermore, constitutive AP-2B expression in PA-1 cells causes a retinoic acid-resistant phenotype, anchorage-independent growth in soft agar, and tumorigenicity in nude mice, in a fashion similar to transformation of these cells by oncogenes. To determine the mechanism by which AP-2B exerts its inhibitory function, we purified bacterially expressed AP-2A and AP-2B proteins. While bacterial AP-2B does not bind an AP-2 consensus site, it strongly inhibits binding of the endogenous AP-2 present in PA-1 cell nuclear extracts. However, DNA sequence-specific binding of bacterially expressed AP-2A cannot be inhibited by bacterially expressed AP-2B. Therefore, inhibition of AP-2 activity by the protein AP-2B may require an additional factor or modification supplied by nuclear extracts.
Collapse
Affiliation(s)
- R Buettner
- Department of Tumor Biology, University of Texas M. D. Anderson Cancer Center, Houston 77030
| | | | | | | | | | | | | | | |
Collapse
|
397
|
Dhawale SS. Is an activator protein-2-like transcription factor involved in regulating gene expression during nitrogen limitation in fungi? Appl Environ Microbiol 1993; 59:2335-8. [PMID: 8357266 PMCID: PMC182281 DOI: 10.1128/aem.59.7.2335-2338.1993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The upstream sequences of all published lignin peroxidase and manganese peroxidase genomic clones from Phanerochaete chrysosporium were analyzed. This analysis revealed the presence of putative activator protein-2 (AP-2) recognition sequences in 11 of 15 lignin peroxidase genes. The lignin peroxidase clone GLG6 and the manganese peroxidase gene (mnp-1) have two copies of putative AP-2 sequence in the upstream region. Interestingly, the lignin peroxidase gene VLG4 of another white rot fungus, Trametes versicolor, and the nit-2 gene of Neurospora crassa also contain putative AP-2-binding sequences. Since all of these genes are regulated by nutrient nitrogen, I hypothesize that an AP-2-like transcription factor may be involved in inducing gene expression during nitrogen limitation in fungi.
Collapse
Affiliation(s)
- S S Dhawale
- Indiana University Purdue University, Fort Wayne, Indiana 46805
| |
Collapse
|
398
|
Fischer G, Schmidt C, Opitz J, Cully Z, Kühn K, Pöschl E. Identification of a novel sequence element in the common promoter region of human collagen type IV genes, involved in the regulation of divergent transcription. Biochem J 1993; 292 ( Pt 3):687-95. [PMID: 8317999 PMCID: PMC1134168 DOI: 10.1042/bj2920687] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The expression of the heterotrimeric collagen IV molecule alpha 1(IV)2 alpha 2(IV) is essential for the structural integrity and functional properties of all basement membranes. The two genes COL4A1 and COL4A2 that code for the subunits are found closely linked on chromosome 13 in a head-to-head arrangement and are transcribed in divergent directions. We have identified a novel trans-acting factor that binds in vitro to a unique homopyrimidine/homopurine stretch within the shared promoter region of the two collagen IV genes. Additional binding sites have been identified within the first introns of both genes and the consensus sequence CCCTYCCCC for efficient binding has been deduced; the factor was named therefore 'CTC-binding factor' or 'CTCBF'. Mutations in the binding site of CTC-binding factor within the promoter inhibited binding in vitro and resulted in reduced transcription from both genes. The effect of mutations on the transcription of COL4A2 is more pronounced than on the transcription of COL4A1. CTC-binding factor is a nuclear factor that binds dominantly in vitro to the collagen IV promoter and is involved in regulating the expression of both collagen IV genes.
Collapse
Affiliation(s)
- G Fischer
- Max-Planck-Institut für Biochemie, Abt. für Bindegewebsforschung, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
399
|
Wu RL, Galvin S, Wu SK, Xu C, Blumenberg M, Sun TT. A 300 bp 5′-upstream sequence of a differentiation-dependent rabbit K3 keratin gene can serve as a keratinocyte-specific promoter. J Cell Sci 1993; 105 ( Pt 2):303-16. [PMID: 7691837 DOI: 10.1242/jcs.105.2.303] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Keratinocytes of the suprabasal compartment of many stratified epithelia synthesize as a major differentiation product a keratin pair, consisting of an acidic and a basic keratin, which accounts for 10–20% of the newly synthesized proteins. While genes of several differentiation-related keratins have been cloned and studied, relatively little is known about the molecular basis underlying their tissue-specific and differentiation-dependent expression. We have chosen to study, as a prototype of these genes, the gene of K3 keratin, which has the unique property of being expressed in the majority of corneal epithelial basal cells but suprabasally in peripheral cornea, the site of corneal epithelial stem cells. Using a monoclonal antibody, AE5, specific for K3 keratin, and a fragment of human K3 gene as probes, we have isolated several cDNA and genomic clones of rabbit K3 keratin. One genomic clone has been sequenced and characterized, and the identity of its coding sequence with that of cDNAs indicates that it corresponds to the single, functional rabbit K3 gene. Transfection assays showed that its 3.6 kb 5′-upstream sequence can drive a chloramphenicol acetyl transferase (CAT) reporter gene to express in cultured corneal and esophageal epithelial cells, but not in mesothelial and kidney epithelial cells or fibroblasts, all of rabbit origin. Serial deletion experiments narrowed this keratinocyte-specific promoter to within -300 bp upstream of the transcription initiation site. Its activity is not regulated by the coding or 3′-noncoding sequences that have been tested so far. This 300 bp 5′-upstream sequence of K3 keratin gene, which can function in vitro as a keratinocyte-specific promoter, contains two clusters of partially overlapping motifs, one with an NFkB consensus sequence and another with a GC box. The combinatorial effects of these multiple motifs and their cognate binding proteins may play an important role in regulating the expression of this tissue-restricted and differentiation-dependent keratin gene.
Collapse
Affiliation(s)
- R L Wu
- Ronald O. Perelman Department of Dermatology, New York University Medical School 10016
| | | | | | | | | | | |
Collapse
|
400
|
Ritzenthaler J, Goldstein R, Fine A, Smith B. Regulation of the alpha 1(I) collagen promoter via a transforming growth factor-beta activation element. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)38694-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|