351
|
van Nierop GP, de Vries AAF, Holkers M, Vrijsen KR, Gonçalves MAFV. Stimulation of homology-directed gene targeting at an endogenous human locus by a nicking endonuclease. Nucleic Acids Res 2009; 37:5725-36. [PMID: 19651880 PMCID: PMC2761290 DOI: 10.1093/nar/gkp643] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/17/2009] [Accepted: 07/19/2009] [Indexed: 11/12/2022] Open
Abstract
Homologous recombination (HR) is a highly accurate mechanism of DNA repair that can be exploited for homology-directed gene targeting. Since in most cell types HR occurs very infrequently (approximately 10(-6) to 10(-8)), its practical application has been largely restricted to specific experimental systems that allow selection of the few cells that become genetically modified. HR-mediated gene targeting has nonetheless revolutionized genetics by greatly facilitating the analysis of mammalian gene function. Recent studies showed that generation of double-strand DNA breaks at specific loci by designed endonucleases greatly increases the rate of homology-directed gene repair. These findings opened new perspectives for HR-based genome editing in higher eukaryotes. Here, we demonstrate by using donor DNA templates together with the adeno-associated virus (AAV) Rep78 and Rep68 proteins that sequence- and strand-specific cleavage at a native, predefined, human locus can also greatly enhance homology-directed gene targeting. Our findings argue for the development of other strategies besides direct induction of double-strand chromosomal breaks to achieve efficient and heritable targeted genetic modification of cells and organisms. Finally, harnessing the cellular HR pathway through Rep-mediated nicking expands the range of strategies that make use of AAV elements to bring about stable genetic modification of human cells.
Collapse
Affiliation(s)
| | | | | | | | - Manuel A. F. V. Gonçalves
- Virus and Stem Cell Biology Laboratory, Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
352
|
Shimizu Y, Bhakta MS, Segal DJ. Restricted spacer tolerance of a zinc finger nuclease with a six amino acid linker. Bioorg Med Chem Lett 2009; 19:3970-2. [PMID: 19289279 PMCID: PMC2709702 DOI: 10.1016/j.bmcl.2009.02.109] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 02/25/2009] [Accepted: 02/26/2009] [Indexed: 11/26/2022]
Abstract
Zinc finger nucleases can be engineered to create highly efficient and precise changes to the genetic information within living cells. We report the investigation of an important parameter that defines the type of target site the nuclease can cleave. The active nuclease is a dimer, requiring that the DNA target site contain two zinc finger binding sites separated by a short spacer. Using a plasmid-based recombination assay in HEK 293T cells, we show that a 6 amino acid linker between the zinc finger DNA-binding domain and the FokI cleavage domain restricts nuclease activity to sites containing a 6 bp spacer. These observations concur with other recent studies, suggesting this information will be useful in the design of new potent and accurate zinc finger nucleases.
Collapse
Affiliation(s)
- Yuka Shimizu
- University of California, Davis, Genome Center and Department of Pharmacology, Davis, CA 95616
| | - Mital S. Bhakta
- University of California, Davis, Genome Center and Department of Pharmacology, Davis, CA 95616
| | - David J. Segal
- University of California, Davis, Genome Center and Department of Pharmacology, Davis, CA 95616
| |
Collapse
|
353
|
Mittelman D, Moye C, Morton J, Sykoudis K, Lin Y, Carroll D, Wilson JH. Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells. Proc Natl Acad Sci U S A 2009; 106:9607-12. [PMID: 19482946 PMCID: PMC2701052 DOI: 10.1073/pnas.0902420106] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Indexed: 01/12/2023] Open
Abstract
Expanded triplet repeats have been identified as the genetic basis for a growing number of neurological and skeletal disorders. To examine the contribution of double-strand break repair to CAG x CTG repeat instability in mammalian systems, we developed zinc finger nucleases (ZFNs) that recognize and cleave CAG repeat sequences. Engineered ZFNs use a tandem array of zinc fingers, fused to the FokI DNA cleavage domain, to direct double-strand breaks (DSBs) in a site-specific manner. We first determined that the ZFNs cleave CAG repeats in vitro. Then, using our previously described tissue culture assay for identifying modifiers of CAG repeat instability, we found that transfection of ZFN-expression vectors induced up to a 15-fold increase in changes to the CAG repeat in human and rodent cell lines, and that longer repeats were much more sensitive to cleavage than shorter ones. Analysis of individual colonies arising after treatment revealed a spectrum of events consistent with ZFN-induced DSBs and dominated by repeat contractions. We also found that expressing a dominant-negative form of RAD51 in combination with a ZFN, dramatically reduced the effect of the nuclease, suggesting that DSB-induced repeat instability is mediated, in part, through homology directed repair. These studies identify a ZFN as a useful reagent for characterizing the effects of DSBs on CAG repeats in cells.
Collapse
Affiliation(s)
- David Mittelman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030; and
| | - Christopher Moye
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
| | - Jason Morton
- Department of Biochemistry, University of Utah School of Medicine,Salt Lake City, UT 84112
| | - Kristen Sykoudis
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
| | - Yunfu Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
| | - Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine,Salt Lake City, UT 84112
| | - John H. Wilson
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030; and
| |
Collapse
|
354
|
Lippow SM, Aha PM, Parker MH, Blake WJ, Baynes BM, Lipovsek D. Creation of a type IIS restriction endonuclease with a long recognition sequence. Nucleic Acids Res 2009; 37:3061-73. [PMID: 19304757 PMCID: PMC2685105 DOI: 10.1093/nar/gkp182] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 02/27/2009] [Accepted: 03/05/2009] [Indexed: 12/19/2022] Open
Abstract
Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6 nt from the target site to generate homogeneous, 5', four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases.
Collapse
|
355
|
Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 2009; 459:437-41. [PMID: 19404259 DOI: 10.1038/nature07992] [Citation(s) in RCA: 492] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 03/17/2009] [Indexed: 11/09/2022]
Abstract
Agricultural biotechnology is limited by the inefficiencies of conventional random mutagenesis and transgenesis. Because targeted genome modification in plants has been intractable, plant trait engineering remains a laborious, time-consuming and unpredictable undertaking. Here we report a broadly applicable, versatile solution to this problem: the use of designed zinc-finger nucleases (ZFNs) that induce a double-stranded break at their target locus. We describe the use of ZFNs to modify endogenous loci in plants of the crop species Zea mays. We show that simultaneous expression of ZFNs and delivery of a simple heterologous donor molecule leads to precise targeted addition of an herbicide-tolerance gene at the intended locus in a significant number of isolated events. ZFN-modified maize plants faithfully transmit these genetic changes to the next generation. Insertional disruption of one target locus, IPK1, results in both herbicide tolerance and the expected alteration of the inositol phosphate profile in developing seeds. ZFNs can be used in any plant species amenable to DNA delivery; our results therefore establish a new strategy for plant genetic manipulation in basic science and agricultural applications.
Collapse
Affiliation(s)
- Vipula K Shukla
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, Indiana 46268, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Sanders KL, Catto LE, Bellamy SRW, Halford SE. Targeting individual subunits of the FokI restriction endonuclease to specific DNA strands. Nucleic Acids Res 2009; 37:2105-15. [PMID: 19223323 PMCID: PMC2673415 DOI: 10.1093/nar/gkp046] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Many restriction endonucleases are dimers that act symmetrically at palindromic DNA sequences, with each active site cutting one strand. In contrast, FokI acts asymmetrically at a non-palindromic sequence, cutting ‘top’ and ‘bottom’ strands 9 and 13 nucleotides downstream of the site. FokI is a monomeric protein with one active site and a single monomer covers the entire recognition sequence. To cut both strands, the monomer at the site recruits a second monomer from solution, but it is not yet known which DNA strand is cut by the monomer bound to the site and which by the recruited monomer. In this work, mutants of FokI were used to show that the monomer bound to the site made the distal cut in the bottom strand, whilst the recruited monomer made in parallel the proximal cut in the top strand. Procedures were also established to direct FokI activity, either preferentially to the bottom strand or exclusively to the top strand. The latter extends the range of enzymes for nicking specified strands at specific sequences, and may facilitate further applications of FokI in gene targeting.
