351
|
Leng L, Ma J, Sun X, Guo B, Li F, Zhang W, Chang M, Diao J, Wang Y, Wang W, Wang S, Zhu Y, He F, Reid LM, Wang Y. Comprehensive proteomic atlas of skin biomatrix scaffolds reveals a supportive microenvironment for epidermal development. J Tissue Eng 2020; 11:2041731420972310. [PMID: 33224464 PMCID: PMC7658515 DOI: 10.1177/2041731420972310] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022] Open
Abstract
Biomaterial scaffolds are increasingly being used to drive tissue regeneration. The limited success so far in human tissues rebuilding and therapy application may be due to inadequacy of the functionality biomaterial scaffold. We developed a new decellularized method to obtain complete anatomical skin biomatrix scaffold in situ with extracellular matrix (ECM) architecture preserved, in this study. We described a skin scaffold map by integrated proteomics and systematically analyzed the interaction between ECM proteins and epidermal cells in skin microenvironment on this basis. They were used to quantify structure and function of the skin's Matrisome, comprised of core ECM components and ECM-associated soluble signals that are key regulators of epidermal development. We especially revealed that ECM played a role in determining the fate of epidermal stem cells through hemidesmosome components. These concepts not only bring us a new understanding of the role of the skin ECM niche, they also provide an attractive combinational strategy based on tissue engineering principles with skin biomatrix scaffold materials for the acceleration and enhancement of tissue regeneration.
Collapse
Affiliation(s)
- Ling Leng
- Stem cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Xuer Sun
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Baolin Guo
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Fanlu Li
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Wei Zhang
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Mingyang Chang
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Jinmei Diao
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Yi Wang
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Wenjuan Wang
- Department of Dermatology, Chinese PLA General Hospital, Beijing, China
| | - Shuyong Wang
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
- Basic Medical School, Anhui Medical University, Anhui, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Lola M Reid
- Department of Cell Biology and Physiology Program in Molecular Biology and Biotechnology, Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, USA
| | - Yunfang Wang
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
- Translational Research Center, Beijing Tsinghua Chang Gung Hospital, Beijing, China
| |
Collapse
|
352
|
Won JE, Lee YS, Park JH, Lee JH, Shin YS, Kim CH, Knowles JC, Kim HW. Hierarchical microchanneled scaffolds modulate multiple tissue-regenerative processes of immune-responses, angiogenesis, and stem cell homing. Biomaterials 2020; 227:119548. [DOI: 10.1016/j.biomaterials.2019.119548] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 12/27/2022]
|
353
|
|
354
|
Gilbert-Honick J, Grayson W. Vascularized and Innervated Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2020; 9:e1900626. [PMID: 31622051 PMCID: PMC6986325 DOI: 10.1002/adhm.201900626] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/27/2019] [Indexed: 12/12/2022]
Abstract
Volumetric muscle loss (VML) is a devastating loss of muscle tissue that overwhelms the native regenerative properties of skeletal muscle and results in lifelong functional deficits. There are currently no treatments for VML that fully recover the lost muscle tissue and function. Tissue engineering presents a promising solution for VML treatment and significant research has been performed using tissue engineered muscle constructs in preclinical models of VML with a broad range of defect locations and sizes, tissue engineered construct characteristics, and outcome measures. Due to the complex vascular and neural anatomy within skeletal muscle, regeneration of functional vasculature and nerves is vital for muscle recovery following VML injuries. This review aims to summarize the current state of the field of skeletal muscle tissue engineering using 3D constructs for VML treatment with a focus on studies that have promoted vascular and neural regeneration within the muscle tissue post-VML.
Collapse
Affiliation(s)
- Jordana Gilbert-Honick
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Warren Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Material Sciences & Engineering, Johns Hopkins University, School of Engineering, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology (INBT), Johns Hopkins University School of Engineering, Baltimore, MD 21218, USA
| |
Collapse
|
355
|
Sadtler K, Collins J, Byrne JD, Langer R. Parallel evolution of polymer chemistry and immunology: Integrating mechanistic biology with materials design. Adv Drug Deliv Rev 2020; 156:65-79. [PMID: 32589903 DOI: 10.1016/j.addr.2020.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/04/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
To develop new therapeutics involves the interaction of multiple disciplines to yield safe, functional devices and formulations. Regardless of drug function and potency, administration with controlled timing, dosing, and targeting is required to properly treat or regulate health and disease. Delivery approaches can be optimized through advances in materials science, clinical testing, and basic biology and immunology. Presently, laboratories focused on developing these technologies are composed of, or collaborate with, chemists, biologists, materials scientists, engineers, and physicians to understand the way our body interacts with drug delivery devices, and how to synthesize new, rationally designed materials to improve targeted and controlled drug delivery. In this review, we discuss both device-based and micro/nanoparticle-based materials in the clinic, our biologic understanding of how our immune system interacts with these materials, how this diverse set of immune cells has become a target and variable in drug delivery design, and new directions in polymer chemistry to address these interactions and further our advances in medical therapeutics.
Collapse
|
356
|
Carpenter R, Oh HJ, Ham IH, Kim D, Hur H, Lee J. Scaffold-Assisted Ectopic Transplantation of Internal Organs and Patient-Derived Tumors. ACS Biomater Sci Eng 2019; 5:6667-6678. [PMID: 33423485 PMCID: PMC7808342 DOI: 10.1021/acsbiomaterials.9b00978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xenotransplantation of human tissues into immunodeficient mice has emerged as an invaluable preclinical model to study human biology and disease progression and predict clinical response. The most common anatomical site for tissue transplantation is the subcutaneous pocket due to simple surgical procedures and accessibility for gross monitoring and advanced imaging modalities. However, subcutaneously implanted tissues initially experience a sharp change in oxygen and nutrient supply and increased mechanical deformation. During this acute phase of tissue integration to the host vasculature, substantial cell death and tissue fibrosis occur limiting engraftment efficiency. Previously, we demonstrated that the implantation of inverted colloidal crystal hydrogel scaffolds triggers proangiogenic and immunomodulatory functions without characteristic foreign body encapsulation. In this study, we examine the use of this unique host response to improve the ectopic transplantation of tissues to the subcutaneous site. Scaffold-assisted tissues preserved morphological features and blood vessel density compared to native tissues, whereas scaffold-free tissues collapsed and were less vascularized. Notably, the supporting biomaterial scaffold modulated the foreign body response to reduce the localization of Ly6G+ cells within the transplanted tissues. Cotransplantation of patient-derived gastric cancer with a scaffold resulted in a comparable level of engraftment to conventional methods; however, detailed immunohistological characterization revealed significantly better retention of proliferative cells (Ki67+) and human immune cells (CD45+) by the end of the study. We envision that leveraging the immunomodulatory properties of biomaterial interfaces can be an attractive strategy to improve the functional engraftment of xenotransplants and accelerate individualized diagnostics and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ryan Carpenter
- Department of Chemical Engineering, Institute for Applied Life Sciences, University of Massachusetts, Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| | - Hye Jeong Oh
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea
| | - In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea
| | - Daeyoung Kim
- Department of Mathematics & Statistics, University of Massachusetts, Amherst, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea
| | - Jungwoo Lee
- Department of Chemical Engineering, Institute for Applied Life Sciences, University of Massachusetts, Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| |
Collapse
|
357
|
Greising SM, Corona BT, McGann C, Frankum JK, Warren GL. Therapeutic Approaches for Volumetric Muscle Loss Injury: A Systematic Review and Meta-Analysis. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:510-525. [PMID: 31578930 DOI: 10.1089/ten.teb.2019.0207] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Our goal was to understand the impact of regenerative therapies on the functional capacity of skeletal muscle following volumetric muscle loss (VML) injury. An extensive database search (e.g., PubMed, Cochrane Library, and ClinicalTrials.gov) was conducted up through January 2019 to evaluate the following: "In humans or animals with VML injury, is treatment better than no treatment at recovering functional capacity?" Study eligibility criteria required studies to have both an untreated and at least one treated VML injury group. From 2312 study reports, 44 studies met the inclusion criteria. Quantitative functional capacity data (absolute and/or normalized strength) or proportional measures (histological analysis quantifying viable muscle tissue, mitochondrial function, and/or exhaustive treadmill running) were extracted for use. While both human and animal studies were included in the searches, only animal studies met the eligibility criteria. Using a random-effects model, Hedges' g was used as the effect size (ES) and calculated such that a positive ES indicated treatment efficacy. The overall ES was 0.75 (95% confidence interval: 0.53-0.96; p < 0.0000001), indicating that the treatments, on average, resulted in a significant improvement in functional capacity. From network meta-analyses, it was determined that an acellular biomaterial combined with stem and/or progenitor cells had the greatest treatment effectiveness. The findings indicate that various treatments in animal models of VML improve the functional capacity of muscle compared to leaving the injury untreated; however, the ∼16% beneficial effect is small. Our results suggest that current regenerative therapy paradigms require further maturation to achieve clinically meaningful improvements in the functional capacity of the muscle. Impact Statement Our most salient findings are that (1) various treatment approaches used in animal models of volumetric muscle loss (VML) injury improve functional capacity compared to leaving the injury untreated and (2) an acellular biomaterial in combination with cellular components was the most effective treatment to improve functional capacity following VML injury to date. The nature of our findings has substantial implications for regenerative medicine, biomedical engineering, and rehabilitative techniques currently being evaluated and developed for VML injury repair, and are pivotal to the progression of the regenerative medicine effort aimed at restoring maximal function to traumatized and disabled limbs.
