351
|
Mockler TC, Yu X, Shalitin D, Parikh D, Michael TP, Liou J, Huang J, Smith Z, Alonso JM, Ecker JR, Chory J, Lin C. Regulation of flowering time in Arabidopsis by K homology domain proteins. Proc Natl Acad Sci U S A 2004; 101:12759-64. [PMID: 15310842 PMCID: PMC515126 DOI: 10.1073/pnas.0404552101] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The transition from vegetative growth to reproductive development in Arabidopsis is regulated by multiple floral induction pathways, including the photoperiodic, the autonomous, the vernalization, and the hormonal pathways. These pathways converge to regulate the expression of a small set of genes critical for floral initiation and different signal transduction pathways can interact to govern the time to flower. One important regulator of floral initiation is the MADS-box transcription factor FLC, which acts as a negative regulator of flowering in response to both endogenous and environmental signals. In this report, we describe a study of the flowering-time gene, FLK [flowering locus K homology (KH) domain] that encodes a putative RNA-binding protein with three KH domains. The flk mutations cause delayed flowering without a significant effect on the photoperiodic or vernalization responses. FLK functions primarily as a repressor of FLC expression, although it also modestly affects expression of genes associated with the photoperiodic pathway. In addition to FLK, the expression of two other KH domain genes are modestly affected by the flk mutation, suggesting a possible involvement of more than one KH domain protein in the regulation of flowering time in Arabidopsis.
Collapse
Affiliation(s)
- Todd C Mockler
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Affiliation(s)
- Haiyang Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Xing Wang Deng
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA
| |
Collapse
|
353
|
Hayama R, Coupland G. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. PLANT PHYSIOLOGY 2004; 135:677-84. [PMID: 15208414 PMCID: PMC514104 DOI: 10.1104/pp.104.042614] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2004] [Revised: 03/19/2004] [Accepted: 03/22/2004] [Indexed: 05/18/2023]
Affiliation(s)
- Ryosuke Hayama
- Max Planck Institute for Plant Breeding Research, 10 D-50829 Cologne, Germany
| | | |
Collapse
|
354
|
Reisdorph NA, Small GD. The CPH1 gene of Chlamydomonas reinhardtii encodes two forms of cryptochrome whose levels are controlled by light-induced proteolysis. PLANT PHYSIOLOGY 2004; 134:1546-54. [PMID: 15064387 PMCID: PMC419830 DOI: 10.1104/pp.103.031930] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 10/26/2003] [Accepted: 01/21/2004] [Indexed: 05/19/2023]
Abstract
Cryptochromes are proteins related to DNA photolyases and have been shown to function as blue-light photoreceptors and to play important roles in circadian rhythms in both plants and animals. The CPH1 gene from Chlamydomonas reinhardtii was originally predicted to encode a putative cryptochrome protein of 867 amino acids with a predicted molecular mass of 91 kD (Small et al., 1995). However, western blotting with antibodies specific to the CPH1 protein revealed the presence of two proteins that migrate at apparent molecular mass of approximately 126 and 143 kD. A reexamination of the assigned intron-exon boundaries has shown that the previously assigned intron 7 is in fact part of exon 7 which leads to a predicted protein of 1,007 amino acids corresponding to a size of 104.6 kD. The two forms of CPH1 that migrate slower on SDS-PAGE presumably result from unknown posttranslational modifications. In C. reinhardtii cells synchronized by light to dark cycles, the two slow migrating forms of CPH1 protein accumulate in the dark and disappear rapidly in the light. Both red and blue light are effective at inducing the degradation of the CPH1 proteins. Proteasomes are implicated because degradation is inhibited by MG132, a proteasome inhibitor. Studies with deletion mutants indicate that the C-terminal region is important for both the posttranslational modification and the protein's stability under both light and dark conditions.
Collapse
Affiliation(s)
- Nichole A Reisdorph
- Cellular and Molecular Biology Group, University of South Dakota, Vermillion, South Dakota 57069, USA
| | | |
Collapse
|
355
|
Nakagawa M, Komeda Y. Flowering of Arabidopsis cop1 mutants in darkness. PLANT & CELL PHYSIOLOGY 2004; 45:398-406. [PMID: 15111714 DOI: 10.1093/pcp/pch047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To elucidate the role of the COP1 gene in flowering, we analyzed flowering of cop1 mutant lines in darkness. When grown in the presence of 1% (w/v) sucrose, the cop1-6 mutant flowered in darkness, but cop1-1 and cop1-4 did not. However, cop1-1 and cop1-4 flowered in darkness when grown in the presence of 5% (w/v) sucrose. Therefore, the COP1 gene represses not only photomorphogenesis in seedlings but also flowering in darkness. Comparison of mRNAs levels of floral identity genes in cop1-6 and wild-type plants grown in darkness revealed increased mRNA levels of genes that act downstream of CO and reduced FLC mRNA level in cop1-6. Double mutants of cop1-6 and each of the late-flowering mutations cry2-1, gi-2, co-1, and ld-1 flowered in darkness. All of the double mutants except cry2-1 cop1-6 flowered later than cop1-6, demonstrating that cop1-6 is epistatic to cry2-1 for early flowering. The ld-1 cop1-6 double mutant flowered much earlier than the ld-1 mutant. The delay in flowering in the double mutants was not strongly influenced by the light conditions, whereas that of the gi-2 cop1-6 double mutant was reduced in darkness.
Collapse
Affiliation(s)
- Mayu Nakagawa
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, N10 W8, Sapporo, 060-0810 Japan
| | | |
Collapse
|
356
|
Somers DE, Kim WY, Geng R. The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. THE PLANT CELL 2004; 16:769-82. [PMID: 14973171 PMCID: PMC385287 DOI: 10.1105/tpc.016808] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 01/08/2004] [Indexed: 05/18/2023]
Abstract
As an F-box protein, ZEITLUPE (ZTL) is involved in targeting one or more substrates for ubiquitination and degradation via the proteasome. The initial characterization of ZTL suggested a function limited largely to the regulation of the circadian clock. Here, we show a considerably broader role for ZTL in the control of circadian period and photomorphogenesis. Using a ZTL-specific antibody, we quantitated and characterized a ZTL dosage series that ranges from a null mutation to a strong ZTL overexpressor. In the dark, ztl null mutations lengthen circadian period, and overexpression causes arrhythmicity, suggesting a more comprehensive role for this protein in the clock than previously suspected. In the light, circadian period becomes increasingly shorter at higher levels of ZTL, to the point of arrhythmicity. By contrast, hypocotyl length increases and flowering time is delayed in direct proportion to the level of ZTL. We propose a novel testable mechanism by which circadian period and amplitude may act together to gate phytochrome B-mediated suppression of hypocotyl. We also demonstrate that ZTL-dependent delay of flowering is mediated through decreases in CONSTANS and FLOWERING LOCUS T message levels, thus directly linking proteasome-dependent proteolysis to flowering.
