351
|
Valdivia ER, Herrera MT, Gianzo C, Fidalgo J, Revilla G, Zarra I, Sampedro J. Regulation of secondary wall synthesis and cell death by NAC transcription factors in the monocot Brachypodium distachyon. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1333-43. [PMID: 23386682 PMCID: PMC3598421 DOI: 10.1093/jxb/ers394] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In several dicotyledonous species, NAC transcription factors act as master switches capable of turning on programmes of secondary cell-wall synthesis and cell death. This work used an oestradiol-inducible system to overexpress the NAC transcription factor BdSWN5 in the monocot model Brachypodium distachyon. This resulted in ectopic secondary cell-wall formation in both roots and shoots. Some of the genes upregulated in the process were a secondary cell-wall cellulose synthase (BdCESA4), a xylem-specific protease (BdXCP1) and an orthologue of AtMYB46 (BdMYB1). While activation of BdMYB1 may not be direct, this study showed that BdSWN5 is capable of transactivating the BdXCP1 promoter through two conserved binding sites. In the course of Brachypodium development, the BdXCP1 promoter was observed to be active in all types of differentiating tracheary elements. Together, these results suggest that Brachypodium SWNs can act as switches that turn on secondary cell-wall synthesis and programmed cell death.
Collapse
Affiliation(s)
- Elene R. Valdivia
- Dpto. Fisiología Vegetal, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782, Spain
| | - María Teresa Herrera
- Dpto. Fisiología Vegetal, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782, Spain
| | - Cristina Gianzo
- Dpto. Fisiología Vegetal, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782, Spain
| | - Javier Fidalgo
- Dpto. Fisiología Vegetal, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782, Spain
| | - Gloria Revilla
- Dpto. Fisiología Vegetal, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782, Spain
| | - Ignacio Zarra
- Dpto. Fisiología Vegetal, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782, Spain
| | - Javier Sampedro
- Dpto. Fisiología Vegetal, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782, Spain
| |
Collapse
|
352
|
Jung KW, Kim YY, Yoo KS, Ok SH, Cui MH, Jeong BC, Yoo SD, Jeung JU, Shin JS. A cystathionine-β-synthase domain-containing protein, CBSX2, regulates endothecial secondary cell wall thickening in anther development. PLANT & CELL PHYSIOLOGY 2013; 54:195-208. [PMID: 23220733 DOI: 10.1093/pcp/pcs166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Anther formation and dehiscence are complex pivotal processes in reproductive development. The secondary wall thickening in endothecial cells of the anther is a known prerequisite for successful anther dehiscence. However, many gaps remain in our understanding of the regulatory mechanisms underlying anther dehiscence in planta, including a possible role for jasmonic acid (JA) and H(2)O(2) in secondary wall thickening of endothecial cells. Here, we report that the cystathionine β-synthase domain-containing protein CBSX2 located in the chloroplast plays a critical role in thickening of the secondary cell walls of the endothecium during anther dehiscence in Arabidopsis. A T-DNA insertion mutant of CBSX2 (cbsx2) showed increased secondary wall thickening of endothecial cells and early anther dehiscence. Consistently, overexpression of CBSX2 resulted in anther indehiscence. Exogenous JA application induced secondary wall thickening and caused flower infertility in the cbsx2 mutant, whereas it partially restored fertility in the CBSX2-overexpressing lines lacking the wall thickening. CBSX2 directly modulated thioredoxin (Trx) in chloroplasts, which affected the level of H(2)O(2) and, consequently, expression of the genes involved in secondary cell wall thickening. Our findings have revealed that CBSX2 modulates the H(2)O(2) status, which is linked to the JA response and in turn controls secondary wall thickening of the endothecial cells in anthers for dehiscence to occur.
Collapse
Affiliation(s)
- Kwang Wook Jung
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Zhong R, Ye ZH. Transcriptional Regulation of Wood Formation in Tree Species. PLANT CELL MONOGRAPHS 2013. [DOI: 10.1007/978-3-642-36491-4_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
354
|
Kim WC, Ko JH, Kim JY, Kim J, Bae HJ, Han KH. MYB46 directly regulates the gene expression of secondary wall-associated cellulose synthases in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:26-36. [PMID: 26011122 DOI: 10.1111/j.1365-313x.2012.05124.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/05/2012] [Accepted: 08/08/2012] [Indexed: 05/21/2023]
Abstract
Cellulose is the most abundant biopolymer on Earth. Three cellulose synthases (CESA4, CESA7 and CESA8) are necessary for cellulose production in the secondary cell walls of Arabidopsis. Little is known about how expression of these CESA genes is regulated. We recently identified a cis-regulatory element (M46RE) that is recognized by MYB46, which is a master switch for secondary wall formation in Arabidopsis. A genome-wide survey of promoter sequences for the presence of M46REs led to the hypothesis that MYB46 may function as a direct regulator of all three secondary wall-associated cellulose synthase genes: CESA4, CESA7 and CESA8. We tested this hypothesis using several lines of experimental evidence. All three CESA genes are highly up-regulated by both constitutive and inducible over-expression of MYB46 in planta. Using a steroid receptor-based inducible activation system, we show that MYB46 directly activates transcription of the three CESA genes. We then used an electrophoretic mobility shift assay and chromatin immunoprecipitation analysis to confirm that MYB46 protein directly binds to the promoters of the three CESA genes both in vitro and in vivo. Furthermore, ectopic up-regulation of MYB46 resulted in a significant increase of crystalline cellulose content in Arabidopsis. Taken together, we have identified MYB46 as a transcription factor that directly regulates all three secondary wall-associated CESA genes. Yeast one-hybrid screening identified additional transcription factors that regulate the CESA genes. However, none of the putative regulators appears to be regulated by MYB46, suggesting the multi-faceted nature of transcriptional regulation of secondary wall cellulose biosynthesis.
Collapse
Affiliation(s)
- Won-Chan Kim
- Department of Horticulture and Department of Forestry, Michigan State University, East Lansing, MI, 48824-1222, USA
- Department of Energy-Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824-1222, USA
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea
- Bioenergy Center, Kyung Hee University, Yongin, Korea
| | - Joo-Yeol Kim
- Department of Horticulture and Department of Forestry, Michigan State University, East Lansing, MI, 48824-1222, USA
- Department of Energy-Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824-1222, USA
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, 333 Yongbongro, Buk-gu, Gwangju, 500-757, Korea
| | - Hyeun-Jong Bae
- Department of Bioenergy Science and Technology, Chonnam National University, 333 Yongbongro, Buk-gu, Gwangju, 500-757, Korea
| | - Kyung-Hwan Han
- Department of Horticulture and Department of Forestry, Michigan State University, East Lansing, MI, 48824-1222, USA
- Department of Energy-Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824-1222, USA
- Department of Bioenergy Science and Technology, Chonnam National University, 333 Yongbongro, Buk-gu, Gwangju, 500-757, Korea
| |
Collapse
|
355
|
Jensen JK, Johnson N, Wilkerson CG. Discovery of diversity in xylan biosynthetic genes by transcriptional profiling of a heteroxylan containing mucilaginous tissue. FRONTIERS IN PLANT SCIENCE 2013; 4:183. [PMID: 23761806 PMCID: PMC3675317 DOI: 10.3389/fpls.2013.00183] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/20/2013] [Indexed: 05/07/2023]
Abstract
The exact biochemical steps of xylan backbone synthesis remain elusive. In Arabidopsis, three non-redundant genes from two glycosyltransferase (GT) families, IRX9 and IRX14 from GT43 and IRX10 from GT47, are candidates for forming the xylan backbone. In other plants, evidence exists that different tissues express these three genes at widely different levels, which suggests that diversity in the makeup of the xylan synthase complex exists. Recently we have profiled the transcripts present in the developing mucilaginous tissue of psyllium (Plantago ovata Forsk). This tissue was found to have high expression levels of an IRX10 homolog, but very low levels of the two GT43 family members. This contrasts with recent wheat endosperm tissue profiling that found a relatively high abundance of the GT43 family members. We have performed an in-depth analysis of all GTs genes expressed in four developmental stages of the psyllium mucilagenous layer and in a single stage of the psyllium stem using RNA-Seq. This analysis revealed several IRX10 homologs, an expansion in GT61 (homologs of At3g18170/At3g18180), and several GTs from other GT families that are highly abundant and specifically expressed in the mucilaginous tissue. Our current hypothesis is that the four IRX10 genes present in the mucilagenous tissues have evolved to function without the GT43 genes. These four genes represent some of the most divergent IRX10 genes identified to date. Conversely, those present in the psyllium stem are very similar to those in other eudicots. This suggests these genes are under selective pressure, likely due to the synthesis of the various xylan structures present in mucilage that has a different biochemical role than that present in secondary walls. The numerous GT61 family members also show a wide sequence diversity and may be responsible for the larger number of side chain structures present in the psyllium mucilage.
Collapse
Affiliation(s)
- Jacob K. Jensen
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
| | - Nathan Johnson
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
| | - Curtis G. Wilkerson
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Curtis G. Wilkerson, Department of Plant Biology, Michigan State University, 612 Wilson Rd., Room 122, East Lansing, MI 48824-1312 USA e-mail:
| |
Collapse
|
356
|
Cassan-Wang H, Goué N, Saidi MN, Legay S, Sivadon P, Goffner D, Grima-Pettenati J. Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2013; 4:189. [PMID: 23781226 PMCID: PMC3677987 DOI: 10.3389/fpls.2013.00189] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/23/2013] [Indexed: 05/17/2023]
Abstract
The presence of lignin in secondary cell walls (SCW) is a major factor preventing hydrolytic enzymes from gaining access to cellulose, thereby limiting the saccharification potential of plant biomass. To understand how lignification is regulated is a prerequisite for selecting plant biomass better adapted to bioethanol production. Because transcriptional regulation is a major mechanism controlling the expression of genes involved in lignin biosynthesis, our aim was to identify novel transcription factors (TFs) dictating lignin profiles in the model plant Arabidopsis. To this end, we have developed a post-genomic approach by combining four independent in-house SCW-related transcriptome datasets obtained from (1) the fiber cell wall-deficient wat1 Arabidopsis mutant, (2) Arabidopsis lines over-expressing either the master regulatory activator EgMYB2 or (3) the repressor EgMYB1 and finally (4) Arabidopsis orthologs of Eucalyptus xylem-expressed genes. This allowed us to identify 502 up- or down-regulated TFs. We preferentially selected those present in more than one dataset and further analyzed their in silico expression patterns as an additional selection criteria. This selection process led to 80 candidates. Notably, 16 of them were already proven to regulate SCW formation, thereby validating the overall strategy. Then, we phenotyped 43 corresponding mutant lines focusing on histological observations of xylem and interfascicular fibers. This phenotypic screen revealed six mutant lines exhibiting altered lignification patterns. Two of them [Bel-like HomeoBox6 (blh6) and a zinc finger TF] presented hypolignified SCW. Three others (myb52, myb-like TF, hb5) showed hyperlignified SCW whereas the last one (hb15) showed ectopic lignification. In addition, our meta-analyses highlighted a reservoir of new potential regulators adding to the gene network regulating SCW but also opening new avenues to ultimately improve SCW composition for biofuel production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jacqueline Grima-Pettenati
- *Correspondence: Jacqueline Grima-Pettenati, Laboratoire de Recherche en Sciences Végétales, UMR5546, Centre National de la Recherche Scientifique, Université Toulouse III, UPS, 24 Chemin de Borde Rouge, BP 42617 Auzeville, 31326 Castanet-Tolosan, Toulouse, France e-mail:
| |
Collapse
|
357
|
Schuetz M, Smith R, Ellis B. Xylem tissue specification, patterning, and differentiation mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:11-31. [PMID: 23162114 DOI: 10.1093/jxb/ers287] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Vascular plants (Tracheophytes) have adapted to a variety of environments ranging from arid deserts to tropical rainforests, and now comprise >250,000 species. While they differ widely in appearance and growth habit, all of them share a similar specialized tissue system (vascular tissue) for transporting water and nutrients throughout the organism. Plant vascular systems connect all plant organs from the shoot to the root, and are comprised of two main tissue types, xylem and phloem. In this review we examine the current state of knowledge concerning the process of vascular tissue formation, and highlight important mechanisms underlying key steps in vascular cell type specification, xylem and phloem tissue patterning, and, finally, the differentiation and maturation of specific xylem cell types.