Collapse
Affiliation(s)
- Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota
| | - Benjamin T Corona
- School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Christopher McGann
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia
| | - Jeremy K Frankum
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia
| | - Gordon L Warren
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia
| |
Collapse
|
358
|
Yuan H, Chen C, Liu Y, Lu T, Wu Z. Strategies in cell‐free tissue‐engineered vascular grafts. J Biomed Mater Res A 2019; 108:426-445. [PMID: 31657523 DOI: 10.1002/jbm.a.36825] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Haoyong Yuan
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Chunyang Chen
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Yuhong Liu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Ting Lu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Zhongshi Wu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| |
Collapse
|
359
|
Synthetic biology for improving cell fate decisions and tissue engineering outcomes. Emerg Top Life Sci 2019; 3:631-643. [PMID: 33523179 DOI: 10.1042/etls20190091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
Synthetic biology is a relatively new field of science that combines aspects of biology and engineering to create novel tools for the construction of biological systems. Using tools within synthetic biology, stem cells can then be reprogrammed and differentiated into a specified cell type. Stem cells have already proven to be largely beneficial in many different therapies and have paved the way for tissue engineering and regenerative medicine. Although scientists have made great strides in tissue engineering, there still remain many questions to be answered in regard to regeneration. Presented here is an overview of synthetic biology, common tools built within synthetic biology, and the way these tools are being used in stem cells. Specifically, this review focuses on how synthetic biologists engineer genetic circuits to dynamically control gene expression while also introducing emerging topics such as genome engineering and synthetic transcription factors. The findings mentioned in this review show the diverse use of stem cells within synthetic biology and provide a foundation for future research in tissue engineering with the use of synthetic biology tools. Overall, the work done using synthetic biology in stem cells is in its early stages, however, this early work is leading to new approaches for repairing diseased and damaged tissues and organs, and further expanding the field of tissue engineering.
Collapse
|
360
|
Sommerfeld SD, Cherry C, Schwab RM, Chung L, Maestas DR, Laffont P, Stein JE, Tam A, Ganguly S, Housseau F, Taube JM, Pardoll DM, Cahan P, Elisseeff JH. Interleukin-36γ-producing macrophages drive IL-17-mediated fibrosis. Sci Immunol 2019; 4:eaax4783. [PMID: 31604843 PMCID: PMC7549193 DOI: 10.1126/sciimmunol.aax4783] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
Biomaterials induce an immune response and mobilization of macrophages, yet identification and phenotypic characterization of functional macrophage subsets in vivo remain limited. We performed single-cell RNA sequencing analysis on macrophages sorted from either a biologic matrix [urinary bladder matrix (UBM)] or synthetic biomaterial [polycaprolactone (PCL)]. Implantation of UBM promotes tissue repair through generation of a tissue environment characterized by a T helper 2 (TH2)/interleukin (IL)-4 immune profile, whereas PCL induces a standard foreign body response characterized by TH17/IL-17 and fibrosis. Unbiased clustering and pseudotime analysis revealed distinct macrophage subsets responsible for antigen presentation, chemoattraction, and phagocytosis, as well as a small population with expression profiles of both dendritic cells and skeletal muscle after UBM implantation. In the PCL tissue environment, we identified a CD9hi+IL-36γ+ macrophage subset that expressed TH17-associated molecules. These macrophages were virtually absent in mice lacking the IL-17 receptor, suggesting that they might be involved in IL-17-dependent immune and autoimmune responses. Identification and comparison of the unique phenotypical and functional macrophage subsets in mouse and human tissue samples suggest broad relevance of the new classification. These distinct macrophage subsets demonstrate previously unrecognized myeloid phenotypes involved in different tissue responses and provide targets for potential therapeutic modulation in tissue repair and pathology.
Collapse
Affiliation(s)
- Sven D Sommerfeld
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Cherry
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Remi M Schwab
- Institute for Cell Engineering, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liam Chung
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R Maestas
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philippe Laffont
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julie E Stein
- Division of Dermatopathology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Ada Tam
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sudipto Ganguly
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Franck Housseau
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janis M Taube
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Dermatopathology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Cahan
- Institute for Cell Engineering, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
361
|
Perciani CT, MacParland SA. Lifting the veil on macrophage diversity in tissue regeneration and fibrosis. Sci Immunol 2019; 4:eaaz0749. [PMID: 31604845 DOI: 10.1126/sciimmunol.aaz0749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/30/2022]
Abstract
Sommerfeld et al have used single-cell RNA sequencing to unravel the role of macrophages in driving tissue repair and fibrosis.
Collapse
Affiliation(s)
- Catia T Perciani
- Soham & Shaila Ajmera Family Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada
| | - Sonya A MacParland
- Soham & Shaila Ajmera Family Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada.
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5G 1L7, Canada
| |
Collapse
|
362
|
Neves J, Sousa-Victor P. Regulation of inflammation as an anti-aging intervention. FEBS J 2019; 287:43-52. [PMID: 31529582 DOI: 10.1111/febs.15061] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/08/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
Abstract
Aging is accompanied by a decline in physiological integrity and a loss of regenerative capacity in many tissues. The development of interventions that prevent or reverse age-related disease requires a better understanding of the interplay of cell intrinsic, inter-cellular communication and systemic deregulations that underlie the aging process. Immune dysfunction and changes in inflammatory pathways are transversal contributors to the aging process and are essential propagators of tissue deterioration. Here, we propose and discuss the rejuvenation potential of interventions that target chronic inflammation and how modulation of tissue repair capacity could be an important mediator of such anti-aging strategies. We highlight how current knowledge on the systemic nature of inflammatory dysregulation in old organisms, together with the development of new animal models that allow for the isolation of the inflammatory component of aging, could provide new targets for interventions in aging based on the modulation of inflammatory pathways.
Collapse
Affiliation(s)
- Joana Neves
- Faculdade de Medicina, Instituto de Medicina Molecular (iMM), Universidade de Lisboa, Portugal
| | - Pedro Sousa-Victor
- Faculdade de Medicina, Instituto de Medicina Molecular (iMM), Universidade de Lisboa, Portugal
| |
Collapse
|
363
|
Chu C, Liu L, Rung S, Wang Y, Ma Y, Hu C, Zhao X, Man Y, Qu Y. Modulation of foreign body reaction and macrophage phenotypes concerning microenvironment. J Biomed Mater Res A 2019; 108:127-135. [PMID: 31515867 DOI: 10.1002/jbm.a.36798] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/20/2019] [Accepted: 09/04/2019] [Indexed: 02/05/2023]
Abstract
The foreign body reaction (FBR) is described as a local chronic inflammation after implantation of biomaterials in which macrophages involved intimately. At the stage of acute inflammation, mast cells release histamine, Interleukin-4 (IL-4) and Interleukin-13 (IL-13), enhancing recruitment, and fusion of macrophages in the following phase. As for chronic intensive inflammation, degradation of biomaterials would be promoted by macrophage-derived foreign body giant cells releasing degradative enzymes, acid and reactive oxygen intermediates. Nevertheless, it could be seen as a breakthrough point for regulating FBR, considering the dominant role of the macrophage in the immune response as exemplified by the decrease of IL-4 and IL-13, stabilizing an appropriate balance between two macrophage phenotypes, selectively suppressing some function of macrophages, and so on. Moreover, the relationship between macrophages polarization and the development of a fibrous capsule, which increase the possibility of implantation failure, will be illustrated later. This review aims at providing readers a comprehensive understanding of FBR and its correlative treatment strategy.
Collapse
Affiliation(s)
- Chenyu Chu
- State Key Laboratory of Biotherapy and Laboratory, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Shengan Rung
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuanjing Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuxing Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiwen Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Man
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yili Qu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
364
|
Tissue-Derived Biological Particles Restore Cornea Properties in an Enzyme-Mediated Corneal Ectatic Model. Bioengineering (Basel) 2019; 6:bioengineering6040090. [PMID: 31569699 PMCID: PMC6956048 DOI: 10.3390/bioengineering6040090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 01/30/2023] Open
Abstract
Purpose: To investigate the impact of tissue derived biological particles on enzyme-mediated weakened corneas. Methods: Rabbit corneas were treated with enzymes to create an ex vivo ectatic model that simulated representative characteristics of keratoconus (KC). Porcine cornea, cartilage, and lymph node tissues were processed to remove most cellular components and cryomilled into microparticles. The KC corneas were cultured in medium containing the tissue-derived biological particles (TDP) overnight. The mechanical, thermal, ultrastructural changes, and gene expressions of corneal stromal cells were characterized to evaluate the effects of the TDP treatment. Results: The enzyme treatment significantly reduced corneal mechanics and thermal stability, and also disrupted the extracellular matrix ultrastructure. After culturing with TDP medium, the Young’s modulus of the modeled KC corneas increased by ~50%, comparable to normal cornea controls. Similarly, the thermal denaturation temperature of the corneas was restored. These findings also corresponded to a significant increase in collagen fibril density after TDP treatment. Furthermore, corneas cultured in TDP medium significantly downregulated expression of the pro-inflammatory gene Tnfα, and restored the expression of the key keratocyte markers Aldh, keratocan, and biglycan. Conclusions: Tissue-derived biological particles reinforce mechanical and thermal properties of corneal tissue in an ex vivo model of KC. Through this study, we demonstrate and characterize the previously unexplored impact of tissue-derived biological scaffolds on corneal biomechanics, thermal stability, and gene expression, presenting a potential new therapy for ocular disease.
