351
|
Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, Preall J, Tuveson DA. IL1-Induced JAK/STAT Signaling Is Antagonized by TGFβ to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma. Cancer Discov 2018; 9:282-301. [PMID: 30366930 DOI: 10.1158/2159-8290.cd-18-0710] [Citation(s) in RCA: 869] [Impact Index Per Article: 124.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/20/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is poorly responsive to therapies and histologically contains a paucity of neoplastic cells embedded within a dense desmoplastic stroma. Within the stroma, cancer-associated fibroblasts (CAF) secrete tropic factors and extracellular matrix components, and have been implicated in PDAC progression and chemotherapy resistance. We recently identified two distinct CAF subtypes characterized by either myofibroblastic or inflammatory phenotypes; however, the mechanisms underlying their diversity and their roles in PDAC remain unknown. Here, we use organoid and mouse models to identify TGFβ and IL1 as tumor-secreted ligands that promote CAF heterogeneity. We show that IL1 induces LIF expression and downstream JAK/STAT activation to generate inflammatory CAFs and demonstrate that TGFβ antagonizes this process by downregulating IL1R1 expression and promoting differentiation into myofibroblasts. Our results provide a mechanism through which distinct fibroblast niches are established in the PDAC microenvironment and illuminate strategies to selectively target CAFs that support tumor growth. SIGNIFICANCE: Understanding the mechanisms that determine CAF heterogeneity in PDAC is a prerequisite for the rational development of approaches that selectively target tumor-promoting CAFs. Here, we identify an IL1-induced signaling cascade that leads to JAK/STAT activation and promotes an inflammatory CAF state, suggesting multiple strategies to target these cells in vivo. See related commentary by Ling and Chiao, p. 173. This article is highlighted in the In This Issue feature, p. 151.
Collapse
Affiliation(s)
- Giulia Biffi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Tobiloba E Oni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Benjamin Spielman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Ela Elyada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | | | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. .,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
352
|
Gong J, Hendifar A, Tuli R, Chuang J, Cho M, Chung V, Li D, Salgia R. Combination systemic therapies with immune checkpoint inhibitors in pancreatic cancer: overcoming resistance to single-agent checkpoint blockade. Clin Transl Med 2018; 7:32. [PMID: 30294755 PMCID: PMC6174117 DOI: 10.1186/s40169-018-0210-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibitors have demonstrated broad single-agent antitumor activity and a favorable safety profile that render them attractive agents to combine with other systemic anticancer therapies. Pancreatic cancer has been fairly resistant to monotherapy blockade of programmed cell death protein 1 receptor, programmed death ligand 1, and cytotoxic T-lymphocyte associated protein 4. However, there is a growing body of preclinical evidence to support the rational combination of checkpoint inhibitors and various systemic therapies in pancreatic cancer. Furthermore, early clinical evidence has begun to support the feasibility and efficacy of checkpoint inhibitor-based combination therapy in advanced pancreatic cancer. Despite accumulating preclinical and clinical data, there remains several questions as to the optimal dosing and timing of administration of respective agents, toxicity of combination strategies, and mechanisms by which immune resistance to single-agent checkpoint blockade are overcome. Further development of biomarkers is also important in the advancement of combination systemic therapies incorporating checkpoint blockade in pancreatic cancer. Results from an impressive number of ongoing prospective clinical trials are eagerly anticipated and will seek to validate the viability of combination immuno-oncology strategies in pancreatic cancer.
Collapse
Affiliation(s)
- Jun Gong
- Department of Gastrointestinal Malignancies, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042C, Los Angeles, CA, 90048, USA
| | - Andrew Hendifar
- Department of Gastrointestinal Malignancies, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042C, Los Angeles, CA, 90048, USA
| | - Richard Tuli
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1023, Los Angeles, CA, 90048, USA
| | - Jeremy Chuang
- Department of Internal Medicine, Harbor-UCLA Medical Center, 1000 W Carson St, Box 400, Torrance, CA, 90509, USA
| | - May Cho
- Department of Internal Medicine, Division of Hematology and Oncology, UC Davis Comprehensive Cancer Center, 4501 X Street, Ste 3016, Sacramento, CA, 95817, USA
| | - Vincent Chung
- Department of Medical Oncology, City of Hope National Medical Center, 1500 E Duarte Rd, Bldg 51, Duarte, CA, 91010, USA
| | - Daneng Li
- Department of Medical Oncology, City of Hope National Medical Center, 1500 E Duarte Rd, Bldg 51, Duarte, CA, 91010, USA
| | - Ravi Salgia
- Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Building 51, Room 101, 1500 E Duarte St, Duarte, CA, 91010, USA.
| |
Collapse
|
353
|
Sun Q, Zhang B, Hu Q, Qin Y, Xu W, Liu W, Yu X, Xu J. The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer. Am J Cancer Res 2018; 8:5072-5087. [PMID: 30429887 PMCID: PMC6217060 DOI: 10.7150/thno.26546] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) constitutes one of the most challenging lethal tumors and has a very poor prognosis. In addition to cancer cells, the tumor microenvironment created by a repertoire of resident and recruited cells and the extracellular matrix also contribute to the acquisition of hallmarks of cancer. Among these factors, cancer-associated fibroblasts (CAFs) are critical components of the tumor microenvironment. CAFs originate from the activation of resident fibroblasts and pancreatic stellate cells, the differentiation of bone marrow-derived mesenchymal stem cells and epithelial-to-mesenchymal transition. CAFs acquire an activated phenotype via various cytokines and promote tumor proliferation and growth, accelerate invasion and metastasis, induce angiogenesis, promote inflammation and immune destruction, regulate tumor metabolism, and induce chemoresistance; these factors contribute to the acquisition of major hallmarks of PDAC. Therefore, an improved understanding of the impact of CAFs on the major hallmarks of PDAC will highlight the diagnostic and therapeutic values of these targeted cells.
Collapse
|
354
|
Lesinski GB, Nannapaneni S, Griffith CC, Patel M, Chen W, Chen Z, Ahmed R, Wieland A, Shin DM, Chen ZG, Saba NF. Interleukin-6/STAT3 Signaling is Prominent and Associated with Reduced Overall Survival in p16 Negative Oropharyngeal Squamous Cell Carcinoma. Head Neck Pathol 2018; 13:304-312. [PMID: 30191505 PMCID: PMC6684688 DOI: 10.1007/s12105-018-0962-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022]
Abstract
This study addresses the hypothesis that IL-6/STAT3 signaling is of clinical relevance in oropharyngeal squamous cell carcinoma (OPSCC). We evaluated relationships between key components of this pathway in tumors from a unique cohort of n = 59 fully annotated, treatment-naïve patients with OPSCC. The multiplex Opal platform was utilized for immunofluorescence (IF) analysis of tissues to detect IL-6 and phosphorylated STAT3 (pSTAT3), taking into consideration its nuclear versus cytoplasmic localization. Abundant staining for both IL-6 and pSTAT3 was evident in tumor-rich regions of each specimen. IL-6 correlated with cytoplasmic pSTAT3 but not nuclear or total pSTAT3 in this cohort of OPSCC tumors, regardless of p16 status (r = 0.682, p < 0.0001). There was a significant association between increased total pSTAT3, nuclear pSTAT3, cytoplasmic pSTAT3 and IL-6 in p16 negative tumors. Our data indicate STAT3 phosphorylation was a key feature in p16-negative OPSCC tumors. When IL-6 data was stratified by median expression in tumors, there was no association with overall survival. In contrast, both total and nuclear pSTAT3 were significant predictors of poor overall and disease free survival. This strong inverse relationship with overall survival was present in p16 negative tumors for both total and nuclear pSTAT3, but not in p16 positive OPSCC tumors. Together these data indicate that activation of the STAT3 signaling pathway is a marker of p16 negative tumors and relevant to OPSCC prognosis and a potential target for treatment of this more aggressive OPSCC sub-population.