Collapse
Affiliation(s)
- Mathias Schuetz
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada
| | | | | |
Collapse
|
358
|
Bonawitz ND, Chapple C. Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty? Curr Opin Biotechnol 2012; 24:336-43. [PMID: 23228388 DOI: 10.1016/j.copbio.2012.11.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 11/13/2022]
Abstract
The secondary cell wall polymer lignin impedes the extraction of fermentable sugars from biomass, and has been one of the major impediments in the development of cost-effective biofuel technologies. Unfortunately, attempts to genetically engineer lignin biosynthesis frequently result in dwarfing or developmental abnormalities of unknown cause, thus limiting the benefits of increased fermentable sugar yield. In this brief review, we explore some of the possible mechanisms that could underlie this poorly understood phenomenon, with the expectation that an understanding of the cause of dwarfing in lignin biosynthetic mutants and transgenic plants could lead to new strategies for the development of improved bioenergy feedstocks.
Collapse
Affiliation(s)
- Nicholas D Bonawitz
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-2063, United States.
| | | |
Collapse
|
359
|
Nelson MR, Band LR, Dyson RJ, Lessinnes T, Wells DM, Yang C, Everitt NM, Jensen OE, Wilson ZA. A biomechanical model of anther opening reveals the roles of dehydration and secondary thickening. THE NEW PHYTOLOGIST 2012; 196:1030-1037. [PMID: 22998410 PMCID: PMC3569878 DOI: 10.1111/j.1469-8137.2012.04329.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/10/2012] [Indexed: 05/04/2023]
Abstract
Understanding the processes that underlie pollen release is a prime target for controlling fertility to enable selective breeding and the efficient production of hybrid crops. Pollen release requires anther opening, which involves changes in the biomechanical properties of the anther wall. In this research, we develop and use a mathematical model to understand how these biomechanical processes lead to anther opening. Our mathematical model describing the biomechanics of anther opening incorporates the bilayer structure of the mature anther wall, which comprises the outer epidermal cell layer, whose turgor pressure is related to its hydration, and the endothecial layer, whose walls contain helical secondary thickening, which resists stretching and bending. The model describes how epidermal dehydration, in association with the thickened endothecial layer, creates forces within the anther wall causing it to bend outwards, resulting in anther opening and pollen release. The model demonstrates that epidermal dehydration can drive anther opening, and suggests why endothecial secondary thickening is essential for this process (explaining the phenotypes presented in the myb26 and nst1nst2 mutants). The research hypothesizes and demonstrates a biomechanical mechanism for anther opening, which appears to be conserved in many other biological situations where tissue movement occurs.
Collapse
Affiliation(s)
- M R Nelson
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - L R Band
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - R J Dyson
- School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK
| | - T Lessinnes
- Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - D M Wells
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - C Yang
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - N M Everitt
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - O E Jensen
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
- School of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Z A Wilson
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| |
Collapse
|
360
|
Zhong H, Guo QQ, Chen L, Ren F, Wang QQ, Zheng Y, Li XB. Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress. PLANT CELL REPORTS 2012; 31:1991-2003. [PMID: 22801866 DOI: 10.1007/s00299-012-1311-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/18/2012] [Accepted: 07/01/2012] [Indexed: 05/20/2023]
Abstract
The NAC protein family is one of the novel classes of plant-specific transcription factors. In this study, two genes (BnNAC2 and BnNAC5) encoding the putative NAC transcription factors were identified in Brassica napus. Sequence analysis revealed that the deduced BnNAC proteins contain conserved N-terminal region (NAC domain) and highly divergent C-terminal domain. Yeast transactivation analysis showed that BnNAC2 could activate reporter gene expression, suggesting that BnNAC2 functions as a transcriptional activator. Quantitative RT-PCR analysis revealed that BnNAC2 was preferentially expressed in flowers, whereas BnNAC5 mRNAs accumulated at the highest level in stems. Further experimental results indicated that the two genes are high-salinity-, drought- and abscisic acid (ABA)-induced. Overexpression of BnNAC2 and BnNAC5 genes in yeast (Schizosaccharomyces pombe) remarkably inhibited the growth rate of the host cells, and enhanced the cells sensitive to high-salinity and osmotic stresses. Complementation test indicated that BnNAC5 could recover the defects such as salt-hypersensitivity and accelerated-leaf senescence of vni2 T-DNA insertion mutant. Several stress-responsive genes including COR15A and RD29A were enhanced in the complemented plants. These results suggest that BnNAC5 may perform the similar function of VNI2 in response to high-salinity stress and regulation of leaf aging. Key message BnNAC2 and BnNAC5 are salt-, drought- and ABA-induced genes. Overexpression of BnNAC5 in Arabidopsis vni2 mutant recovered the mutant defects (salt-hypersensitivity and accelerated-leaf senescence) to the phenotype of wild type.
Collapse
Affiliation(s)
- Hui Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | | | | | | | | | | | | |
Collapse
|
361
|
Yao D, Wei Q, Xu W, Syrenne RD, Yuan JS, Su Z. Comparative genomic analysis of NAC transcriptional factors to dissect the regulatory mechanisms for cell wall biosynthesis. BMC Bioinformatics 2012; 13 Suppl 15:S10. [PMID: 23046216 PMCID: PMC3439729 DOI: 10.1186/1471-2105-13-s15-s10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background NAC domain transcription factors are important transcriptional regulators involved in plant growth, development and stress responses. Recent studies have revealed several classes of NAC transcriptional factors crucial for controlling secondary cell wall biosynthesis. These transcriptional factors mainly include three classes, SND, NST and VND. Despite progress, most current analysis is carried out in the model plant Arabidopsis. Moreover, many downstream genes regulated by these transcriptional factors are still not clear. Methods In order to identify the key homologue genes across species and discover the network controlling cell wall biosynthesis, we carried out comparative genome analysis of NST, VND and SND genes across 19 higher plant species along with computational modelling of genes regulated or co-regulated with these transcriptional factors. Results The comparative genome analysis revealed that evolutionarily the secondary-wall-associated NAC domain transcription factors first appeared in Selaginella moellendorffii. In fact, among the three groups, only VND genes appeared in S. moellendorffii, which is evolutionarily earlier than the other two groups. The Arabidopsis and rice gene expression analysis showed specific patterns of the secondary cell wall-associated NAC genes (SND, NST and VND). Most of them were preferentially expressed in the stem, especially the second internodes. Furthermore, comprehensive co-regulatory network analysis revealed that the SND and MYB genes were co-regulated, which indicated the coordinative function of these transcriptional factors in modulating cell wall biosynthesis. In addition, the co-regulatory network analysis revealed many novel genes and pathways that could be involved in cell wall biosynthesis and its regulation. The gene ontology analysis also indicated that processes like carbohydrate synthesis, transport and stress response, are coordinately regulated toward cell wall biosynthesis. Conclusions Overall, we provided a new insight into the evolution and the gene regulatory network of a subgroup of the NAC gene family controlling cell wall composition through bioinformatics data mining and bench validation. Our work might benefit to elucidate the possible molecular mechanism underlying the regulation network of secondary cell wall biosynthesis.
Collapse
Affiliation(s)
- Dongxia Yao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
362
|
Sasaki K, Yamaguchi H, Aida R, Shikata M, Abe T, Ohtsubo N. Mutation in Torenia fournieri Lind. UFO homolog confers loss of TfLFY interaction and results in a petal to sepal transformation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:1002-14. [PMID: 22577962 DOI: 10.1111/j.1365-313x.2012.05047.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We identified a Torenia fournieri Lind. mutant (no. 252) that exhibited a sepaloid phenotype in which the second whorls were changed to sepal-like organs. This mutant had no stamens, and the floral organs consisted of sepals and carpels. Although the expression of a torenia class B MADS-box gene, GLOBOSA (TfGLO), was abolished in the 252 mutant, no mutation of TfGLO was found. Among torenia homologs such as APETALA1 (AP1), LEAFY (LFY), and UNUSUAL FLORAL ORGANS (UFO), which regulate expression of class B genes in Arabidopsis, only accumulation of the TfUFO transcript was diminished in the 252 mutant. Furthermore, a missense mutation was found in the coding region of the mutant TfUFO. Intact TfUFO complemented the mutant phenotype whereas mutated TfUFO did not; in addition, the transgenic phenotype of TfUFO-knockdown torenias coincided with the mutant phenotype. Yeast two-hybrid analysis revealed that the mutated TfUFO lost its ability to interact with TfLFY protein. In situ hybridization analysis indicated that the transcripts of TfUFO and TfLFY were partially accumulated in the same region. These results clearly demonstrate that the defect in TfUFO caused the sepaloid phenotype in the 252 mutant due to the loss of interaction with TfLFY.