Collapse
|
365
|
Wei X, Luo L, Chen J. Roles of mTOR Signaling in Tissue Regeneration. Cells 2019; 8:cells8091075. [PMID: 31547370 PMCID: PMC6769890 DOI: 10.3390/cells8091075] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/11/2022] Open
Abstract
The mammalian target of rapamycin (mTOR), is a serine/threonine protein kinase and belongs to the phosphatidylinositol 3-kinase (PI3K)-related kinase (PIKK) family. mTOR interacts with other subunits to form two distinct complexes, mTORC1 and mTORC2. mTORC1 coordinates cell growth and metabolism in response to environmental input, including growth factors, amino acid, energy and stress. mTORC2 mainly controls cell survival and migration through phosphorylating glucocorticoid-regulated kinase (SGK), protein kinase B (Akt), and protein kinase C (PKC) kinase families. The dysregulation of mTOR is involved in human diseases including cancer, cardiovascular diseases, neurodegenerative diseases, and epilepsy. Tissue damage caused by trauma, diseases or aging disrupt the tissue functions. Tissue regeneration after injuries is of significance for recovering the tissue homeostasis and functions. Mammals have very limited regenerative capacity in multiple tissues and organs, such as the heart and central nervous system (CNS). Thereby, understanding the mechanisms underlying tissue regeneration is crucial for tissue repair and regenerative medicine. mTOR is activated in multiple tissue injuries. In this review, we summarize the roles of mTOR signaling in tissue regeneration such as neurons, muscles, the liver and the intestine.
Collapse
Affiliation(s)
- Xiangyong Wei
- Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Lingfei Luo
- Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Jinzi Chen
- Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
366
|
Bowers DT, Song W, Wang LH, Ma M. Engineering the vasculature for islet transplantation. Acta Biomater 2019; 95:131-151. [PMID: 31128322 PMCID: PMC6824722 DOI: 10.1016/j.actbio.2019.05.051] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/13/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
The microvasculature in the pancreatic islet is highly specialized for glucose sensing and insulin secretion. Although pancreatic islet transplantation is a potentially life-changing treatment for patients with insulin-dependent diabetes, a lack of blood perfusion reduces viability and function of newly transplanted tissues. Functional vasculature around an implant is not only necessary for the supply of oxygen and nutrients but also required for rapid insulin release kinetics and removal of metabolic waste. Inadequate vascularization is particularly a challenge in islet encapsulation. Selectively permeable membranes increase the barrier to diffusion and often elicit a foreign body reaction including a fibrotic capsule that is not well vascularized. Therefore, approaches that aid in the rapid formation of a mature and robust vasculature in close proximity to the transplanted cells are crucial for successful islet transplantation or other cellular therapies. In this paper, we review various strategies to engineer vasculature for islet transplantation. We consider properties of materials (both synthetic and naturally derived), prevascularization, local release of proangiogenic factors, and co-transplantation of vascular cells that have all been harnessed to increase vasculature. We then discuss the various other challenges in engineering mature, long-term functional and clinically viable vasculature as well as some emerging technologies developed to address them. The benefits of physiological glucose control for patients and the healthcare system demand vigorous pursuit of solutions to cell transplant challenges. STATEMENT OF SIGNIFICANCE: Insulin-dependent diabetes affects more than 1.25 million people in the United States alone. Pancreatic islets secrete insulin and other endocrine hormones that control glucose to normal levels. During preparation for transplantation, the specialized islet blood vessel supply is lost. Furthermore, in the case of cell encapsulation, cells are protected within a device, further limiting delivery of nutrients and absorption of hormones. To overcome these issues, this review considers methods to rapidly vascularize sites and implants through material properties, pre-vascularization, delivery of growth factors, or co-transplantation of vessel supporting cells. Other challenges and emerging technologies are also discussed. Proper vascular growth is a significant component of successful islet transplantation, a treatment that can provide life-changing benefits to patients.
Collapse
Affiliation(s)
- Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
367
|
Sadtler K, Elisseeff JH. Analyzing the scaffold immune microenvironment using flow cytometry: practices, methods and considerations for immune analysis of biomaterials. Biomater Sci 2019; 7:4472-4481. [PMID: 31424059 DOI: 10.1039/c9bm00349e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immune system has evolved as a powerful tool for our body to combat infections, and is being engineered for new treatments in cancer and autoimmune disease. More recently, the complex role of the immune system is being recognized in tissue repair, regenerative medicine and biomaterial responses. From these combined interests, the field of immunoengineering is rapidly growing. However, bridging immunology with engineering poses numerous challenges including the biological complexity, language of immunology and accurately leveraging the powerful techniques of immunology to new applications. Elucidating the identity and function of immune cell populations responding to engineering systems will be required for continued advancement. Multi-color flow cytometry is a central technique used by immunologists for this purpose that requires careful control of variables, data acquisition, and interpretation. Here, we present methods for multi-color flow cytometry experimental design and analysis focused on characterizing the scaffold immune microenvironment in regenerative medicine research.
Collapse
Affiliation(s)
- Kaitlyn Sadtler
- Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA and Department of Anesthesia and Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA. and Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
368
|
Nishiguchi A, Sasaki F, Maeda H, Kabayama M, Ido A, Taguchi T. Multifunctional Hydrophobized Microparticles for Accelerated Wound Healing after Endoscopic Submucosal Dissection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901566. [PMID: 31304670 DOI: 10.1002/smll.201901566] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/26/2019] [Indexed: 05/22/2023]
Abstract
Endoscopic submucosal dissection (ESD) provides strong therapeutic benefits for early gastrointestinal cancer as a minimally invasive treatment. However, there is currently no reliable treatment to prevent scar contracture resulting from ESD which may lead to cicatricial stricture. Herein, a multifunctional colloidal wound dressing to promote tissue regeneration after ESD is demonstrated. This sprayable wound dressing, composed of hydrophobized microparticles, exhibits the multifunctionality necessary for wound healing including tissue adhesiveness, blood coagulation, re-epithelialization, angiogenesis, and controlled inflammation based on hydrophobic interaction with biological systems. An in vivo feasibility study using swine gastric ESD models reveals that this colloidal wound dressing suppresses fibrosis and accelerates wound healing. Multifunctional colloidal and sprayable wound dressings have an enormous therapeutic potential for use in a wide range of biomedical applications including accelerated wound healing after ESD, prevention of perforation, and the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Fumisato Sasaki
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hidehito Maeda
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masayuki Kabayama
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Tetsushi Taguchi
- Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
369
|
Mölzer C, Shankar SP, Masalski V, Griffith M, Kuffová L, Forrester JV. TGF-β1-activated type 2 dendritic cells promote wound healing and induce fibroblasts to express tenascin c following corneal full-thickness hydrogel transplantation. J Tissue Eng Regen Med 2019; 13:1507-1517. [PMID: 30938102 DOI: 10.1002/term.2853] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 12/13/2022]
Abstract
We showed previously that 1-ethyl-3-(3-dimethylamino-propyl)-carbodiimide hydrochloride (EDC) cross-linked recombinant human collagen III hydrogels promoted stable regeneration of the human cornea (continued nerve and stromal cell repopulation) for over 4 years. However, as EDC cross linking kinetics were difficult to control, we additionally tested a sterically bulky carbodiimide. Here, we compared the effects of two carbodiimide cross linkers-bulky, aromatic N-cyclohexyl-N0-(2-morpholinoethyl)-carbodiimide (CMC), and nonbulky EDC-in a mouse corneal graft model. Murine corneas undergoing full-thickness implantation with these gels became opaque due to dense retro-corneal membranes (RCM). Corneal epithelial cytokeratin 12 and alpha smooth muscle actin indicative of functional tissue regeneration and wound contraction were observed in RCM surrounding both hydrogel types. However, quantitatively different levels of infiltrating CD11c+ dendritic cells (DC) were found, suggesting a hydrogel-specific innate immune response. More DC infiltrated the stroma surrounding EDC-N-hydroxysuccinimide (NHS) hydrogels concurrently with higher fibrosis-associated tenascin c expression. The opposite was true for CMC-NHS gels that had previously been shown to be more tolerising to DC. In vitro studies showed that DC cultured with transforming growth factor β1 (TGF-β1) induced fibroblasts to secrete more tenascin c than those cultured with lipopolysaccharide and this effect was blocked by TGF-β1 neutralisation. Furthermore, tenascin c staining was found in 40- to 50μm long membrane nanotubes formed in fibroblast/DC cocultures. We suggest that TGF-β1 alternatively activated (tolerising) DC regulate fibroblast-mediated tenascin c secretion, possibly via local production of TGF-β1 in early wound contraction, and that this is indirectly modulated by different hydrogel chemistries.
Collapse
Affiliation(s)
- Christine Mölzer
- School of Medicine and Dentistry, Section of Immunology, Inflammation and Infection, Institute of Medical Sciences, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK
| | - Sucharita P Shankar
- School of Medicine and Dentistry, Section of Immunology, Inflammation and Infection, Institute of Medical Sciences, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK
| | - Vlad Masalski
- School of Medicine and Dentistry, Section of Immunology, Inflammation and Infection, Institute of Medical Sciences, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK
| | - May Griffith
- Integrative Regenerative Medicine Centre, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Ophthalmology, University of Montreal and Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| | - Lucia Kuffová
- School of Medicine and Dentistry, Section of Immunology, Inflammation and Infection, Institute of Medical Sciences, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK
| | - John V Forrester
- School of Medicine and Dentistry, Section of Immunology, Inflammation and Infection, Institute of Medical Sciences, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
370
|
Becker M, Schneider M, Stamm C, Seifert M. A Polymorphonuclear Leukocyte Assay to Assess Implant Immunocompatibility. Tissue Eng Part C Methods 2019; 25:500-511. [PMID: 31337288 DOI: 10.1089/ten.tec.2019.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPACT STATEMENT Polymorphonuclear leukocytes (PMNs) are essential in the first infection and host-versus-graft reactions. Strategies for adequate and standardized assays to test PMN activation by diverse types of matrices such as cardiovascular implants are urgently needed. To overcome this limitation, we established a straightforward PMN activation assay and validated lipopolysaccharide (LPS) as a reliable PMN activator that induces defined changes in surface marker expression and cytokine release. Biological "proof-of-principle" matrices demonstrated the feasibility of this PMN assay. Overall, this assay provides an instrument conducting an initial immunological assessment of biological implants prior their clinical application.