Collapse
Affiliation(s)
- David E Somers
- Department of Plant Biology/Plant Biotechnology Center, Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
357
|
DeBlasio SL, Mullen JL, Luesse DR, Hangarter RP. Phytochrome modulation of blue light-induced chloroplast movements in Arabidopsis. PLANT PHYSIOLOGY 2003; 133:1471-9. [PMID: 14605230 PMCID: PMC300704 DOI: 10.1104/pp.103.029116] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Revised: 08/01/2003] [Accepted: 09/18/2003] [Indexed: 05/20/2023]
Abstract
Photometric analysis of chloroplast movements in various phytochrome (phy) mutants of Arabidopsis showed that phyA, B, and D are not required for chloroplast movements because blue light (BL)-dependent chloroplast migration still occurs in these mutants. However, mutants lacking phyA or phyB showed an enhanced response at fluence rates of BL above 10 micromol m-2 s-1. Overexpression of phyA or phyB resulted in an enhancement of the low-light response. Analysis of chloroplast movements within the range of BL intensities in which the transition between the low- and high-light responses occur (1.5-15 micromol m-2 s-1) revealed a transient increase in light transmittance through leaves, indicative of the high-light response, followed by a decrease in transmittance to a value below that measured before the BL treatment, indicative of the low-light response. A biphasic response was not observed for phyABD leaves exposed to the same fluence rate of BL, suggesting that phys play a role in modulating the transition between the low- and high-light chloroplast movement responses of Arabidopsis.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
358
|
Khanna R, Kikis EA, Quail PH. EARLY FLOWERING 4 functions in phytochrome B-regulated seedling de-etiolation. PLANT PHYSIOLOGY 2003; 133:1530-8. [PMID: 14605220 PMCID: PMC300710 DOI: 10.1104/pp.103.030007] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Revised: 08/04/2003] [Accepted: 09/10/2003] [Indexed: 05/19/2023]
Abstract
To define the functions of genes previously identified by expression profiling as being rapidly light induced under phytochrome (phy) control, we are investigating the seedling de-etiolation phenotypes of mutants carrying T-DNA insertional disruptions at these loci. Mutants at one such locus displayed reduced responsiveness to continuous red, but not continuous far-red light, suggesting a role in phyB signaling but not phyA signaling. Consistent with such a role, expression of this gene is induced by continuous red light in wild-type seedlings, but the level of induction is strongly reduced in phyB-null mutants. The locus encodes a novel protein that we show localizes to the nucleus, thus suggesting a function in light-regulated gene expression. Recently, this locus was identified as EARLY FLOWERING 4, a gene implicated in floral induction and regulating the expression of the gene CIRCADIAN CLOCK-ASSOCIATED 1. Together with these previous data, our findings suggest that EARLY FLOWERING 4 functions as a signaling intermediate in phy-regulated gene expression involved in promotion of seedling de-etiolation, circadian clock function, and photoperiod perception.
Collapse
Affiliation(s)
- Rajnish Khanna
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
359
|
Más P, Kim WY, Somers DE, Kay SA. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 2003; 426:567-70. [PMID: 14654842 DOI: 10.1038/nature02163] [Citation(s) in RCA: 363] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Accepted: 10/17/2003] [Indexed: 11/08/2022]
Abstract
The underlying mechanism of circadian rhythmicity appears to be conserved among organisms, and is based on negative transcriptional feedback loops forming a cellular oscillator (or 'clock'). Circadian changes in protein stability, phosphorylation and subcellular localization also contribute to the generation and maintenance of this clock. In plants, several genes have been shown to be closely associated with the circadian system. However, the molecular mechanisms proposed to regulate the plant clock are mostly based on regulation at the transcriptional level. Here we provide genetic and molecular evidence for a role of ZEITLUPE (ZTL) in the targeted degradation of TIMING OF CAB EXPRESSION 1 (TOC1) in Arabidopsis thaliana (thale cress). The physical interaction of TOC1 with ZTL is abolished by the ztl-1 mutation, resulting in constitutive levels of TOC1 protein expression. The dark-dependent degradation of TOC1 protein requires functional ZTL, and is prevented by inhibiting the proteosome pathway. Our results show that the TOC1-ZTL interaction is important in the control of TOC1 protein stability, and is probably responsible for the regulation of circadian period by the clock.
Collapse
Affiliation(s)
- Paloma Más
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
360
|
Jiao Y, Yang H, Ma L, Sun N, Yu H, Liu T, Gao Y, Gu H, Chen Z, Wada M, Gerstein M, Zhao H, Qu LJ, Deng XW. A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene expression during seedling development. PLANT PHYSIOLOGY 2003; 133:1480-93. [PMID: 14605227 PMCID: PMC300705 DOI: 10.1104/pp.103.029439] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Revised: 08/04/2003] [Accepted: 09/12/2003] [Indexed: 05/17/2023]
Abstract
A microarray based on PCR amplicons of 1864 confirmed and predicted Arabidopsis transcription factor genes was produced and used to profile the global expression pattern in seedlings, specifically their light regulation. We detected expression of 1371 and 1241 genes in white-light- and dark-grown 6-d-old seedlings, respectively. Together they account for 84% of the transcription factor genes examined. This array was further used to study the kinetics of transcription factor gene expression change of dark-grown seedlings in response to blue light and the role of specific photoreceptors in this blue-light regulation. The expression of about 20% of those transcription factor genes are responsive to blue-light exposure, with 249 and 115 genes up or down-regulated, respectively. A large portion of blue-light-responsive transcription factor genes exhibited very rapid expression changes in response to blue light, earlier than the bulk of blue-light-regulated genes. This result suggests the involvement of transcription cascades in blue-light control of genome expression. Comparative analysis of the expression profiles of wild type and various photoreceptor mutants demonstrated that during early seedling development cryptochromes are the major photoreceptors for blue-light control of transcription factor gene expression, whereas phytochrome A and phototropins play rather limited roles.
Collapse
Affiliation(s)
- Yuling Jiao
- Peking-Yale Joint Research Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Harmon FG, Kay SA. The F Box Protein AFR Is a Positive Regulator of Phytochrome A-Mediated Light Signaling. Curr Biol 2003; 13:2091-6. [PMID: 14653999 DOI: 10.1016/j.cub.2003.11.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Light is an important environmental cue to plants, and much of their physiology is influenced by light. The light signals that drive these responses are perceived by photoreceptors including the red/far-red responsive phytochromes (phyA-E). In addition to direct effects, light also exerts its influence by modifying the rhythms generated by the circadian clock. In Arabidopsis thaliana, the molecular makeup of the interface between the central clock and its input/output pathways is not fully defined, but a major point of control is likely to be protein turnover mediated by the ubiquitin/26S proteasome system. To identify additional constituents of this interface, stable double-stranded RNA interference (RNAi) was used to reduce mRNA levels of rhythmically expressed candidate genes encoding putative components of E3 ubiquitin ligases (i.e., F box and RING finger proteins), followed by screening of the transgenic plants for circadian and light signaling defects. RNAi lines with diminished expression of the novel gene ATTENUATED FAR-RED RESPONSE (AFR) display phenotypes consistent with impaired phyA-mediated light signaling. Furthermore, AFR is a true SCF E3 ubiquitin ligase component. SCF(AFR) is expected to mediate the turnover of a repressor of phyA signaling, possibly to prepare the plant to receive light signals at dawn.
Collapse
Affiliation(s)
- Frank G Harmon
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
362
|
Abstract
Circadian rhythms regulate many aspects of plant physiology including leaf, organ and stomatal movements, growth and signalling. The genetic identity of some of the components of the core circadian oscillator has recently become known. Similarly, the photoperception and phototransduction pathways that entrain the oscillator to the day and night cycle are being determined. Less clear are the pathways by which the circadian oscillator regulates cellular physiology. Circadian oscillations in cytosolic free calcium might act to transduce the temporal outputs of the circadian oscillator. This hypothesis requires rigorous testing using novel noninvasive technologies. Plants might gain advantage from the circadian clock by being able to predict changes in the environment and coordinate physiological processes, presumably increasing survival and hence, reproductive fitness. Technical advances coupled with cell-specific measurement techniques will allow the advantages of the circadian regulation of physiology to be quantified. Summary 281 I. Introduction 282 II. The circadian clock 283 III. The regulation of cellular physiology by circadian oscillations in cytosolic free Ca2+ 286 IV. The circadian regulation of physiology 292 V. The benefits of the circadian regulation of physiology 298 VI. Future prospects 299 VIII. Conclusions 300 Acknowledgements 300 References 300.