Collapse
Affiliation(s)
- Katsutomo Sasaki
- National Institute of Floricultural Science, Tsukuba, Ibaraki 305-8519, Japan
| | | | | | | | | | | |
Collapse
|
363
|
Larsson E, Sundström JF, Sitbon F, von Arnold S. Expression of PaNAC01, a Picea abies CUP-SHAPED COTYLEDON orthologue, is regulated by polar auxin transport and associated with differentiation of the shoot apical meristem and formation of separated cotyledons. ANNALS OF BOTANY 2012; 110:923-34. [PMID: 22778149 PMCID: PMC3423809 DOI: 10.1093/aob/mcs151] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/15/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS During embryo development in most gymnosperms, the establishment of the shoot apical meristem (SAM) occurs concomitantly with the formation of a crown of cotyledons surrounding the SAM. It has previously been shown that the differentiation of cotyledons in somatic embryos of Picea abies is dependent on polar auxin transport (PAT). In the angiosperm model plant, Arabidopsis thaliana, the establishment of cotyledonary boundaries and the embryonal SAM is dependent on PAT and the expression of the CUP-SHAPED COTYLEDON (CUC) genes, which belong to the large NAC gene family. The aim of this study was to characterize CUC-like genes in a gymnosperm, and to elucidate their expression during SAM and cotyledon differentiation, and in response to PAT. METHODS Sixteen Picea glauca NAC sequences were identified in GenBank and deployed to different clades within the NAC gene family using maximum parsimony analysis and Bayesian inference. Motifs conserved between angiosperms and gymnosperms were analysed using the motif discovery tool MEME. Expression profiles during embryo development were produced using quantitative real-time PCR. Protein conservation was analysed by introducing a P. abies CUC orthologue into the A. thaliana cuc1cuc2 double mutant. KEY RESULTS Two full-length CUC-like cDNAs denoted PaNAC01 and PaNAC02 were cloned from P. abies. PaNAC01, but not PaNAC02, harbours previously characterized functional motifs in CUC1 and CUC2. The expression profile of PaNAC01 showed that the gene is PAT regulated and associated with SAM differentiation and cotyledon formation. Furthermore, PaNAC01 could functionally substitute for CUC2 in the A. thaliana cuc1cuc2 double mutant. CONCLUSIONS The results show that CUC-like genes with distinct signature motifs existed before the separation of angiosperms and gymnosperms approx. 300 million years ago, and suggest a conserved function between PaNAC01 and CUC1/CUC2.
Collapse
Affiliation(s)
- Emma Larsson
- Department of Plant Biology and Forest Genetics, Linnean Centre of Plant Biology in Uppsala, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | |
Collapse
|
364
|
Barrière Y, Méchin V, Lefevre B, Maltese S. QTLs for agronomic and cell wall traits in a maize RIL progeny derived from a cross between an old Minnesota13 line and a modern Iodent line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:531-49. [PMID: 22437492 DOI: 10.1007/s00122-012-1851-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/10/2012] [Indexed: 05/20/2023]
Abstract
In order to contribute to the inventory of genomic areas involved in maize cell wall lignification and degradability, QTL analyses were investigated in a RIL progeny between an old Minnesota13 dent line (WM13) and a modern Iodent line (RIo). Significant variation for agronomic- and cell wall-related traits was observed for the RIL per se (plants without ears) and topcross (whole plants) experiments after crossing with both old (Ia153) and modern tester (RFl) lines. Three QTLs for stover (plant without ear) yield were observed in per se experiments, with alleles increasing yield originating from RIo in two genomic locations with the highest effects. However, no QTL for whole plant yield was detected in topcross experiments, despite the fact that two QTLs for starch content were shown with increasing alleles originating from the modern RIo line. Fifteen lignin QTLs were shown, including a QTL for Klason lignins in per se experiments, located in bin 2.04, which explained 43 % of the observed genetic variation. Thirteen QTLs for p-hydroxycinnamic acid contents and nine QTLs related to the monomeric composition of lignin were shown in per se experiments, with syringaldehyde and diferulate QTLs explaining nearly 25 % of trait variations. Nine and seven QTLs for cell wall digestibility were mapped in per se and topcross experiments, respectively. Five of the per se QTLs explained more than 15 % of the variation, up to nearly 25 %. QTL positions in bins 2.06, 5.04, 5.08 and 8.02 for ADL/NDF, IVNDFD, lignin structure and/or p-hydroxycinnamic acid contents have not been previously shown and were thus first identified in the RIo × WM13 progeny. Based on QTL colocalizations, differences in cell wall degradability between RIo and WM13 were less often related to acid detergent lignin (ADL) content than in previous RIL investigations. QTL colocalizations then highlighted the probable importance of ferulate cross linkages in variation for cell wall digestibility. No colocalizations of QTL for cell wall phenolic-related traits were shown with genes involved in monolignol biosynthesis or polymerization. In contrast, colocalizations were most often shown with MYB and NAC transcription factors, including orthologs of master genes involved in Arabidopsis secondary wall assembly. QTL colocalizations also strengthened the probable involvement of members of the CoA-dependent acyltransferase PF02458 family in the feruloylation of arabinoxylan chains.
Collapse
Affiliation(s)
- Yves Barrière
- INRA, Unité de Génétique et d'Amélioration des Plantes, 86600, Lusignan, France.
| | | | | | | |
Collapse
|
365
|
Fellenberg C, van Ohlen M, Handrick V, Vogt T. The role of CCoAOMT1 and COMT1 in Arabidopsis anthers. PLANTA 2012; 236:51-61. [PMID: 22258746 DOI: 10.1007/s00425-011-1586-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/29/2011] [Indexed: 05/31/2023]
Abstract
Arabidopsis caffeoyl coenzyme A dependent O-methyltransferase 1 (CCoAOMT1) and caffeic acid O-methyltransferase 1 (COMT1) display a similar substrate profile although with distinct substrate preferences and are considered the key methyltransferases (OMTs) in the biosynthesis of lignin monomers, coniferyl and sinapoylalcohol. Whereas CCoAOMT1 displays a strong preference for caffeoyl coenzyme A, COMT1 preferentially methylates 5-hydroxyferuloyl CoA derivatives and also performs methylation of flavonols with vicinal aromatic dihydroxy groups, such as quercetin. Based on different knockout lines, phenolic profiling, and immunohistochemistry, we present evidence that both enzymes fulfil distinct, yet different tasks in Arabidopsis anthers. CCoAOMT1 besides its role in vascular tissues can be localized to the tapetum of young stamens, contributing to the biosynthesis of spermidine phenylpropanoid conjugates. COMT1, although present in the same organ, is not localized in the tapetum, but in two directly adjacent cells layers, the endothecium and the epidermal layer of stamens. In vivo localization and phenolic profiling of comt1 plants provide evidence that COMT1 neither contributes to the accumulation of spermidine phenylpropanoid conjugates nor to the flavonol glycoside pattern of pollen grains.
Collapse
Affiliation(s)
- Christin Fellenberg
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | | | | | | |
Collapse
|
366
|
Wang HZ, Dixon RA. On-off switches for secondary cell wall biosynthesis. MOLECULAR PLANT 2012; 5:297-303. [PMID: 22138968 DOI: 10.1093/mp/ssr098] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Secondary cell walls provide plants with rigidity and strength to support their body weight and ensure water and nutrient transport. They also provide textiles, timber, and potentially second-generation biofuels for human use. Genes responsible for synthesis of the different cell wall components, namely cellulose, hemicelluloses, and lignin, are coordinately expressed and under transcriptional regulation. In the past several years, cell wall-related NAC and MYB transcription factors have been intensively investigated in different species and shown to be master switches of secondary cell wall biosynthesis. Positive and negative regulators, which function upstream of NAC master switches, have also been identified in different plant tissues. Further elucidation of the regulatory mechanisms of cell wall synthesis will facilitate the engineering of plant feedstocks suitable for biofuel production.
Collapse
Affiliation(s)
- Huan-Zhong Wang
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | |
Collapse
|
367
|
Mei Y, Gao HB, Yuan M, Xue HW. The Arabidopsis ARCP protein, CSI1, which is required for microtubule stability, is necessary for root and anther development. THE PLANT CELL 2012; 24:1066-80. [PMID: 22427339 PMCID: PMC3336141 DOI: 10.1105/tpc.111.095059] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/21/2012] [Accepted: 03/01/2012] [Indexed: 05/18/2023]
Abstract
Armadillo repeat-containing proteins (ARCPs) are conserved across eukaryotic kingdoms and function in various processes. Regulation of microtubule stability by ARCPs exists widely in mammals and algae, but little is known in plants. Here, we present the functional characterization of an Arabidopsis thaliana ARCP, which was previously identified as Cellulose synthase-interactive protein1 (CSI1), and prove its crucial role in anther and root development. CSI1 is highly expressed in floral tissues, and knockout mutants of CSI1 (three allelic lines) accordingly exhibit defective anther dehiscence, which can be partially rescued by mammalian microtubule-stabilizer MAP4, suggesting that CSI1 functions by stabilizing the microtubular cytoskeleton. CSI1 binds microtubules in vitro, and immunofluorescence and coimmunoprecipitation studies confirmed the physical interactions between CSI1 and microtubules in vivo. Analysis using oryzalin, a microtubule-disrupting drug, further revealed the destabilized microtubules under CSI1 deficiency and confirmed the crucial role of CSI1 in microtubule stability. The dynamic change of CSI1 in response to dehydration strongly suggests the important function of CSI1 in dehydration-induced microtubule depolymerization and reorganization, which is crucial for anther development. These results indicate the pivotal role of CSI1 in anther development by regulating microtubule stability and hence cell morphogenesis.
Collapse
Affiliation(s)
- Yu Mei
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Bo Gao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
368
|
Wang N, Khan W, Smith DL. Changes in soybean global gene expression after application of lipo-chitooligosaccharide from Bradyrhizobium japonicum under sub-optimal temperature. PLoS One 2012; 7:e31571. [PMID: 22348109 PMCID: PMC3278468 DOI: 10.1371/journal.pone.0031571] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 01/13/2012] [Indexed: 11/18/2022] Open
Abstract
Lipo-chitooligosaccharides (LCOs), signal compounds produced by N(2)-fixing rhizobacteria after isoflavone induction, initiate nodule formation in host legumes. Given LCOs' structural similarity to pathogen-response-eliciting chitin oligomers, foliar application of LCOs was tested for ability to induce stress-related genes under optimal growth conditions. In order to study the effects of LCO foliar spray under stressed conditions, soybean (Glycine max) seedlings grown at optimal temperature were transferred to sub-optimal temperature. After a 5-day acclimation period, the first trifoliate leaves were sprayed with 10(-7) M LCO (NodBj-V (C(18:1), MeFuc)) purified from genistein-induced Bradyrhizobium japonicum culture, and harvested at 0 and 48 h following treatment. Microarray analysis was performed using Affymetrix GeneChip® Soybean Genome Arrays. Compared to the control at 48 h after LCO treatment, a total of 147 genes were differentially expressed as a result of LCO treatment, including a number of stress-related genes and transcription factors. In addition, during the 48 h time period following foliar spray application, over a thousand genes exhibited differential expression, including hundreds of those specific to the LCO-treated plants. Our results indicated that the dynamic soybean foliar transcriptome was highly responsive to LCO treatment. Quantitative real-time PCR (qPCR) validated the microarray data.