Collapse
Affiliation(s)
- Matthias Becker
- 1Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Maria Schneider
- 1Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.,2Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christof Stamm
- 2Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,3German Heart Center Berlin (DHZB), Berlin, Germany
| | - Martina Seifert
- 1Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.,2Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
371
|
Acellular Biologic Scaffolds in Regenerative Medicine: Unacceptable Variability with Acceptable Results. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00106-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
372
|
Kwee BJ, Seo BR, Najibi AJ, Li AW, Shih TY, White D, Mooney DJ. Treating ischemia via recruitment of antigen-specific T cells. SCIENCE ADVANCES 2019; 5:eaav6313. [PMID: 31392268 PMCID: PMC6669016 DOI: 10.1126/sciadv.aav6313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/25/2019] [Indexed: 05/18/2023]
Abstract
Ischemic diseases are a leading cause of mortality and can result in autoamputation of lower limbs. We explored the hypothesis that implantation of an antigen-releasing scaffold, in animals previously vaccinated with the same antigen, can concentrate TH2 T cells and enhance vascularization of ischemic tissue. This approach may be clinically relevant, as all persons receiving childhood vaccines recommended by the Centers for Disease Control and Prevention have vaccines that contain aluminum, a TH2 adjuvant. To test the hypothesis, mice with hindlimb ischemia, previously vaccinated with ovalbumin (OVA) and aluminum, received OVA-releasing scaffolds. Vaccinated mice receiving OVA-releasing scaffolds locally concentrated antigen-specific TH2 T cells in the surrounding ischemic tissue. This resulted in local angiogenesis, increased perfusion in ischemic limbs, and reduced necrosis and enhanced regenerating myofibers in the muscle. These findings support the premise that antigen depots may provide a treatment for ischemic diseases in patients previously vaccinated with aluminum-containing adjuvants.
Collapse
Affiliation(s)
- Brian J. Kwee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alexander J. Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Aileen W. Li
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ting-Yu Shih
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Des White
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
373
|
Jin SS, He DQ, Luo D, Wang Y, Yu M, Guan B, Fu Y, Li ZX, Zhang T, Zhou YH, Wang CY, Liu Y. A Biomimetic Hierarchical Nanointerface Orchestrates Macrophage Polarization and Mesenchymal Stem Cell Recruitment To Promote Endogenous Bone Regeneration. ACS NANO 2019; 13:6581-6595. [PMID: 31125522 DOI: 10.1021/acsnano.9b00489] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The host immune response to bone biomaterials is vital in determining scaffold fates and bone regeneration outcomes. The nanometer-scale interface of biomaterials, which independently controls physical inputs to cells, regulates osteogenic differentiation of stem cells and local immune response. Herein, we fabricated biomimetic hierarchical intrafibrillarly mineralized collagen (HIMC) with a bone-like staggered nanointerface and investigated its immunomodulatory properties and mesenchymal stem cell (MSC) recruitment during endogenous bone regeneration. The acquired HIMC potently induced neo-bone formation by promoting CD68+CD163+ M2 macrophage polarization and CD146+STRO-1+ host MSC recruitment in critical-sized bone defects. Mechanistically, HIMC facilitated M2 macrophage polarization and interleukin (IL)-4 secretion to promote MSC osteogenic differentiation. An anti-IL4 neutralizing antibody significantly reduced M2 macrophage-mediated osteogenic differentiation of MSCs. Moreover, HIMC-loaded-IL-4 implantation into critical-sized mandible defects dramatically enhanced bone regeneration and CD68+CD163+ M2 macrophage polarization. The depletion of monocyte/macrophages by clodronate liposomes significantly impaired bone regeneration by HIMC, but did not affect MSC recruitment. Thus, in emulating natural design, the hierarchical nanointerface possesses the capacity to recruit host MSCs and promote endogenous bone regeneration by immunomodulation of macrophage polarization through IL-4.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Biomimetic Materials/chemistry
- Biomimetic Materials/pharmacology
- Bone Regeneration
- Calcium/chemistry
- Cell Differentiation
- Cells, Cultured
- Collagen/chemistry
- Humans
- Interleukin-4/chemistry
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/metabolism
- Mesenchymal Stem Cells/cytology
- Nanoconjugates/chemistry
- Rats
- Rats, Sprague-Dawley
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- THP-1 Cells
- Tissue Scaffolds/chemistry
Collapse
Affiliation(s)
- Shan-Shan Jin
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics , Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081 , China
| | - Dan-Qing He
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics , Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081 , China
| | - Dan Luo
- Institute of New Energy , China University of Petroleum (Beijing) , Beijing 102249 , China
| | - Yu Wang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics , Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081 , China
| | - Min Yu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics , Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081 , China
| | - Bo Guan
- Beijing National Laboratory for Molecular Science, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Yu Fu
- Fourth Division , Peking University Hospital of Stomatology , Beijing 100025 , China
| | - Zi-Xin Li
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics , Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081 , China
| | - Ting Zhang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics , Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081 , China
| | - Yan-Heng Zhou
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics , Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081 , China
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry , University of California Los Angeles , Los Angeles , California 90095 , United States
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics , Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081 , China
| |
Collapse
|
374
|
Tang T, Weng T, Jia H, Luo S, Xu Y, Li L, Zhang P. Harnessing the layer-by-layer assembly technique to design biomaterials vaccines for immune modulation in translational applications. Biomater Sci 2019; 7:715-732. [PMID: 30762040 DOI: 10.1039/c8bm01219a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The existence of challenging diseases such as cancers, HIV and Zika requires developing new vaccines that can generate tunable and robust immune responses against the diseases. Biomaterials-based techniques have been broadly explored for designing vaccines that can produce controllable and potent immunity. Among the existing biomaterials-based strategies, the layer-by-layer (LbL) assembly technique is remarkably attractive in vaccine design due to its unique features such as programmed and versatile cargo loading, cargo protection, co-delivery, juxtaposing of immune signals, etc. In this work, we reviewed the existing LbL-based vaccine design techniques for translational applications. Specifically, we discussed nanovaccines constructed by coating polyelectrolyte multilayers (PEMs) on nanoparticles, microcapsule vaccines assembled from PEMs, polyplex/complex vaccines condensed from charged materials and microneedle vaccines deposited with PEMs, highlighting the employment of these techniques to promote immunity against diseases ranging from cancers to infectious and autoimmune diseases (i.e., HIV, influenza, multiple sclerosis, etc.). Additionally, the review specifically emphasized using LbL-based vaccine technologies for tuning the cellular and molecular pathways, demonstrating the unique advantages presented by these vaccination strategies. These studies showed the versatility and potency of using LbL-based techniques for designing the next generation of biomaterials vaccines for translational purposes.
Collapse
Affiliation(s)
- Tan Tang
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, China.
| | | | | | | | | | | | | |
Collapse
|
375
|
Cytokine Regulation from Human Peripheral Blood Leukocytes Cultured In Vitro with Silver Doped Bioactive Glasses Microparticles. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3210530. [PMID: 31309105 PMCID: PMC6594341 DOI: 10.1155/2019/3210530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/21/2019] [Indexed: 12/27/2022]
Abstract
Bioactive glasses (BG) applications include tissue engineering for bone regeneration, coating for implants, and scaffolds for wound healing. BG can be conjugated to ions like silver, which might add some antimicrobial properties to this biomaterial. The immunomodulatory activity of ion-doped bioactive glasses particles was not investigated before. The aim of this work was to evaluate the cytotoxic and immunomodulatory effect of BG and silver-doped bioactive glass (BGAg) in human peripheral blood cells. BG and BGAg samples belonging to the system 58SiO2•(36-x)CaO·6P2O5·xAg2O, where x = 0 and 1 mol%, respectively, were synthesized via sol–gel method and characterized. Cytotoxicity, modulation of cytokine production (TNF-α, IL-1β, IL-6, IL-4, and IL-10), and oxidative stress response were investigated in human polymorphonuclear cells (PMNs) and peripheral blood mononuclear cells (PBMCs) cultures. Cell viability in the presence of BG or BGAg was concentration-dependent. In addition, BGAg presented higher PBMCs toxicity (LC50 = 0.005%) when compared to BG (LC50 = 0.106%). Interestingly, interleukin4 was produced by PBMCs in response to BG and BGAg in absence of phytohemagglutinin (PHA) and did not modulate PHA-induced cytokine levels. Subtoxic concentrations (0.031% for BG and 0.0008% for BGAg) did not change other cytokines in PBMCs nor reactive oxygen species (ROS) production by PMN. However, BG and BGAg particles decreased zymosan-induced ROS levels in PMN. Although ion incorporation increased BG cytotoxicity, the bioactive glass particles demonstrated a in vitro anti-inflammatory potencial. Future studies are needed to clarify the scavenger potential of the BG/BGAg particles/scaffolds as well as elucidate the effect of the anti-inflammatory potential in modulating tissue growth in vivo.
Collapse
|
376
|
Abstract
Biomaterials as we know them today had their origins in the late 1940s with off-the-shelf commercial polymers and metals. The evolution of materials for medical applications from these simple origins has been rapid and impactful. This review relates some of the early history; addresses concerns after two decades of development in the twenty-first century; and discusses how advanced technologies in both materials science and biology will address concerns, advance materials used at the biointerface, and improve outcomes for patients.