Collapse
Affiliation(s)
- Kelly L Sanders
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
357
|
Tovkach A, Zeevi V, Tzfira T. A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:747-57. [PMID: 18980651 DOI: 10.1111/j.1365-313x.2008.03718.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The induction of double-strand breaks (DSBs) in plant genomes can lead to increased homologous recombination or site-specific mutagenesis at the repair site. This phenomenon has the potential for use in gene targeting applications in plant cells upon the induction of site-specific genomic DSBs using zinc finger nucleases (ZFNs). Zinc finger nucleases are artificial restriction enzymes, custom-designed to cleave a specific DNA sequence. The tools and methods for ZFN assembly and validation could potentially boost their application for plant gene targeting. Here we report on the design of biochemical and in planta methods for the analysis of newly designed ZFNs. Cloning begins with de novo assembly of the DNA-binding regions of new ZFNs from overlapping oligonucleotides containing modified helices responsible for DNA-triplet recognition, and the fusion of the DNA-binding domain with a FokI endonuclease domain in a dedicated plant expression cassette. Following the transfer of fully assembled ZFNs into Escherichia coli expression vectors, bacterial lysates were found to be most suitable for in vitro digestion analysis of palindromic target sequences. A set of three in planta activity assays was also developed to confirm the nucleic acid digestion activity of ZFNs in plant cells. The assays are based on the reconstruction of GUS expression following transient or stable delivery of a mutated uidA and ZFN-expressing cassettes into target plants cells. Our tools and assays offer cloning flexibility and simple assembly of tested ZFNs and their corresponding target sites into Agrobacterium tumefaciens binary plasmids, allowing efficient implementation of ZFN-validation assays in planta.
Collapse
Affiliation(s)
- Andriy Tovkach
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
358
|
Kandavelou K, Chandrasegaran S. Custom-designed molecular scissors for site-specific manipulation of the plant and mammalian genomes. Methods Mol Biol 2009; 544:617-36. [PMID: 19488728 PMCID: PMC2921164 DOI: 10.1007/978-1-59745-483-4_40] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
Zinc finger nucleases (ZFNs) are custom-designed molecular scissors, engineered to cut at specific DNA sequences. ZFNs combine the zinc finger proteins (ZFPs) with the nonspecific cleavage domain of the FokI restriction enzyme. The DNA-binding specificity of ZFNs can be easily altered experimentally. This easy manipulation of the ZFN recognition specificity enables one to deliver a targeted double-strand break (DSB) to a genome. The targeted DSB stimulates local gene targeting by several orders of magnitude at that specific cut site via homologous recombination (HR). Thus, ZFNs have become an important experimental tool to make site-specific and permanent alterations to genomes of not only plants and mammals but also of many other organisms. Engineering of custom ZFNs involves many steps. The first step is to identify a ZFN site at or near the chosen chromosomal target within the genome to which ZFNs will bind and cut. The second step is to design and/or select various ZFP combinations that will bind to the chosen target site with high specificity and affinity. The DNA coding sequence for the designed ZFPs are then assembled by polymerase chain reaction (PCR) using oligonucleotides. The third step is to fuse the ZFP constructs to the FokI cleavage domain. The ZFNs are then expressed as proteins by using the rabbit reticulocyte in vitro transcription/translation system and the protein products assayed for their DNA cleavage specificity.
Collapse
Affiliation(s)
- Karthikeyan Kandavelou
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
359
|
Händel EM, Alwin S, Cathomen T. Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Mol Ther 2009; 17:104-11. [PMID: 19002164 PMCID: PMC2834978 DOI: 10.1038/mt.2008.233] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 09/23/2008] [Indexed: 01/15/2023] Open
Abstract
Precise manipulations of complex genomes by zinc-finger nucleases (ZFNs) depend on site-specific DNA cleavage, which requires two ZFN subunits to bind to two target half-sites separated by a spacer of 6 base pairs (bp). ZFN subunits consist of a specific DNA-binding domain and a nonspecific cleavage domain, connected by a short inter-domain linker. In this study, we conducted a systematic analysis of 11 candidate-based linkers using episomal and chromosomal targets in two human cell lines. We achieved gene targeting in up to 20% of transfected cells and identified linker variants that enforce DNA cleavage at narrowly defined spacer lengths and linkers that expand the repertoire of potential target sites. For instance, a nine amino acid (aa) linker induced efficient gene conversion at chromosomal sites with 7- or 16-bp spacers, whereas 4-aa linkers had activity optima at 5- and 6-bp spacers. Notably, single aa substitutions in the 4-aa linker affected the ZFN activity significantly, and both gene conversion and ZFN-associated toxicity depended on the linker/spacer combination and the cell type. In summary, both sequence and length of the inter-domain linker determine ZFN activity and target-site specificity, and are therefore important parameters to account for when designing ZFNs for genome editing.
Collapse
Affiliation(s)
- Eva-Maria Händel
- Charité Medical School, Institute of Virology (CBF), Berlin, Germany
| | | | | |
Collapse
|
360
|
Cellular responses to targeted genomic sequence modification using single-stranded oligonucleotides and zinc-finger nucleases. DNA Repair (Amst) 2008; 8:298-308. [PMID: 19071233 DOI: 10.1016/j.dnarep.2008.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 10/23/2008] [Accepted: 11/05/2008] [Indexed: 01/27/2023]
Abstract
Single-stranded oligonucleotides (ssODNs) and zinc-finger nucleases (ZFNs) are two approaches that are being pursued to achieve sequence specific genome modification. ZFNs induce high rates of homologous recombination (HR) between the target sequence and a given donor by introducing site-specific genomic double-strand breaks (DSBs). The mode of action that is used by ssODNs remains largely unknown, but may involve genomic integration of the ssODNs. In this work, cellular responses following ssODN and ZFN mediated correction of a genomic reporter gene have been investigated in human cells. Comparison of the cell cycle distribution of corrected cells following ssODN or ZFN exposure, established that ssODN corrected cells were arrested in the late S and G2/M cell cycle phases, while ZFN corrected cells displayed normal cell cycle profiles. We demonstrate that after ssODN mediated gene correction, phosphorylation of the damage sensor protein H2AX could be observed in 5.8% and 29% of the corrected cells, using a single copy and a multi copy reporter, respectively. When using the ZFN strategy in a single copy reporter only 1.5% of the corrected cells were positive for gamma-H2AX staining. By direct detection of genomic DSBs we establish that the observed cell cycle arrest following ssODN mediated gene correction could be associated with the presence of unrepaired genomic DSBs. Lastly, we establish that although a mutant cellular mismatch repair (MMR) system as expected enhanced ssODN mediated gene correction, the capacity of the ssODN corrected cells to proliferate was not influenced by the MMR system. In conclusion gene correction by means of the ssODN strategy leads to activation of DNA damage signalling and cell cycle arrest due to formation of unrepaired genomic DSBs in a high proportion of the corrected cells. On the contrary, cells corrected using ZFNs displayed normal cell cycle distribution and lower rates of DNA damage.
Collapse
|
361
|
Beumer KJ, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG, Carroll D. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci U S A 2008; 105:19821-6. [PMID: 19064913 PMCID: PMC2604940 DOI: 10.1073/pnas.0810475105] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Indexed: 12/11/2022] Open
Abstract
We report very high gene targeting frequencies in Drosophila by direct embryo injection of mRNAs encoding specific zinc-finger nucleases (ZFNs). Both local mutagenesis via nonhomologous end joining (NHEJ) and targeted gene replacement via homologous recombination (HR) have been achieved in up to 10% of all targets at a given locus. In embryos that are wild type for DNA repair, the products are dominated by NHEJ mutations. In recipients deficient in the NHEJ component, DNA ligase IV, the majority of products arise by HR with a coinjected donor DNA, with no loss of overall efficiency in target modification. We describe the application of the ZFN injection procedure to mutagenesis by NHEJ of 2 new genes in Drosophila melanogaster: coil and pask. Pairs of novel ZFNs designed for targets within those genes led to the production of null mutations at each locus. The injection procedure is much more rapid than earlier approaches and makes possible the generation and recovery of targeted gene alterations at essentially any locus within 2 fly generations.
Collapse
Affiliation(s)
- Kelly J. Beumer
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650; and
| | - Jonathan K. Trautman
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650; and
| | - Ana Bozas
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650; and
| | - Ji-Long Liu
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650; and
| | - Joseph G. Gall
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
| | - Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112-5650; and
| |
Collapse
|
362
|
Amacher SL. Emerging gene knockout technology in zebrafish: zinc-finger nucleases. BRIEFINGS IN FUNCTIONAL GENOMICS & PROTEOMICS 2008; 7:460-4. [PMID: 19109309 PMCID: PMC2722258 DOI: 10.1093/bfgp/eln043] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
One advantage of the zebrafish model system is the ability to use forward genetics to reveal critical gene functions by their mutant phenotype. Reverse genetic tools are available, although it is more challenging and time-consuming to identify mutations in specific genes of interest and virtually impossible to induce mutations in a targeted manner. Two recent papers have shown that locus-specific zinc-finger nucleases (ZFNs) can be used to create mutations in investigator-specified loci at high frequency, generating considerable enthusiasm that the technology may be generally applicable to many zebrafish genes. The rate-limiting step in ZFN application is typically the zinc-finger protein (ZFP) design phase, partly because ZFPs that bind to intended target sequences in naked DNA may not recognize the target within chromatin, or may recognize cryptic sites. Importantly, both papers also provide new tools to validate or pre-select ZFNs that work well in vivo and thus greatly facilitate the identification of active ZFNs. Finally, work in other model systems and in cultured cells show that ZFNs can facilitate homology-directed repair, raising the exciting possibility that ZFNs may facilitate homologous recombination in zebrafish, allowing site-specific modification of endogenous genes via a method that does not require embryonic stem cell technology.