Collapse
Affiliation(s)
- Nan Wang
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Wajahatullah Khan
- Genome Research Chair Unit, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Donald L. Smith
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| |
Collapse
|
369
|
Zhu T, Nevo E, Sun D, Peng J. Phylogenetic analyses unravel the evolutionary history of NAC proteins in plants. Evolution 2012; 66:1833-48. [PMID: 22671550 DOI: 10.1111/j.1558-5646.2011.01553.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
NAC (NAM/ATAF/CUC) proteins are one of the largest groups of transcription factors in plants. Although many NAC proteins based on Arabidopsis and rice genomes have been reported in a number of species, a complete survey and classification of all NAC genes in plant species from disparate evolutionary groups is lacking. In this study, we analyzed whole-genome sequences from nine major lineages of land plants to unveil the relationships between these proteins. Our results show that there are fewer than 30 NAC proteins present in both mosses and lycophytes, whereas more than 100 were found in most of the angiosperms. Phylogenetic analyses suggest that NAC proteins consist of 21 subfamilies, most of which have highly conserved non-NAC domain motifs. Six of these subfamilies existed in early-diverged land plants, whereas the remainder diverged only within the angiosperms. We hypothesize that NAC proteins probably originated sometime more than 400 million years ago and expanded together with the differentiation of plants into organisms of increasing complexity possibly after the divergence of lycophytes from the other vascular plants.
Collapse
Affiliation(s)
- Tingting Zhu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | | | | | | |
Collapse
|
370
|
Zhong R, Ye ZH. MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. PLANT & CELL PHYSIOLOGY 2012; 53:368-80. [PMID: 22197883 DOI: 10.1093/pcp/pcr185] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MYB46 and MYB83 are two functionally redundant Arabidopsis thaliana MYB transcription factors that act as master switches regulating secondary wall biosynthesis. Here, we report the identification of the transcriptional responsive elements and global analysis of the direct targets of MYB46 and MYB83. Using the estrogen-inducible direct activation system, we found that a number of previously identified MYB46 downstream transcription factors, including MYB43, MYB52, MYB54, MYB58, MYB63 and KNAT7, are direct targets of MYB46. Promoter deletion coupled with transactivation analysis of the MYB63 promoter led to the identification of a 7 bp sequence that is sufficient to be responsive to MYB46 activation, and therefore this sequence is designated as the secondary wall MYB-responsive element (SMRE). Further single nucleotide mutation together with electrophoretic mobility shift assay mapped the SMRE consensus sequence as ACC(A/T)A(A/C)(T/C). Genome-wide analysis of direct targets of MYB46 demonstrated that it directly regulates the expression of not only a number of downstream transcription factors, but also a suite of secondary wall biosynthetic genes, some of which are also directly activated by secondary wall NAC (SWN) master switches or by MYB46 direct targets. Furthermore, MYB83 was found to bind to the same SMRE consensus sequence and activate the same set of direct targets as MYB46. Our study has revealed that the transcription program regulating secondary wall biosynthesis involves a multileveled feed-forward loop regulatory structure in which MYB46/MYB83 together with their regulators SWNs and their direct targets regulate an array of downstream genes thereby activating the secondary wall biosynthetic program.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
371
|
Bollhöner B, Prestele J, Tuominen H. Xylem cell death: emerging understanding of regulation and function. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1081-94. [PMID: 22213814 DOI: 10.1093/jxb/err438] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Evolutionary, as well as genetic, evidence suggests that vascular development evolved originally as a cell death programme that allowed enhanced movement of water in the extinct protracheophytes, and that secondary wall formation in the water-conducting cells evolved afterwards, providing mechanical support for effective long-distance transport of water. The extant vascular plants possess a common regulatory network to coordinate the different phases of xylem maturation, including secondary wall formation, cell death, and finally autolysis of the cell contents, by the action of recently identified NAC domain transcription factors. Consequently, xylem cell death is an inseparable part of the xylem maturation programme, making it difficult to uncouple cell death mechanistically from secondary wall formation, and thus identify the key factors specifically involved in regulation of cell death. Current knowledge suggests that the necessary components for xylem cell death are produced early during xylem differentiation, and cell death is prevented through the action of inhibitors and storage of hydrolytic enzymes in inactive forms in compartments such as the vacuole. Bursting of the central vacuole triggers autolytic hydrolysis of the cell contents, which ultimately leads to cell death. This cascade of events varies between the different xylem cell types. The water-transporting tracheary elements rely on a rapid cell death programme, with hydrolysis of cell contents taking place for the most part, if not entirely, after vacuolar bursting, while the xylem fibres disintegrate cellular contents at a slower pace, well before cell death. This review includes a detailed description of cell morphology, function of plant growth regulators, such as ethylene and thermospermine, and the action of hydrolytic nucleases and proteases during cell death of the different xylem cell types.
Collapse
Affiliation(s)
- Benjamin Bollhöner
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden
| | | | | |
Collapse
|
372
|
Oda Y, Fukuda H. Secondary cell wall patterning during xylem differentiation. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:38-44. [PMID: 22078063 DOI: 10.1016/j.pbi.2011.10.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/14/2011] [Accepted: 10/19/2011] [Indexed: 05/08/2023]
Abstract
Xylem cell differentiation involves temporal and spatial regulation of secondary cell wall deposition. The cortical microtubules are known to regulate the spatial pattern of the secondary cell wall by orientating cellulose deposition. However, it is largely unknown how the microtubule arrangement is regulated during secondary wall formation. Recent findings of novel plant microtubule-associated proteins in developing xylem vessels shed new light on the regulation mechanism of the microtubule arrangement leading to secondary wall patterning. In addition, in vitro culture systems allow the dynamics of microtubules and microtubule-associated proteins during secondary cell wall formation to be followed. Therefore, this review focuses on novel aspects of microtubule dynamics leading to secondary cell wall patterning with a focus on microtubule-associated proteins.
Collapse
Affiliation(s)
- Yoshihisa Oda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
373
|
Kim YY, Jung KW, Jeung JU, Shin JS. A novel F-box protein represses endothecial secondary wall thickening for anther dehiscence in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:212-216. [PMID: 22018967 DOI: 10.1016/j.jplph.2011.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 05/31/2023]
Abstract
In plants, the regulation of protein turnover by the ubiquitin proteasome system (UPS) is a key posttranslational mechanism underlying diverse cellular processes. However, the participation of the UPS in cellular processes involved in anther dehiscence, especially endothecial secondary wall (ESW) thickening, has not been characterized. Here, we report that a novel F-box protein in arabidopsis, designated SAF1 (Secondary wall thickening-Associated F-box 1), negatively regulates ESW thickening in the anther. SAF1 is predominantly expressed in flower tissues and interacts with Arabidopsis-Skp1-like 19 (ASK19). SAF1-overexpressed (Ox) lines showed reduced fertility due to a lack or loss of ESW thickening in the anther and inhibition of the expression of relevant genes, such as IRREGURAR XYLEMs (IRXs) in flowers. These findings suggest that the novel Skp/Cul/F-box (SCF) complex consisting of SAF1 as an F-box protein and ASK19 as a Skp functions in secondary wall thickening of the anther endothecium.
Collapse
Affiliation(s)
- Yun Young Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | |
Collapse
|
374
|
Handakumbura PP, Hazen SP. Transcriptional Regulation of Grass Secondary Cell Wall Biosynthesis: Playing Catch-Up with Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2012; 3:74. [PMID: 22639662 PMCID: PMC3355686 DOI: 10.3389/fpls.2012.00074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 03/31/2012] [Indexed: 05/17/2023]
Abstract
Secondary cell wall synthesis occurs in specialized cell types following completion of cell enlargement. By virtue of mechanical strength provided by a wall thickened with cellulose, hemicelluloses, and lignin, these cells can function as water-conducting vessels and provide structural support. Several transcription factor families regulate genes encoding wall synthesis enzymes. Certain NAC and MYB proteins directly bind to the SNBE and AC elements upstream of structural genes and other transcription factors. The most detailed model of this regulatory network is established predominantly for a eudicot, Arabidopsis thaliana. In grasses, both the patterning and the composition of secondary cell walls are distinct from that of eudicots. These differences suggest transcriptional regulation is similarly distinct. Putative rice and maize orthologs of several eudicot cell wall regulators genetically complement mutants of A. thaliana or result in wall defects when constitutively overexpressed; nevertheless, aside from a maize, ZmMYB31, and a switchgrass protein, PvMYB4, function has not been tested in a grass. Similar to the seminal work conducted in A. thaliana, gene expression profiling in maize, rice, and other grasses implicates additional genes as regulators. Characterization of these genes will continue to elucidate the relationship between the transcription regulatory networks of eudicots and grasses.
Collapse
Affiliation(s)
- Pubudu P. Handakumbura
- Biology Department, University of MassachusettsAmherst, MA, USA
- Plant Biology Graduate Program, University of MassachusettsAmherst, MA, USA
| | - Samuel P. Hazen
- Biology Department, University of MassachusettsAmherst, MA, USA
- *Correspondence: Samuel P. Hazen, Biology Department, University of Massachusetts, 221 Morrill Science Center, Amherst, MA 01003, USA. e-mail:
| |
Collapse
|
375
|
Osakabe Y, Kawaoka A, Nishikubo N, Osakabe K. Responses to environmental stresses in woody plants: key to survive and longevity. JOURNAL OF PLANT RESEARCH 2012; 125:1-10. [PMID: 21874628 DOI: 10.1007/s10265-011-0446-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/13/2011] [Indexed: 05/08/2023]
Abstract
Environmental stresses have adverse effects on plant growth and productivity, and are predicted to become more severe and widespread in decades to come. Especially, prolonged and repeated severe stresses affecting growth and development would bring down long-lasting effects in woody plants as a result of its long-term growth period. To counteract these effects, trees have evolved specific mechanisms for acclimation and tolerance to environmental stresses. Plant growth and development are regulated by the integration of many environmental and endogenous signals including plant hormones. Acclimation of land plants to environmental stresses is controlled by molecular cascades, also involving cross-talk with other stresses and plant hormone signaling mechanisms. This review focuses on recent studies on molecular mechanisms of abiotic stress responses in woody plants, functions of plant hormones in wood formation, and the interconnection of cell wall biosynthesis and the mechanisms shown above. Understanding of these mechanisms in depth should shed light on the factors for improvement of woody plants to overcome severe environmental stress conditions.