Collapse
Affiliation(s)
- Buddy D. Ratner
- Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
377
|
Chu C, Wang Y, Wang Y, Yang R, Liu L, Rung S, Xiang L, Wu Y, Du S, Man Y, Qu Y. Evaluation of epigallocatechin-3-gallate (EGCG) modified collagen in guided bone regeneration (GBR) surgery and modulation of macrophage phenotype. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:73-82. [DOI: 10.1016/j.msec.2019.01.083] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023]
|
378
|
Pan D, Hunter DA, Schellhardt L, Jo S, Santosa KB, Larson EL, Fuchs AG, Snyder-Warwick AK, Mackinnon SE, Wood MD. The accumulation of T cells within acellular nerve allografts is length-dependent and critical for nerve regeneration. Exp Neurol 2019; 318:216-231. [PMID: 31085199 DOI: 10.1016/j.expneurol.2019.05.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022]
Abstract
Repair of traumatic nerve injuries can require graft material to bridge the defect. The use of alternatives to bridge the defect, such as acellular nerve allografts (ANAs), is becoming more common and desired. Although ANAs support axon regeneration across short defects (<3 cm), axon regeneration across longer defects (>3 cm) is limited. It is unclear why alternatives, including ANAs, are functionally limited by length. After repairing Lewis rat nerve defects using short (2 cm) or long (4 cm) ANAs, we showed that long ANAs have severely reduced axon regeneration across the grafts and contain Schwann cells with a unique phenotype. But additionally, we found that long ANAs have disrupted angiogenesis and altered leukocyte infiltration compared to short ANAs as early as 2 weeks after repair. In particular, long ANAs contained fewer T cells compared to short ANAs. These outcomes were accompanied with reduced expression of select cytokines, including IFN-γ and IL-4, within long versus short ANAs. T cells within ANAs did not express elevated levels of IL-4, but expressed elevated levels of IFN-γ. We also directly assessed the contribution of T cells to regeneration across nerve grafts using athymic rats. Interestingly, T cell deficiency had minimal impact on axon regeneration across nerve defects repaired using isografts. Conversely, T cell deficiency reduced axon regeneration across nerve defects repaired using ANAs. Our data demonstrate that T cells contribute to nerve regeneration across ANAs and suggest that reduced T cells accumulation within long ANAs could contribute to limiting axon regeneration across these long ANAs.
Collapse
Affiliation(s)
- Deng Pan
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel A Hunter
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lauren Schellhardt
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sally Jo
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine B Santosa
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ellen L Larson
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anja G Fuchs
- Section of Acute and Critical Care Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E Mackinnon
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew D Wood
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
379
|
Forget A, Gianni-Barrera R, Uccelli A, Sarem M, Kohler E, Fogli B, Muraro MG, Bichet S, Aumann K, Banfi A, Shastri VP. Mechanically Defined Microenvironment Promotes Stabilization of Microvasculature, Which Correlates with the Enrichment of a Novel Piezo-1 + Population of Circulating CD11b + /CD115 + Monocytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808050. [PMID: 30924979 DOI: 10.1002/adma.201808050] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Vascularization is a critical step in the restoration of cellular homeostasis. Several strategies including localized growth factor delivery, endothelial progenitor cells, genetically engineered cells, gene therapy, and prevascularized implants have been explored to promote revascularization. But, long-term stabilization of newly induced vessels remains a challenge. It has been shown that fibroblasts and mesenchymal stem cells can stabilize newly induced vessels. However, whether an injected biomaterial alone can serve as an instructive environment for angiogenesis remains to be elucidated. It is reported here that appropriate vascular branching, and long-term stabilization can be promoted simply by implanting a hydrogel with stiffness matching that of fibrin clot. A unique subpopulation of circulating CD11b+ myeloid and CD11b+ /CD115+ monocytes that express the stretch activated cation channel Piezo-1, which is enriched prominently in the clot-like hydrogel, is identified. These findings offer evidence for a mechanobiology paradigm in angiogenesis involving an interplay between mechanosensitive circulating cells and mechanics of tissue microenvironment.
Collapse
Affiliation(s)
- Aurelien Forget
- Institute for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Roberto Gianni-Barrera
- Department of Biomedicine, University of Basel, Basel, 4056, Switzerland
- Department of Surgery, University Hospital Basel, Basel, 4056, Switzerland
| | - Andrea Uccelli
- Department of Biomedicine, University of Basel, Basel, 4056, Switzerland
- Department of Surgery, University Hospital Basel, Basel, 4056, Switzerland
| | - Melika Sarem
- Institute for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Esther Kohler
- Institute for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Barbara Fogli
- Department of Biomedicine, University of Basel, Basel, 4056, Switzerland
| | - Manuele G Muraro
- Department of Biomedicine, University of Basel, Basel, 4056, Switzerland
- Department of Surgery, University Hospital Basel, Basel, 4056, Switzerland
| | - Sandrine Bichet
- Friedrich Miescher Institute for Biomedical Research, Basel, 4058, Switzerland
| | - Konrad Aumann
- Institute for Surgical Pathology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Andrea Banfi
- Department of Biomedicine, University of Basel, Basel, 4056, Switzerland
- Department of Surgery, University Hospital Basel, Basel, 4056, Switzerland
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
380
|
De Santa F, Vitiello L, Torcinaro A, Ferraro E. The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration. Antioxid Redox Signal 2019; 30:1553-1598. [PMID: 30070144 DOI: 10.1089/ars.2017.7420] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Macrophages are crucial for tissue homeostasis. Based on their activation, they might display classical/M1 or alternative/M2 phenotypes. M1 macrophages produce pro-inflammatory cytokines, reactive oxygen species (ROS), and nitric oxide (NO). M2 macrophages upregulate arginase-1 and reduce NO and ROS levels; they also release anti-inflammatory cytokines, growth factors, and polyamines, thus promoting angiogenesis and tissue healing. Moreover, M1 and M2 display key metabolic differences; M1 polarization is characterized by an enhancement in glycolysis and in the pentose phosphate pathway (PPP) along with a decreased oxidative phosphorylation (OxPhos), whereas M2 are characterized by an efficient OxPhos and reduced PPP. Recent Advances: The glutamine-related metabolism has been discovered as crucial for M2 polarization. Vice versa, flux discontinuities in the Krebs cycle are considered additional M1 features; they lead to increased levels of immunoresponsive gene 1 and itaconic acid, to isocitrate dehydrogenase 1-downregulation and to succinate, citrate, and isocitrate over-expression. Critical Issues: A macrophage classification problem, particularly in vivo, originating from a gap in the knowledge of the several intermediate polarization statuses between the M1 and M2 extremes, characterizes this field. Moreover, the detailed features of metabolic reprogramming crucial for macrophage polarization are largely unknown; in particular, the role of β-oxidation is highly controversial. Future Directions: Manipulating the metabolism to redirect macrophage polarization might be useful in various pathologies, including an efficient skeletal muscle regeneration. Unraveling the complexity pertaining to metabolic signatures that are specific for the different macrophage subsets is crucial for identifying new compounds that are able to trigger macrophage polarization and that might be used for therapeutical purposes.
Collapse
Affiliation(s)
- Francesca De Santa
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Rome, Italy
| | - Laura Vitiello
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Alessio Torcinaro
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Rome, Italy.,Department of Biology and Biotechnology "Charles Darwin," Sapienza University, Rome, Italy
| | - Elisabetta Ferraro
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
381
|
Allogenic tissue-specific decellularized scaffolds promote long-term muscle innervation and functional recovery in a surgical diaphragmatic hernia model. Acta Biomater 2019; 89:115-125. [PMID: 30851456 DOI: 10.1016/j.actbio.2019.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a neonatal defect in which the diaphragm muscle does not develop properly, thereby raising abdominal organs into the thoracic cavity and impeding lung development and function. Large diaphragmatic defects require correction with prosthetic patches to close the malformation. This treatment leads to a consequent generation of unwelcomed mechanical stress in the repaired diaphragm and hernia recurrences, thereby resulting in high morbidity and significant mortality rates. We proposed a specific diaphragm-derived extracellular matrix (ECM) as a scaffold for the treatment of CDH. To address this strategy, we developed a new surgical CDH mouse model to test the ability of our tissue-specific patch to regenerate damaged diaphragms. Implantation of decellularized diaphragmatic ECM-derived patches demonstrated absence of rejection or hernia recurrence, in contrast to the performance of a commercially available synthetic material. Diaphragm-derived ECM was able to promote the generation of new blood vessels, boost long-term muscle regeneration, and recover host diaphragmatic function. In addition, using a GFP + Schwann cell mouse model, we identified re-innervation of implanted patches. These results demonstrated for the first time that implantation of a tissue-specific biologic scaffold is able to promote a regenerating diaphragm muscle and overcome issues commonly related to the standard use of prosthetic materials. STATEMENT OF SIGNIFICANCE: Large diaphragmatic hernia in paediatric patients require application of artificial patches to close the congenital defect. The use of a muscle-specific decellularized scaffold in substitution of currently used synthetic materials allows new blood vessel growth and nerve regeneration inside the patch, supporting new muscle tissue formation. Furthermore, the presence of a tissue-specific scaffold guaranteed long-term muscle regeneration, improving diaphragm performance to almost complete functional recovery. We believe that diaphragm-derived scaffold will be key player in future pre-clinical studies on large animal models.