Collapse
Affiliation(s)
- Gregory B. Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Rd., NE, Atlanta, GA 30322 USA
| | - Sreenivas Nannapaneni
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Rd., NE, Atlanta, GA 30322 USA
| | | | - Mihir Patel
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, USA
| | - Wanqi Chen
- Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, USA
| | - Zhengjia Chen
- Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University, Atlanta, USA
| | | | - Dong M. Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Rd., NE, Atlanta, GA 30322 USA
| | - Zhuo G. Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Rd., NE, Atlanta, GA 30322 USA
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Rd., NE, Atlanta, GA 30322 USA
| |
Collapse
|
355
|
Cullis J, Das S, Bar-Sagi D. Kras and Tumor Immunity: Friend or Foe? Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031849. [PMID: 29229670 DOI: 10.1101/cshperspect.a031849] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the recent breakthroughs in immunotherapy as curative treatments in certain tumor types, there has been renewed interest in the relationship between immunity and tumor growth. Although we are gaining a greater understanding of the complex interplay of immune modulating components in the tumor microenvironment, the specific role that tumor cells play in shaping the immune milieu is still not well characterized. In this review, we focus on how mutant Kras tumor cells contribute to tumor immunity, with a specific focus on processes induced directly or indirectly by the oncogene.
Collapse
Affiliation(s)
- Jane Cullis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Shipra Das
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
356
|
Tan Q, Liu S, Liang C, Han X, Shi Y. Pretreatment hematological markers predict clinical outcome in cancer patients receiving immune checkpoint inhibitors: A meta-analysis. Thorac Cancer 2018; 9:1220-1230. [PMID: 30151899 PMCID: PMC6166061 DOI: 10.1111/1759-7714.12815] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have revolutionized the clinical treatment of multiple cancers. Recent studies revealed the potential prognostic value of the neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) in patients receiving ICIs; however, the results were inconsistent. We conducted a meta‐analysis to identify the prognostic significance of baseline NLR and PLR in cancer patients treated with ICIs. Methods We conducted a thorough literature search of PubMed, Embase, and Cochrane databases for studies dealing with the prognostic impact of pretreatment NLR and/or PLR levels in cancer patients treated with ICIs. The clinical outcomes were progression‐free survival (PFS) and overall survival (OS). Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated, and sensitivity and subgroup analyses were performed to investigate heterogeneity. Results Seventeen articles involving 2092 patients were included in the final analysis. The pooled HRs of PFS and OS for NLR were 1.81(95% CI 1.36–2.41) and 2.26 (95% CI 1.68–3.03), respectively, suggesting that patients with higher baseline NLRs had significantly poorer PFS and OS. Similar results were detected in sensitivity and subgroup analyses. However, no significant relevance was found between PLR and clinical endpoints in patients treated with ICIs (HR = 1.14, 95% CI 0.88–1.48 for PFS; HR = 1.35, 95% CI 0.86–2.12 for OS). Conclusion These results indicate that high pretreatment NLR but not PLR level, as a routinely obtained hematological parameter, is a potential prognostic predictor for poor PFS and OS in cancer patients receiving ICIs.
Collapse
Affiliation(s)
- Qiaoyun Tan
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuxia Liu
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Caixia Liang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaohong Han
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuankai Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
357
|
Kabacaoglu D, Ciecielski KJ, Ruess DA, Algül H. Immune Checkpoint Inhibition for Pancreatic Ductal Adenocarcinoma: Current Limitations and Future Options. Front Immunol 2018; 9:1878. [PMID: 30158932 PMCID: PMC6104627 DOI: 10.3389/fimmu.2018.01878] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), as the most frequent form of pancreatic malignancy, still is associated with a dismal prognosis. Due to its late detection, most patients are ineligible for surgery, and chemotherapeutic options are limited. Tumor heterogeneity and a characteristic structure with crosstalk between the cancer/malignant cells and an abundant tumor microenvironment (TME) make PDAC a very challenging puzzle to solve. Thus far, targeted therapies have failed to substantially improve the overall survival of PDAC patients. Immune checkpoint inhibition, as an emerging therapeutic option in cancer treatment, shows promising results in different solid tumor types and hematological malignancies. However, PDAC does not respond well to immune checkpoint inhibitors anti-programmed cell death protein 1 (PD-1) or anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) alone or in combination. PDAC with its immune-privileged nature, starting from the early pre-neoplastic state, appears to escape from the antitumor immune response unlike other neoplastic entities. Different mechanisms how cancer cells achieve immune-privileged status have been hypothesized. Among them are decreased antigenicity and impaired immunogenicity via both cancer cell-intrinsic mechanisms and an augmented immunosuppressive TME. Here, we seek to shed light on the recent advances in both bench and bedside investigation of immunotherapeutic options for PDAC. Furthermore, we aim to compile recent data about how PDAC adopts immune escape mechanisms, and how these mechanisms might be exploited therapeutically in combination with immune checkpoint inhibitors, such as PD-1 or CTLA-4 antibodies.
Collapse
Affiliation(s)
| | | | | | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
358
|
Coss CC, Clinton SK, Phelps MA. Cachectic Cancer Patients: Immune to Checkpoint Inhibitor Therapy? Clin Cancer Res 2018; 24:5787-5789. [PMID: 30018117 DOI: 10.1158/1078-0432.ccr-18-1847] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 01/14/2023]
Abstract
Immune checkpoint inhibition is dramatically improving patient outcomes in diverse cancers, many of which responded poorly to traditional cytotoxic agents. Drivers of heterogeneous response to immune checkpoint therapy are poorly characterized. Cachectic cancer patients exhibit elevated pembrolizumab clearance and poor response, highlighting the immense therapeutic challenge posed by cancer cachexia.See related article by Turner et al., p. 5841.
Collapse
Affiliation(s)
- Christopher C Coss
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio. .,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Steven K Clinton
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Division of Medical Oncology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
359
|
Vainer N, Dehlendorff C, Johansen JS. Systematic literature review of IL-6 as a biomarker or treatment target in patients with gastric, bile duct, pancreatic and colorectal cancer. Oncotarget 2018; 9:29820-29841. [PMID: 30038723 PMCID: PMC6049875 DOI: 10.18632/oncotarget.25661] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 06/04/2018] [Indexed: 12/21/2022] Open
Abstract
Gastrointestinal cancer (GI) is a major health problem. Patients with gastric, pancreatic, colorectal, bile duct and gall bladder cancer often have advanced disease at the time of diagnosis and are generally difficult to cure, resulting in a dismal prognosis for most patients. Inflammation plays an important role in the development and growth of cancer, which has led to a growing interest in the pro-inflammatory cytokine interleukin 6 (IL-6). The aim of the present review was to evaluate the clinical use of IL-6 as a biomarker or therapeutic target in patients with GI cancer. We did a systematic review of studies (1993-2018), to assess the clinical use of IL-6 as a diagnostic, prognostic or predictive tumor biomarker or as a potential therapeutic target. This review includes 48 studies and 5316 patients. Circulating IL-6 levels appear to be an independent prognostic biomarker in patients with GI cancer, with high IL-6 levels associated with short overall survival (OS). The results for colorectal cancer were too ambiguous to give conclusive results. IL-6 seemed to be a marker for some of the clinical characteristics of GI cancer, and may have a role in the diagnostic workup in general practice. No published studies have examined the use of IL-6 as a therapeutic target in pancreatic, gastric, bile duct or colorectal cancer. In conclusion, high circulating IL-6 was associated with short OS in most studies in GI cancer patients. Whether inhibition of IL-6 would decrease GI cancer symptoms and increase quality of life is unknown.