Collapse
Affiliation(s)
- Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, CAMBRIDGE, CB2 3EA, UK
| |
Collapse
|
363
|
Yamamoto Y, Sato E, Shimizu T, Nakamich N, Sato S, Kato T, Tabata S, Nagatani A, Yamashino T, Mizuno T. Comparative genetic studies on the APRR5 and APRR7 genes belonging to the APRR1/TOC1 quintet implicated in circadian rhythm, control of flowering time, and early photomorphogenesis. PLANT & CELL PHYSIOLOGY 2003; 44:1119-30. [PMID: 14634148 DOI: 10.1093/pcp/pcg148] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana, a number of circadian-associated factors have been identified. Among those, TOC1 (TIMING OF CAB EXPRESSION 1) is believed to be a component of the central oscillator. TOC1 is a member of a small family of proteins, designated as Arabidopsis PSEUDO-RESPONSE REGULATORS (APRR1/TOC1, APRR3, APRR5, APRR7, and APRR9). Nonetheless, it is not very clear whether or not the APRR family members other than APRR1/TOC1 are also implicated in the mechanisms underlying the circadian rhythm. To address this issue further, here we characterized a set of T-DNA insertion mutants, each of which is assumed to have a severe lesion in each one of the quintet genes (i.e. APRR5 and APRR7). For each of these mutants (aprr5-11 and aprr7-11) we demonstrate that a given mutation singly, if not directly, affects the circadian-associated biological events simultaneously: (i) flowering time in the long-day photoperiod conditions, (ii) red light sensitivity of seedlings during the early photomorphogenesis, and (iii) the period of free-running rhythms of certain clock-controlled genes including CCA1 and APRR1/TOC1 in constant white light. These results suggest that, although the quintet members other than APRR1/TOC1 may not be directly integrated into the framework of the central oscillator, they are crucial for a better understanding of the molecular mechanisms underlying the Arabidopsis circadian clock.
Collapse
Affiliation(s)
- Yoko Yamamoto
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Murakami M, Ashikari M, Miura K, Yamashino T, Mizuno T. The evolutionarily conserved OsPRR quintet: rice pseudo-response regulators implicated in circadian rhythm. PLANT & CELL PHYSIOLOGY 2003; 44:1229-36. [PMID: 14634161 DOI: 10.1093/pcp/pcg135] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In Arabidopsis thaliana, a number of circadian-associated factors have been identified, including TOC1 (TIMING OF CAB EXPRESSION 1) that is believed to be a component of the central oscillator. TOC1 is a member of a small family of proteins, designated as ARABIDOPSIS PSEUDO-RESPONSE REGULATORS (APRR1/TOC1, APRR3, APRR5, APRR7, and APRR9). As demonstrated previously, these APRR1/TOC1 quintet members are crucial for a better understanding of the molecular links between circadian rhythms, control of flowering time through photoperiodic pathways, and also photosensory signal transduction in this dicotyledonous plant. In this respect, both the dicotyledonous (e.g. A. thaliana) and monocotyledonous (e.g. Oryza sativa) plants might share the evolutionarily conserved molecular mechanism underlying the circadian rhythm. Based on such an assumption, and as the main objective of this study, we asked the question of whether rice also has a set of pseudo-response regulators, and if so, whether or not they are associated with the circadian rhythm. Here we showed that rice has five members of the OsPRR family (Oryza sativa Pseudo-Response Regulator), and also that the expressions of these OsPRR genes are under the control of circadian rhythm. They are expressed in a diurnal and sequential manner in the order of OsPRR73 (OsPRR37)-->OsPRR95 (OsPRR59)-->OsPRR1, which is reminiscent of the circadian waves of the APRR1/TOC1 quintet in A. thaliana. These and other results of this study suggested that the OsPRR quintet, including the ortholog of APRR1/TOC1, might play important roles within, or close to, the circadian clock of rice.
Collapse
Affiliation(s)
- Masaya Murakami
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | |
Collapse
|
365
|
Schröder HC, Krasko A, Gundacker D, Leys SP, Müller IM, Müller WEG. Molecular and functional analysis of the (6-4) photolyase from the hexactinellid Aphrocallistes vastus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2003; 1651:41-9. [PMID: 14499587 DOI: 10.1016/s1570-9639(03)00233-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The hexactinellid sponges (phylum Porifera) represent the phylogenetically oldest metazoans that evolved 570-750 million years ago. At this period exposure to ultraviolet (UV) light exceeded that of today and it may be assumed that this old taxon has developed a specific protection system against UV-caused DNA damage. A cDNA was isolated from the hexactinellid Aphrocallistes vastus which comprises high sequence similarity to genes encoding the protostomian and deuterostomian (6-4) photolyases. Subsequently functional studies were performed. It could be shown that the sponge gene, after transfection into mutated Escherichia coli, causes resistance of the bacteria against UV light. Recombinant sponge photolyase was prepared to demonstrate that this protein binds to DNA treated with UV light (causing the formation of thymine dimers). Finally, it is shown that the photolyase gene is strongly expressed in the upper part of the animals and not in their middle part or their base. It is concluded that sponges not only have an excision DNA repair system, as has been described earlier by us, but also a photolyase-based photo-reactivating system.
Collapse
Affiliation(s)
- Heinz C Schröder
- Abteilung Angewandte Molekularbiologie, Universität Mainz, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
366
|
|
367
|
Abstract
As sessile organisms, plants have evolved a multitude of developmental responses to cope with the ever-changing environmental conditions that challenge the plant throughout its life cycle. Of the many environmental cues that regulate plant development, light is probably the most important. From determining the developmental pattern of the emerging seedling, to influencing the organization of organelles to best maximize energy available for photosynthesis, light has dramatic effects on development during all stages of plant life. In plants, three classes of photoreceptors that mediate light perception have been characterized at the molecular level. The phytochromes recognize light in the red portion of the spectrum, while cryptochromes and phototropins perceive blue and UVA light. In this review, we discuss the different aspects of development that are regulated by these photoreceptors in the model plant species Arabidopsis thaliana and how the phytochromes, cryptochromes, and phototropins bring about changes in development seen in the growing plant.
Collapse
Affiliation(s)
- James A Sullivan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 06520-8104, USA
| | | |
Collapse
|
368
|
Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, Van Gelder RN, Hogenesch JB. Melanopsin is required for non-image-forming photic responses in blind mice. Science 2003; 301:525-7. [PMID: 12829787 DOI: 10.1126/science.1086179] [Citation(s) in RCA: 500] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although mice lacking rod and cone photoreceptors are blind, they retain many eye-mediated responses to light, possibly through photosensitive retinal ganglion cells. These cells express melanopsin, a photopigment that confers this photosensitivity. Mice lacking melanopsin still retain nonvisual photoreception, suggesting that rods and cones could operate in this capacity. We observed that mice with both outer-retinal degeneration and a deficiency in melanopsin exhibited complete loss of photoentrainment of the circadian oscillator, pupillary light responses, photic suppression of arylalkylamine-N-acetyltransferase transcript, and acute suppression of locomotor activity by light. This indicates the importance of both nonvisual and classical visual photoreceptor systems for nonvisual photic responses in mammals.