Collapse
|
382
|
Leach DG, Young S, Hartgerink JD. Advances in immunotherapy delivery from implantable and injectable biomaterials. Acta Biomater 2019; 88:15-31. [PMID: 30771535 PMCID: PMC6632081 DOI: 10.1016/j.actbio.2019.02.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Macroscale biomaterials, such as preformed implantable scaffolds and injectable soft materials, possess powerful synergies with anti-cancer immunotherapies. Immunotherapies on their own typically have poor delivery properties, and often require repeated high-dose injections that result in serious off-tumor effects and/or limited efficacy. Rationally designed biomaterials allow for discrete localization and controlled release of immunotherapeutic agents, and have been shown in a large number of applications to improve outcomes in the treatment of cancers via immunotherapy. Among various strategies, macroscale biomaterial delivery systems can take the form of robust tablet-like scaffolds that are surgically implanted into a tumor resection site, releasing programmed immune cells or immunoregulatory agents. Alternatively they can be developed as soft gel-like materials that are injected into solid tumors or sites of resection to stimulate a potent anti-tumor immune response. Biomaterials synthesized from diverse components such as polymers and peptides can be combined with any immunotherapy in the modern toolbox, from checkpoint inhibitors and stimulatory adjuvants, to cancer antigens and adoptive T cells, resulting in unique synergies and improved therapeutic efficacy. The field is growing rapidly in size as publications continue to appear in the literature, and biomaterial-based immunotherapies are entering clinical trials and human patients. It is unarguably an exciting time for cancer immunotherapy and biomaterial researchers, and further work seeks to understand the most critical design considerations in the development of the next-generation of immunotherapeutic biomaterials. This review will discuss recent advances in the delivery of immunotherapies from localized biomaterials, focusing on macroscale implantable and injectable systems. STATEMENT OF SIGNIFICANCE: Anti-cancer immunotherapies have shown exciting clinical results in the past few decades, yet they suffer from a few distinct limitations, such as poor delivery kinetics, narrow patient response profiles, and systemic side effects. Biomaterial systems are now being developed that can overcome many of these problems, allowing for localized adjuvant delivery, focused dose concentrations, and extended therapy presentation. The field of biocompatible carrier materials is uniquely suited to be combined with immunotherapy, promising to yield significant improvements in treatment outcomes and clinical care. In this review, the first pioneering efforts and most recent advances in biomaterials for immunotherapeutic applications are explored, with a specific focus on implantable and injectable biomaterials such as porous scaffolds, cryogels, and hydrogels.
Collapse
Affiliation(s)
- David G Leach
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, TX 77005, United States
| | - Simon Young
- Department of Oral & Maxillofacial Surgery, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Jeffrey D Hartgerink
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, TX 77005, United States.
| |
Collapse
|
383
|
Rowley AT, Nagalla RR, Wang S, Liu WF. Extracellular Matrix-Based Strategies for Immunomodulatory Biomaterials Engineering. Adv Healthc Mater 2019; 8:e1801578. [PMID: 30714328 DOI: 10.1002/adhm.201801578] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/08/2019] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) is a complex and dynamic structural scaffold for cells within tissues and plays an important role in regulating cell function. Recently it has become appreciated that the ECM contains bioactive motifs that can directly modulate immune responses. This review describes strategies for engineering immunomodulatory biomaterials that utilize natural ECM-derived molecules and have the potential to harness the immune system for applications ranging from tissue regeneration to drug delivery. A top-down approach utilizes full-length ECM proteins, including collagen, fibrin, or hyaluronic acid-based materials, as well as matrices derived from decellularized tissue. These materials have the benefit of maintaining natural conformation and structure but are often heterogeneous and encumber precise control. By contrast, a bottom-up approach leverages immunomodulatory domains, such as Arg-Gly-Asp (RGD), matrix metalloproteinase (MMP)-sensitive peptides, or leukocyte-associated immunoglobulin-like receptor-1(LAIR-1) ligands, by incorporating them into synthetic materials. These materials have tunable control over immune cell functions and allow for combinatorial approaches. However, the synthetic approach lacks the full natural context of the original ECM protein. These two approaches provide a broad range of engineering techniques for immunomodulation through material interactions and hold the potential for the development of future therapeutic applications.
Collapse
Affiliation(s)
- Andrew T. Rowley
- Department of Chemical and Biomolecular EngineeringUniversity of California Irvine CA 92697 USA
| | - Raji R. Nagalla
- Department of Biomedical EngineeringUniversity of California Irvine CA 92697 USA
| | - Szu‐Wen Wang
- Department of Chemical and Biomolecular EngineeringUniversity of California Irvine CA 92697 USA
- Department of Biomedical EngineeringUniversity of California Irvine CA 92697 USA
- Department of Materials Science and EngineeringUniversity of California Irvine CA 92697 USA
| | - Wendy F. Liu
- Department of Chemical and Biomolecular EngineeringUniversity of California Irvine CA 92697 USA
- Department of Biomedical EngineeringUniversity of California Irvine CA 92697 USA
- The Edwards Lifesciences Center for Advanced Cardiovascular TechnologyUniversity of California Irvine CA 92697 USA
| |
Collapse
|
384
|
Veiseh O, Vegas AJ. Domesticating the foreign body response: Recent advances and applications. Adv Drug Deliv Rev 2019; 144:148-161. [PMID: 31491445 PMCID: PMC6774350 DOI: 10.1016/j.addr.2019.08.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 01/03/2023]
Abstract
The foreign body response is an immunological process that leads to the rejection of implanted devices and presents a fundamental challenge to their performance, durability, and therapeutic utility. Recent advances in materials development and device design are now providing strategies to overcome this immune-mediated reaction. Here, we briefly review our current mechanistic understanding of the foreign body response and highlight new anti-FBR technologies from this decade that have been applied successfully in biomedical applications relevant to implants, devices, and cell-based therapies. Further development of these important technologies promises to enable new therapies, diagnostics, and revolutionize the management of patient care for many intractable diseases.
Collapse
Affiliation(s)
- Omid Veiseh
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77030, USA.
| | - Arturo J Vegas
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA.
| |
Collapse
|
385
|
Wu RX, He XT, Zhu JH, Yin Y, Li X, Liu X, Chen FM. Modulating macrophage responses to promote tissue regeneration by changing the formulation of bone extracellular matrix from filler particles to gel bioscaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:330-340. [PMID: 31029326 DOI: 10.1016/j.msec.2019.03.107] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
Extracellular matrices (ECMs) derived from native tissues/organs have been used as biomaterials for tissue engineering and regenerative medicine in a wide range of preclinical and clinical settings. The success or failure of these applications is largely contingent on the host responses to the matrices in vivo. Despite retaining their native structural and functional proteins, bone ECM-based transplants have been reported to evoke adverse immune responses in many cases; thus, optimizing the immunomodulatory properties of bone ECMs is critical for ensuring downstream regenerative outcomes. Using a simple digestion-neutralization protocol, we transformed the commonly used bone-derived filler particles into gel bioscaffolds. Instead of inducing macrophages toward proinflammatory (M1) polarization, as reported in the literature and confirmed in the present study for ECM particles, the ECM gels were found to be more likely to polarize macrophages toward regulatory/anti-inflammatory (M2) phenotypes, leading to enhanced tissue regeneration in a rat periodontal defect model. The present work demonstrates a simple, practical and economical strategy to modify the immunomodulatory properties of bone ECMs before their in vivo transplantation and hence has important implications that may facilitate the use of ECM-based bioscaffolds derived from diverse sources of tissues for regenerative purposes.
Collapse
Affiliation(s)
- Rui-Xin Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, China; Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, United States
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, China
| | - Jin-Hao Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, China
| | - Xuan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, China
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, United States.
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, China.
| |
Collapse
|
386
|
Kang H, Wong SHD, Pan Q, Li G, Bian L. Anisotropic Ligand Nanogeometry Modulates the Adhesion and Polarization State of Macrophages. NANO LETTERS 2019; 19:1963-1975. [PMID: 30740982 DOI: 10.1021/acs.nanolett.8b05150] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Material implants trigger host reactions generated by cells, such as macrophages, which display dynamic adhesion and polarization including M1 inflammatory state and M2 anti-inflammatory state. Creating materials that enable diverse nanoscale display of integrin-binding groups, such as RGD ligand, can unravel nanoscale recruitment and ligation of integrin, which modulate cellular adhesion and activation. Here, we synthesized gold nanorods (GNRs) with various nanoscale anisotropies (i.e., aspect ratios, ARs), but in similar surface areas, and controlled their substrate conjugation to display an anisotropic ligand nanogeometry without modulating ligand density. Using nanoscale immunolabeling, we demonstrated that highly anisotropic ligand-coated GNRs ("AR4" and "AR7") facilitated the recruitment of integrin β1 on macrophages to their nanoscale surfaces. Consequently, highly anisotropic GNRs (e.g., "AR4" and "AR7") elevated the adhesion and M2 state of macrophages, with the inhibition of their M1 state in the culture and mice, entailing rho-associated protein kinase. This nanoscale anisotropic nanogeometry provides a novel and critical parameter to be considered in the generation of biomaterials to potentially modulate host reactions to the implants for immunomodulatory tissue regeneration.