Collapse
Affiliation(s)
- Noomi Vainer
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Dehlendorff
- Statistics and Pharmacoepidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
360
|
Tsukamoto H, Fujieda K, Miyashita A, Fukushima S, Ikeda T, Kubo Y, Senju S, Ihn H, Nishimura Y, Oshiumi H. Combined Blockade of IL6 and PD-1/PD-L1 Signaling Abrogates Mutual Regulation of Their Immunosuppressive Effects in the Tumor Microenvironment. Cancer Res 2018; 78:5011-5022. [PMID: 29967259 DOI: 10.1158/0008-5472.can-18-0118] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/24/2018] [Accepted: 06/27/2018] [Indexed: 11/16/2022]
Abstract
Recently emerging cancer immunotherapies combine the applications of therapeutics to disrupt the immunosuppressive conditions in tumor-bearing hosts. In this study, we found that targeting the proinflammatory cytokine IL6 enhances tumor-specific Th1 responses and subsequent antitumor effects in tumor-bearing mice. IL6 blockade upregulated expression of the immune checkpoint molecule programmed death-ligand 1 (PD-L1) on melanoma cells. This PD-L1 induction was canceled in IFNγ-deficient mice or CD4+ T cell-depleted mice, suggesting that CD4+ T cell-derived IFNγ is important for PD-L1 induction in tumor-bearing hosts. In some patients with melanoma, however, treatment with the anti-PD-1 antibody nivolumab increased systemic levels of IL6, which was associated with poor clinical responses. This PD-L1 blockade-evoked induction of IL6 was reproducible in melanoma-bearing mice. We found that PD-1/PD-L1 blockade prompted PD-1+ macrophages to produce IL6 in the tumor microenvironment. Depletion of macrophages in melanoma-bearing mice reduced the levels of IL6 during PD-L1 blockade, suggesting macrophages are responsible for the IL6-mediated defective CD4+ Th1 response. Combined blockade of the mutually regulated immunosuppressive activities of IL6 and PD-1/PD-L1 signals enhanced expression of T cell-attracting chemokines and promoted infiltration of IFNγ-producing CD4+ T cells in tumor tissues, exerting a synergistic antitumor effect, whereas PD-L1 blockade alone did not promote Th1 response. Collectively, these findings suggest that IL6 is a rational immunosuppressive target for overcoming the narrow therapeutic window of anti-PD-1/PD-L1 therapy.Significance: These findings advance our understanding of IL6-PD1/PD-L1 cross-talk in the tumor microenvironment and provide clues for targeted interventional therapy that may prove more effective against cancer. Cancer Res; 78(17); 5011-22. ©2018 AACR.
Collapse
Affiliation(s)
| | - Koji Fujieda
- Department of Immunogenetics, Kumamoto University, Kumamoto, Japan
| | - Azusa Miyashita
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Clinical Investigation, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tokunori Ikeda
- Department of Clinical Investigation, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yosuke Kubo
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Kumamoto University, Kumamoto, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Clinical Investigation, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Kumamoto University, Kumamoto, Japan.,Nishimura Project Laboratory, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
361
|
Hazama S, Tamada K, Yamaguchi Y, Kawakami Y, Nagano H. Current status of immunotherapy against gastrointestinal cancers and its biomarkers: Perspective for precision immunotherapy. Ann Gastroenterol Surg 2018; 2:289-303. [PMID: 30003192 PMCID: PMC6036392 DOI: 10.1002/ags3.12180] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy has shown encouraging results for some types of tumor. Although enormous efforts have been made toward the development of specific immunotherapeutic strategies against gastrointestinal cancers, such as adoptive T-cell transfer, peptide vaccines, or dendritic cell vaccines, the efficacy of immunotherapies prior to the introduction of immune checkpoint inhibitors was not substantial. This article reviews immunotherapy for gastrointestinal malignancies, including cell therapy, peptide vaccine, and immune checkpoint inhibitors, and attempts to resolve the immunosuppressive conditions surrounding the tumor microenvironment, and to construct novel combination immunotherapies beyond immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Shoichi Hazama
- Department of Translational Research and Developmental Therapeutics against CancerYamaguchi University School of MedicineUbeJapan
| | - Koji Tamada
- Department of ImmunologyYamaguchi University Graduate School of MedicineUbeJapan
| | | | - Yutaka Kawakami
- Division of Cellular SignalingInstitute for Advanced Medical ResearchKeio University School of MedicineTokyoJapan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
362
|
Cancer-Associated Fibroblasts Affect Intratumoral CD8+ and FoxP3+ T Cells Via IL6 in the Tumor Microenvironment. Clin Cancer Res 2018; 24:4820-4833. [DOI: 10.1158/1078-0432.ccr-18-0205] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/08/2018] [Accepted: 06/13/2018] [Indexed: 11/16/2022]
|
363
|
Hilmi M, Bartholin L, Neuzillet C. Immune therapies in pancreatic ductal adenocarcinoma: Where are we now? World J Gastroenterol 2018; 24:2137-2151. [PMID: 29853732 PMCID: PMC5974576 DOI: 10.3748/wjg.v24.i20.2137] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/05/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, mostly due to its resistance to treatment. Of these, checkpoint inhibitors (CPI) are inefficient when used as monotherapy, except in the case of a rare subset of tumors harboring microsatellite instability (< 2%). This inefficacy mainly resides in the low immunogenicity and non-inflamed phenotype of PDAC. The abundant stroma generates a hypoxic microenvironment and drives the recruitment of immunosuppressive cells through cancer-associated-fibroblast activation and transforming growth factor β secretion. Several strategies have recently been developed to overcome this immunosuppressive microenvironment. Combination therapies involving CPI aim at increasing tumor immunogenicity and promoting the recruitment and activation of effector T cells. Ongoing studies are therefore exploring the association of CPI with vaccines, oncolytic viruses, MEK inhibitors, cytokine inhibitors, and hypoxia- and stroma-targeting agents. Adoptive T-cell transfer is also under investigation. Moreover, translational studies on tumor tissue and blood, prior to and during treatment may lead to the identification of biomarkers with predictive value for both clinical outcome and response to immunotherapy.
Collapse
Affiliation(s)
- Marc Hilmi
- Service d’Oncologie Médicale, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris Est Créteil, Créteil 94010, France
| | - Laurent Bartholin
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Cindy Neuzillet
- Service d’Oncologie Médicale, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris Est Créteil, Créteil 94010, France
| |
Collapse
|
364
|
Abstract
The IL-6/JAK/STAT3 pathway is aberrantly hyperactivated in many types of cancer, and such hyperactivation is generally associated with a poor clinical prognosis. In the tumour microenvironment, IL-6/JAK/STAT3 signalling acts to drive the proliferation, survival, invasiveness, and metastasis of tumour cells, while strongly suppressing the antitumour immune response. Thus, treatments that target the IL-6/JAK/STAT3 pathway in patients with cancer are poised to provide therapeutic benefit by directly inhibiting tumour cell growth and by stimulating antitumour immunity. Agents targeting IL-6, the IL-6 receptor, or JAKs have already received FDA approval for the treatment of inflammatory conditions or myeloproliferative neoplasms and for the management of certain adverse effects of chimeric antigen receptor T cells, and are being further evaluated in patients with haematopoietic malignancies and in those with solid tumours. Novel inhibitors of the IL-6/JAK/STAT3 pathway, including STAT3-selective inhibitors, are currently in development. Herein, we review the role of IL-6/JAK/STAT3 signalling in the tumour microenvironment and the status of preclinical and clinical investigations of agents targeting this pathway. We also discuss the potential of combining IL-6/JAK/STAT3 inhibitors with currently approved therapeutic agents directed against immune-checkpoint inhibitors.