Collapse
Affiliation(s)
- Yuriko Osakabe
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | | | | | | |
Collapse
|
376
|
Yang X, Ye CY, Bisaria A, Tuskan GA, Kalluri UC. Identification of candidate genes in Arabidopsis and Populus cell wall biosynthesis using text-mining, co-expression network analysis and comparative genomics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:675-87. [PMID: 21958710 DOI: 10.1016/j.plantsci.2011.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 12/01/2010] [Accepted: 01/27/2011] [Indexed: 05/17/2023]
Abstract
Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of biofuels from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidence supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database, and additional genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional characterization in relation to cell wall biosynthesis.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division and BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | | | |
Collapse
|
377
|
Hussey SG, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA. SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC PLANT BIOLOGY 2011; 11:173. [PMID: 22133261 PMCID: PMC3289092 DOI: 10.1186/1471-2229-11-173] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 12/01/2011] [Indexed: 05/17/2023]
Abstract
BACKGROUND NAC domain transcription factors initiate secondary cell wall biosynthesis in Arabidopsis fibres and vessels by activating numerous transcriptional regulators and biosynthetic genes. NAC family member SND2 is an indirect target of a principal regulator of fibre secondary cell wall formation, SND1. A previous study showed that overexpression of SND2 produced a fibre cell-specific increase in secondary cell wall thickness in Arabidopsis stems, and that the protein was able to transactivate the cellulose synthase8 (CesA8) promoter. However, the full repertoire of genes regulated by SND2 is unknown, and the effect of its overexpression on cell wall chemistry remains unexplored. RESULTS We overexpressed SND2 in Arabidopsis and analyzed homozygous lines with regards to stem chemistry, biomass and fibre secondary cell wall thickness. A line showing upregulation of CesA8 was selected for transcriptome-wide gene expression profiling. We found evidence for upregulation of biosynthetic genes associated with cellulose, xylan, mannan and lignin polymerization in this line, in agreement with significant co-expression of these genes with native SND2 transcripts according to public microarray repositories. Only minor alterations in cell wall chemistry were detected. Transcription factor MYB103, in addition to SND1, was upregulated in SND2-overexpressing plants, and we detected upregulation of genes encoding components of a signal transduction machinery recently proposed to initiate secondary cell wall formation. Several homozygous T4 and hemizygous T1 transgenic lines with pronounced SND2 overexpression levels revealed a negative impact on fibre wall deposition, which may be indirectly attributable to excessive overexpression rather than co-suppression. Conversely, overexpression of SND2 in Eucalyptus stems led to increased fibre cross-sectional cell area. CONCLUSIONS This study supports a function for SND2 in the regulation of cellulose and hemicellulose biosynthetic genes in addition of those involved in lignin polymerization and signalling. SND2 seems to occupy a subordinate but central tier in the secondary cell wall transcriptional network. Our results reveal phenotypic differences in the effect of SND2 overexpression between woody and herbaceous stems and emphasize the importance of expression thresholds in transcription factor studies.
Collapse
Affiliation(s)
- Steven G Hussey
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Antanas V Spokevicius
- Department of Forest and Ecosystem Science, The University of Melbourne, Melbourne, 3363, Australia
| | - Gerd Bossinger
- Department of Forest and Ecosystem Science, The University of Melbourne, Melbourne, 3363, Australia
| | - Dave K Berger
- Department of Plant Science, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
378
|
Wang H, Zhao Q, Chen F, Wang M, Dixon RA. NAC domain function and transcriptional control of a secondary cell wall master switch. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:1104-14. [PMID: 21883551 DOI: 10.1111/j.1365-313x.2011.04764.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
NAC domain transcription factors act as master switches for secondary cell wall thickening, but how they exert their function and how their expression is regulated remains unclear. Here we identify a loss-of-function point mutation in the NST1 gene of Medicago truncatula. The nst1-3 mutant shows no lignification in interfascicular fibers, as previously seen in tnt1 transposon insertion alleles. However, the C→A transversion, which causes a T94K mutation in the NST1 protein, leads to increased NST1 expression. Introduction of the same mutation into the Arabidopsis homolog SND1 causes both protein mislocalization and loss of target DNA binding, with a resultant inability to trans-activate downstream secondary wall synthesis genes. Furthermore, trans-activation assays show that the expression of SND1 operates under positive feedback control from itself, and SND1 was shown to bind directly to a conserved motif in its own promoter, located within a recently described 19-bp secondary wall NAC binding element. Three MYB transcription factors downstream of SND1, one of which is directly regulated by SND1, exert negative regulation on SND1 promoter activity. Our results identify a conserved amino acid critical for NST1/SND1 function, and show that the expression of the NAC master switch itself is under both positive (autoregulatory) and negative control.
Collapse
Affiliation(s)
- Huanzhong Wang
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | | | | | | | | |
Collapse
|
379
|
Zhong R, McCarthy RL, Lee C, Ye ZH. Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar. PLANT PHYSIOLOGY 2011; 157:1452-68. [PMID: 21908685 PMCID: PMC3252164 DOI: 10.1104/pp.111.181354] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 09/08/2011] [Indexed: 05/17/2023]
Abstract
Wood biomass is mainly made of secondary cell walls; hence, elucidation of the molecular mechanisms underlying the transcriptional regulation of secondary wall biosynthesis during wood formation will be instrumental to design strategies for genetic improvement of wood biomass. Here, we provide direct evidence demonstrating that the poplar (Populus trichocarpa) wood-associated NAC domain transcription factors (PtrWNDs) are master switches activating a suite of downstream transcription factors, and together, they are involved in the coordinated regulation of secondary wall biosynthesis during wood formation. We show that transgenic poplar plants with dominant repression of PtrWNDs functions exhibit a drastic reduction in secondary wall thickening in woody cells, and those with PtrWND overexpression result in ectopic deposition of secondary walls. Analysis of PtrWND2B overexpressors revealed up-regulation of the expression of a number of wood-associated transcription factors, the promoters of which were also activated by PtrWND6B and the Eucalyptus EgWND1. Transactivation analysis and electrophoretic mobility shift assay demonstrated that PtrWNDs and EgWND1 activated gene expression through direct binding to the secondary wall NAC-binding elements, which are present in the promoters of several wood-associated transcription factors and a number of genes involved in secondary wall biosynthesis and modification. The WND-regulated transcription factors PtrNAC150, PtrNAC156, PtrNAC157, PtrMYB18, PtrMYB74, PtrMYB75, PtrMYB121, PtrMYB128, PtrZF1, and PtrGATA8 were able to activate the promoter activities of the biosynthetic genes for all three major wood components. Our study has uncovered that the WND master switches together with a battery of their downstream transcription factors form a transcriptional network controlling secondary wall biosynthesis during wood formation.
Collapse
|
380
|
Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. PLANT PHYSIOLOGY 2011; 157:1243-54. [PMID: 21908690 PMCID: PMC3252156 DOI: 10.1104/pp.111.179036] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 08/31/2011] [Indexed: 05/18/2023]
Abstract
Many eukaryotes have from one to three heat shock factors (Hsfs), but plants have more than 20 Hsfs, designated class A, B, and C. Class A Hsfs are activators of transcription, but details of the roles of individual Hsfs have not been fully characterized. We show here that Arabidopsis (Arabidopsis thaliana) HsfB1 and HsfB2b, members of class B, are transcriptional repressors and negatively regulate the expression of heat-inducible Hsfs (HsfA2, HsfA7a, HsfB1, and HsfB2b) and several heat shock protein genes. In hsfb1 hsfb2b double mutant plants, the expression of a large number of heat-inducible genes was enhanced in the non-heat condition (23°C) and the plants exhibited slightly higher heat tolerance at 42°C than the wild type, similar to Pro35S:HsfA2 plants. In addition, under extended heat stress conditions, expression of the heat-inducible Hsf genes remained consistently higher in hsfb1 hsfb2b than in the wild type. These data indicate that HsfB1 and HsfB2b suppress the general heat shock response under non-heat-stress conditions and in the attenuating period. On the other hand, HsfB1 and HsfB2b appear to be necessary for the expression of heat stress-inducible heat shock protein genes under heat stress conditions, which is necessary for acquired thermotolerance. We show that the heat stress response is finely regulated by activation and repression activities of Hsfs in Arabidopsis.
Collapse
|
381
|
Gui J, Shen J, Li L. Functional characterization of evolutionarily divergent 4-coumarate:coenzyme a ligases in rice. PLANT PHYSIOLOGY 2011; 157:574-586. [PMID: 21807887 DOI: 10.1104/pp.111.17830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
4-Coumarate:coenzyme A ligase (4CL; EC 6.2.1.12) is a key enzyme in the phenylpropanoid metabolic pathways for monolignol and flavonoid biosynthesis. 4CL has been much studied in dicotyledons, but its function is not completely understood in monocotyledons, which display a different monolignol composition and phenylpropanoid profile. In this study, five members of the 4CL gene family in the rice (Oryza sativa) genome were cloned and analyzed. Biochemical characterization of the 4CL recombinant proteins revealed that the rice 4CL isoforms displayed different substrate specificities and catalytic turnover rates. Among them, Os4CL3 exhibited the highest turnover rate. No apparent tissue-specific expression of the five 4CLs was observed, but significant differences in their expression levels were detected. The rank in order of transcript abundance was Os4CL3 > Os4CL5 > Os4CL1 > Os4CL4 > Os4CL2. Suppression of Os4CL3 expression resulted in significant lignin reduction, shorter plant growth, and other morphological changes. The 4CL-suppressed transgenics also displayed decreased panicle fertility, which may be attributed to abnormal anther development as a result of disrupted lignin synthesis. This study demonstrates that the rice 4CLs exhibit different in vitro catalytic properties from those in dicots and that 4CL-mediated metabolism in vivo may play important roles in regulating a broad range of biological events over the course of rice growth and development.