Collapse
Affiliation(s)
- Satchidananda Panda
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
369
|
Merrow M, Dragovic Z, Tan Y, Meyer G, Sveric K, Mason M, Ricken J, Roenneberg T. Combining theoretical and experimental approaches to understand the circadian clock. Chronobiol Int 2003; 20:559-75. [PMID: 12916713 DOI: 10.1081/cbi-120023678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review is intended as a summary of our work carried out as part of the German Research Association (DFG) Center Program on Circadian Rhythms. Over the last six years, our approach to understanding circadian systems combined theoretical and experimental tools, and Gonyaulax and Neurospora have proven ideal for these efforts. Both of these model organisms demonstrate that even simple circadian systems can have multiple light input pathways and more than one rhythm generator. They have both been used to elaborate basic circadian features in conjunction with formal models. The models introduce the "zeitnehmer," i.e., a clock-regulated input pathway, to the conceptual framework of circadian systems, and proposes networks of individual feedbacks as the basis for circadian rhythmicity.
Collapse
Affiliation(s)
- Martha Merrow
- Institut für Medizinische Psychologie, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
370
|
Casal JJ, Luccioni LG, Oliverio KA, Boccalandro HE. Light, phytochrome signalling and photomorphogenesis in Arabidopsis. Photochem Photobiol Sci 2003; 2:625-36. [PMID: 12859146 DOI: 10.1039/b300094j] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phytochromes is a family of plant photoreceptors that control growth and development in response to environmental cues. Red and far-red light are the most efficient wavebands to induce conformational changes of phytochromes and consequently modify their kinetics, nuclear/cytoplasmic partitioning, ability to phosphorylate substrates, and physical interaction with proteins that bind DNA. Many players in phytochrome signalling have been identified and a complex, highly regulated network is envisaged. Here we describe the connection between different features of the phytochrome signalling network and the versatile relationship between light signals and physiological outputs shown by phytochromes.
Collapse
Affiliation(s)
- Jorge J Casal
- IFEVA, Faculty of Agronomy, University of Buenos Aires and National Research Council, Av. San Martín 4453, 1417 Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
371
|
Abstract
The Drosophila circadian clock is an ideal model system for teasing out the molecular mechanisms of circadian behavior and the means by which animals synchronize to day-night cycles. The clock that drives behavioral rhythms, located in the lateral neurons in the central brain, consists of a feedback loop of the circadian genes period (per) and timeless (tim). The molecular cycle, roughly 24 h long, is constantly reset by the environment. This review focuses on the main input pathways of the dominant circadian zeitgeber, light. Light acts directly on the clock primarily through cryptochrome (cry), a deep brain blue-light photoreceptor. CRY activation causes rapid TIM degradation, which is a predicted means of resetting the clock both on a daily basis at dawn and on an acute basis following an entraining light pulse during the night hours. In the absence of cry, the clock can still be driven by photic input through the visual system, though the mechanisms underlying this entrainment are unclear. Temperature can also entrain the clock, although the mechanisms by which this occurs are also unclear.
Collapse
Affiliation(s)
- Lesley J Ashmore
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | | |
Collapse
|
372
|
Abstract
Circadian rhythms in plants are relatively robust, as they are maintained both in constant light of high fluence rates and in darkness. Plant circadian clocks exhibit the expected modes of photoentrainment, including period modulation by ambient light and phase resetting by brief light pulses. Several of the phytochrome and cryptochrome photoreceptors responsible have been studied in detail. This review concentrates on the resulting patterns of entrainment and on the multiple proposed mechanisms of light input to the circadian oscillator components.
Collapse
Affiliation(s)
- Andrew J Millar
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
373
|
Mutsuda M, Michel KP, Zhang X, Montgomery BL, Golden SS. Biochemical properties of CikA, an unusual phytochrome-like histidine protein kinase that resets the circadian clock in Synechococcus elongatus PCC 7942. J Biol Chem 2003; 278:19102-10. [PMID: 12626498 DOI: 10.1074/jbc.m213255200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently described the cikA (circadian input kinase A) gene, whose product supplies environmental information to the circadian oscillator in the cyanobacterium Synechococcus elongatus PCC 7942. CikA possesses three distinct domains: a GAF, a histidine protein kinase (HPK), and a receiver domain similar to those of the response regulator family. To determine how CikA functions in providing circadian input, we constructed modified alleles to tag and truncate the protein, allowing analysis of each domain individually. CikA covalently bound bilin chromophores in vitro, even though it lacks the expected ligand residues, and the GAF domain influenced but did not entirely account for this function. Full-length CikA and truncated variants that carry the HPK domain showed autophosphorylation activity. Deletion of the GAF domain or the N-terminal region adjacent to GAF dramatically reduced autophosphorylation, whereas elimination of the receiver domain increased activity 10-fold. Assays to test phosphorelay from the HPK to the cryptic receiver domain, which lacks the conserved aspartyl residue that serves as a phosphoryl acceptor in response regulators, were negative. We propose that the cryptic receiver is a regulatory domain that interacts with an unknown protein partner to modulate the autokinase activity of CikA but does not work as bona fide receiver domain in a phosphorelay.
Collapse
Affiliation(s)
- Michinori Mutsuda
- Department of Biology, Texas A & M University, College Station, Texas 77843-3258, USA
| | | | | | | | | |
Collapse
|
374
|
Kim WY, Geng R, Somers DE. Circadian phase-specific degradation of the F-box protein ZTL is mediated by the proteasome. Proc Natl Acad Sci U S A 2003; 100:4933-8. [PMID: 12665620 PMCID: PMC404699 DOI: 10.1073/pnas.0736949100] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Critical to the maintenance of circadian rhythmicity is the cyclic expression of at least some components of the central oscillator. High-amplitude cycling of mRNA and protein abundance, protein phosphorylation and nuclear/cytoplasmic shuttling have all been implicated in the maintenance of circadian period. Here we use a newly characterized Arabidopsis suspension cell culture to establish that the rhythmic changes in the levels of the clock-associated F-box protein, ZTL, are posttranscriptionally controlled through different circadian phase-specific degradation rates. This proteolysis is proteasome dependent, implicating ZTL itself as substrate for ubiquitination. This demonstration of circadian phase-regulated degradation of an F-box protein, which itself controls circadian period, suggests a novel regulatory feedback mechanism among known circadian systems.
Collapse
Affiliation(s)
- Woe-Yeon Kim
- Department of Plant Biology/Plant Biotechnology Center, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
375
|
Abstract
Reproductive processes in plants and animals are usually synchronized with favourable seasons of the year. It has been known for 80 years that organisms anticipate seasonal changes by adjusting developmental programmes in response to daylength. Recent studies indicate that plants perceive daylength through the degree of coincidence of light with the expression of CONSTANS, which encodes a clock-regulated transcription factor that controls the expression of floral-inductive genes in a light-dependent manner.
Collapse
Affiliation(s)
- Marcelo J Yanovsky
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 USA
| | | |
Collapse
|
376
|
Abstract
The circadian clock provides a temporal structure that modulates biological functions from the level of gene expression to performance and behaviour. Pioneering work on the fruitfly Drosophila has provided a basis for understanding how the temporal sequence of daily events is controlled in mammals. New insights have come from work on mammals, specifically from studying the daily activity profiles of clock mutant mice; from more detailed recordings of clock gene expression under different experimental conditions and in different tissues; and from the discovery and analysis of a growing number of additional clock genes. These new results are moving the model paradigm away from a simple negative feedback loop to a molecular network. Understanding the coupling and interactions of this network will help us to understand the evolution of the circadian system, advance medical diagnosis and treatment, improve the health of shift workers and frequent travellers, and will generally enable the treatment of clock-related pathologies.