Collapse
Affiliation(s)
- Daniel E. Johnson
- Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Rachel A. O’Keefe
- Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Jennifer R. Grandis
- Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
365
|
Eibl G, Cruz-Monserrate Z, Korc M, Petrov MS, Goodarzi MO, Fisher WE, Habtezion A, Lugea A, Pandol SJ, Hart PA, Andersen DK. Diabetes Mellitus and Obesity as Risk Factors for Pancreatic Cancer. J Acad Nutr Diet 2018; 118:555-567. [PMID: 28919082 PMCID: PMC5845842 DOI: 10.1016/j.jand.2017.07.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest types of cancer. The worldwide estimates of its incidence and mortality in the general population are eight cases per 100,000 person-years and seven deaths per 100,000 person-years, and they are significantly higher in the United States than in the rest of the world. The incidence of this disease in the United States is more than 50,000 new cases in 2017. Indeed, total deaths due to PDAC are projected to increase dramatically to become the second leading cause of cancer-related deaths before 2030. Considering the failure to date to efficiently treat existing PDAC, increased effort should be undertaken to prevent this disease. A better understanding of the risk factors leading to PDAC development is of utmost importance to identify and formulate preventive strategies. Large epidemiologic and cohort studies have identified risk factors for the development of PDAC, including obesity and type 2 diabetes mellitus. This review highlights the current knowledge of obesity and type 2 diabetes as risk factors for PDAC development and progression, their interplay and underlying mechanisms, and the relation to diet. Research gaps and opportunities to address this deadly disease are also outlined.
Collapse
|
366
|
Song Z, Ren D, Xu X, Wang Y. Molecular cross-talk of IL-6 in tumors and new progress in combined therapy. Thorac Cancer 2018; 9:669-675. [PMID: 29603884 PMCID: PMC5983184 DOI: 10.1111/1759-7714.12633] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
IL-6, a cytokine activated by type I interferons (IFNs), is encoded by the IL-6 gene, and secreted by T cells and macrophages. It serves many purposes in the human body and is significant to pathological and physiological activities, such as acute inflammatory responses, autoimmune diseases, and tumor formation. The wide range of IL-6 actions on tumors rely on more than one specific pathway. Advances in modern research have determined that to fulfill its complex physiological functions, IL-6 must be involved in cross-talk with a number of other molecular pathways. Therefore, it is important to clarify the comprehensive pathway network associated with IL-6 activity and to explore the mechanisms to inhibit its pathological activity in order to develop corresponding treatment plans. This study is a simple review of the pathological and physiological actions of IL-6 on the human body. It explains in detail the molecular pathways involved in cross-talk between IL-6 and tumors, summarizing and discussing the latest progress made in IL-6-related internal medicine treatments in recent years, including chemotherapies, targeted therapies, and immunotherapies. Our results provide new insight into the treatment of tumors.
Collapse
Affiliation(s)
- Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Dian Ren
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Yuxin Wang
- Department of Cancer Biology, Lerner Research Institute The Cleveland Clinic Foundation, Cleveland, USA
| |
Collapse
|
367
|
Fu Y, Liu S, Zeng S, Shen H. The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma. Mol Cancer 2018; 17:62. [PMID: 29458370 PMCID: PMC5817854 DOI: 10.1186/s12943-018-0815-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/12/2018] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant diseases worldwide. It is refractory to conventional treatments, and consequently has a documented 5-year survival rate as low as 7%. Increasing evidence indicates that activated pancreatic stellate cells (PSCs), one of the stromal components in tumor microenvironment (TME), play a crucial part in the desmoplasia, carcinogenesis, aggressiveness, metastasis associated with PDAC. Despite the current understanding of PSCs as a "partner in crime" to PDAC, detailed regulatory roles of PSCs and related microenvironment remain obscure. In addition to multiple paracrine signaling pathways, recent research has confirmed that PSCs-mediated tumor microenvironment may influence behaviors of PDAC via diverse mechanisms, such as rewiring metabolic networks, suppressing immune responses. These new activities are closely linked with treatment and prognosis of PDAC. In this review, we discuss the recent advances regarding new functions of activated PSCs, including PSCs-cancer cells interaction, mechanisms involved in immunosuppressive regulation, and metabolic reprogramming. It's clear that these updated experimental or clinical studies of PSCs may provide a promising approach for PDAC treatment in the near future.
Collapse
Affiliation(s)
- Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
368
|
Johnson BA, Yarchoan M, Lee V, Laheru DA, Jaffee EM. Strategies for Increasing Pancreatic Tumor Immunogenicity. Clin Cancer Res 2018; 23:1656-1669. [PMID: 28373364 DOI: 10.1158/1078-0432.ccr-16-2318] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 12/15/2022]
Abstract
Immunotherapy has changed the standard of care for multiple deadly cancers, including lung, head and neck, gastric, and some colorectal cancers. However, single-agent immunotherapy has had little effect in pancreatic ductal adenocarcinoma (PDAC). Increasing evidence suggests that the PDAC microenvironment is comprised of an intricate network of signals between immune cells, PDAC cells, and stroma, resulting in an immunosuppressive environment resistant to single-agent immunotherapies. In this review, we discuss differences between immunotherapy-sensitive cancers and PDAC, the complex interactions between PDAC stroma and suppressive tumor-infiltrating cells that facilitate PDAC development and progression, the immunologic targets within these complex networks that are druggable, and data supporting combination drug approaches that modulate multiple PDAC signals, which should lead to improved clinical outcomes. Clin Cancer Res; 23(7); 1656-69. ©2017 AACRSee all articles in this CCR Focus section, "Pancreatic Cancer: Challenge and Inspiration."
Collapse
Affiliation(s)
- Burles A Johnson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Valerie Lee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Daniel A Laheru
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland. .,Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
369
|
Immune Evasion in Pancreatic Cancer: From Mechanisms to Therapy. Cancers (Basel) 2018; 10:cancers10010006. [PMID: 29301364 PMCID: PMC5789356 DOI: 10.3390/cancers10010006] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA), the most frequent type of pancreatic cancer, remains one of the most challenging problems for the biomedical and clinical fields, with abysmal survival rates and poor therapy efficiency. Desmoplasia, which is abundant in PDA, can be blamed for much of the mechanisms behind poor drug performance, as it is the main source of the cytokines and chemokines that orchestrate rapid and silent tumor progression to allow tumor cells to be isolated into an extensive fibrotic reaction, which results in inefficient drug delivery. However, since immunotherapy was proclaimed as the breakthrough of the year in 2013, the focus on the stroma of pancreatic cancer has interestingly moved from activated fibroblasts to the immune compartment, trying to understand the immunosuppressive factors that play a part in the strong immune evasion that characterizes PDA. The PDA microenvironment is highly immunosuppressive and is basically composed of T regulatory cells (Tregs), tumor-associated macrophages (TAMs), and myeloid-derived suppressive cells (MDSCs), which block CD8⁺ T-cell duties in tumor recognition and clearance. Interestingly, preclinical data have highlighted the importance of this immune evasion as the source of resistance to single checkpoint immunotherapies and cancer vaccines and point at pathways that inhibit the immune attack as a key to solve the therapy puzzle. Here, we will discuss the molecular mechanisms involved in PDA immune escape as well as the state of the art of the PDA immunotherapy.
Collapse
|
370
|
Tsukamoto H, Fujieda K, Senju S, Ikeda T, Oshiumi H, Nishimura Y. Immune-suppressive effects of interleukin-6 on T-cell-mediated anti-tumor immunity. Cancer Sci 2017; 109:523-530. [PMID: 29090850 PMCID: PMC5834784 DOI: 10.1111/cas.13433] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022] Open
Abstract
Accompanied by the growing clinical applications of immunotherapy in the treatment of cancer patients, development of novel therapeutic approaches to reverse the immune-suppressive environment in cancer patients is eagerly anticipated, because the success of cancer immunotherapy is currently limited by immune-suppressive effects in tumor-bearing hosts. Interleukin (IL)-6, a pleotropic proinflammatory cytokine, participates in tumor cell-autonomous processes that are required for their survival and growth, and is therefore known as a poor prognostic factor in cancer patients. In addition, an emerging role of IL-6 in modulating multiple functions of immune cells including T cells, dendritic cells, and macrophages is responsible for the dysfunction of innate and adaptive immunity against tumors. Therefore, the IL-6-targeting approach is of value as a promising strategy for desensitization and prevention of immune-suppressive effects, and should be an effective treatment when combined with current immunotherapies. The aim of the present review is to discuss the immune-suppressive aspects of IL-6, notably with modification of T-cell functions in cancer patients, and their relationship to anti-tumor immune responses and cancer immunotherapy.