Collapse
Affiliation(s)
- Heemin Kang
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Hong Kong , China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Hong Kong , China
| | - Qi Pan
- Department of Orthopaedics & Traumatology, Faculty of Medicine , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong , China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong , China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Faculty of Medicine , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong , China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences , The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin , Hong Kong , China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System , The Chinese University of Hong Kong , Hong Kong , China
| | - Liming Bian
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Hong Kong , China
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China
- China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou , Zhejiang , China
- Shenzhen Research Institute , The Chinese University of Hong Kong , Hong Kong , China
| |
Collapse
|
387
|
Kuczek DE, Larsen AMH, Thorseth ML, Carretta M, Kalvisa A, Siersbæk MS, Simões AMC, Roslind A, Engelholm LH, Noessner E, Donia M, Svane IM, Straten PT, Grøntved L, Madsen DH. Collagen density regulates the activity of tumor-infiltrating T cells. J Immunother Cancer 2019; 7:68. [PMID: 30867051 PMCID: PMC6417085 DOI: 10.1186/s40425-019-0556-6] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/04/2019] [Indexed: 11/14/2022] Open
Abstract
Background Tumor progression is accompanied by dramatic remodeling of the surrounding extracellular matrix leading to the formation of a tumor-specific ECM, which is often more collagen-rich and of increased stiffness. The altered ECM of the tumor supports cancer growth and metastasis, but it is unknown if this effect involves modulation of T cell activity. To investigate if a high-density tumor-specific ECM could influence the ability of T cells to kill cancer cells, we here studied how T cells respond to 3D culture in different collagen densities. Methods T cells cultured in 3D conditions surrounded by a high or low collagen density were imaged using confocal fluorescent microscopy. The effects of the different collagen densities on T cell proliferation, survival, and differentiation were examined using flow cytometry. Cancer cell proliferation in similar 3D conditions was also measured. Triple-negative breast cancer specimens were analyzed for the number of infiltrating CD8+ T cells and for the collagen density. Whole-transcriptome analyses were applied to investigate in detail the effects of collagen density on T cells. Computational analyses were used to identify transcription factors involved in the collagen density-induced gene regulation. Observed changes were confirmed by qRT-PCR analysis. Results T cell proliferation was significantly reduced in a high-density matrix compared to a low-density matrix and prolonged culture in a high-density matrix led to a higher ratio of CD4+ to CD8+ T cells. The proliferation of cancer cells was unaffected by the surrounding collagen-density. Consistently, we observed a reduction in the number of infiltrating CD8+ T-cells in mammary tumors with high collagen-density indicating that collagen-density has a role in regulating T cell abundance in human breast cancer. Whole-transcriptome analysis of 3D-cultured T cells revealed that a high-density matrix induces downregulation of cytotoxic activity markers and upregulation of regulatory T cell markers. These transcriptional changes were predicted to involve autocrine TGF-β signaling and they were accompanied by an impaired ability of tumor-infiltrating T cells to kill autologous cancer cells. Conclusions Our study identifies a new immune modulatory mechanism, which could be essential for suppression of T cell activity in the tumor microenvironment. Electronic supplementary material The online version of this article (10.1186/s40425-019-0556-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dorota E Kuczek
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Anne Mette H Larsen
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital Herlev, Herlev, Denmark.,Roskilde University Center, Roskilde, Denmark
| | - Marie-Louise Thorseth
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Marco Carretta
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Adrija Kalvisa
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Majken S Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ana Micaela C Simões
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Anne Roslind
- Department of Pathology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Lars H Engelholm
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Elfriede Noessner
- Immunoanalytics: Tissue control of Immunocytes, German Research Center for Environmental Health, Helmholtz Zentrum München, Munich, Germany
| | - Marco Donia
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Per Thor Straten
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital Herlev, Herlev, Denmark.,Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Daniel H Madsen
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital Herlev, Herlev, Denmark. .,Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark.
| |
Collapse
|
388
|
Southern WM, Nichenko AS, Tehrani KF, McGranahan MJ, Krishnan L, Qualls AE, Jenkins NT, Mortensen LJ, Yin H, Yin A, Guldberg RE, Greising SM, Call JA. PGC-1α overexpression partially rescues impaired oxidative and contractile pathophysiology following volumetric muscle loss injury. Sci Rep 2019; 9:4079. [PMID: 30858541 PMCID: PMC6411870 DOI: 10.1038/s41598-019-40606-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/20/2019] [Indexed: 12/26/2022] Open
Abstract
Volumetric muscle loss (VML) injury is characterized by a non-recoverable loss of muscle fibers due to ablative surgery or severe orthopaedic trauma, that results in chronic functional impairments of the soft tissue. Currently, the effects of VML on the oxidative capacity and adaptability of the remaining injured muscle are unclear. A better understanding of this pathophysiology could significantly shape how VML-injured patients and clinicians approach regenerative medicine and rehabilitation following injury. Herein, the data indicated that VML-injured muscle has diminished mitochondrial content and function (i.e., oxidative capacity), loss of mitochondrial network organization, and attenuated oxidative adaptations to exercise. However, forced PGC-1α over-expression rescued the deficits in oxidative capacity and muscle strength. This implicates physiological activation of PGC1-α as a limiting factor in VML-injured muscle's adaptive capacity to exercise and provides a mechanistic target for regenerative rehabilitation approaches to address the skeletal muscle dysfunction.
Collapse
Affiliation(s)
- William M Southern
- Department of Kinesiology, University of Georgia, Athens, GA, 30602, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Anna S Nichenko
- Department of Kinesiology, University of Georgia, Athens, GA, 30602, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Kayvan F Tehrani
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | | | - Laxminarayanan Krishnan
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anita E Qualls
- Department of Kinesiology, University of Georgia, Athens, GA, 30602, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Nathan T Jenkins
- Department of Kinesiology, University of Georgia, Athens, GA, 30602, USA
| | - Luke J Mortensen
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Hang Yin
- Center for Molecular Medicine, University of Georgia, Athens, GA, 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Amelia Yin
- Center for Molecular Medicine, University of Georgia, Athens, GA, 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert E Guldberg
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403, USA
| | - Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, GA, 30602, USA. .,Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
389
|
Liu W, Dan X, Lu WW, Zhao X, Ruan C, Wang T, Cui X, Zhai X, Ma Y, Wang D, Huang W, Pan H. Spatial Distribution of Biomaterial Microenvironment pH and Its Modulatory Effect on Osteoclasts at the Early Stage of Bone Defect Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9557-9572. [PMID: 30720276 DOI: 10.1021/acsami.8b20580] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is generally accepted that biodegradable materials greatly influence the nearby microenvironment where cells reside; however, the range of interfacial properties has seldom been discussed due to technical bottlenecks. This study aims to depict biomaterial microenvironment boundaries by correlating interfacial H+ distribution with surrounding cell behaviors. Using a disuse-related osteoporotic mouse model, we confirmed that the abnormal activated osteoclasts could be suppressed under relatively alkaline conditions. The differentiation and apatite-resorption capability of osteoclasts were "switched off" when cultured in titrated material extracts with pH values higher than 7.8. To generate a localized alkaline microenvironment, a series of borosilicates were fabricated and their interfacial H+ distributions were monitored spatiotemporally by employing noninvasive microtest technology. By correlating interfacial H+ distribution with osteoclast "switch on/off" behavior, the microenvironment boundary of the tested material was found to be 400 ± 50 μm, which is broader than the generally accepted value, 300 μm. Furthermore, osteoporotic mice implanted with materials with higher interfacial pH values and boarder effective ranges had lower osteoclast activities and a thicker new bone. To conclude, effective proton microenvironment boundaries of degradable biomaterials were depicted and a weak alkaline microenvironment was shown to promote regeneration of osteoporotic bones possibly by suppressing abnormal activated osteoclasts.
Collapse
Affiliation(s)
- Wenlong Liu
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , 999077 Hong Kong , China
| | - William W Lu
- Department of Orthopaedics and Traumatology, Faculty of Medicine , The University of Hong Kong , 999077 Hong Kong , China
| | - Xiaoli Zhao
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Ting Wang
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics , The University of Hong Kong-Shenzhen Hospital, University of Hong Kong , Shenzhen 518053 , China
| | - Xu Cui
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Xinyun Zhai
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
- Department of Orthopaedics and Traumatology, Faculty of Medicine , The University of Hong Kong , 999077 Hong Kong , China
| | - Yufei Ma
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Deping Wang
- Institute of Bioengineering and Information Technology Materials, School of Materials Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Wenhai Huang
- Institute of Bioengineering and Information Technology Materials, School of Materials Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Haobo Pan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| |
Collapse
|
390
|
Evaluation of epigallocatechin-3-gallate (EGCG)-modified scaffold determines macrophage recruitment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:505-513. [PMID: 30948087 DOI: 10.1016/j.msec.2019.03.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 02/09/2019] [Accepted: 03/02/2019] [Indexed: 02/05/2023]
Abstract
Biomaterials based on the modulation of macrophages have gained increased attention recently. Macrophages are generally divided into the pro-inflammatory M1 and pro-regenerative M2 phenotypes. Macrophages play a pivotal role in bone regeneration by regulating osteoblast differentiation and secreting pro-regenerative factors. In the present study, epigallocatechin-3-gallate (EGCG)-modified collagen membranes downregulated the expression of inflammatory factors and promoted the recruitment of M2 macrophages, as evidenced by the expression of M2 macrophage markers (CD163 and CD206). It is further demonstrated that the recruitment of M2 macrophages may be involved with CC chemokine receptor type 2 (CCR2) signaling, with a significant downregulation of CD206 following CCR2 knockout. These results suggested that EGCG-modified collagen membranes may modulate the recruitment of macrophages and can be applied to guided bone regeneration and guided tissue regeneration.