Collapse
Affiliation(s)
- Jinshan Gui
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | |
Collapse
|
382
|
Yoo KS, Ok SH, Jeong BC, Jung KW, Cui MH, Hyoung S, Lee MR, Song HK, Shin JS. Single cystathionine β-synthase domain-containing proteins modulate development by regulating the thioredoxin system in Arabidopsis. THE PLANT CELL 2011; 23:3577-94. [PMID: 22021414 PMCID: PMC3229136 DOI: 10.1105/tpc.111.089847] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/30/2011] [Accepted: 10/03/2011] [Indexed: 05/20/2023]
Abstract
Plant thioredoxins (Trxs) participate in two redox systems found in different cellular compartments: the NADP-Trx system (NTS) in the cytosol and mitochondria and the ferredoxin-Trx system (FTS) in the chloroplast, where they function as redox regulators by regulating the activity of various target enzymes. The identities of the master regulators that maintain cellular homeostasis and modulate timed development through redox regulating systems have remained completely unknown. Here, we show that proteins consisting of a single cystathionine β-synthase (CBS) domain pair stabilize cellular redox homeostasis and modulate plant development via regulation of Trx systems by sensing changes in adenosine-containing ligands. We identified two CBS domain-containing proteins in Arabidopsis thaliana, CBSX1 and CBSX2, which are localized to the chloroplast, where they activate all four Trxs in the FTS. CBSX3 was found to regulate mitochondrial Trx members in the NTS. CBSX1 directly regulates Trxs and thereby controls H(2)O(2) levels and regulates lignin polymerization in the anther endothecium. It also affects plant growth by regulating photosynthesis-related [corrected] enzymes, such as malate dehydrogenase, via homeostatic regulation of Trxs. Based on our findings, we suggest that the CBSX proteins (or a CBS pair) are ubiquitous redox regulators that regulate Trxs in the FTS and NTS to modulate development and maintain homeostasis under conditions that are threatening to the cell.
Collapse
Affiliation(s)
- Kyoung Shin Yoo
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
383
|
Gui J, Shen J, Li L. Functional characterization of evolutionarily divergent 4-coumarate:coenzyme a ligases in rice. PLANT PHYSIOLOGY 2011; 157:574-86. [PMID: 21807887 PMCID: PMC3192572 DOI: 10.1104/pp.111.178301] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
4-Coumarate:coenzyme A ligase (4CL; EC 6.2.1.12) is a key enzyme in the phenylpropanoid metabolic pathways for monolignol and flavonoid biosynthesis. 4CL has been much studied in dicotyledons, but its function is not completely understood in monocotyledons, which display a different monolignol composition and phenylpropanoid profile. In this study, five members of the 4CL gene family in the rice (Oryza sativa) genome were cloned and analyzed. Biochemical characterization of the 4CL recombinant proteins revealed that the rice 4CL isoforms displayed different substrate specificities and catalytic turnover rates. Among them, Os4CL3 exhibited the highest turnover rate. No apparent tissue-specific expression of the five 4CLs was observed, but significant differences in their expression levels were detected. The rank in order of transcript abundance was Os4CL3 > Os4CL5 > Os4CL1 > Os4CL4 > Os4CL2. Suppression of Os4CL3 expression resulted in significant lignin reduction, shorter plant growth, and other morphological changes. The 4CL-suppressed transgenics also displayed decreased panicle fertility, which may be attributed to abnormal anther development as a result of disrupted lignin synthesis. This study demonstrates that the rice 4CLs exhibit different in vitro catalytic properties from those in dicots and that 4CL-mediated metabolism in vivo may play important roles in regulating a broad range of biological events over the course of rice growth and development.
Collapse
Affiliation(s)
- Jinshan Gui
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | |
Collapse
|
384
|
Zhong R, Lee C, McCarthy RL, Reeves CK, Jones EG, Ye ZH. Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors. PLANT & CELL PHYSIOLOGY 2011; 52:1856-71. [PMID: 21908441 DOI: 10.1093/pcp/pcr123] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The bulk of grass biomass potentially useful for cellulose-based biofuel production is the remains of secondary wall-containing sclerenchymatous fibers. Hence, it is important to uncover the molecular mechanisms underlying the regulation of secondary wall thickening in grass species. So far, little is known about the transcriptional regulatory switches responsible for the activation of the secondary wall biosynthetic program in grass species. Here, we report the roles of a group of rice and maize NAC and MYB transcription factors in the regulation of secondary wall biosynthesis. The rice and maize secondary wall-associated NACs (namely OsSWNs and ZmSWNs) were able to complement the Arabidopsis snd1 nst1 double mutant defective in secondary wall thickening. When overexpressed in Arabidopsis, OsSWNs and ZmSWNs were sufficient to activate a number of secondary wall-associated transcription factors and secondary wall biosynthetic genes, and concomitantly result in the ectopic deposition of cellulose, xylan and lignin. It was also found that the rice and maize MYB transcription factors, OsMYB46 and ZmMYB46, are functional orthologs of Arabidopsis MYB46/MYB83 and, when overexpressed in Arabidopsis, they were able to activate the entire secondary wall biosynthetic program. Furthermore, the promoters of OsMYB46 and ZmMYB46 contain secondary wall NAC-binding elements (SNBEs), which can be bound and activated by OsSWNs and ZmSWNs. Together, our results indicate that the rice and maize SWNs and MYB46 are master transcriptional activators of the secondary wall biosynthetic program and that OsSWNs and ZmSWNs activate their direct target genes through binding to the SNBE sites.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
385
|
Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis. Proc Natl Acad Sci U S A 2011; 108:16128-32. [PMID: 21911380 DOI: 10.1073/pnas.1110443108] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
When grafting or wounding disconnects stem tissues, new tissues are generated to restore the lost connection. In this study, the molecular mechanism of such healing was elucidated in injured stems of Arabidopsis. Soon after the inflorescence stems were incised, the pith cells started to divide. This process was strongly inhibited by the elimination of cauline leaves, shoot apices, or lateral buds that reduced the indole-3-acetic acid supply. Microarray and quantitative RT-PCR analyses revealed that genes related to cell division, phytohormones, and transcription factors were expressed because of incision. Among them, two plant-specific transcription factor genes, ANAC071 and RAP2.6L, were abundantly expressed. ANAC071 was expressed at 1-3 d after cutting exclusively in the upper region of the cut gap, with concomitant accumulation of indole-3-acetic acid. In contrast, RAP2.6L was expressed at 1 d after cutting exclusively in the lower region, with concomitant deprivation of indole-3-acetic acid. The expression of ANAC071 and RAP2.6L were also promoted by ethylene and jasmonic acid, respectively. In transformants suppressing the function of RAP2.6L or ANAC071, the division of pith cells was inhibited. Furthermore, the ethylene signaling-defective ein2 mutant showed incomplete healing. Hence, plant-specific transcription factors differentially expressed around the cut position were essential for tissue reunion of Arabidopsis wounded flowering stems and were under opposite control by polar-transported auxin, with modification by the ethylene and jasmonic acid wound-inducible hormones.
Collapse
|
386
|
McCarthy RL, Zhong R, Ye ZH. Secondary wall NAC binding element (SNBE), a key cis-acting element required for target gene activation by secondary wall NAC master switches. PLANT SIGNALING & BEHAVIOR 2011; 6:1282-5. [PMID: 21847026 PMCID: PMC3258052 DOI: 10.4161/psb.6.9.16402] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The biosynthesis of secondary walls in vascular plants requires the coordinated regulation of a suite of biosynthetic genes, and this coordination has recently been shown to be executed by the secondary wall NAC (SWN)-mediated transcriptional network. In Arabidopsis, five SWNs, including SND1, NST1/2 and VND6/7, function as master transcriptional switches to activate their common targets and consequently the secondary wall biosynthetic program. A recent report by Zhong et al. revealed that SWNs bind to a common cis-acting element, namely secondary wall NAC binding element (SNBE), which is composed of an imperfect palindromic 19-bp consensus sequence, (T/A)NN(C/T)(T/C/G)TNNNNNNNA(A/C)GN(A/C/T) (A/T). Genome-wide analysis of direct targets of SWNs showed that SWNs directly activate the expression of not only many transcription factors but also a battery of genes involved in secondary wall biosynthesis, cell wall modification and programmed cell death, the promoters of which all contain multiple SNBE sites. The functional significance of the SNBE sites is further substantiated by our current in planta expression study demonstrating that representative SNBE sequences from several SWN direct target promoters are sufficient to drive the expression of the GUS reporter gene in secondary wall-forming cells. The identification of the SWN DNA binding element (SNBE) and the SWN direct targets marks an important step forward toward the dissection of the transcriptional network regulating the biosynthesis of secondary walls, the most abundant biomass produced by land plants.
Collapse
Affiliation(s)
- Ryan L McCarthy
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | | | | |
Collapse
|
387
|
Mito T, Seki M, Shinozaki K, Ohme-Takagi M, Matsui K. Generation of chimeric repressors that confer salt tolerance in Arabidopsis and rice. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:736-46. [PMID: 21114612 DOI: 10.1111/j.1467-7652.2010.00578.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We show here that transgenic Arabidopsis plants that expressed chimeric repressors derived from the AtMYB102, ANAC047, HRS1, ZAT6 and AtERF5 transcription factors were tolerant to treatment with 400 mm NaCl, which was lethal to wild-type plants. The transgenic plants grew well, without any apparent differences from the wild-type plants under normal growth condition. The transgenic lines expressing the AtMYB102, ANAC047 and HRS1 chimeric repressors germinated in the presence of 225 mm NaCl, while those expressing the ZAT6 and AtERF5 did not. However, the latter lines were tolerant to osmotic stress and germinated in the presence of 600 mm mannitol, suggesting a link between responses to salt and osmotic stress. Expression of the AtMYB102, ANAC047, ZAT6 and AtERF5 genes was induced by salt treatment, while that of HRS1 was repressed. HRS1 has transcriptional repressive activity and appears to suppress the expression of factors that negatively regulate salt tolerance. Microarray analysis revealed that the levels of expression of DREB1A, DREB2B and several genes for ZAT transcription factors rose 10- to 100-fold in the AtMYB102 chimeric repressor line under both normal and stress conditions. Elevated expression of DREB- and ZAT- related genes might be involved in the salt tolerance of the AtMYB102 chimeric repressor line. Transgenic rice plants expressing chimeric repressors derived from Os02g0325600 and Os03g0327800, rice homologues of HRS1 and ANAC047, were tolerant to salinity stress demonstrated by suppression of growth inhibition and ion leakages. Expression of a chimeric repressor provides an effective strategy for enhancing tolerance of plants to abiotic stress.