Collapse
Affiliation(s)
- Till Roenneberg
- Institute for Medical Psychology, University of Munich, Goethestrasse 31, 80336 Munich, Germany.
| | | |
Collapse
|
377
|
Abstract
The last decade provided the plant science community with the complete genome sequence of Arabidopsis thaliana and rice, tools to investigate the function of potentially every plant gene, methods to dissect virtually any aspect of the plant life cycle, and a wealth of information on gene expression and protein function. Focusing on Arabidopsis as a model system has led to an integration of the plant sciences that triggered the development of new technologies and concepts benefiting plant research in general. These enormous changes led to an unprecedented increase in our understanding of the genetic basis and molecular mechanisms of developmental, physiological and biochemical processes, some of which will be discussed in this article.
Collapse
Affiliation(s)
- Robert E Pruitt
- Botany and Plant Pathology, Purdue University, West Lafayette, Indianapolis 47907-1155, USA
| | | | | |
Collapse
|
378
|
Kim JY, Song HR, Taylor BL, Carré IA. Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY. EMBO J 2003; 22:935-44. [PMID: 12574129 PMCID: PMC145435 DOI: 10.1093/emboj/cdg075] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transcription factor LHY and the related protein CCA1 perform overlapping functions in a regulatory feedback loop that is closely associated with the circadian oscillator of Arabidopsis: Overexpression of LHY abolished function of the circadian clock in constant light, but rhythmic expression of several circadian clock-regulated transcripts was observed under light- dark cycles. These oscillations correlated with high amplitude changes in LHY protein levels, caused by light-induced translation of the LHY transcript. Increases in LHY protein levels were also observed in light-grown wild-type plants, when light signals coincided with the circadian-regulated peak of LHY transcription at dawn. Unexpectedly, translational induction coincided with acute downregulation of LHY transcript levels. We suggest that the simultaneous translational induction and transcriptional repression of LHY expression play a role to narrow the peak of LHY protein synthesis at dawn and increase the robustness and accuracy of circadian oscillations. Strong phase shifting responses to light signals were observed in plants lacking function of LHY, CCA1 or both, suggesting that light-regulated expression of these proteins does not mediate entrainment of the clock to light-dark cycles.
Collapse
Affiliation(s)
- Jae-Yean Kim
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK Present address: Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA Corresponding author e-mail:
| | - Hae-Ryong Song
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK Present address: Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA Corresponding author e-mail:
| | - Bethan L. Taylor
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK Present address: Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA Corresponding author e-mail:
| | - Isabelle A. Carré
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK Present address: Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA Corresponding author e-mail:
| |
Collapse
|
379
|
Hayama R, Coupland G. Shedding light on the circadian clock and the photoperiodic control of flowering. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:13-19. [PMID: 12495746 DOI: 10.1016/s1369-5266(02)00011-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recently, notable progress has been made towards understanding the genetic interactions that underlie the function of the circadian clock in plants, and how these functions are related to the seasonal control of flowering time. The LHY/CCA1 and TOC1 genes have been proposed to participate in a negative feedback loop that is part of the central oscillator of the circadian clock. Furthermore, analysis of a flowering-time pathway has suggested how transcriptional regulation by the circadian clock, combined with post-transcriptional regulation by light, could activate proteins that control flowering time in response to appropriate daylengths.
Collapse
Affiliation(s)
- Ryosuke Hayama
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | |
Collapse
|
380
|
Katayama M, Kondo T, Xiong J, Golden SS. ldpA encodes an iron-sulfur protein involved in light-dependent modulation of the circadian period in the cyanobacterium Synechococcus elongatus PCC 7942. J Bacteriol 2003; 185:1415-22. [PMID: 12562813 PMCID: PMC142860 DOI: 10.1128/jb.185.4.1415-1422.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We generated random transposon insertion mutants to identify genes involved in light input pathways to the circadian clock of the cyanobacterium Synechococcus elongatus PCC 7942. Two mutants, AMC408-M1 and AMC408-M2, were isolated that responded to a 5-h dark pulse differently from the wild-type strain. The two mutants carried independent transposon insertions in an open reading frame here named ldpA (for light-dependent period). Although the mutants were isolated by a phase shift screening protocol, the actual defect is a conditional alteration in the circadian period. The mutants retain the wild-type ability to phase shift the circadian gene expression (bioluminescent reporter) rhythm if the timing of administration of the dark pulse is corrected for a 1-h shortening of the circadian period in the mutant. Further analysis indicated that the conditional short-period mutant phenotype results from insensitivity to light gradients that normally modulate the circadian period in S. elongatus, lengthening the period at low light intensities. The ldpA gene encodes a polypeptide that predicts a 7Fe-8S cluster-binding motif expected to be involved in redox reactions. We suggest that the LdpA protein modulates the circadian clock as an indirect function of light intensity by sensing changes in cellular physiology.
Collapse
Affiliation(s)
- Mitsunori Katayama
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | | | | | | |
Collapse
|
381
|
Staiger D, Allenbach L, Salathia N, Fiechter V, Davis SJ, Millar AJ, Chory J, Fankhauser C. The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function. Genes Dev 2003; 17:256-68. [PMID: 12533513 PMCID: PMC195977 DOI: 10.1101/gad.244103] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plants possess several photoreceptors to sense the light environment. In Arabidopsis cryptochromes and phytochromes play roles in photomorphogenesis and in the light input pathways that synchronize the circadian clock with the external world. We have identified SRR1 (sensitivity to red light reduced), a gene that plays an important role in phytochrome B (phyB)-mediated light signaling. The recessive srr1 null allele and phyB mutants display a number of similar phenotypes indicating that SRR1 is required for normal phyB signaling. Genetic analysis suggests that SRR1 works both in the phyB pathway but also independently of phyB. srr1 mutants are affected in multiple outputs of the circadian clock in continuous light conditions, including leaf movement and expression of the clock components, CCA1 and TOC1. Clock-regulated gene expression is also impaired during day-night cycles and in constant darkness. The circadian phenotypes of srr1 mutants in all three conditions suggest that SRR1 activity is required for normal oscillator function. The SRR1 gene was identified and shown to code for a protein conserved in numerous eukaryotes including mammals and flies, implicating a conserved role for this protein in both the animal and plant kingdoms.
Collapse
Affiliation(s)
- Dorothee Staiger
- Institute for Plant Sciences, Swiss Federal Institute of Technology, ETH Center, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
382
|
|
383
|
Abstract
Cryptochromes are photosensory receptors mediating light regulation of growth and development in plants. Since the isolation of the Arabidopsis CRY1 gene in 1993, cryptochromes have been found in every multicellular eukaryote examined. Most plant cryptochromes have a chromophore-binding domain that shares similar structure with DNA photolyase, and a carboxyl terminal extension that contains a DQXVP-acidic-STAES (DAS) domain conserved from moss, to fern, to angiosperm. In Arabidopsis, cryptochromes are nuclear proteins that mediate light control of stem elongation, leaf expansion, photoperiodic flowering, and the circadian clock. Cryptochromes may act by interacting with proteins such as phytochromes, COP1, and clock proteins, or/and chromatin and DNA. Recent studies suggest that cryptochromes undergo a blue light-dependent phosphorylation that affects the conformation, intermolecular interactions, physiological activities, and protein abundance of the photoreceptors.