Collapse
Affiliation(s)
- Sharon L Amacher
- Department of Molecular and Cell Biology and Center for Integrative Genomics, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
363
|
Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Müller-Lerch F, Fu F, Pearlberg J, Göbel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB, Cathomen T, Voytas DF, Joung JK. Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 2008; 31:294-301. [PMID: 18657511 PMCID: PMC2535758 DOI: 10.1016/j.molcel.2008.06.016] [Citation(s) in RCA: 518] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 05/16/2008] [Accepted: 06/04/2008] [Indexed: 11/17/2022]
Abstract
Custom-made zinc-finger nucleases (ZFNs) can induce targeted genome modifications with high efficiency in cell types including Drosophila, C. elegans, plants, and humans. A bottleneck in the application of ZFN technology has been the generation of highly specific engineered zinc-finger arrays. Here we describe OPEN (Oligomerized Pool ENgineering), a rapid, publicly available strategy for constructing multifinger arrays, which we show is more effective than the previously published modular assembly method. We used OPEN to construct 37 highly active ZFN pairs which induced targeted alterations with high efficiencies (1%-50%) at 11 different target sites located within three endogenous human genes (VEGF-A, HoxB13, and CFTR), an endogenous plant gene (tobacco SuRA), and a chromosomally integrated EGFP reporter gene. In summary, OPEN provides an "open-source" method for rapidly engineering highly active zinc-finger arrays, thereby enabling broader practice, development, and application of ZFN technology for biological research and gene therapy.
Collapse
Affiliation(s)
- Morgan L Maeder
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Fomenkov A, Too PHM, Chan SH, Vaisvila R, Cantin BA, Mazzola L, Tam V, Xu SY. Targeting DNA 5mCpG sites with chimeric endonucleases. Anal Biochem 2008; 381:135-41. [PMID: 18638441 DOI: 10.1016/j.ab.2008.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 06/24/2008] [Accepted: 06/24/2008] [Indexed: 02/04/2023]
Abstract
Cytosine modification of the dinucleotide CpG in the DNA regulatory region is an important epigenetic marker during early embryo development, cellular differentiation, and cancer progression. In clinical settings, such as anti-cancer drug treatment, it is desirable to develop research tools to characterize DNA sequences affected by epigenetic perturbations. Here, we describe the construction and characterization of two fusion endonucleases consisting of the (5)mCpG-binding domain of human MeCP2 (hMeCP2) and the cleavage domains of BmrI and FokI restriction endonucleases (REases). The chimeric (CH) endonucleases cleave M.HpaII (C(5)mCGG)-and M.SssI ((5)mCpG)-modified DNA. Unmodified DNA and M.MspI-modified DNA ((5)mCCGG) are poor substrates for the CH-endonucleases. Sequencing cleavage products of modified lambda DNA indicates that cleavage takes place outside the (5)mCpG recognition sequence, predominantly 4-17 bp upstream of the modified base (/N(4-17)(5)mCpG, where / indicates the cleavage site). Such (5)mCpG-specific endonucleases will be useful to study CpG island modification of the regulatory regions of tumor suppressor genes, and for the construction of cell-specific and tumor-specific modified CpG island databases.
Collapse
Affiliation(s)
- Alexey Fomenkov
- New England Biolabs, Inc., 240 County Road. Ipswich, MA 01938-2723, USA
| | | | | | | | | | | | | | | |
Collapse
|
365
|
Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 2008; 26:808-16. [PMID: 18587387 PMCID: PMC3422503 DOI: 10.1038/nbt1410] [Citation(s) in RCA: 834] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 05/22/2008] [Indexed: 11/09/2022]
Abstract
Homozygosity for the naturally occurring Delta32 deletion in the HIV co-receptor CCR5 confers resistance to HIV-1 infection. We generated an HIV-resistant genotype de novo using engineered zinc-finger nucleases (ZFNs) to disrupt endogenous CCR5. Transient expression of CCR5 ZFNs permanently and specifically disrupted approximately 50% of CCR5 alleles in a pool of primary human CD4(+) T cells. Genetic disruption of CCR5 provided robust, stable and heritable protection against HIV-1 infection in vitro and in vivo in a NOG model of HIV infection. HIV-1-infected mice engrafted with ZFN-modified CD4(+) T cells had lower viral loads and higher CD4(+) T-cell counts than mice engrafted with wild-type CD4(+) T cells, consistent with the potential to reconstitute immune function in individuals with HIV/AIDS by maintenance of an HIV-resistant CD4(+) T-cell population. Thus adoptive transfer of ex vivo expanded CCR5 ZFN-modified autologous CD4(+) T cells in HIV patients is an attractive approach for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Elena E Perez
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, 421 Curie Blvd., Room 554, BRB II/III, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
366
|
Zinc-finger nucleases: the next generation emerges. Mol Ther 2008; 16:1200-1207. [PMID: 18545224 DOI: 10.1038/mt.2008.114] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 04/29/2008] [Indexed: 12/11/2022] Open
Abstract
Methods of modifying the human genome precisely and efficiently hold great promise for revolutionizing the gene therapy arena. One particularly promising technology is based on the homologous recombination (HR) pathway and is known as gene targeting. Until recently, the low frequency of HR in mammalian cells, and the resulting dependence on selection to identify these rare events, has prevented gene targeting from being applied in a therapeutic context. However, recent advances in generating customized zinc-finger nucleases (ZFNs) that can create a DNA double-strand break (DSB) at preselected sites in the human genome have paved the way for HR-based strategies in gene therapy. By introducing a DSB into a target locus of interest, ZFNs stimulate gene targeting by several orders of magnitude through activation of cellular DNA repair pathways. The capability of this technology to achieve gene conversion frequencies of up to 29% in the absence of selection demonstrates its potential power. In this paper we review recent advances in, and upcoming challenges for, this emerging technology and discuss future experimental work that will be needed to bring ZFNs safely into a clinical setting.
Collapse
|
367
|
Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 2008; 26:695-701. [PMID: 18500337 PMCID: PMC2502069 DOI: 10.1038/nbt1398] [Citation(s) in RCA: 571] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 04/15/2008] [Indexed: 11/09/2022]
Abstract
Direct genomic manipulation at a specific locus is still not feasible in most vertebrate model organisms. In vertebrate cell lines, genomic lesions at a specific site have been introduced using zinc-finger nucleases (ZFNs). Here we adapt this technology to create targeted mutations in the zebrafish germ line. ZFNs were engineered that recognize sequences in the zebrafish ortholog of the vascular endothelial growth factor-2 receptor, kdr (also known as kdra). Co-injection of mRNAs encoding these ZFNs into one-cell-stage zebrafish embryos led to mutagenic lesions at the target site that were transmitted through the germ line with high frequency. The use of engineered ZFNs to introduce heritable mutations into a genome obviates the need for embryonic stem cell lines and should be applicable to most animal species for which early-stage embryos are easily accessible.
Collapse
Affiliation(s)
- Xiangdong Meng
- Program in Gene Function and Expression, University of Massachusetts Medical School, Lazare Research Building, 6th Floor, 364 Plantation St., Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
368
|
Abstract
Homologous recombination is the most precise way to manipulate the genome. As a tool it has been used extensively in bacteria, yeast, murine embryonic stem cells, and a few other specialized cell lines but has not been available to researchers in other systems, such as for mammalian somatic cell genetics. Recently, work has shown that the creation of a gene-specific DNA double-strand break can stimulate homologous recombination by several thousand-fold in mammalian somatic cells. These double-strand breaks can now be created in mammalian genomes by zinc finger nucleases (ZFNs). ZFNs are artificial proteins in which a zinc finger DNA-binding domain is fused to a nonspecific nuclease domain. This chapter describes how to identify potential targets for ZFN cutting, to make ZFNs to cut this target site, and how to test whether the newly designed ZFNs are active in a mammalian cell culture-based system.