Collapse
Affiliation(s)
- Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koji Fujieda
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tokunori Ikeda
- Department of Clinical Investigation, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Nishimura Project Laboratory, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
371
|
Hochnadel I, Kossatz-Boehlert U, Jedicke N, Lenzen H, Manns MP, Yevsa T. Cancer vaccines and immunotherapeutic approaches in hepatobiliary and pancreatic cancers. Hum Vaccin Immunother 2017; 13:2931-2952. [PMID: 29112462 PMCID: PMC5718787 DOI: 10.1080/21645515.2017.1359362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatobiliary and pancreatic cancers along with other gastrointestinal malignancies remain the leading cause of cancer-related deaths worldwide. Strategies developed in the recent years on immunotherapy and cancer vaccines in the setting of primary liver cancer as well as in pancreatic cancer are the scope of this review. Significance of orthotopic and autochthonous animal models which mimic and/or closely reflect human malignancies allowing for a prompt and trustworthy analysis of new therapeutics is underlined. Combinational approaches that on one hand, specifically target a defined cancer-driving pathway, and on the other hand, restore the functions of immune cells, which effector functions are often suppressed by a tumor milieu, are shown to have the strongest perspectives and future directions. Among combinational immunotherapeutic approaches a personalized- and individual cancer case-based therapy is of special importance.
Collapse
Affiliation(s)
- Inga Hochnadel
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Uta Kossatz-Boehlert
- b Institute for Neuroanatomy, Eberhard-Karls University Tuebingen , Tuebingen , Germany
| | - Nils Jedicke
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Henrike Lenzen
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Michael P Manns
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Tetyana Yevsa
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| |
Collapse
|
372
|
Tsukamoto H, Fujieda K, Senju S, Ikeda T, Oshiumi H, Nishimura Y. Immune-suppressive effects of interleukin-6 on T-cell-mediated anti-tumor immunity. Cancer Sci 2017. [PMID: 29090850 DOI: 10.1111/cas.13433.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Accompanied by the growing clinical applications of immunotherapy in the treatment of cancer patients, development of novel therapeutic approaches to reverse the immune-suppressive environment in cancer patients is eagerly anticipated, because the success of cancer immunotherapy is currently limited by immune-suppressive effects in tumor-bearing hosts. Interleukin (IL)-6, a pleotropic proinflammatory cytokine, participates in tumor cell-autonomous processes that are required for their survival and growth, and is therefore known as a poor prognostic factor in cancer patients. In addition, an emerging role of IL-6 in modulating multiple functions of immune cells including T cells, dendritic cells, and macrophages is responsible for the dysfunction of innate and adaptive immunity against tumors. Therefore, the IL-6-targeting approach is of value as a promising strategy for desensitization and prevention of immune-suppressive effects, and should be an effective treatment when combined with current immunotherapies. The aim of the present review is to discuss the immune-suppressive aspects of IL-6, notably with modification of T-cell functions in cancer patients, and their relationship to anti-tumor immune responses and cancer immunotherapy.
Collapse
Affiliation(s)
- Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koji Fujieda
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tokunori Ikeda
- Department of Clinical Investigation, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Nishimura Project Laboratory, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
373
|
Zhuan-Sun Y, Huang F, Feng M, Zhao X, Chen W, Zhu Z, Zhang S. Prognostic value of PD-L1 overexpression for pancreatic cancer: evidence from a meta-analysis. Onco Targets Ther 2017; 10:5005-5012. [PMID: 29081663 PMCID: PMC5652904 DOI: 10.2147/ott.s146383] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) is an immune checkpoint that is often activated in cancer and plays a pivotal role in the initiation and progression of cancer. However, the clinicopathologic significance and prognostic value of PD-L1 in pancreatic cancer (PC) remains controversial. In this study, we conducted a meta-analysis to retrospectively evaluate the relationship between PD-L1 and PC. PubMed and other databases were searched for the clinical studies published up to March 21, 2017, to be included in the meta-analysis. Hazard ratios and their 95% CIs were calculated. Risk ratios (RRs) were extracted to assess the correlations between the clinicopathologic parameters and PD-L1 expression. Ten studies including 1,058 patients were included in the meta-analysis. The pooled results indicated that positive PD-L1 expression was correlated with a poor overall survival outcome in PC patients (hazard ratio =1.76, 95% CI: 1.43–2.17, P<0.00001). Interestingly, high PD-L1 expression was correlated with poor pathologic differentiation (RR =1.57, 95% CI: 1.25–1.98, P=0.0001) and neural invasion (RR =1.30, 95% CI: 1.03–1.64, P=0.03). However, there were no significant correlations between PD-L1 expression and other clinicopathologic characteristics. In summary, our meta-analysis implied that PD-L1 could serve as a negative predictor for the overall survival of PC patients, and high expression of PD-L1 was correlated with poor differentiation and neural invasion, indicating that anti-PD-L1 treatments should be evaluated in PC patients, especially in those who exhibit these two characteristics.
Collapse
Affiliation(s)
- Yongxun Zhuan-Sun
- Department of Respirology.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation
| | - Fengting Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation.,Department of Gastroenterology
| | | | - Xinbao Zhao
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | | | - Zhe Zhu
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Shineng Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation.,Department of Gastroenterology
| |
Collapse
|
374
|
Lamichhane P, Karyampudi L, Shreeder B, Krempski J, Bahr D, Daum J, Kalli KR, Goode EL, Block MS, Cannon MJ, Knutson KL. IL10 Release upon PD-1 Blockade Sustains Immunosuppression in Ovarian Cancer. Cancer Res 2017; 77:6667-6678. [PMID: 28993412 DOI: 10.1158/0008-5472.can-17-0740] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/24/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022]
Abstract
Ligation of programmed cell death-1 (PD-1) in the tumor microenvironment is known to inhibit effective adaptive antitumor immunity. Blockade of PD-1 in humans has resulted in impressive, durable regression responses in select tumor types. However, durable responses have been elusive in ovarian cancer patients. PD-1 was recently shown to be expressed on and thereby impair the functions of tumor-infiltrating murine and human myeloid dendritic cells (TIDC) in ovarian cancer. In the present work, we characterize the regulation of PD-1 expression and the effects of PD-1 blockade on TIDC. Treatment of TIDC and bone marrow-derived dendritic cells (DC) with IL10 led to increased PD-1 expression. Both groups of DCs also responded to PD-1 blockade by increasing production of IL10. Similarly, treatment of ovarian tumor-bearing mice with PD-1 blocking antibody resulted in an increase in IL10 levels in both serum and ascites. While PD-1 blockade or IL10 neutralization as monotherapies were inefficient, combination of these two led to improved survival and delayed tumor growth; this was accompanied by augmented antitumor T- and B-cell responses and decreased infiltration of immunosuppressive MDSC. Taken together, our findings implicate compensatory release of IL10 as one of the adaptive resistance mechanisms that undermine the efficacy of anti-PD-1 (or anti-PD-L1) monotherapies and prompt further studies aimed at identifying such resistance mechanisms. Cancer Res; 77(23); 6667-78. ©2017 AACR.