Collapse
Affiliation(s)
- Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
384
|
Lee K, Dunlap JC, Loros JJ. Roles for WHITE COLLAR-1 in circadian and general photoperception in Neurospora crassa. Genetics 2003; 163:103-14. [PMID: 12586700 PMCID: PMC1462414 DOI: 10.1093/genetics/163.1.103] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transcription factors WHITE COLLAR-1 (WC-1) and WHITE COLLAR-2 (WC-2) interact to form a heterodimeric complex (WCC) that is essential for most of the light-mediated processes in Neurospora crassa. WCC also plays a distinct non-light-related role as the transcriptional activator in the FREQUENCY (FRQ)/WCC feedback loop that is central to the N. crassa circadian system. Although an activator role was expected for WC-1, unanticipated phenotypes resulting from some wc-1 alleles prompted a closer examination of an allelic series for WC-1 that has uncovered roles for this central regulator in constant darkness and in response to light. We analyzed the phenotypes of five different wc-1 mutants for expression of FRQ and WC-1 in constant darkness and following light induction. While confirming the absolute requirement of WC-1 for light responses, the data suggest multiple levels of control for light-regulated genes.
Collapse
Affiliation(s)
- Kwangwon Lee
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
385
|
Más P, Alabadí D, Yanovsky MJ, Oyama T, Kay SA. Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. THE PLANT CELL 2003; 15:223-36. [PMID: 12509533 PMCID: PMC143493 DOI: 10.1105/tpc.006734] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 10/02/2002] [Indexed: 05/18/2023]
Abstract
To examine the role of the TOC1 (TIMING OF CAB EXPRESSION1) gene in the Arabidopsis circadian system, we generated a series of transgenic plants expressing a gradation in TOC1 levels. Silencing of the TOC1 gene causes arrhythmia in constant darkness and in various intensities of red light, whereas in blue light, the clock runs faster in silenced plants than in wild-type plants. Increments in TOC1 gene dosage delayed the pace of the clock, whereas TOC1 overexpression abolished rhythmicity in all light conditions tested. Our results show that TOC1 RNA interference and toc1-2 mutant plants displayed an important reduction in sensitivity to red and far-red light in the control of hypocotyl elongation, whereas increments in TOC1 gene dosage clearly enhanced light sensitivity. Furthermore, the red light-mediated induction of CCA1/LHY expression was decreased in TOC1 RNA interference and toc1-2 mutant plants, indicating a role for TOC1 in the phytochrome regulation of circadian gene expression. We conclude that TOC1 is an important component of the circadian clock in Arabidopsis with a crucial function in the integration of light signals to control circadian and morphogenic responses.
Collapse
Affiliation(s)
- Paloma Más
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
386
|
Abstract
Many plants use the seasonal change in daylength as a signal for flowering. Daylength sensing in Arabidopsis has now been shown to occur by an external coincidence mechanism, which operates by the circadian and light regulation of CONSTANS.
Collapse
Affiliation(s)
- Seth J Davis
- Department of Plant Development Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, Cologne 50829, Germany.
| |
Collapse
|
387
|
Thompson CL, Sancar A. Photolyase/cryptochrome blue-light photoreceptors use photon energy to repair DNA and reset the circadian clock. Oncogene 2002; 21:9043-56. [PMID: 12483519 DOI: 10.1038/sj.onc.1205958] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Blue light governs a number of cellular responses in bacteria, plants, and animals, including photoreactivation, plant development, and circadian photoentrainment. These activities are mediated by a family of highly conserved flavoproteins, the photolyase/cryptochrome family. Photolyase binds to UV photoproducts in DNA and repairs them in a process called photoreactivation in which blue light is used to initiate a cyclic electron transfer to break bonds and restore the integrity of DNA. Cryptochrome, which has a high degree of sequence identity to photolyase, works as the main circadian photoreceptor and as a component of the molecular clock in animals, including mammals, and regulates growth and development in plants.
Collapse
Affiliation(s)
- Carol L Thompson
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, NC 27599-7260, USA
| | | |
Collapse
|
388
|
Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB, Provencio I, Kay SA. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 2002; 298:2213-6. [PMID: 12481141 DOI: 10.1126/science.1076848] [Citation(s) in RCA: 612] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The master circadian oscillator in the hypothalamic suprachiasmatic nucleus is entrained to the day/night cycle by retinal photoreceptors. Melanopsin (Opn4), an opsin-based photopigment, is a primary candidate for photoreceptor-mediated entrainment. To investigate the functional role of melanopsin in light resetting of the oscillator, we generated melanopsin-null mice (Opn4-/-). These mice entrain to a light/dark cycle and do not exhibit any overt defect in circadian activity rhythms under constant darkness. However, they display severely attenuated phase resetting in response to brief pulses of monochromatic light, highlighting the critical role of melanopsin in circadian photoentrainment in mammals.
Collapse
Affiliation(s)
- Satchidananda Panda
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
389
|
Yoshimura T, Yokota Y, Ishikawa A, Yasuo S, Hayashi N, Suzuki T, Okabayashi N, Namikawa T, Ebihara S. Mapping quantitative trait loci affecting circadian photosensitivity in retinally degenerate mice. J Biol Rhythms 2002; 17:512-9. [PMID: 12465884 DOI: 10.1177/0748730402238233] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is known that retinally degenerate C57BL/6J (rd/rd) mice have unattenuated circadian photosensitivity. However, the authors have previously found that CBA/J (rd/rd) mice that carry the same rd mutation have attenuated circadian photosensitivity compared to normal CBA/N (+/+) mice. In the present study, a quantitative trait locus (QTL) analysis using C57BL/6J (rd/rd) and CBA/J (rd/rd) mice was conducted in order to identify the genes affecting circadian photosensitivity of the rd mice. As a result, several putative QTLs onthree separate chromosomes (8, 12, 17) were detected, which indicates that circadian photosensitivity in rd mice is altered by multiple genes. Identification of these genes may provide new insights into the understanding of regulation of circadian photoentrainment and sleep-wake disorders.
Collapse
Affiliation(s)
- Takashi Yoshimura
- Division of Biomodeling, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
390
|
Sato E, Nakamichi N, Yamashino T, Mizuno T. Aberrant expression of the Arabidopsis circadian-regulated APRR5 gene belonging to the APRR1/TOC1 quintet results in early flowering and hypersensitiveness to light in early photomorphogenesis. PLANT & CELL PHYSIOLOGY 2002; 43:1374-85. [PMID: 12461138 DOI: 10.1093/pcp/pcf166] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In Arabidopsis thaliana, the transcripts of the APRR1/TOC1 family genes each start accumulating after dawn rhythmically and one after another at intervals in the order of APRR9-->APRR7-->APRR5-->APRR3-->APRR1/TOC1 under continuous light. Except for the well-characterized APRR1/TOC1, however, no evidence has been provided that other APRR1/TOC1 family genes are indeed implicated in the mechanisms underlying circadian rhythms. We here attempted to provide such evidence by characterizing transgenic plants that constitutively express the APRR5 gene. The resulting APRR5-overexpressing (APRR5-ox) plants showed intriguing properties with regard to not only circadian rhythms, but also control of flowering time and light response. First, the aberrant expression of APRR5 in such transgenic plants resulted in a characteristic phenotype with regard to transcriptional events, in which free-running rhythms were considerably altered for certain circadian-regulated genes, including CCA1, LHY, APRR1/TOC1, other APRR1/TOC1 members, GI and CAB2, although each rhythm was clearly sustained even after plants were transferred to continuous light. With regard to biological events, APRR5-ox plants flowered much earlier than wild-type plants, more or less, in a manner independent of photoperiodicity (or under short-day conditions). Furthermore, APRR5-ox plants showed an SRL (short-hypocotyls under red light) phenotype that is indicative of hypersensitiveness to red light in early photomorphogenesis. Both APRR1-ox and APRR9-ox plants also showed the same phenotype. Therefore, APRR5 (together with APRR1/TOC1 and APRR9) must be taken into consideration for a better understanding of the molecular links between circadian rhythms, control of flowering time through the photoperiodic long-day pathway, and also light signaling-controlled plant development.