Collapse
Affiliation(s)
- Matthew Porteus
- Department of Pediatrics and Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
369
|
Comparison of zinc finger nucleases for use in gene targeting in mammalian cells. Mol Ther 2008; 16:707-17. [PMID: 18334988 DOI: 10.1038/mt.2008.20] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Homologous recombination is a technique used for performing precise genomic manipulations, and this makes it potentially ideal for gene therapy. The rate of spontaneous homologous recombination in human cells has been too low to be used experimentally or therapeutically but, by inducing a DNA double-strand break (DSB) in the target gene this rate can be stimulated. Zinc finger nucleases (ZFNs) are synthetic fusion proteins that can induce DSBs at specific sequences of DNA and stimulate gene targeting. Although the success of ZFNs in this application has been demonstrated, several issues remain. First, an optimal, generalized method of making effective and safe ZFNs needs to be determined. Second, a systematic method of evaluating the efficiency and safety of ZFNs is needed. We compared the gene-targeting efficiencies and cytotoxicity of ZFNs made using modular-assembly and ZFNs made using a bacterial 2-hybrid (B2H) selection-based method, in each case targeting the same single site. We found that a ZFN pair made using the B2H strategy is more efficient at stimulating gene targeting and less toxic than a pair made using modular-assembly. We demonstrate that a pair of three-finger B2H ZFNs is as efficient at stimulating gene targeting as ZFNs with more fingers, and induce similar or lower rates of toxicity.
Collapse
|
370
|
Porteus M. Using homologous recombination to manipulate the genome of human somatic cells. Biotechnol Genet Eng Rev 2008; 24:195-212. [PMID: 18059634 DOI: 10.1080/02648725.2007.10648100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Matthew Porteus
- Departments of Pediatrics and Biochemistry, UT Southwestern Medical Center Dallas, TX 75214, USA.
| |
Collapse
|
371
|
Carroll D, Beumer KJ, Morton JJ, Bozas A, Trautman JK. Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases. Methods Mol Biol 2008; 435:63-77. [PMID: 18370068 DOI: 10.1007/978-1-59745-232-8_5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Zinc-finger nucleases (ZFNs) are promising new tools for enhancing the efficiency of gene targeting in many organisms. Because of the flexibility of zinc finger DNA recognition, ZFNs can be designed to bind many different genomic sequences. The double-strand breaks they create are repaired by cellular processes that generate new mutations at the cleavage site. In addition, the breaks can be repaired by homologous recombination with an exogenous donor DNA, allowing the experimenter to introduce designed sequence alterations. We describe the construction of ZFNs for novel targets and their application to targeted mutagenesis and targeted gene replacement in Drosophila melanogaster and Caenorhabditis elegans.
Collapse
Affiliation(s)
- Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | | | | |
Collapse
|
372
|
Cathomen T, Segal DJ, Brondani V, Müller-Lerch F. Generation and functional analysis of zinc finger nucleases. Methods Mol Biol 2008; 434:277-90. [PMID: 18470651 DOI: 10.1007/978-1-60327-248-3_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The recent development of artificial endonucleases with tailored specificities has opened the door for a wide range of new applications, including the correction of mutated genes directly in the chromosome. This kind of gene therapy is based on homologous recombination, which can be stimulated by the creation of a targeted DNA double-strand break (DSB) near the site of the desired recombination event. Artificial nucleases containing zinc finger DNA-binding domains have provided important proofs of concept, showing that inserting a DSB in the target locus leads to gene correction frequencies of 1-18% in human cells. In this paper, we describe how zinc finger nucleases are assembled by polymerase chain reaction (PCR) and present two methods to assess these custom nucleases quickly in vitro and in a cell-based recombination assay.
Collapse
Affiliation(s)
- Toni Cathomen
- Charité Medical School, Institute of Virology, Berlin, Germany
| | | | | | | |
Collapse
|
373
|
Cornu TI, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M, Joung JK, Joung JK, Cathomen T. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther 2007; 16:352-358. [PMID: 18026168 DOI: 10.1038/sj.mt.6300357] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 10/15/2007] [Indexed: 11/10/2022] Open
Abstract
The engineering of proteins to manipulate cellular genomes has developed into a promising technology for biomedical research, including gene therapy. In particular, zinc-finger nucleases (ZFNs), which consist of a nonspecific endonuclease domain tethered to a tailored zinc-finger (ZF) DNA-binding domain, have proven invaluable for stimulating homology-directed gene repair in a variety of cell types. However, previous studies demonstrated that ZFNs could be associated with significant cytotoxicity due to cleavage at off-target sites. Here, we compared the in vitro affinities and specificities of nine ZF DNA-binding domains with their performance as ZFNs in human cells. The results of our cell-based assays reveal that the DNA-binding specificity--in addition to the affinity--is a major determinant of ZFN activity and is inversely correlated with ZFN-associated toxicity. In addition, our data provide the first evidence that engineering strategies, which account for context-dependent DNA-binding effects, yield ZFs that function as highly efficient ZFNs in human cells.
Collapse
Affiliation(s)
- Tatjana I Cornu
- Charité Medical School, Institute of Virology (CBF), Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
374
|
Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD, Holmes MC, Naldini L. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007; 25:1298-306. [PMID: 17965707 DOI: 10.1038/nbt1353] [Citation(s) in RCA: 654] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 10/09/2007] [Indexed: 11/08/2022]
Abstract
Achieving the full potential of zinc-finger nucleases (ZFNs) for genome engineering in human cells requires their efficient delivery to the relevant cell types. Here we exploited the infectivity of integrase-defective lentiviral vectors (IDLV) to express ZFNs and provide the template DNA for gene correction in different cell types. IDLV-mediated delivery supported high rates (13-39%) of editing at the IL-2 receptor common gamma-chain gene (IL2RG) across different cell types. IDLVs also mediated site-specific gene addition by a process that required ZFN cleavage and homologous template DNA, thus establishing a platform that can target the insertion of transgenes into a predetermined genomic site. Using IDLV delivery and ZFNs targeting distinct loci, we observed high levels of gene addition (up to 50%) in a panel of human cell lines, as well as human embryonic stem cells (5%), allowing rapid, selection-free isolation of clonogenic cells with the desired genetic modification.
Collapse
Affiliation(s)
- Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy, via Olgettina, 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Abstract
Custom-designed zinc finger nucleases (ZFNs)--proteins designed to cut at specific DNA sequences--combine the non-specific cleavage domain (N) of Fok I restriction endonuclease with zinc finger proteins (ZFPs). Because the recognition specificities of the ZFPs can be easily manipulated experimentally, ZFNs offer a general way to deliver a targeted site-specific double-strand break (DSB) to the genome. They have become powerful tools for enhancing gene targeting--the process of replacing a gene within a genome of cells via homologous recombination (HR)--by several orders of magnitude. ZFN-mediated gene targeting thus confers molecular biologists with the ability to site-specifically and permanently alter not only plant and mammalian genomes but also many other organisms by stimulating HR via a targeted genomic DSB. Site-specific engineering of the plant and mammalian genome in cells so far has been hindered by the low frequency of HR. In ZFN-mediated gene targeting, this is circumvented by using designer ZFNs to cut at the desired chromosomal locus inside the cells. The DNA break is then patched up using the new investigator-provided genetic information and the cells' own repair machinery. The accuracy and high efficiency of the HR process combined with the ability to design ZFNs that target most DNA sequences (if not all) makes ZFN technology not only a powerful research tool for site-specific manipulation of the plant and mammalian genomes, but also potentially for human therapeutics in the future, in particular for targeted engineering of the human genome of clinically transplantable stem cells.
Collapse
Affiliation(s)
- J. Wu
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205 USA
| | - K. Kandavelou
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205 USA
| | - S. Chandrasegaran
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205 USA
| |
Collapse
|
376
|
Chan SH, Bao Y, Ciszak E, Laget S, Xu SY. Catalytic domain of restriction endonuclease BmrI as a cleavage module for engineering endonucleases with novel substrate specificities. Nucleic Acids Res 2007; 35:6238-48. [PMID: 17855396 PMCID: PMC2094064 DOI: 10.1093/nar/gkm665] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Creating endonucleases with novel sequence specificities provides more possibilities to manipulate DNA. We have created a chimeric endonuclease (CH-endonuclease) consisting of the DNA cleavage domain of BmrI restriction endonuclease and C.BclI, a controller protein of the BclI restriction-modification system. The purified chimeric endonuclease, BmrI198-C.BclI, cleaves DNA at specific sites in the vicinity of the recognition sequence of C.BclI. Double-strand (ds) breaks were observed at two sites: 8 bp upstream and 18 bp within the C-box sequence. Using DNA substrates with deletions of C-box sequence, we show that the chimeric endonuclease requires the 5' half of the C box only for specific cleavage. A schematic model is proposed for the mode of protein-DNA binding and DNA cleavage. The present study demonstrates that the BmrI cleavage domain can be used to create combinatorial endonucleases that cleave DNA at specific sequences dictated by the DNA-binding partner. The resulting endonucleases will be useful in vitro and in vivo to create ds breaks at specific sites and generate deletions.