Collapse
|
388
|
Christiansen MW, Holm PB, Gregersen PL. Characterization of barley (Hordeum vulgare L.) NAC transcription factors suggests conserved functions compared to both monocots and dicots. BMC Res Notes 2011; 4:302. [PMID: 21851648 PMCID: PMC3226072 DOI: 10.1186/1756-0500-4-302] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/19/2011] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The NAC transcription factor family is involved in the regulation of traits in both monocots and dicots of high agronomic importance. Understanding the precise functions of the NAC genes can be of utmost importance for the improvement of cereal crop plants through plant breeding. For the cereal crop plant barley (Hordeum vulgare L.) only a few NAC genes have so far been investigated. RESULTS Through searches in publicly available barley sequence databases we have obtained a list of 48 barley NAC genes (HvNACs) with 43 of them representing full-length coding sequences. Phylogenetic comparisons to Brachypodium, rice, and Arabidopsis NAC proteins indicate that the barley NAC family includes members from all of the eight NAC subfamilies, although by comparison to these species a number of HvNACs still remains to be identified. Using qRT-PCR we investigated the expression profiles of 46 HvNACs across eight barley tissues (young flag leaf, senescing flag leaf, young ear, old ear, milk grain, late dough grain, roots, and developing stem) and two hormone treatments (abscisic acid and methyl jasmonate). CONCLUSIONS Comparisons of expression profiles of selected barley NAC genes with the published functions of closely related NAC genes from other plant species, including both monocots and dicots, suggest conserved functions in the areas of secondary cell wall biosynthesis, leaf senescence, root development, seed development, and hormone regulated stress responses.
Collapse
Affiliation(s)
- Michael W Christiansen
- Department of Molecular Biology and Genetics, Aarhus University, Research Centre Flakkebjerg, 4200 Slagelse, Denmark
| | - Preben B Holm
- Department of Molecular Biology and Genetics, Aarhus University, Research Centre Flakkebjerg, 4200 Slagelse, Denmark
| | - Per L Gregersen
- Department of Molecular Biology and Genetics, Aarhus University, Research Centre Flakkebjerg, 4200 Slagelse, Denmark
| |
Collapse
|
389
|
Ohtani M, Nishikubo N, Xu B, Yamaguchi M, Mitsuda N, Goué N, Shi F, Ohme-Takagi M, Demura T. A NAC domain protein family contributing to the regulation of wood formation in poplar. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:499-512. [PMID: 21649762 DOI: 10.1111/j.1365-313x.2011.04614.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Wood harvested from trees is one of the most widely utilized natural materials on our planet. Recent environmental issues have prompted an increase in the demand for wood, especially as a cost-effective and renewable resource for industry and energy, so it is important to understand the process of wood formation. In the present study, we focused on poplar (Populus trichocarpa) NAC domain protein genes which are homologous to well-known Arabidopsis transcription factors regulating the differentiation of xylem vessels and fiber cells. From phylogenetic analysis, we isolated 16 poplar NAC domain protein genes, and named them PtVNS (VND-, NST/SND- and SMB-related proteins) genes. Expression analysis revealed that 12 PtVNS (also called PtrWND) genes including both VND and NST groups were expressed in developing xylem tissue and phloem fiber, whereas in primary xylem vessels, only PtVNS/PtrWND genes of the VND group were expressed. By using the post-translational induction system of Arabidopsis VND7, a master regulator of xylem vessel element differentiation, many poplar genes functioning in xylem vessel differentiation downstream from NAC domain protein genes were identified. Transient expression assays showed the variation in PtVNS/PtrWND transactivation activity toward downstream genes, even between duplicate gene pairs. Furthermore, overexpression of PtVNS/PtrWND genes induced ectopic secondary wall thickening in poplar leaves as well as in Arabidopsis seedlings with different levels of induction efficiency according to the gene. These results suggest that wood formation in poplar is regulated by cooperative functions of the NAC domain proteins.
Collapse
Affiliation(s)
- Misato Ohtani
- RIKEN Biomass Engineering Program, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
390
|
Xie L, Yang C, Wang X. Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4495-506. [PMID: 21617247 PMCID: PMC3170551 DOI: 10.1093/jxb/err164] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/28/2011] [Accepted: 04/25/2011] [Indexed: 05/17/2023]
Abstract
The phytohormones, brassinosteroids (BRs), play important roles in regulating cell elongation and cell size, and BR-related mutants in Arabidopsis display significant dwarf phenotypes. Cellulose is a biopolymer which has a major contribution to cell wall formation during cell expansion and elongation. However, whether BRs regulate cellulose synthesis, and if so, what the underlying mechanism of cell elongation induced by BRs is, is unknown. The content of cellulose and the expression levels of the cellulose synthase genes (CESAs) was measured in BR-related mutants and their wild-type counterpart. The chromatin immunoprecipitation (CHIP) experiments and genetic analysis were used to demonstrate that BRs regulate CESA genes. It was found here that the BR-deficient or BR-perceptional mutants contain less cellulose than the wild type. The expression of CESA genes, especially those related to primary cell wall synthesis, was reduced in det2-1 and bri1-301, and was only inducible by BRs in the BR-deficient mutant det2-1. CHIP experiments show that the BR-activated transcription factor BES1 can associate with upstream elements of most CESA genes particularly those related with the primary cell wall. Furthermore, over-expression of the BR receptor BRI1 in CESA1, 3, and 6 mutants can only partially rescue the dwarf phenotypes. Our findings provide potential insights into the mechanism that BRs regulate cellulose synthesis to accomplish the cell elongation process in plant development.
Collapse
Affiliation(s)
- Liqiong Xie
- School of Life Science and Technology, Xian Jiaotong University, Xi'an 710049, Shanxi Province, People's Republic of China
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
- School of Life Science and Technology, Xinjiang University, Urumqi, 830046, Xinjiang Province, People's Republic of China
| | - Cangjing Yang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Xuelu Wang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
391
|
Chen Y, Qiu K, Kuai B, Ding Y. Identification of an NAP-like transcription factor BeNAC1 regulating leaf senescence in bamboo (Bambusa emeiensis'Viridiflavus'). PHYSIOLOGIA PLANTARUM 2011; 142:361-71. [PMID: 21401619 DOI: 10.1111/j.1399-3054.2011.01472.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
NAC (NAM, ATAF1,2 and CUC2) proteins, which are plant-specific transcription factors, have crucial roles in plant development, abiotic stress responses, defense and leaf senescence. In this study, an NAC gene was isolated and characterized from the bamboo Bambusa emeiensis'Viridiflavus' and tentatively named BeNAC1. Sequence analysis revealed that BeNAC1 belongs to the NAP (NAC-like, activated by APETALA 3/PISTILLATA) subgroup and has a conserved NAC domain in the N-terminus. Transcriptional activation analysis in yeast indicated that BeNAC1 as well as its C-terminus have trans-activation activity. BeNAC1 localized in the nucleus and its transcript level correlated positively with the severity of leaf senescence. Driven by a 1.5-kb upstream fragment of AtNAP, BeNAC1 could rescue the delayed-senescence phenotype of nap. Constitutive overexpression of BeNAC1 resulted in various precocious senescence phenotypes in Arabidopsis. These results collectively indicate that BeNAC1 might play an important regulatory role in leaf senescence in bamboo.
Collapse
Affiliation(s)
- Yunxia Chen
- Institute of Bamboo Research, Nanjing Forestry University, Nanjing 210037, China State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | | | | | | |
Collapse
|
392
|
Nishizawa-Yokoi A, Nosaka R, Hayashi H, Tainaka H, Maruta T, Tamoi M, Ikeda M, Ohme-Takagi M, Yoshimura K, Yabuta Y, Shigeoka S. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. PLANT & CELL PHYSIOLOGY 2011; 52:933-45. [PMID: 21471117 DOI: 10.1093/pcp/pcr045] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Heat shock transcription factor A2 (HsfA2) acts as a key component of the Hsf signaling network involved in cellular responses to various types of environmental stress. However, the mechanism governing the regulation of HsfA2 expression is still largely unknown. We demonstrated here that a heat shock element (HSE) cluster in the 5'-flanking region of the HsfA2 gene is involved in high light (HL)-inducible HsfA2 expression. Accordingly, to identify the Hsf regulating the expression of HsfA2, we analyzed the effect of loss-of-function mutations of class A Hsfs on the expression of HsfA2 in response to HL stress. Overexpression of an HsfA1d or HsfA1e chimeric repressor and double knockout of HsfA1d and HsfA1e Arabidopsis mutants (KO-HsfA1d/A1e) significantly suppressed the induction of HsfA2 expression in response to HL and heat shock (HS) stress. Transient reporter assays showed that HsfA1d and HsfA1e activate HsfA2 transcription through the HSEs in the 5'-flanking region of HsfA2. In the KO-HsfA1d/A1e mutants, 560 genes, including a number of stress-related genes and several Hsf genes, HsfA7a, HsfA7b, HsfB1 and HsfB2a, were down-regulated compared with those in the wild-type plants under HL stress. The PSII activity of KO-HsfA1d/A1e mutants decreased under HL stress, while the activity of wild-type plants remained high. Furthermore, double knockout of HsfA1d and HsfA1e impaired tolerance to HS stress. These findings indicated that HsfA1d and HsfA1e not only regulate HsfA2 expression but also function as key regulators of the Hsf signaling network in response to environmental stress.
Collapse
Affiliation(s)
- Ayako Nishizawa-Yokoi
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
393
|
Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, Demura T. VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:579-90. [PMID: 21284754 DOI: 10.1111/j.1365-313x.2011.04514.x] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Arabidopsis thaliana NAC domain transcription factor, VASCULAR-RELATED NAC-DOMAIN7 (VND7), acts as a key regulator of xylem vessel differentiation. In order to identify direct target genes of VND7, we performed global transcriptome analysis using Arabidopsis transgenic lines in which VND7 activity could be induced post-translationally. This analysis identified 63 putative direct target genes of VND7, which encode a broad range of proteins, such as transcription factors, IRREGULAR XYLEM proteins and proteolytic enzymes, known to be closely associated with xylem vessel formation. Recombinant VND7 protein binds to several promoter sequences present in candidate direct target genes: specifically, in the promoter of XYLEM CYSTEINE PEPTIDASE1, two distinct regions were demonstrated to be responsible for VND7 binding. We also found that expression of VND7 restores secondary cell wall formation in the fiber cells of inflorescence stems of nst1 nst3 double mutants, as well as expression of NAC SECONDARY WALL THICKENING PROMOTING FACTOR3 (NST3, however, the vessel-type secondary wall deposition was observed only as a result of VND7 expression. These findings indicated that VND7 upregulates, directly and/or indirectly, many genes involved in a wide range of processes in xylem vessel differentiation, and that its target genes are partially different from those of NSTs.