Collapse
Affiliation(s)
- Purushottam Lamichhane
- Department of Immunology, Mayo Clinic Rochester, Minnesota.,Department of Immunology, Mayo Clinic Florida, Jacksonville, Florida.,The Cancer Vaccines and Immune Therapies Program, Vaccine and Gene Therapy Institute, Port St. Lucie, Florida
| | - Lavakumar Karyampudi
- Department of Immunology, Mayo Clinic Rochester, Minnesota.,The Cancer Vaccines and Immune Therapies Program, Vaccine and Gene Therapy Institute, Port St. Lucie, Florida
| | - Barath Shreeder
- Department of Immunology, Mayo Clinic Florida, Jacksonville, Florida.,The Cancer Vaccines and Immune Therapies Program, Vaccine and Gene Therapy Institute, Port St. Lucie, Florida
| | - James Krempski
- Department of Immunology, Mayo Clinic Rochester, Minnesota
| | - Deborah Bahr
- Department of Immunology, Mayo Clinic Florida, Jacksonville, Florida
| | - Joshua Daum
- Department of Immunology, Mayo Clinic Florida, Jacksonville, Florida
| | | | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic Rochester, Minnesota
| | | | - Martin J Cannon
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic Rochester, Minnesota. .,Department of Immunology, Mayo Clinic Florida, Jacksonville, Florida.,The Cancer Vaccines and Immune Therapies Program, Vaccine and Gene Therapy Institute, Port St. Lucie, Florida
| |
Collapse
|
375
|
Duggan MC, Stiff AR, Bainazar M, Regan K, Olaverria Salavaggione GN, Maharry S, Blachly JS, Krischak M, Walker CJ, Latchana N, Tridandapani S, de la Chapelle A, Eisfeld AK, Carson WE. Identification of NRAS isoform 2 overexpression as a mechanism facilitating BRAF inhibitor resistance in malignant melanoma. Proc Natl Acad Sci U S A 2017; 114:9629-9634. [PMID: 28827320 PMCID: PMC5594655 DOI: 10.1073/pnas.1704371114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activating mutations in BRAF are found in 50% of melanomas and although treatment with BRAF inhibitors (BRAFi) is effective, resistance often develops. We now show that recently discovered NRAS isoform 2 is up-regulated in the setting of BRAF inhibitor resistance in melanoma, in both cell lines and patient tumor tissues. When isoform 2 was overexpressed in BRAF mutant melanoma cell lines, melanoma cell proliferation and in vivo tumor growth were significantly increased in the presence of BRAFi treatment. shRNA-mediated knockdown of isoform 2 in BRAFi resistant cells restored sensitivity to BRAFi compared with controls. Signaling analysis indicated decreased mitogen-activated protein kinase (MAPK) pathway signaling and increased phosphoinositol-3-kinase (PI3K) pathway signaling in isoform 2 overexpressing cells compared with isoform 1 overexpressing cells. Immunoprecipitation of isoform 2 validated a binding affinity of this isoform to both PI3K and BRAF/RAF1. The addition of an AKT inhibitor to BRAFi treatment resulted in a partial restoration of BRAFi sensitivity in cells expressing high levels of isoform 2. NRAS isoform 2 may contribute to resistance to BRAFi by facilitating PI3K pathway activation.
Collapse
Affiliation(s)
- Megan C Duggan
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Andrew R Stiff
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Maryam Bainazar
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Kelly Regan
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | | | - Sophia Maharry
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - James S Blachly
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Madison Krischak
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | | | - Nicholas Latchana
- Division of Surgical Oncology, The Ohio State University, Columbus, OH 43210
| | | | | | | | - William E Carson
- Division of Surgical Oncology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
376
|
Feng M, Xiong G, Cao Z, Yang G, Zheng S, Song X, You L, Zheng L, Zhang T, Zhao Y. PD-1/PD-L1 and immunotherapy for pancreatic cancer. Cancer Lett 2017; 407:57-65. [PMID: 28826722 DOI: 10.1016/j.canlet.2017.08.006] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/17/2017] [Accepted: 08/05/2017] [Indexed: 12/16/2022]
Abstract
Therapy that targets programmed death 1 or programmed death 1 ligand 1 (PD-1/PD-L1), which are known as immune checkpoints, has been recently rapidly developing as oncotherapy for various carcinomas. However, this therapy has a poor effect on the treatment of pancreatic cancer with PD-1/PD-L1 blockade monotherapy. In this review, the development and limitations of anti-PD-1/PD-L1 monotherapy in pancreatic cancer are discussed. We then consider the underlying mechanism of anti-PD-1/PD-L1 monotherapy failure, combination strategies overcoming resistance to anti-PD-1/PD-L1 immunotherapy and the prospect of targeting PD-1/PD-L1 for the immunotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Guangbing Xiong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Suli Zheng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Xujun Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Clinical Immunology Center, Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
377
|
Gu L, Chen M, Guo D, Zhu H, Zhang W, Pan J, Zhong X, Li X, Qian H, Wang X. PD-L1 and gastric cancer prognosis: A systematic review and meta-analysis. PLoS One 2017; 12:e0182692. [PMID: 28796808 PMCID: PMC5552131 DOI: 10.1371/journal.pone.0182692] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/21/2017] [Indexed: 12/12/2022] Open
Abstract
The expression of Programmed cell Death Ligand 1 (PD-L1) is observed in many malignant tumors and is associated with poor prognosis including Gastric Cancer (GC). The relationship between PD-L1 expression and prognosis, however, is controversial in GC. This paper purports to use a meta-analysis to investigate the relationship between PD-L1 expression and prognosis in GC. For this study, the following databases were searched for articles published from June 2003 until February 2017: PubMed, EBSCO, Web of Science and Cochrane Library. The baseline information extracted were: authors, year of publication, country where the study was performed, study design, sample size, follow-up time, baseline characteristics of the study population, pathologic data, overall survival (OS). A total of 15 eligible studies covering 3291 patients were selected for a meta-analysis based on specified inclusion and exclusion criteria. The analysis showed that the expression level of PD-L1 was associated with the overall survival in GC (Hazard Ratio, HR = 1.46, 95%CI = 1.08-1.98, P = 0.01, random-effect). In addition to the above, subgroup analysis showed that GC patients with deeper tumor infiltration, positive lymph-node metastasis, positive venous invasion, Epstein-Barr virus infection positive (EBV+), Microsatellite Instability (MSI) are more likely to expression PD-L1. The results of this meta-analysis suggest that GC patients, specifically EBV+ and MSI, may be prime candidates for PD-1 directed therapy. These findings support anti-PD-L1/PD-1 antibodies as a kind of immunotherapy which is promising for GC.
Collapse
Affiliation(s)
- Lihu Gu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Manman Chen
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Dongyu Guo
- Department of Ophthalmology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hepan Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenchao Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junhai Pan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinlong Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haoran Qian
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xianfa Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
378
|
Shen MJ, Xu LJ, Yang L, Tsai Y, Keng PC, Chen Y, Lee SO, Chen Y. Radiation alters PD-L1/NKG2D ligand levels in lung cancer cells and leads to immune escape from NK cell cytotoxicity via IL-6-MEK/Erk signaling pathway. Oncotarget 2017; 8:80506-80520. [PMID: 29113321 PMCID: PMC5655216 DOI: 10.18632/oncotarget.19193] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023] Open
Abstract
We investigated whether radiation influences the susceptibility of non-small cell lung cancer (NSCLC) cells to NK cell mediated cytotoxicity. We found radiation treatment increased expression of programmed cell death ligand 1 (PD-L1), but decreased NK group 2, member D (NKG2D) ligand expressions in A549 and H157 NSCLC cells. Both types of changes would have protected tumor cells from the cytotoxic action of NK cells. Consistently, we detected similar alteration in these molecules in radioresistant A549R26-1 and H157R24-1 subline cells. Higher PD-L1 level was also observed in tumors of A549R26-1 cell-derived xenografts than tumors of parental A549 (A549P) cell-derived xenografts. Accordingly, we found radioresistant cells were more resistant to the cytotoxic action of NK cells than parental cells, and such resistance was decreased when neutralizing antibody (Ab) of PD-L1 was added to the radioresistant cell/NK cell co-cultures. In mechanism studies, we found that IL-6-MEK/Erk signaling contributed most significantly to the up-regulation of PD-L1/down-regulation of NKG2D ligands in radioresistant cells. The addition of the MEK/Erk inhibitor increased the susceptibility of A549R26-1 and H157R24-1 cells to NK-cell cytotoxicity while no significant effect was observed in parental cells. Moreover, we detected enhanced NK-cell cytotoxicity to radioresistant cells when PD-L1 Ab and MEK/Erk inhibitor were added together to co-cultures of tumor/NK cells compared to when PD-L1 Ab was used alone. We suggest that combined use of PD-L1 Ab and MEK/Erk inhibitor may offer better therapeutic benefits than PD-L1 Ab alone to treat NSCLC patients who are receiving radiotherapy or who are at the radioresistant stage.