Collapse
Affiliation(s)
| | | | | | | | - Shuang-yong Xu
- *To whom correspondence should be addressed. +1 978 380 7287+1 978 921 1350
| |
Collapse
|
377
|
Sander JD, Zaback P, Joung JK, Voytas DF, Dobbs D. Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res 2007; 35:W599-605. [PMID: 17526515 PMCID: PMC1933188 DOI: 10.1093/nar/gkm349] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 04/16/2007] [Accepted: 04/23/2007] [Indexed: 01/22/2023] Open
Abstract
Zinc Finger Targeter (ZiFiT) is a simple and intuitive web-based tool that facilitates the design of zinc finger proteins (ZFPs) that can bind to specific DNA sequences. The current version of ZiFiT is based on a widely employed method of ZFP design, the 'modular assembly' approach, in which pre-existing individual zinc fingers are linked together to recognize desired target DNA sequences. Several research groups have described experimentally characterized zinc finger modules that bind many of the 64 possible DNA triplets. ZiFiT leverages the combined capabilities of three of the largest and best characterized module archives by enabling users to select fingers from any of these sets. ZiFiT searches a query DNA sequence for target sites for which a ZFP can be designed using modules available in one or more of the three archives. In addition, ZiFiT output facilitates identification of specific zinc finger modules that are publicly available from the Zinc Finger Consortium. ZiFiT is freely available at http://bindr.gdcb.iastate.edu/ZiFiT/.
Collapse
Affiliation(s)
- Jeffry D Sander
- Department of Genetics, Development & Cell Biology; Bioinformatics & Computational Biology Program, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | |
Collapse
|
378
|
Szczepek M, Brondani V, Büchel J, Serrano L, Segal DJ, Cathomen T. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 2007; 25:786-93. [PMID: 17603476 DOI: 10.1038/nbt1317] [Citation(s) in RCA: 394] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 06/04/2007] [Indexed: 11/09/2022]
Abstract
Artificial endonucleases consisting of a FokI cleavage domain tethered to engineered zinc-finger DNA-binding proteins have proven useful for stimulating homologous recombination in a variety of cell types. Because the catalytic domain of zinc-finger nucleases (ZFNs) must dimerize to become active, two subunits are typically assembled as heterodimers at the cleavage site. The use of ZFNs is often associated with significant cytotoxicity, presumably due to cleavage at off-target sites. Here we describe a structure-based approach to reducing off-target cleavage. Using in silico protein modeling and energy calculations, we increased the specificity of target site cleavage by preventing homodimerization and lowering the dimerization energy. Cell-based recombination assays confirmed that the modified ZFNs were as active as the original ZFNs but elicit significantly less genotoxicity. The improved safety profile may facilitate therapeutic application of the ZFN technology.
Collapse
Affiliation(s)
- Michal Szczepek
- Charité Medical School, Institute of Virology (CBF), 12203 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
379
|
Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey RJ, Hirsh AS, Eichtinger M, Fu F, Porteus MH, Dobbs D, Voytas DF, Joung JK. Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 2007; 1:1637-52. [PMID: 17406455 DOI: 10.1038/nprot.2006.259] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Engineered zinc finger nucleases can stimulate gene targeting at specific genomic loci in insect, plant and human cells. Although several platforms for constructing artificial zinc finger arrays using "modular assembly" have been described, standardized reagents and protocols that permit rapid, cross-platform "mixing-and-matching" of the various zinc finger modules are not available. Here we describe a comprehensive, publicly available archive of plasmids encoding more than 140 well-characterized zinc finger modules together with complementary web-based software (termed ZiFiT) for identifying potential zinc finger target sites in a gene of interest. Our reagents have been standardized on a single platform, enabling facile mixing-and-matching of modules and transfer of assembled arrays to expression vectors without the need for specialized knowledge of zinc finger sequences or complicated oligonucleotide design. We also describe a bacterial cell-based reporter assay for rapidly screening the DNA-binding activities of assembled multi-finger arrays. This protocol can be completed in approximately 24-26 d.
Collapse
Affiliation(s)
- David A Wright
- Department of Genetics, Development & Cell Biology, Iowa State University, 1035A Roy J. Carver Co-Lab, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
380
|
Meng X, Thibodeau-Beganny S, Jiang T, Joung JK, Wolfe SA. Profiling the DNA-binding specificities of engineered Cys2His2 zinc finger domains using a rapid cell-based method. Nucleic Acids Res 2007; 35:e81. [PMID: 17537811 PMCID: PMC1920264 DOI: 10.1093/nar/gkm385] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The C2H2 zinc finger is the most commonly utilized framework for engineering DNA-binding domains with novel specificities. Many different selection strategies have been developed to identify individual fingers that possess a particular DNA-binding specificity from a randomized library. In these experiments, each finger is selected in the context of a constant finger framework that ensures the identification of clones with a desired specificity by properly positioning the randomized finger on the DNA template. Following a successful selection, multiple zinc-finger clones are typically recovered that share similarities in the sequences of their DNA-recognition helices. In principle, each of the clones isolated from a selection is a candidate for assembly into a larger multi-finger protein, but to date a high-throughput method for identifying the most specific candidates for incorporation into a final multi-finger protein has not been available. Here we describe the development of a specificity profiling system that facilitates rapid and inexpensive characterization of engineered zinc-finger modules. Moreover, we demonstrate that specificity data collected using this system can be employed to rationally design zinc fingers with improved DNA-binding specificities.
Collapse
Affiliation(s)
- Xiangdong Meng
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01605 USA, Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, 149 13th Street, 7th floor, Charlestown, MA 02129 USA and Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| | - Stacey Thibodeau-Beganny
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01605 USA, Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, 149 13th Street, 7th floor, Charlestown, MA 02129 USA and Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| | - Tao Jiang
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01605 USA, Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, 149 13th Street, 7th floor, Charlestown, MA 02129 USA and Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| | - J. Keith Joung
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01605 USA, Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, 149 13th Street, 7th floor, Charlestown, MA 02129 USA and Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| | - Scot A. Wolfe
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01605 USA, Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, 149 13th Street, 7th floor, Charlestown, MA 02129 USA and Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
- *To whom correspondence should be addressed. 508 856 3953508 856 5460
| |
Collapse
|
381
|
Horner SM, DiMaio D. The DNA binding domain of a papillomavirus E2 protein programs a chimeric nuclease to cleave integrated human papillomavirus DNA in HeLa cervical carcinoma cells. J Virol 2007; 81:6254-64. [PMID: 17392356 PMCID: PMC1900111 DOI: 10.1128/jvi.00232-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral DNA binding proteins that direct nucleases or other protein domains to viral DNA in lytically or latently infected cells may provide a novel approach to modulate viral gene expression or replication. Cervical carcinogenesis is initiated by high-risk human papillomavirus (HPV) infection, and viral DNA persists in the cancer cells. To test whether a DNA binding domain of a papillomavirus protein can direct a nuclease domain to cleave HPV DNA in cervical cancer cells, we fused the DNA binding domain of the bovine papillomavirus type 1 (BPV1) E2 protein to the catalytic domain of the FokI restriction endonuclease, generating a BPV1 E2-FokI chimeric nuclease (BEF). BEF introduced DNA double-strand breaks on both sides of an E2 binding site in vitro, whereas DNA binding or catalytic mutants of BEF did not. After expression of BEF in HeLa cervical carcinoma cells, we detected cleavage at E2 binding sites in the integrated HPV18 DNA in these cells and also at an E2 binding site in cellular DNA. BEF-expressing cells underwent senescence, which required the DNA binding activity of BEF, but not its nuclease activity. These results demonstrate that DNA binding domains of viral proteins can target effector molecules to cognate binding sites in virally infected cells.
Collapse
Affiliation(s)
- Stacy M Horner
- Yale University School of Medicine, Department of Genetics, 333 Cedar Street, SHM-141, New Haven, CT 06510, USA
| | | |
Collapse
|
382
|
Barron N, Piskareva O, Muniyappa M. Targeted genetic modification of cell lines for recombinant protein production. Cytotechnology 2007; 53:65-73. [PMID: 19003191 DOI: 10.1007/s10616-007-9050-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 01/25/2007] [Indexed: 12/16/2022] Open
Abstract
Considerable increases in productivity have been achieved in biopharmaceutical production processes over the last two decades. Much of this has been a result of improvements in media formulation and process development. Though advances have been made in cell line development, there remains considerable opportunity for improvement in this area. The wealth of transcriptional and proteomic data being generated currently hold the promise of specific molecular interventions to improve the performance of production cell lines in the bioreactor. Achieving this-particularly for multi-gene modification-will require specific, targeted and controlled genetic manipulation of these cells. This review considers some of the current and potential future techniques that might be employed to realise this goal.