Collapse
Affiliation(s)
- Masatoshi Yamaguchi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
394
|
Zhao Q, Dixon RA. Transcriptional networks for lignin biosynthesis: more complex than we thought? TRENDS IN PLANT SCIENCE 2011; 16:227-33. [PMID: 21227733 DOI: 10.1016/j.tplants.2010.12.005] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/08/2010] [Accepted: 12/10/2010] [Indexed: 05/17/2023]
Abstract
Lignin is an aromatic heteropolymer and the second most abundant plant biopolymer after cellulose. It is deposited mostly in the secondary cell walls of vascular plants and is essential for water transport, mechanical support and for plant pathogen defense. Lignin biosynthesis is a highly energy-consuming and irreversible process that responds to many developmental and environmental cues, including light, sugar content, circadian clock, plant hormones and wounding. During the past decade, many transcription factors involved in lignin biosynthesis have been identified and characterized. In this review, we assess how these transcriptional activators and repressors modulate lignin biosynthesis, and discuss crosstalk between the lignin biosynthesis pathway and other physiological processes.
Collapse
Affiliation(s)
- Qiao Zhao
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.
| | | |
Collapse
|
395
|
Wilson ZA, Song J, Taylor B, Yang C. The final split: the regulation of anther dehiscence. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1633-49. [PMID: 21325605 DOI: 10.1093/jxb/err014] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Controlling male fertility is an important goal for plant reproduction and selective breeding. Hybrid vigour results in superior growth rates and increased yields of hybrids compared with inbred lines; however, hybrid generation is costly and time consuming. A better understanding of anther development and pollen release will provide effective mechanisms for the control of male fertility and for hybrid generation. Male sterility is associated not only with the lack of viable pollen, but also with the failure of pollen release. In such instances a failure of anther dehiscence has the advantage that viable pollen is produced, which can be used for subsequent rescue of fertility. Anther dehiscence is a multistage process involving localized cellular differentiation and degeneration, combined with changes to the structure and water status of the anther to facilitate complete opening and pollen release. After microspore release the anther endothecium undergoes expansion and deposition of ligno-cellulosic secondary thickening. The septum separating the two locules is then enzymatically lysed and undergoes a programmed cell death-like breakdown. The stomium subsequently splits as a consequence of the stresses associated with pollen swelling and anther dehydration. The physical constraints imposed by the thickening in the endothecium limit expansion, placing additional stress on the anther, so as it dehydrates it opens and the pollen is released. Jasmonic acid has been shown to be a critical signal for dehiscence, although other hormones, particularly auxin, are also involved. The key regulators and physical constraints of anther dehiscence are discussed.
Collapse
Affiliation(s)
- Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK.
| | | | | | | |
Collapse
|
396
|
Turlapati PV, Kim KW, Davin LB, Lewis NG. The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). PLANTA 2011; 233:439-70. [PMID: 21063888 DOI: 10.1007/s00425-010-1298-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 10/08/2010] [Indexed: 05/07/2023]
Abstract
While laccases, multi-copper glycoprotein oxidases, are often able to catalyze oxidation of a broad range of substrates, such as phenols and amines in vitro, their precise physiological/biochemical roles in higher plants remain largely unclear, e.g., Arabidopsis thaliana contains 17 laccases with only 1 having a known physiological function. To begin to explore their roles in planta, spatial and temporal expression patterns of Arabidopsis laccases were compared and contrasted in different tissues at various development stages using RT-PCR and promoter-GUS fusions. Various cell-specific expressions were noted where specific laccases were uniquely expressed, such as LAC4 in interfascicular fibers and seed coat columella, LAC7 in hydathodes and root hairs, LAC8 in pollen grains and phloem, and LAC15 in seed coat cell walls. Such specific cell-type expression patterns provide new leads and/or strategies into determining their precise physiological/biochemical roles. In addition, there was an apparent redundancy of gene expression patterns for several laccases across a wide variety of tissues, lignified and non-lignified, perhaps indicative of overlapping function(s). Preliminary evidence, based on bioinformatics analyses, suggests that most laccases may also be tightly regulated at both transcriptional (antisense transcripts, histone and DNA methylation) and posttranscriptional (microRNAs) levels of gene expression.
Collapse
Affiliation(s)
- Phanikanth V Turlapati
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | |
Collapse
|
397
|
Ranathunge K, Schreiber L, Franke R. Suberin research in the genomics era--new interest for an old polymer. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:399-413. [PMID: 21421386 DOI: 10.1016/j.plantsci.2010.11.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 05/22/2023]
Abstract
Suberin is an apoplastic biopolymer with tissue-specific deposition in the cell walls of the endo- and exodermis of roots, of periderms including wound periderm and other border tissues. Suberised cell walls contain both polyaliphatic and polyaromatic domains which are supposedly cross-linked. The predominant aliphatic components are ω-hydroxyacids, α,ω-diacids, fatty acids and primary alcohols, whereas hydroxycinnamic acids, especially ferulic acid, are the main components of the polyaromatic domain. Although the monomeric composition of suberin has been known for decades, its biosynthesis and deposition has mainly been a subject of speculation. Only recently, significant progress elucidating suberin biosynthesis has been achieved using molecular genetic approaches, especially in the model species Arabidopsis. In parallel, the long-standing hypothesis that suberin functions as an apoplastic barrier has been corroborated by sophisticated, quantitative physiological studies in the past decade. These studies demonstrated that suberised cell walls could act as barriers, minimising the movement of water and nutrients, restricting pathogen invasion and impeding toxic gas diffusion. In addition, suberised cell walls provide a barrier to radial oxygen loss from roots to the anaerobic root substrate in wetland plants. The recent onset of multidisciplinary approaches combining genetic, analytical and physiological studies has begun to deliver further insights into the physiological importance of suberin depositions in plants.
Collapse
Affiliation(s)
- Kosala Ranathunge
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | | | | |
Collapse
|
398
|
Thangasamy S, Guo CL, Chuang MH, Lai MH, Chen J, Jauh GY. Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. THE NEW PHYTOLOGIST 2011; 189:869-882. [PMID: 21083564 DOI: 10.1111/j.1469-8137.2010.03538.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Sumoylation, a post-translational modification, has important functions in both animals and plants. However, the biological function of the SUMO E3 ligase, SIZ1, in rice (Oryza sativa) is still under investigation. • In this study, we employed two different genetic approaches, the use of siz1 T-DNA mutant and SIZ1-RNAi transgenic plants, to characterize the function of rice SIZ1. • Genetic results revealed the co-segregation of single T-DNA insertional recessive mutation with the observed phenotypes in siz1. In addition to showing reduced plant height, tiller number and seed set percentage, both the siz1 mutant and SIZ1-RNAi transgenic plants showed obvious defects in anther dehiscence, but not pollen viability. The anther indehiscence in siz1 was probably a result of defects in endothecium development before anthesis. Interestingly, rice orthologs of AtIRX and ZmMADS2, which are essential for endothecium development during anther dehiscence, were significantly down-regulated in siz1. Compared with the wild-type, the sumoylation profile of high-molecular-weight proteins in mature spikelets was reduced significantly in siz1 and the SIZ1-RNAi line with notably reduced SIZ1 expression. The nuclear localization signal located in the SIZ1 C-terminus was sufficient for its nuclear targeting in bombarded onion epidermis. • The results suggest the functional role of SIZ1, a SUMO E3 ligase, in regulating rice anther dehiscence.
Collapse
Affiliation(s)
- Saminathan Thangasamy
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Cian-Ling Guo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsiang Chuang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsing Lai
- Crop Science Division, Taiwan Agricultural Research Institute, Wufeng, Taichung, Taiwan
| | - Jychian Chen
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Guang-Yuh Jauh
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
399
|
Thévenin J, Pollet B, Letarnec B, Saulnier L, Gissot L, Maia-Grondard A, Lapierre C, Jouanin L. The simultaneous repression of CCR and CAD, two enzymes of the lignin biosynthetic pathway, results in sterility and dwarfism in Arabidopsis thaliana. MOLECULAR PLANT 2011; 4:70-82. [PMID: 20829305 DOI: 10.1093/mp/ssq045] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the last steps of monolignol biosynthesis. In Arabidopsis, one CCR gene (CCR1, At1g15950) and two CAD genes (CAD C At3g19450 and CAD D At4g34230) are involved in this pathway. A triple cad c cad d ccr1 mutant, named ccc, was obtained. This mutant displays a severe dwarf phenotype and male sterility. The lignin content in ccc mature stems is reduced to 50% of the wild-type level. In addition, stem lignin structure is severely affected, as shown by the dramatic enrichment in resistant inter-unit bonds and incorporation into the polymer of monolignol precursors such as coniferaldehyde, sinapaldehyde, and ferulic acid. Male sterility is due to the lack of lignification in the anther endothecium, which causes the failure of anther dehiscence and of pollen release. The ccc hypolignified stems accumulate higher amounts of flavonol glycosides, sinapoyl malate and feruloyl malate, which suggests a redirection of the phenolic pathway. Therefore, the absence of CAD and CCR, key enzymes of the monolignol pathway, has more severe consequences on the phenotype than the individual absence of each of them. Induction of another CCR (CCR2, At1g80820) and another CAD (CAD1, At4g39330) does not compensate the absence of the main CCR and CAD activities. This lack of CCR and CAD activities not only impacts lignification, but also severely affects the development of the plants. These consequences must be carefully considered when trying to reduce the lignin content of plants in order to facilitate the lignocellulose-to-bioethanol conversion process.
Collapse
Affiliation(s)
- Johanne Thévenin
- Institut Jean Pierre Bourgin (IJPB), INRA-AgroParisTech, UMR1318, 78026 Versailles Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
400
|
Alvarado VY, Tag A, Thomas TL. A cis regulatory element in the TAPNAC promoter directs tapetal gene expression. PLANT MOLECULAR BIOLOGY 2011; 75:129-39. [PMID: 21107887 DOI: 10.1007/s11103-010-9713-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/04/2010] [Indexed: 05/06/2023]
Abstract
The tapetum is a single cell layer surrounding the anther locule and its major function is to provide nutrients for pollen development. The ablation of tapetal cells interferes with pollen production and results in plant male sterility. In spite of the importance of this tissue in the quality and production of pollen grains, studies on promoter gene regulation of tapetal expressed genes are very few and there are no reports on specific cis regulatory sequences that control tapetal gene expression. We have identified a NAC gene, TAPNAC (At1g61110), specifically expressed in the Arabidopsis tapetum via transcriptional profiling. The TAPNAC promoter was studied in detail to identify cis regulatory sequences that confer tapetal specific expression. For this purpose, TAPNAC promoter elements were fused to the β-glucuronidase (GUS) reporter gene, and spatial and temporal GUS expression was monitored. The results showed that TAPNAC promoter-driven GUS expression emulates the expression of TAPNAC mRNA in anthers. A conserved TCGTGT motif was identified in the TAPNAC promoter and other tapetal expressed promoters. The TCGTGT motif enhances GUS expression in anthers of transgenic plants but only in the context of the TAPNAC promoter proximal region.
Collapse
Affiliation(s)
- Veria Y Alvarado
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | |
Collapse
|