Collapse
Affiliation(s)
- Ming Jing Shen
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.,Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Li Jun Xu
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.,Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Li Yang
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ying Tsai
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Peter C Keng
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Soo Ok Lee
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
379
|
Liu YZ, Wang YX, Jiang CL. Inflammation: The Common Pathway of Stress-Related Diseases. Front Hum Neurosci 2017; 11:316. [PMID: 28676747 PMCID: PMC5476783 DOI: 10.3389/fnhum.2017.00316] [Citation(s) in RCA: 449] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/01/2017] [Indexed: 01/11/2023] Open
Abstract
While modernization has dramatically increased lifespan, it has also witnessed that the nature of stress has changed dramatically. Chronic stress result failures of homeostasis thus lead to various diseases such as atherosclerosis, non-alcoholic fatty liver disease (NAFLD) and depression. However, while 75%-90% of human diseases is related to the activation of stress system, the common pathways between stress exposure and pathophysiological processes underlying disease is still debatable. Chronic inflammation is an essential component of chronic diseases. Additionally, accumulating evidence suggested that excessive inflammation plays critical roles in the pathophysiology of the stress-related diseases, yet the basis for this connection is not fully understood. Here we discuss the role of inflammation in stress-induced diseases and suggest a common pathway for stress-related diseases that is based on chronic mild inflammation. This framework highlights the fundamental impact of inflammation mechanisms and provides a new perspective on the prevention and treatment of stress-related diseases.
Collapse
Affiliation(s)
- Yun-Zi Liu
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical UniversityShanghai, China
| | - Yun-Xia Wang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical UniversityShanghai, China
| | - Chun-Lei Jiang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical UniversityShanghai, China
| |
Collapse
|
380
|
Long KB, Tooker G, Tooker E, Luque SL, Lee JW, Pan X, Beatty GL. IL6 Receptor Blockade Enhances Chemotherapy Efficacy in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2017; 16:1898-1908. [PMID: 28611107 DOI: 10.1158/1535-7163.mct-16-0899] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/17/2017] [Accepted: 05/24/2017] [Indexed: 12/18/2022]
Abstract
Inflammation mediated by activation of JAK/STAT signaling is a major cause of chemotherapy resistance in cancer. We studied the impact of selectively blocking the IL6 receptor (IL6R) as a strategy to inhibit IL6-induced STAT activation and to overcome chemoresistance in pancreatic ductal adenocarcinoma (PDAC). To do this, STAT activation was investigated in tumors arising spontaneously in LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1Cre (KPC) mice. Plasma from patients with PDAC was assessed for its ability to activate STAT3/SOCS3 in human monocytes using immunofluorescence microscopy and quantitative gene expression assays. KPC mice and syngeneic mice (wild type and IL6-/-) implanted with KPC-derived cell lines were treated with an IL6R-blocking antibody (anti-IL6R). The impact of treatment on tumor growth in KPC mice and mice with KPC-derived tumor implants was monitored using ultrasonography and calipers, respectively. Tumors were analyzed by IHC to detect changes in STAT activation, tumor viability, and proliferation. We found that STAT3 was the most activated STAT protein in PDAC tumors from KPC mice. Plasma from patients with advanced PDAC stimulated STAT3/SOCS3 activation in human monocytes. In mice, anti-IL6R antibodies targeted Ly6Chi monocytes, inhibited STAT3 activation in tumor cells, and decreased tumor cell proliferation in vivo IL6R blockade in combination with chemotherapy induced tumor cell apoptosis, tumor regressions, and improved overall survival. Overall, we show that IL6 signaling drives STAT3 activation in tumor cells and mediates chemoresistance in PDAC. Thus, disrupting IL6 signaling using anti-IL6R antibodies holds promise for improving chemotherapy efficacy in PDAC. Mol Cancer Ther; 16(9); 1898-908. ©2017 AACR.
Collapse
Affiliation(s)
- Kristen B Long
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Graham Tooker
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evan Tooker
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Santiago Lombo Luque
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jae W Lee
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaoqing Pan
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregory L Beatty
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. .,Abramson Cancer Center; University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
381
|
Van Audenaerde JRM, De Waele J, Marcq E, Van Loenhout J, Lion E, Van den Bergh JMJ, Jesenofsky R, Masamune A, Roeyen G, Pauwels P, Lardon F, Peeters M, Smits ELJ. Interleukin-15 stimulates natural killer cell-mediated killing of both human pancreatic cancer and stellate cells. Oncotarget 2017; 8:56968-56979. [PMID: 28915646 PMCID: PMC5593617 DOI: 10.18632/oncotarget.18185] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of cancer-related death in Western countries with a 5-year survival rate below 5%. One of the hallmarks of this cancer is the strong desmoplastic reaction within the tumor microenvironment (TME), orchestrated by activated pancreatic stellate cells (PSC). This results in a functional and mechanical shield which causes resistance to conventional therapies. Aiming to overcome this resistance by tackling the stromal shield, we assessed for the first time the capacity of IL-15 stimulated natural killer (NK) cells to kill PSC and pancreatic cancer cells (PCC). The potency of IL-15 to promote NK cell-mediated killing was evaluated phenotypically and functionally. In addition, NK cell and immune checkpoint ligands on PSC were charted. We demonstrate that IL-15 activated NK cells kill both PCC and PSC lines (range 9-35% and 20-50%, respectively) in a contact-dependent manner and significantly higher as compared to resting NK cells. Improved killing of these pancreatic cell lines is, at least partly, dependent on IL-15 induced upregulation of TIM-3 and NKG2D. Furthermore, we confirm significant killing of primary PSC by IL-15 activated NK cells in an ex vivo autologous system. Screening for potential targets for immunotherapeutic strategies, we demonstrate surface expression of both inhibitory (PD-L1, PD-L2) and activating (MICA/B, ULBPs and Galectin-9) ligands on primary PSC. These data underscore the therapeutic potential of IL-15 to promote NK cell-mediated cytotoxicity as a treatment of pancreatic cancer and provide promising future targets to tackle remaining PSC.