Collapse
Affiliation(s)
- Niall Barron
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland,
| | | | | |
Collapse
|
383
|
Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD, Urnov FD, Holmes MC. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci U S A 2007; 104:3055-60. [PMID: 17360608 PMCID: PMC1802009 DOI: 10.1073/pnas.0611478104] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efficient incorporation of novel DNA sequences into a specific site in the genome of living human cells remains a challenge despite its potential utility to genetic medicine, biotechnology, and basic research. We find that a precisely placed double-strand break induced by engineered zinc finger nucleases (ZFNs) can stimulate integration of long DNA stretches into a predetermined genomic location, resulting in high-efficiency site-specific gene addition. Using an extrachromosomal DNA donor carrying a 12-bp tag, a 900-bp ORF, or a 1.5-kb promoter-transcription unit flanked by locus-specific homology arms, we find targeted integration frequencies of 15%, 6%, and 5%, respectively, within 72 h of treatment, and with no selection for the desired event. Importantly, we find that the integration event occurs in a homology-directed manner and leads to the accurate reconstruction of the donor-specified genotype at the endogenous chromosomal locus, and hence presumably results from synthesis-dependent strand annealing repair of the break using the donor DNA as a template. This site-specific gene addition occurs with no measurable increase in the rate of random integration. Remarkably, we also find that ZFNs can drive the addition of an 8-kb sequence carrying three distinct promoter-transcription units into an endogenous locus at a frequency of 6%, also in the absence of any selection. These data reveal the surprising versatility of the specialized polymerase machinery involved in double-strand break repair, illuminate a powerful approach to mammalian cell engineering, and open the possibility of ZFN-driven gene addition therapy for human genetic disease.
Collapse
Affiliation(s)
- Erica A. Moehle
- Sangamo BioSciences, Inc., Point Richmond Technology Center, 501 Canal Boulevard, Suite A100, Richmond, CA 94804
| | - Jeremy M. Rock
- Sangamo BioSciences, Inc., Point Richmond Technology Center, 501 Canal Boulevard, Suite A100, Richmond, CA 94804
| | - Ya-Li Lee
- Sangamo BioSciences, Inc., Point Richmond Technology Center, 501 Canal Boulevard, Suite A100, Richmond, CA 94804
| | - Yann Jouvenot
- Sangamo BioSciences, Inc., Point Richmond Technology Center, 501 Canal Boulevard, Suite A100, Richmond, CA 94804
| | - Russell C. DeKelver
- Sangamo BioSciences, Inc., Point Richmond Technology Center, 501 Canal Boulevard, Suite A100, Richmond, CA 94804
| | - Philip D. Gregory
- Sangamo BioSciences, Inc., Point Richmond Technology Center, 501 Canal Boulevard, Suite A100, Richmond, CA 94804
| | - Fyodor D. Urnov
- Sangamo BioSciences, Inc., Point Richmond Technology Center, 501 Canal Boulevard, Suite A100, Richmond, CA 94804
- *To whom correspondence should be addressed. E-mail:
| | - Michael C. Holmes
- Sangamo BioSciences, Inc., Point Richmond Technology Center, 501 Canal Boulevard, Suite A100, Richmond, CA 94804
| |
Collapse
|
384
|
Morton J, Davis MW, Jorgensen EM, Carroll D. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci U S A 2006; 103:16370-5. [PMID: 17060623 PMCID: PMC1637589 DOI: 10.1073/pnas.0605633103] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zinc-finger nucleases are chimeric proteins consisting of engineered zinc-finger DNA-binding motifs attached to an endonuclease domain. These proteins can induce site-specific DNA double-strand breaks in genomic DNA, which are then substrates for cellular repair mechanisms. Here, we demonstrate that engineered zinc-finger nucleases function effectively in somatic cells of the nematode Caenorhabditis elegans. Although gene-conversion events were indistinguishable from uncut DNA in our assay, nonhomologous end joining resulted in mutations at the target site. A synthetic target on an extrachromosomal array was targeted with a previously characterized nuclease, and an endogenous genomic sequence was targeted with a pair of specifically designed nucleases. In both cases, approximately 20% of the target sites were mutated after induction of the corresponding nucleases. Alterations in the extrachromosomal targets were largely products of end-filling and blunt ligation. By contrast, alterations in the chromosomal target were mostly deletions. We interpret these differences to reflect the abundance of homologous templates present in the extrachromosomal arrays versus the paucity of such templates for repair of chromosomal breaks. In addition, we find evidence for the involvement of error-prone DNA synthesis in both homologous and nonhomologous pathways of repair. DNA ligase IV is required for efficient end joining, particularly of blunt ends. In its absence, a secondary end-joining pathway relies more heavily on microhomologies in producing deletions.
Collapse
Affiliation(s)
- Jason Morton
- *Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112; and
| | - M. Wayne Davis
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
| | - Erik M. Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
| | - Dana Carroll
- *Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112; and
- To whom correspondence should be addressed at:
Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650. E-mail:
| |
Collapse
|
385
|
Alwin S, Gere MB, Guhl E, Effertz K, Barbas CF, Segal DJ, Weitzman MD, Cathomen T. Custom zinc-finger nucleases for use in human cells. Mol Ther 2006; 12:610-7. [PMID: 16039907 DOI: 10.1016/j.ymthe.2005.06.094] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 06/03/2005] [Accepted: 06/06/2005] [Indexed: 12/21/2022] Open
Abstract
Genome engineering through homologous recombination (HR) is a powerful instrument for studying biological pathways or creating treatment options for genetic disorders. In mammalian cells HR is rare but the creation of targeted DNA double-strand breaks stimulates HR significantly. Here, we present a method to generate, evaluate, and optimize rationally designed endonucleases that promote HR. The DNA-binding domains were synthesized by assembling predefined zinc-finger modules selected by phage display. Attachment of a transcriptional activation domain allowed assessment of DNA binding in reporter assays, while fusion with an endonuclease domain created custom nucleases that were tested for their ability to stimulate HR in episomal and chromosomal gene repair assays. We demonstrate that specificity, expression kinetics, and protein design are crucial parameters for efficient gene repair and that our two-step assay allows one to go quickly from design to testing to successful employment of the custom nucleases in human cells.
Collapse
Affiliation(s)
- Stephen Alwin
- Institute of Virology, Charité Medical School, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
386
|
Ashworth J, Havranek JJ, Duarte CM, Sussman D, Monnat RJ, Stoddard BL, Baker D. Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 2006; 441:656-9. [PMID: 16738662 PMCID: PMC2999987 DOI: 10.1038/nature04818] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 04/21/2006] [Indexed: 11/09/2022]
Abstract
The reprogramming of DNA-binding specificity is an important challenge for computational protein design that tests current understanding of protein-DNA recognition, and has considerable practical relevance for biotechnology and medicine. Here we describe the computational redesign of the cleavage specificity of the intron-encoded homing endonuclease I-MsoI using a physically realistic atomic-level forcefield. Using an in silico screen, we identified single base-pair substitutions predicted to disrupt binding by the wild-type enzyme, and then optimized the identities and conformations of clusters of amino acids around each of these unfavourable substitutions using Monte Carlo sampling. A redesigned enzyme that was predicted to display altered target site specificity, while maintaining wild-type binding affinity, was experimentally characterized. The redesigned enzyme binds and cleaves the redesigned recognition site approximately 10,000 times more effectively than does the wild-type enzyme, with a level of target discrimination comparable to the original endonuclease. Determination of the structure of the redesigned nuclease-recognition site complex by X-ray crystallography confirms the accuracy of the computationally predicted interface. These results suggest that computational protein design methods can have an important role in the creation of novel highly specific endonucleases for gene therapy and other applications.
Collapse
Affiliation(s)
- Justin Ashworth
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
387
|
Ihara H, Mie M, Funabashi H, Takahashi F, Sawasaki T, Endo Y, Kobatake E. In vitro selection of zinc finger DNA-binding proteins through ribosome display. Biochem Biophys Res Commun 2006; 345:1149-54. [PMID: 16714002 DOI: 10.1016/j.bbrc.2006.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 05/02/2006] [Indexed: 11/23/2022]
Abstract
DNA-binding proteins with sequence specificities have a variety of applications. To create novel functional DNA-binding proteins, in vivo selection methods have been developed. There are, however, crucial problems with such methods, e.g., limitation of library size and difficulty of expression of toxic proteins for the host cells. In order to overcome these problems, we developed a novel way to select DNA-binding proteins using an in vitro ribosome display technique. The three zinc finger DNA-binding protein libraries, based on a Zif268 containing randomized sequence in each finger, were prepared and transcribed to mRNA in vitro. The ternary ribosomal complexes, formed by mRNA, ribosome, and translated DNA-binding protein during translation in a rabbit reticulocyte in vitro translation system, were selected with biotinylated target DNA fragments bound to streptavidin magnetic beads. The extracted mRNAs from the selected complexes were amplified using reverse transcription PCR and then sequenced. This is the first report of the selection of DNA-binding proteins involving an in vitro ribosome display technique.