Collapse
|
391
|
Comparison of the host macrophage response to synthetic and biologic surgical meshes used for ventral hernia repair. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.regen.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
392
|
Fan Z, Deng J, Li PY, Chery DR, Su Y, Zhu P, Kambayashi T, Blankenhorn EP, Han L, Cheng H. A new class of biological materials: Cell membrane-derived hydrogel scaffolds. Biomaterials 2019; 197:244-254. [PMID: 30669015 PMCID: PMC6369705 DOI: 10.1016/j.biomaterials.2019.01.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 11/18/2022]
Abstract
Biological materials are superior to synthetic biomaterials in biocompatibility and active interactions with cells. Here, a new class of biological materials, cell membrane-derived hydrogel scaffolds are reported for harnessing these advantages. To form macroporous scaffolds, vesicles derived from red blood cell membranes (RBCMs) are chemically crosslinked via cryogelation. The RBCM scaffolds with a pore size of around 70 μm are soft and injectable. Highly biocompatible scaffolds are typically made of superhydrophilic polymers and lack the ability to encapsulate and release hydrophobic drugs in a controlled manner. However, hydrophobic molecules can be efficiently encapsulated inside RBCM scaffolds and be sustainedly released. RBCM scaffolds show low neutrophil infiltration after subcutaneous injection in mice, and a significantly higher number of infiltrated macrophages than methacrylate alginate (MA-alginate) scaffolds. According to gene expression and surface markers, these macrophages have an M2-like phenotype, which is anti-inflammatory and immune suppressive. There are also higher percentages of macrophages presenting immunosuppressive PD-L1 in RBCM-scaffolds than in MA-alginate scaffolds. Interestingly, the concentrations of anti-inflammatory cytokine, IL-10 in both types of scaffolds are higher than those in normal organ tissues. This study sheds light on cell membrane-derived hydrogels, which can actively modulate cells in unique ways unavailable to existing hydrogel scaffolds.
Collapse
Affiliation(s)
- Zhiyuan Fan
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Junjie Deng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA; School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325011, China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Peter Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Daphney R Chery
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Yunfei Su
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325011, China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Pu Zhu
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elizabeth P Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
393
|
Anderson SE, Han WM, Srinivasa V, Mohiuddin M, Ruehle MA, Moon JY, Shin E, San Emeterio CL, Ogle ME, Botchwey EA, Willett NJ, Jang YC. Determination of a Critical Size Threshold for Volumetric Muscle Loss in the Mouse Quadriceps. Tissue Eng Part C Methods 2019; 25:59-70. [PMID: 30648479 PMCID: PMC6389771 DOI: 10.1089/ten.tec.2018.0324] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
IMPACT STATEMENT The goal of this study was to determine the threshold for a critically sized, nonhealing muscle defect by characterizing key components in the balance between fibrosis and regeneration as a function of injury size in the mouse quadriceps. There is currently limited understanding of what leads to a critically sized muscle defect and which muscle regenerative components are functionally impaired. With the substantial increase in preclinical VML models as testbeds for tissue engineering therapeutics, defining the critical threshold for VML injuries will be instrumental in characterizing therapeutic efficacy and potential for subsequent translation.
Collapse
Affiliation(s)
- Shannon E. Anderson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Woojin M. Han
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Vunya Srinivasa
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Mahir Mohiuddin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Marissa A. Ruehle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - June Young Moon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Eunjung Shin
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Cheryl L. San Emeterio
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Molly E. Ogle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Edward A. Botchwey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Nick J. Willett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Department of Orthopedics, Emory University, Atlanta, Georgia
- Atlanta Veteran's Affairs Medical Center, Decatur, Georgia
| | - Young C. Jang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory Unversity, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
394
|
Sadtler K, Wolf MT, Ganguly S, Moad CA, Chung L, Majumdar S, Housseau F, Pardoll DM, Elisseeff JH. Divergent immune responses to synthetic and biological scaffolds. Biomaterials 2019; 192:405-415. [DOI: 10.1016/j.biomaterials.2018.11.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022]
|
395
|
Tissue-derived microparticles reduce inflammation and fibrosis in cornea wounds. Acta Biomater 2019; 85:192-202. [PMID: 30579044 PMCID: PMC9924072 DOI: 10.1016/j.actbio.2018.12.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Biological materials derived from the extracellular matrix (ECM) of tissues serve as scaffolds for rebuilding tissues and for improved wound healing. Cornea trauma represents a wound healing challenge as the default repair pathway can result in fibrosis and scar formation that limit vision. Effective treatments are needed to reduce inflammation, promote tissue repair, and retain the tissue's native transparency and vision capacity. Tissue microparticles derived from cornea, cartilage and lymph nodes were processed and screened in vitro for their ability to reduce inflammation in ocular surface cells isolated from the cornea stroma, conjunctiva, and lacrimal gland. Addition of ECM particles to the media reduced expression of inflammatory genes and restored certain tear film protein production in vitro. Particles derived from lymph nodes were then applied to a rabbit lamellar keratectomy corneal injury model. Application of the tissue particles in a fibrin glue carrier decreased expression of inflammatory and fibrotic genes and scar formation as measured through imaging, histology and immunohistochemistry. In sum, immunomodulatory tissue microparticles may provide a new therapeutic tool for reducing inflammation in the cornea and ocular surface and promoting tissue repair. STATEMENT OF SIGNIFICANCE: Damaged cornea will result in scar tissue formation that impedes vision, and new therapies are needed to enhance wound healing in the cornea and to prevent fibrosis. We evaluated the effects of biological scaffolds derived extracellular matrix (ECM) during corneal wound healing. These ECM particles reduced inflammatory gene expression and restored tear film production in vitro, and reduced scar formation and fibrosis genes in the wounded cornea, when applied to in vivo lamellar keratectomy injury model. The immunomodulatory tissue microparticles may provide a new therapeutic tool for reducing inflammation in the cornea and ocular surface and promoting proper tissue repair.
Collapse
|
396
|
Hussey GS, Dziki JL, Lee YC, Bartolacci JG, Behun M, Turnquist HR, Badylak SF. Matrix bound nanovesicle-associated IL-33 activates a pro-remodeling macrophage phenotype via a non-canonical, ST2-independent pathway. ACTA ACUST UNITED AC 2019; 3:26-35. [PMID: 31656879 DOI: 10.1016/j.regen.2019.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The regenerative healing response of injured skeletal muscle is dependent upon an appropriately timed switch from a local type-I to a type-II immune response. Biologic scaffolds derived from extracellular matrix (ECM) have been shown to facilitate a macrophage phenotype transition that leads to downstream site-appropriate functional tissue deposition and myogenesis. However, the mechanisms by which ECM directs the switching of immune cell phenotype are only partially understood. Herein, we provide the first evidence that matrix bound nanovesicles (MBV) embedded within ECM-scaffolds are a rich and stable source of interleukin-33 (IL-33), an alarmin/cytokine with emerging reparative properties. We show that IL-33 encapsulated within MBV bypass the classical IL33/ST2 receptor signaling pathway to direct macrophage differentiation into the reparative, pro-remodeling M2 phenotype, which in turn facilitates myogenesis of skeletal muscle progenitor cells. Our results suggest the potential of IL-33+ MBV as a clinical therapy to augment the restorative efficacy of existing ECM-based and non-ECM based approaches.
Collapse
Affiliation(s)
- George S Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA.,Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Jenna L Dziki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA.,Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Yoojin C Lee
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA.,Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15261, USA
| | - Joseph G Bartolacci
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA.,Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15261, USA
| | - Marissa Behun
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA
| | - Hēth R Turnquist
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA.,Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA.,Thomas E. Starzl Transplantation Institute, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA.,Department of Immunology, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA.,Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA.,Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15261, USA
| |
Collapse
|
397
|
Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 2019; 20:ijms20030636. [PMID: 30717232 PMCID: PMC6386828 DOI: 10.3390/ijms20030636] [Citation(s) in RCA: 383] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing.
Collapse
|
398
|
Abstract
Biomaterials can promote endogenous healing without delivering cells or therapeutics
Collapse
Affiliation(s)
- Karen L Christman
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
399
|
Chang F, Wang Y, Liu P, Peng J, Han GH, Ding X, Wei S, Gao G, Huang K. Role of macrophages in peripheral nerve injury and repair. Neural Regen Res 2019; 14:1335. [DOI: https:/doi.org/10.4103/1673-5374.253510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
|
400
|
Zhang C, Qiao Y, Huang L, Li F, Zhang Z, Ping Y, Shen Z, Lian J, Li F, Zhao L, Zhang Y. Regulatory T cells were recruited by CCL3 to promote cryo-injured muscle repair. Immunol Lett 2018; 204:29-37. [PMID: 30321562 DOI: 10.1016/j.imlet.2018.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
Abstract
Skeletal muscle injury is a common symptom in daily life. After injury, a distinct population of regulatory T cells (Tregs) will infiltrate skeletal muscle in acute and chronic injury sites. However, the mechanism by which Tregs rapidly accumulate to the site of acute injury remains unclear. BALB/c mice were used to establish a cryo-injured model. Percentage of Tregs in the normal and cryo-injured tissues was detected on different days by flow cytometry. Then, the major factors that contribute to the repair of skeletal muscle by Tregs and the chemokines associated with the chemotaxis of Tregs in the paired muscle were analyzed by qRT-PCR. Finally, Tregs were sorted out by magnetic beads and the transwell analysis was performed in vitro. Compared to the normal muscle, the proportion of Tregs was dramatically-increased in the cryo-injured muscle on day 4. These Tregs produced high level of repair related factors such as amphiregulin (Areg), IL-10 and TGF-β in the cryo-injured muscle. In addition, we found that CCL3, CCL4, CCL5 were the main chemokines that highly expressed in the injured skeletal muscle compared to the normal skeletal muscle. Simultaneously, their receptors CCR1 and CCR5 were highly expressed on Tregs in cryo-injured muscle compared with the normal muscle. Transwell analysis showed CCL3 can significantly chemotize Tregs and the antibody of CCR1 could reverse the chemotaxis in vitro. These results suggest that Tregs in the cryo-injured muscle play a pivotal role that can promote the regeneration of skeletal muscle and CCL3 may serve as the key chemokine to recruit Tregs to the injury sites.
Collapse
Affiliation(s)
- Chaoqi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yamin Qiao
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Feng Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhibo Shen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jingyao Lian
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lixuan Zhao
- Department of Cardiac surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, China.
| |
Collapse
|