Collapse
Affiliation(s)
- Jonas R M Van Audenaerde
- Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Jorrit De Waele
- Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Elly Marcq
- Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Jinthe Van Loenhout
- Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Johan M J Van den Bergh
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Ralf Jesenofsky
- Department of Medicine II, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Geert Roeyen
- Department of Hepatobiliary, Endocrine and Transplantation Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Patrick Pauwels
- Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Filip Lardon
- Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of Oncology, Multidisciplinary Oncological Centre Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Evelien L J Smits
- Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
382
|
Inhibition of Jak/STAT signaling reduces the activation of pancreatic stellate cells in vitro and limits caerulein-induced chronic pancreatitis in vivo. Sci Rep 2017; 7:1787. [PMID: 28496202 PMCID: PMC5431930 DOI: 10.1038/s41598-017-01973-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/03/2017] [Indexed: 12/24/2022] Open
Abstract
Chronic pancreatitis (CP) is a fibro-inflammatory disease leading to pain, maldigestion, and pancreatic insufficiency. No therapeutic options exist due to a limited understanding of the biology of CP pathology. Recent findings implicate pancreatic stellate cells (PSC) as prominent mediators of inflammatory and fibrotic processes during CP. Here, we utilized primary and immortalized PSC obtained from mice and patients with CP or pancreatic cancer to examine the effect of Jak/STAT and MAPK pathway inhibition in vitro. The well-characterized caerulein model of CP was used to assess the therapeutic efficacy of Jak1/2 inhibition in vivo. Treatment of cultured PSC with the Jak1/2 inhibitor ruxolitinib reduced STAT3 phosphorylation, cell proliferation, and expression of alpha-smooth muscle actin (α-SMA), a marker of PSC activation. Treatment with the MAPK inhibitor, MEK162, had less consistent effects on PSC proliferation and no impact on activation. In the caerulein-induced murine model of CP, administration of ruxolitinib for one week significantly reduced biomarkers of inflammation and fibrosis. These data suggest that the Jak/STAT pathway plays a prominent role in PSC proliferation and activation. In vivo treatment with the Jak1/2 inhibitor ruxolitinib reduced the severity of experimental CP, suggesting that targeting Jak/STAT signaling may represent a promising therapeutic strategy for CP.
Collapse
|
383
|
The Development of a Novel Therapeutic Strategy to Target Hyaluronan in the Extracellular Matrix of Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2017; 18:ijms18030600. [PMID: 28282922 PMCID: PMC5372616 DOI: 10.3390/ijms18030600] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases to affect humans, regardless of whether patients receive multimodal therapy (including surgery, radiotherapy, and chemotherapy). This resistance to intervention is currently considered to be caused by the desmoplastic change of the extracellular matrix (ECM) in PDAC tissues, which is characterized by the accumulation of cancer-associated fibroblasts, collagen, proteoglycan, and hyaluronan. Among these ECM components, hyaluronan has attracted interest because various studies have indicated that hyaluronan-rich PDAC is correlated with the progressive properties of cancer cells, both in experimental and clinical settings. Hence, the reduction of hyaluronan in cancer tissue may represent a novel therapeutic approach for PDAC. 4-methylumbelliferone (4-MU) is a derivative of coumarin that was reported to suppress the synthesis of hyaluronan in cultured human skin fibroblasts in 1995. As an additional study, our group firstly reported that 4-MU reduced the hyaluronan synthesis of mouse melanoma cells and exerted anti-cancer activity. Subsequently, we have showed that 4-MU inhibited liver metastasis in mice inoculated with human pancreatic cancer cells. Thereafter, 4-MU has been accepted as an effective agent for hyaluronan research and is expected to have clinical applications. This review provides an overview of the interaction between PDAC and hyaluronan, the properties of 4-MU as a suppressor of the synthesis of hyaluronan, and the perspectives of PDAC treatment targeting hyaluronan.
Collapse
|
384
|
Liu H, Shen J, Lu K. IL-6 and PD-L1 blockade combination inhibits hepatocellular carcinoma cancer development in mouse model. Biochem Biophys Res Commun 2017; 486:239-244. [PMID: 28254435 DOI: 10.1016/j.bbrc.2017.02.128] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/25/2017] [Indexed: 12/20/2022]
Abstract
Limited efficacy of immune checkpoint inhibitors in hepatocellular carcinoma (HCC) was observed in clinical trials, thus prompting investigation into combination therapy. Interleukin-6 (IL-6) has important roles in modeling immune responses in cancers. Here, we hypothesized that IL-6 blockade would enhance antitumor immunity of HCC and synergize with anti-programmed death-1-ligand 1 (PD-L1) checkpoint inhibitor in treating HCC. The sources and immune modulating effects of IL-6 were investigated in HCC models. Combination of anti-IL-6 and anti-PD-L1 was tested in HCC bearing mice. We found that IL-6 is mainly secreted by cancer associated fibroblast (CAFs), but not tumor cells in HCC. High IL-6 expression CAFs could induce strong immunosuppression in HCC microenvironment by recruiting immunosuppressive cells, such as myeloid derived suppressive cells. In addition, high IL-6 expression CAFs also impaired tumor infiltrating T-cell function via upregulating inhibitory immune checkpoints. Using IL-6 blockade could reverse anti-PD-L1 resistance in HCC tumor model. In conclusion, our study indicates that targeted inhibition of IL-6 may enhance the efficacy of anti-PD-L1 in HCC, providing a potential strategy to overcoming anti-PD-L1 resistance in HCC.
Collapse
Affiliation(s)
- Hu Liu
- Department of Laparoscopy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jun Shen
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Kai Lu
- Department of Laparoscopy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
385
|
Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, Chio IIC, Hwang CI, Tiriac H, Baker LA, Engle DD, Feig C, Kultti A, Egeblad M, Fearon DT, Crawford JM, Clevers H, Park Y, Tuveson DA. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 2017; 214:579-596. [PMID: 28232471 PMCID: PMC5339682 DOI: 10.1084/jem.20162024] [Citation(s) in RCA: 1672] [Impact Index Per Article: 209.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 12/18/2022] Open
Abstract
Pancreatic stellate cells (PSCs) differentiate into cancer-associated fibroblasts (CAFs) that produce desmoplastic stroma, thereby modulating disease progression and therapeutic response in pancreatic ductal adenocarcinoma (PDA). However, it is unknown whether CAFs uniformly carry out these tasks or if subtypes of CAFs with distinct phenotypes in PDA exist. We identified a CAF subpopulation with elevated expression of α-smooth muscle actin (αSMA) located immediately adjacent to neoplastic cells in mouse and human PDA tissue. We recapitulated this finding in co-cultures of murine PSCs and PDA organoids, and demonstrated that organoid-activated CAFs produced desmoplastic stroma. The co-cultures showed cooperative interactions and revealed another distinct subpopulation of CAFs, located more distantly from neoplastic cells, which lacked elevated αSMA expression and instead secreted IL6 and additional inflammatory mediators. These findings were corroborated in mouse and human PDA tissue, providing direct evidence for CAF heterogeneity in PDA tumor biology with implications for disease etiology and therapeutic development.
Collapse
Affiliation(s)
- Daniel Öhlund
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724.,Department of Surgical and Perioperative Sciences, Surgery, Umeå University, 901 85 Umeå, Sweden
| | - Abram Handly-Santana
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724
| | - Giulia Biffi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724
| | - Ana S Almeida
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,APC Microbiome Institute and School of Microbiology, University College Cork, Cork, Ireland
| | - Mariano Ponz-Sarvise
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724.,Department of Oncology, Clinica Universidad de Navarra, CIMA, IDISNA, Pamplona 31008, Spain
| | - Vincenzo Corbo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724.,ARC-Net centre for applied research on cancer, University and Hospital Trust of Verona, 37134 Verona, Italy.,Department of Diagnostic and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Tobiloba E Oni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794
| | | | - Eun Jung Lee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724
| | - Iok In Christine Chio
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724
| | - Chang-Il Hwang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724
| | - Hervé Tiriac
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724
| | - Lindsey A Baker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724
| | - Dannielle D Engle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724
| | - Christine Feig
- University of Cambridge, Cancer Research UK, Cambridge Institute, Cambridge, UK
| | - Anne Kultti
- University of Cambridge, Cancer Research UK, Cambridge Institute, Cambridge, UK
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | | | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht and CancerGenomics.nl, 3584 CT Utrecht, Netherlands
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|