Collapse
Affiliation(s)
- Eriko Sato
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | |
Collapse
|
391
|
Hall A, Kozma-Bognár L, Bastow RM, Nagy F, Millar AJ. Distinct regulation of CAB and PHYB gene expression by similar circadian clocks. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:529-537. [PMID: 12445124 DOI: 10.1046/j.1365-313x.2002.01441.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phytochrome B (phyB) is a major phytochrome active in light-grown plants. The circadian clock controls the expression of the PHYB gene. We have used the luciferase reporter gene (LUC) to monitor the rhythmic expression of PHYB in photoreceptor and clock-associated mutant backgrounds. Surprisingly, we found that PHYB and CAB expression have different free-running periods, indicating that separate circadian clocks control these genes. The effects of mutations show that the clocks share common components. This suggests that they are copies of the same clock mechanism in different locations, most likely in different cell layers. Furthermore, we show that phyB is required for a negative feedback loop that strongly antagonises the expression of PHYB. Compared to a system with only one clock, this regulatory complexity might allow the phase of peak expression for one clock-controlled gene to alter, relative to other genes or to changing environmental conditions.
Collapse
Affiliation(s)
- Anthony Hall
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | |
Collapse
|
392
|
Thain SC, Murtas G, Lynn JR, McGrath RB, Millar AJ. The circadian clock that controls gene expression in Arabidopsis is tissue specific. PLANT PHYSIOLOGY 2002; 130:102-10. [PMID: 12226490 PMCID: PMC166543 DOI: 10.1104/pp.005405] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2002] [Accepted: 04/22/2002] [Indexed: 05/21/2023]
Abstract
The expression of CHALCONE SYNTHASE (CHS) expression is an important control step in the biosynthesis of flavonoids, which are major photoprotectants in plants. CHS transcription is regulated by endogenous programs and in response to environmental signals. Luciferase reporter gene fusions showed that the CHS promoter is controlled by the circadian clock both in roots and in aerial organs of transgenic Arabidopsis plants. The period of rhythmic CHS expression differs from the previously described rhythm of chlorophyll a/b-binding protein (CAB) gene expression, indicating that CHS is controlled by a distinct circadian clock. The difference in period is maintained in the wild-type Arabidopsis accessions tested and in the de-etiolated 1 and timing of CAB expression 1 mutants. These clock-affecting mutations alter the rhythms of both CAB and CHS markers, indicating that a similar (if not identical) circadian clock mechanism controls these rhythms. The distinct tissue distribution of CAB and CHS expression suggests that the properties of the circadian clock differ among plant tissues. Several animal organs also exhibit heterogeneous circadian properties in culture but are believed to be synchronized in vivo. The fact that differing periods are manifest in intact plants supports our proposal that spatially separated copies of the plant circadian clock are at most weakly coupled, if not functionally independent. This autonomy has apparently permitted tissue-specific specialization of circadian timing.
Collapse
Affiliation(s)
- Simon C Thain
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| | | | | | | | | |
Collapse
|
393
|
Sharrock RA, Clack T. Patterns of expression and normalized levels of the five Arabidopsis phytochromes. PLANT PHYSIOLOGY 2002; 130:442-56. [PMID: 12226523 PMCID: PMC166576 DOI: 10.1104/pp.005389] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2002] [Revised: 04/14/2002] [Accepted: 05/10/2002] [Indexed: 05/18/2023]
Abstract
Using monoclonal antibodies specific for each apoprotein and full-length purified apoprotein standards, the levels of the five Arabidopsis phytochromes and their patterns of expression in seedlings and mature plants and under different light conditions have been characterized. Phytochrome levels are normalized to the DNA content of the various tissue extracts to approximate normalization to the number of cells in the tissue. One phytochrome, phytochrome A, is highly light labile. The other four phytochromes are much more light stable, although among these, phytochromes B and C are reduced 4- to 5-fold in red- or white-light-grown seedlings compared with dark-grown seedlings. The total amount of extractable phytochrome is 23-fold lower in light-grown than dark-grown tissues, and the percent ratios of the five phytochromes, A:B:C:D:E, are measured as 85:10:2:1.5:1.5 in etiolated seedlings and 5:40:15:15:25 in seedlings grown in continuous white light. The four light-stable phytochromes are present at nearly unchanging levels throughout the course of development of mature rosette and reproductive-stage plants and are present in leaves, stems, roots, and flowers. Phytochrome protein expression patterns over the course of seed germination and under diurnal and circadian light cycles are also characterized. Little cycling in response to photoperiod is observed, and this very low amplitude cycling of some phytochrome proteins is out of phase with previously reported cycling of PHY mRNA levels. These studies indicate that, with the exception of phytochrome A, the family of phytochrome photoreceptors in Arabidopsis constitutes a quite stable and very broadly distributed array of sensory molecules.
Collapse
Affiliation(s)
- Robert A Sharrock
- Department of Plant Sciences and Plant Pathology, 119 ABS Building, Montana State University, Bozeman, Montana 59717-3140, USA.
| | | |
Collapse
|
394
|
Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev 2002; 16:2006-20. [PMID: 12154129 PMCID: PMC186415 DOI: 10.1101/gad.999202] [Citation(s) in RCA: 300] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2002] [Accepted: 06/11/2002] [Indexed: 11/25/2022]
Abstract
Phytochromes confer the photoperiodic control of flowering in rice (Oryza sativa), a short-day plant. To better understand the molecular mechanisms of day-length recognition, we examined the interaction between phytochrome signals and circadian clocks in photoperiodic-flowering mutants of rice. Monitoring behaviors of circadian clocks revealed that phase setting of circadian clocks is not affected either under short-day (SD) or under long-day (LD) conditions in a phytochrome-deficient mutant that shows an early-flowering phenotype with no photoperiodic response. Non-24-hr-light/dark-cycle experiments revealed that a rice counterpart gene of Arabidopsis CONSTANS (CO), named PHOTOPERIOD SENSITIVITY 1 (Heading date 1) [SE1 (Hd1)], functions as an output of circadian clocks. In addition, the phytochrome deficiency does not affect the diurnal mRNA expression of SE1 upon floral transition. Downstream floral switch genes were further identified with rice orthologs of Arabidopsis FLOWERING LOCUS T (FT). Our RT-PCR data indicate that phytochrome signals repress mRNA expression of FT orthologs, whereas SE1 can function to promote and suppress mRNA expression of the FT orthologs under SD and LD, respectively. This SE1 transcriptional activity may be posttranscriptionally regulated and may depend on the coincidence with Pfr phytochromes. We propose a model to explain how a short-day plant recognizes the day length in photoperiodic flowering.