Collapse
Affiliation(s)
- Hiroshi Ihara
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
388
|
Abstract
The elegant mechanisms by which naturally occurring selfish genetic elements, such as transposable elements, meiotic drive genes, homing endonuclease genes and Wolbachia, spread at the expense of their hosts provide some of the most fascinating and remarkable subjects in evolutionary genetics. These elements also have enormous untapped potential to be used in the control of some of the world's most devastating diseases. Effective gene drive systems for spreading genes that can block the transmission of insect-borne pathogens are much needed. Here we explore the potential of natural gene drive systems and discuss the artificial constructs that could be envisaged for this purpose.
Collapse
Affiliation(s)
- Steven P Sinkins
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | | |
Collapse
|
389
|
Kumar S, Allen GC, Thompson WF. Gene targeting in plants: fingers on the move. TRENDS IN PLANT SCIENCE 2006; 11:159-61. [PMID: 16530459 DOI: 10.1016/j.tplants.2006.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/09/2006] [Accepted: 02/24/2006] [Indexed: 05/07/2023]
Abstract
Zinc-finger endonucleases (ZFNs) make targeted double-stranded breaks in genomic DNA and, thus, stimulate recombination and repair processes at specific sites. ZFNs can now be harnessed to stimulate homologous recombination and gene targeting in plants, which represents a major step towards modifying the plant genome more precisely. ZFN-mediated gene targeting is likely to become a powerful tool for genome research and genetic engineering.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Botany, North Carolina State University, Raleigh, NC 27695-7612, USA.
| | | | | |
Collapse
|
390
|
Ooi AT, Stains CI, Ghosh I, Segal DJ. Sequence-enabled reassembly of beta-lactamase (SEER-LAC): a sensitive method for the detection of double-stranded DNA. Biochemistry 2006; 45:3620-5. [PMID: 16533044 PMCID: PMC2688710 DOI: 10.1021/bi0517032] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work describes the development of a new methodology for the detection of specific double-stranded DNA sequences. We previously showed that two inactive fragments of green fluorescent protein, each coupled to engineered zinc finger DNA-binding proteins, were able to reassemble an active reporter complex in the presence of a predefined DNA sequence. This system, designated sequence-enabled reassembly (SEER), was demonstrated in vitro to produce a DNA-concentration-dependent signal. Here we endow the SEER system with catalytic capability using the reporter enzyme TEM-1 beta-lacatamase. This system could distinguish target DNA from nontarget DNA in less than 5 min, representing a more than 1000-fold improvement over our previous SEER design. A single base-pair substitution in the DNA binding sequence reduced the signal to nearly background levels. Substitution of a different custom zinc finger DNA-binding domain produced a signal only on the new cognate target. Signal intensity was not affected by genomic DNA when present in equal mass to the target DNA. These results present SEER as a rapid and sensitive method for the detection of double-stranded DNA sequences.
Collapse
Affiliation(s)
- Aik T Ooi
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
391
|
Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D. Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 2006; 172:2391-403. [PMID: 16452139 PMCID: PMC1456366 DOI: 10.1534/genetics.105.052829] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
This report describes high-frequency germline gene targeting at two genomic loci in Drosophila melanogaster, y and ry. In the best case, nearly all induced parents produced mutant progeny; 25% of their offspring were new mutants and most of these were targeted gene replacements resulting from homologous recombination (HR) with a marked donor DNA. The procedure that generates these high frequencies relies on cleavage of the target by designed zinc-finger nucleases (ZFNs) and production of a linear donor in situ. Increased induction of ZFN expression led to higher frequencies of gene targeting, demonstrating the beneficial effect of activating the target. In the absence of a homologous donor DNA, ZFN cleavage led to the recovery of new mutants at three loci-y, ry and bw-through nonhomologous end joining (NHEJ) after cleavage. Because zinc fingers can be directed to a broad range of DNA sequences and targeting is very efficient, this approach promises to allow genetic manipulation of many different genes, even in cases where the mutant phenotype cannot be predicted.
Collapse
Affiliation(s)
- Kelly Beumer
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
392
|
Abstract
Vectors based on the adeno-associated virus (AAV) have attracted much attention as potent gene-delivery vehicles, mainly because of the persistence of this non-pathogenic virus in the host cell and its sustainable therapeutic gene expression. However, virus infection can be accompanied by potentially mutagenic random vector integration into the genome. A novel approach to AAV-mediated gene therapy based on gene targeting through homologous recombination allows efficient, high-fidelity, non-mutagenic gene repair in a host cell.
Collapse
Affiliation(s)
- Ana Vasileva
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, USA
| | | |
Collapse
|
393
|
Carroll D, Morton JJ, Beumer KJ, Segal DJ. Design, construction and in vitro testing of zinc finger nucleases. Nat Protoc 2006; 1:1329-41. [PMID: 17406419 DOI: 10.1038/nprot.2006.231] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Zinc finger nucleases (ZFNs) are hybrid proteins that have been developed as targetable cleavage reagents for double-stranded DNA, both in vitro and in vivo. This protocol describes the design and construction of new DNA-binding domains comprised of zinc fingers (ZFs) directed at selected DNA sequences. Because the ZFNs must dimerize to cut DNA, they are designed in pairs for any new site. The first step is choosing a DNA segment of interest and searching it for sequences that can be recognized by combinations of existing ZFs. The second step is the construction of coding sequences for the selected ZF sets. Third, these coding sequences are linked to that of the nonspecific cleavage domain from the FokI restriction endonuclease in a cloning vector of choice. Finally, the ZFNs are expressed in Escherichia coli, partially purified, and tested in vitro for cleavage of the target sequences to which they were designed. If all goes smoothly, design, construction and cloning can be completed in about two weeks, with expression and testing completed in one additional week.
Collapse
Affiliation(s)
- Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, 15 N. Medical Drive East, Room 4100, Salt Lake City, Utah 84112, USA.
| | | | | | | |
Collapse
|
394
|
Gouble A, Smith J, Bruneau S, Perez C, Guyot V, Cabaniols JP, Leduc S, Fiette L, Avé P, Micheau B, Duchateau P, Pâques F. Efficientin toto targeted recombination in mouse liver by meganuclease-induced double-strand break. J Gene Med 2006; 8:616-22. [PMID: 16475243 DOI: 10.1002/jgm.879] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Sequence-specific endonucleases with large recognition sites can cleave DNA in living cells, and, as a consequence, stimulate homologous recombination (HR) up to 10 000-fold. The recent development of artificial meganucleases with chosen specificities has provided the potential to target any chromosomal locus. Thus, they may represent a universal genome engineering tool and seem to be very promising for acute gene therapy. However, in toto applications depend on the ability to target somatic tissues as well as the proficiency of somatic cells to perform double-strand break (DSB)-induced HR. METHODS In order to investigate DSB-induced HR in toto, we have designed transgenic mouse lines carrying a LagoZ gene interrupted by one I-SceI cleavage site surrounded by two direct repeats. The LagoZ gene can be rescued upon cleavage by I-SceI and HR between the two repeats in a process called single-strand annealing. beta-Galactosidase activity is monitored in liver after tail vein injection of adenovirus expressing the meganuclease I-SceI. RESULTS In toto staining revealed a strong dotted pattern in all animals injected with adenovirus expressing I-SceI. In contrast, no staining could be detected in the control. beta-Galactosidase activity in liver extract, tissue section staining, and PCR analysis confirmed the presence of the recombined LagoZ gene. CONCLUSIONS We demonstrate for the first time that meganucleases can be successfully delivered in animal and induce targeted genomic recombination in mice liver in toto. These results are an essential step towards the use of designed meganucleases and show the high potential of this technology in the field of gene therapy.