Collapse
Affiliation(s)
- Takeshi Izawa
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan.
| | | | | | | | | | | |
Collapse
|
395
|
Matsushika A, Imamura A, Yamashino T, Mizuno T. Aberrant expression of the light-inducible and circadian-regulated APRR9 gene belonging to the circadian-associated APRR1/TOC1 quintet results in the phenotype of early flowering in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2002; 43:833-843. [PMID: 12198185 DOI: 10.1093/pcp/pcf118] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Several Arabidopsis genes have been proposed to encode potential clock-associated components, including the Myb-related CCA1 and LHY transcription factors and a member (APRR1/TOC1) of the family of pseudo-response regulators. We previously showed that transcripts of the APRR1/TOC1 family genes each start accumulating after dawn rhythmically and sequentially at intervals in the order of APRR9-->APRR7-->APRR5-->APRR3-->APRR1/TOC1, under the conditions of continuous light. Nevertheless, no evidence has been provided that each member of the APRR1/TOC1 quintet, except for APRR1/TOC1, is indeed relevant to the mechanisms underlying circadian rhythms. Here we attempt to provide such evidence by characterizing transgenic plants that aberrantly (or constitutively) express the APRR9 gene in a manner independent of circadian rhythms. The resulting APRR9-ox plants showed intriguing phenotypes with regard to circadian rhythms, in two aspects. First, the aberrant expression of APRR9 resulted in a characteristic phenotype with regard to transcriptional events, in which short-period rhythms were commonly observed for certain circadian-regulated genes, including CCA1, LHY, APRR1/TOC1, other APRR1/TOC1 members, ELF3, and CAB2. With regard to biological consequences, such APRR9-ox plants flowered much earlier than wild-type plants, in a manner independent of photoperiodicity (or under short-day conditions). These results suggest that APRR9 (and perhaps other members of the APRR1/TOC1 quintet) must also be taken into consideration for a better understanding of the molecular mechanisms underlying circadian rhythms, and also underlying control of the flowering time through the photoperiodic long-day pathway.
Collapse
Affiliation(s)
- Akinori Matsushika
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | |
Collapse
|
396
|
Salomé PA, Michael TP, Kearns EV, Fett-Neto AG, Sharrock RA, McClung CR. The out of phase 1 mutant defines a role for PHYB in circadian phase control in Arabidopsis. PLANT PHYSIOLOGY 2002; 129:1674-85. [PMID: 12177480 PMCID: PMC166755 DOI: 10.1104/pp.003418] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Revised: 03/18/2002] [Accepted: 05/05/2002] [Indexed: 05/18/2023]
Abstract
Arabidopsis displays circadian rhythms in stomatal aperture, stomatal conductance, and CO(2) assimilation, each of which peaks around the middle of the day. The rhythmic opening and closing of stomata confers a rhythm in sensitivity and resistance, respectively, to the toxic gas sulfur dioxide. Using this physiological assay as a basis for a mutant screen, we isolated mutants with defects in circadian timing. Here, we characterize one mutant, out of phase 1 (oop1), with the circadian phenotype of altered phase. That is, the timing of the peak (acrophase) of multiple circadian rhythms (leaf movement, CO(2) assimilation, and LIGHT-HARVESTING CHLOROPHYLL a/b-BINDING PROTEIN transcription) is early with respect to wild type, although all circadian rhythms retain normal period length. This is the first such mutant to be characterized in Arabidopsis. oop1 also displays a strong photoperception defect in red light characteristic of phytochrome B (phyB) mutants. The oop1 mutation is a nonsense mutation of PHYB that results in a truncated protein of 904 amino acids. The defect in circadian phasing is seen in seedlings entrained by a light-dark cycle but not in seedlings entrained by a temperature cycle. Thus, PHYB contributes light information critical for proper determination of circadian phase.
Collapse
Affiliation(s)
- Patrice A Salomé
- Department of Biological Sciences, 6044 Gilman Laboratories, Dartmouth College, Hanover, New Hampshire 03755-3576, USA
| | | | | | | | | | | |
Collapse
|
397
|
Dragovic Z, Tan Y, Görl M, Roenneberg T, Merrow M. Light reception and circadian behavior in 'blind' and 'clock-less' mutants of Neurospora crassa. EMBO J 2002; 21:3643-51. [PMID: 12110577 PMCID: PMC126122 DOI: 10.1093/emboj/cdf377] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The filamentous fungus Neurospora crassa is a model organism for the genetic dissection of blue light photoreception and circadian rhythms. WHITE COLLAR-1 (WC-1) and WC-2 are considered necessary for all light responses, while FREQUENCY (FRQ) is required for light-regulated asexual development (conidia formation); without any of the three, self-sustained (circadian) rhythmicity in constant conditions fails. Here we show that light-regulated and self-sustained development occur in the individual or mutant white collar strains. These strains resemble wild type in their organization of the daily bout of light-regulated conidiation. Molecular profiles of light- induced genes indicate that the individual white collar-1 and white collar-2 mutants utilize distinct pathways, despite their similar appearance in all aspects. Titration of fluence rate also demonstrates different light sensitivities between the two strains. The data require the existence of an as-yet-unidentified photoreceptor. Furthermore, the extant circadian clock machinery in these mutant strains supports the notion that the circadian system in Neurospora involves components outside the WC-FRQ loop.
Collapse
Affiliation(s)
| | | | - Margit Görl
- Institute for Medical Psychology, Division of Chronobiology, Goethestrasse 31, D-80336 Munich and
Institute for Physiological Chemistry, University of Munich, D-80336 Munich, Germany Present address: Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany Corresponding author e-mail:
| | - Till Roenneberg
- Institute for Medical Psychology, Division of Chronobiology, Goethestrasse 31, D-80336 Munich and
Institute for Physiological Chemistry, University of Munich, D-80336 Munich, Germany Present address: Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany Corresponding author e-mail:
| | | |
Collapse
|
398
|
Panda S, Poirier GG, Kay SA. tej defines a role for poly(ADP-ribosyl)ation in establishing period length of the arabidopsis circadian oscillator. Dev Cell 2002; 3:51-61. [PMID: 12110167 DOI: 10.1016/s1534-5807(02)00200-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In a genetic screen for altered circadian period length in Arabidopsis, we isolated a mutant with a long free-running period. The tej mutation acts independently of light quality and quantity. It affects clock-controlled transcription of genes in Arabidopsis and alters the timing of the photoperiod-dependent transition from vegetative growth to flowering. Map-based cloning of TEJ identified a poly(ADP-ribose) glycohydrolase (PARG). An inhibitor of poly(ADP-ribosyl)ation rescued the period phenotype of tej mutant and shortened the period length of wild-type plants. Posttranslational poly(ADP-ribosyl)ation of an oscillator component may contribute to setting the period length of the Arabidopsis central oscillator.
Collapse
Affiliation(s)
- Satchidananda Panda
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
399
|
Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carré IA, Coupland G. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell 2002; 2:629-41. [PMID: 12015970 DOI: 10.1016/s1534-5807(02)00170-3] [Citation(s) in RCA: 385] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several genes are known to regulate circadian rhythms in Arabidopsis, but the identity of the central oscillator has not been established. LHY and CCA1 are related MYB-like transcription factors proposed to be closely involved. Here we demonstrate that, as shown previously for CCA1, inactivation of LHY shortens the period of circadian rhythms in gene expression and leaf movements. By constructing lhy cca1-1 double mutants, we show that LHY and CCA1 are partially redundant and essential for the maintenance of circadian rhythms in constant light. Under light/dark cycles the lhy cca1-1 plants show dramatically earlier phases of expression of GI and TOC1, genes associated with the generation of circadian rhythms and the promotion of LHY and CCA1 expression. We conclude that LHY and CCA1 appear to be negative regulatory elements required for central oscillator function.
Collapse
|
400
|
Abstract
Multiple environmental and endogenous inputs regulate when plants flower. The molecular genetic dissection of flowering time control in Arabidopsis has identified an integrated network of pathways that quantitatively control the timing of this developmental switch. This framework provides the basis to understand the evolution of different reproductive strategies and how floral pathways interact through seasonal progression.
Collapse
Affiliation(s)
- Gordon G Simpson
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | | |
Collapse
|