Collapse
Affiliation(s)
- Agnès Gouble
- CELLECTIS S.A., 102 route de Noisy, 93235 Romainville, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
395
|
Wright DA, Townsend JA, Winfrey RJ, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:693-705. [PMID: 16262717 DOI: 10.1111/j.1365-313x.2005.02551.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Homologous recombination offers great promise for plant genome engineering. This promise has not been realized, however, because when DNA enters plant cells homologous recombination occurs infrequently and random integration predominates. Using a tobacco test system, we demonstrate that chromosome breaks created by zinc-finger nucleases greatly enhance the frequency of localized recombination. Homologous recombination was measured by restoring function to a defective GUS:NPTII reporter gene integrated at various chromosomal sites in 10 different transgenic tobacco lines. The reporter gene carried a recognition site for a zinc-finger nuclease, and protoplasts from each tobacco line were electroporated with both DNA encoding the nuclease and donor DNA to effect repair of the reporter. Homologous recombination occurred in more than 10% of the transformed protoplasts regardless of the reporter's chromosomal position. Approximately 20% of the GUS:NPTII reporter genes were repaired solely by homologous recombination, whereas the remainder had associated DNA insertions or deletions consistent with repair by both homologous recombination and non-homologous end joining. The DNA-binding domain encoded by zinc-finger nucleases can be engineered to recognize a variety of chromosomal target sequences. This flexibility, coupled with the enhancement in homologous recombination conferred by double-strand breaks, suggests that plant genome engineering through homologous recombination can now be reliably accomplished using zinc-finger nucleases.
Collapse
Affiliation(s)
- David A Wright
- Phytodyne, Inc., 2711 South Loop Drive, Building 4, Suite 4400, Ames, IA 50010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
396
|
Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S. Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 2005; 33:5978-90. [PMID: 16251401 PMCID: PMC1270952 DOI: 10.1093/nar/gki912] [Citation(s) in RCA: 296] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Custom-designed zinc finger nucleases (ZFNs), proteins designed to cut at specific DNA sequences, are becoming powerful tools in gene targeting—the process of replacing a gene within a genome by homologous recombination (HR). ZFNs that combine the non-specific cleavage domain (N) of FokI endonuclease with zinc finger proteins (ZFPs) offer a general way to deliver a site-specific double-strand break (DSB) to the genome. The development of ZFN-mediated gene targeting provides molecular biologists with the ability to site-specifically and permanently modify plant and mammalian genomes including the human genome via homology-directed repair of a targeted genomic DSB. The creation of designer ZFNs that cleave DNA at a pre-determined site depends on the reliable creation of ZFPs that can specifically recognize the chosen target site within a genome. The (Cys2His2) ZFPs offer the best framework for developing custom ZFN molecules with new sequence-specificities. Here, we explore the different approaches for generating the desired custom ZFNs with high sequence-specificity and affinity. We also discuss the potential of ZFN-mediated gene targeting for ‘directed mutagenesis’ and targeted ‘gene editing’ of the plant and mammalian genome as well as the potential of ZFN-based strategies as a form of gene therapy for human therapeutics in the future.
Collapse
Affiliation(s)
- Sundar Durai
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health615 North Wolfe Street, Baltimore, MD 21205-2179, USA
- Center for Bioinformatics, School of Life Sciences, Pondicherry UniversityPondicherry 605014, India
| | - Mala Mani
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health615 North Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Karthikeyan Kandavelou
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health615 North Wolfe Street, Baltimore, MD 21205-2179, USA
- Pondicherry Biotech Private Ltd.21 Louis Pragasam Street, Pondicherry 605001, India
| | - Joy Wu
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health615 North Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Matthew H. Porteus
- Department of Pediatrics, University of Texas Southwestern Medical Center5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Srinivasan Chandrasegaran
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health615 North Wolfe Street, Baltimore, MD 21205-2179, USA
- To whom correspondence should be addressed. Tel: 410 614 2289; Fax: 410 955 0299;
| |
Collapse
|
397
|
Mani M, Kandavelou K, Dy FJ, Durai S, Chandrasegaran S. Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun 2005; 335:447-57. [PMID: 16084494 DOI: 10.1016/j.bbrc.2005.07.089] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 07/15/2005] [Indexed: 11/28/2022]
Abstract
Zinc finger nuclease (ZFN)-mediated gene targeting is rapidly becoming a powerful tool for "gene editing" and "directed mutagenesis" of plant and mammalian genomes including the human genome. ZFN-mediated gene targeting provides molecular biologists with the ability to site-specifically manipulate and permanently modify plant and mammalian genomes. Facile production of ZFNs and rapid characterization of their in vitro sequence-specific cleavage properties are a pre-requisite before ZFN-mediated gene targeting can become an efficient and effective practical tool for widespread use in biotechnology. Here, we report the design, engineering, and rapid in vitro characterization of ZFNs that target specific endogenous sequences within two mouse genes (mTYR and mCFTR), and two human genes (hCCR5 and hDMPK), respectively. These engineered ZFNs recognize their respective cognate DNA sites encoded in a plasmid substrate in a sequence-specific manner and, as expected, they induce a double-strand break at the chosen target site.
Collapse
Affiliation(s)
- Mala Mani
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205-2179, USA
| | | | | | | | | |
Collapse
|
398
|
Kolb AF, Coates CJ, Kaminski JM, Summers JB, Miller AD, Segal DJ. Site-directed genome modification: nucleic acid and protein modules for targeted integration and gene correction. Trends Biotechnol 2005; 23:399-406. [PMID: 15982766 DOI: 10.1016/j.tibtech.2005.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 05/04/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
A variety of technological advances in recent years have made permanent genetic manipulation of an organism a technical possibility. As the details of natural biological processes for genome modification are elucidated, the enzymes catalyzing these events (transposases, recombinases, integrases and DNA repair enzymes) are being harnessed or modified for the purpose of intentional gene modification. Targeted integration and gene repair can be mediated by the DNA-targeting specificity inherent to a particular enzyme, or rely on user-designed specificities. Integration sites can be defined by using DNA base-pairing or protein-DNA interaction as a means of targeting. This review will describe recent progress in the development of 'user-targetable' systems, particularly highlighting the application of custom DNA-binding proteins or nucleic acid homology to confer specificity.
Collapse
Affiliation(s)
- Andreas F Kolb
- Hannah Research Institute, Hannah Research Park, Ayr, UK, KA6 5HL
| | | | | | | | | | | |
Collapse
|
399
|
Abstract
The ability to achieve site-specific manipulation of the mammalian genome has widespread implications for basic and applied research. Gene targeting is a process in which a DNA molecule introduced into a cell replaces the corresponding chromosomal segment by homologous recombination, and thus presents a precise way to manipulate the genome. In the past, the application of gene targeting to mammalian cells has been limited by its low efficiency. Zinc finger nucleases (ZFNs) show promise in improving the efficiency of gene targeting by introducing DNA double-strand breaks in target genes, which then stimulate the cell's endogenous homologous recombination machinery. Recent results have shown that ZFNs can be used to create targeting frequencies of up to 20% in a human disease-causing gene. Future work will be needed to translate these in vitro findings to in vivo applications and to determine whether zinc finger nucleases create undesired genomic instability.
Collapse
Affiliation(s)
- Matthew H Porteus
- Department of Pediatrics, University of Texas Southwestern Medical Center, USA.
| | | |
Collapse
|
400
|
Mani M, Smith J, Kandavelou K, Berg JM, Chandrasegaran S. Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochem Biophys Res Commun 2005; 334:1191-1197. [PMID: 16043120 PMCID: PMC4170802 DOI: 10.1016/j.bbrc.2005.07.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 07/11/2005] [Indexed: 11/20/2022]
Abstract
Custom-designed zinc finger nucleases (ZFNs) are becoming powerful tools in gene targeting-the process of replacing a gene within a genome by homologous recombination. Here, we have studied the DNA cleavage by one such ZFN, DeltaQNK-FN, in order to gain insight into how ZFNs cleave DNA and how two inverted sites promote double-strand cleavage. DNA cleavage by DeltaQNK-FN is greatly facilitated when two DeltaQNK-binding sites are close together in an inverted orientation. Substrate cleavage was not first order with respect to the concentration of DeltaQNK-FN, indicating that double-strand cleavage requires dimerization of the FokI cleavage domain. Rates of DNA cleavage decrease as the substrate concentrations increase, suggesting that the DeltaQNK-FN molecules are effectively "trapped" in a 1:1 complex on DNA when the DNA is in excess. The physical association of two ZFN monomers on DNA was monitored by using the biotin-pull-down assay, which showed that the formation of DeltaQNK-FN active complex required both binding of the two DeltaQNK-FN molecules to specific DNA sites and divalent metal ions.
Collapse
Affiliation(s)
- Mala Mani
- Department of Environmental Health Sciences, The Johns Hopkins University School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Jeff Smith
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | - Karthikeyan Kandavelou
- Department of Environmental Health Sciences, The Johns Hopkins University School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Jeremy M. Berg
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | - Srinivasan Chandrasegaran
- Department of Environmental Health Sciences, The Johns Hopkins University School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205-2179, USA
- Corresponding author. Fax: +1 410 955 0299., (S. Chandrasegaran)
| |
Collapse
|