351
|
Zhang Y, Li CX, Zhang XZ. Bacteriophage-mediated modulation of microbiota for diseases treatment. Adv Drug Deliv Rev 2021; 176:113856. [PMID: 34237403 DOI: 10.1016/j.addr.2021.113856] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
The symbiotic microbiota is nowadays regarded as a human "invisible organ", its imbalance has been shown to be associated with many diseases. Besides, the progress of diseases can in turn change the internal structure of microbiota. Some diseases have shown their unique microbiota markers that may be potential therapeutic targets. Therefore, modulating microbiota may be a powerful strategy for diseases treatment. However, conventional microbiota modulation strategies lack selectivity and are suffer from side effects. In recent years, with the increasing challenge of antibiotic resistance, bacteriophage (phage) therapy has gradually presented its potential to treat drug-resistant infections. Phages are viruses that infect bacteria, with high selectivity for specific bacteria and almost no tropism for mammalian cells. Studies showed that phage-mediated precise modulation of microbiota has achieved great success in diseases treatment. Here, we briefly summarized the treatment strategies of phage-mediated modulation of microbiota, and discussed prospect of possible development in this field.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
352
|
Lacourt-Ventura MY, Vilanova-Cuevas B, Rivera-Rodríguez D, Rosario-Acevedo R, Miranda C, Maldonado-Martínez G, Maysonet J, Vargas D, Ruiz Y, Hunter-Mellado R, Cubano LA, Dharmawardhane S, Lampe JW, Baerga-Ortiz A, Godoy-Vitorino F, Martínez-Montemayor MM. Soy and Frequent Dairy Consumption with Subsequent Equol Production Reveals Decreased Gut Health in a Cohort of Healthy Puerto Rican Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168254. [PMID: 34444002 PMCID: PMC8391519 DOI: 10.3390/ijerph18168254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
The U.S. Hispanic female population has one of the highest breast cancer (BC) incidence and mortality rates, while BC is the leading cause of cancer death in Puerto Rican women. Certain foods may predispose to carcinogenesis. Our previous studies indicate that consuming combined soy isoflavones (genistein, daidzein, and glycitein) promotes tumor metastasis possibly through increased protein synthesis activated by equol, a secondary dietary metabolite. Equol is a bacterial metabolite produced in about 20-60% of the population that harbor and exhibit specific gut microbiota capable of producing it from daidzein. The aim of the current study was to investigate the prevalence of equol production in Puerto Rican women and identify the equol producing microbiota in this understudied population. Herein, we conducted a cross-sectional characterization of equol production in a clinically based sample of eighty healthy 25-50 year old Puerto Rican women. Urine samples were collected and evaluated by GCMS for the presence of soy isoflavones and metabolites to determine the ratio of equol producers to equol non-producers. Furthermore, fecal samples were collected for gut microbiota characterization on a subset of women using next generation sequencing (NGS). We report that 25% of the participants were classified as equol producers. Importantly, the gut microbiota from equol non-producers demonstrated a higher diversity. Our results suggest that healthy women with soy and high dairy consumption with subsequent equol production may result in gut dysbiosis by having reduced quantities (diversity) of healthy bacterial biomarkers, which might be associated to increased diseased outcomes (e.g., cancer, and other diseases).
Collapse
Affiliation(s)
- Mercedes Y. Lacourt-Ventura
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (M.Y.L.-V.); (R.R.-A.); (D.V.); (L.A.C.)
| | - Brayan Vilanova-Cuevas
- Department of Microbiology and Medical Zoology, Medical Sciences Campus, University of Puerto Rico, San Juan 00921, Puerto Rico; (B.V.-C.); (F.G.-V.)
| | | | - Raysa Rosario-Acevedo
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (M.Y.L.-V.); (R.R.-A.); (D.V.); (L.A.C.)
| | - Christine Miranda
- Retrovirus Research Center, Internal Medicine Department, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (C.M.); (G.M.-M.); (J.M.); (Y.R.); (R.H.-M.)
| | - Gerónimo Maldonado-Martínez
- Retrovirus Research Center, Internal Medicine Department, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (C.M.); (G.M.-M.); (J.M.); (Y.R.); (R.H.-M.)
| | - Johanna Maysonet
- Retrovirus Research Center, Internal Medicine Department, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (C.M.); (G.M.-M.); (J.M.); (Y.R.); (R.H.-M.)
- Hematology and Oncology Group, HIMA-San Pablo Bayamón Hospital, Bayamón 00961, Puerto Rico
| | - Darlene Vargas
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (M.Y.L.-V.); (R.R.-A.); (D.V.); (L.A.C.)
| | - Yelitza Ruiz
- Retrovirus Research Center, Internal Medicine Department, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (C.M.); (G.M.-M.); (J.M.); (Y.R.); (R.H.-M.)
- Hematology and Oncology Group, HIMA-San Pablo Bayamón Hospital, Bayamón 00961, Puerto Rico
| | - Robert Hunter-Mellado
- Retrovirus Research Center, Internal Medicine Department, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (C.M.); (G.M.-M.); (J.M.); (Y.R.); (R.H.-M.)
- Hematology and Oncology Group, HIMA-San Pablo Bayamón Hospital, Bayamón 00961, Puerto Rico
| | - Luis A. Cubano
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (M.Y.L.-V.); (R.R.-A.); (D.V.); (L.A.C.)
| | - Suranganie Dharmawardhane
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan 00921, Puerto Rico; (S.D.); (A.B.-O.)
| | - Johanna W. Lampe
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA 98109, USA;
| | - Abel Baerga-Ortiz
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan 00921, Puerto Rico; (S.D.); (A.B.-O.)
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, Medical Sciences Campus, University of Puerto Rico, San Juan 00921, Puerto Rico; (B.V.-C.); (F.G.-V.)
| | - Michelle M. Martínez-Montemayor
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón 00956, Puerto Rico; (M.Y.L.-V.); (R.R.-A.); (D.V.); (L.A.C.)
- Correspondence: ; Tel.: +1-787-798-3001 (ext. 2152)
| |
Collapse
|
353
|
LaGamma EF, Hu F, Pena Cruz F, Bouchev P, Nankova BB. Bacteria - derived short chain fatty acids restore sympathoadrenal responsiveness to hypoglycemia after antibiotic-induced gut microbiota depletion. Neurobiol Stress 2021; 15:100376. [PMID: 34401412 PMCID: PMC8358200 DOI: 10.1016/j.ynstr.2021.100376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
The microbiome co-evolved with their mammalian host over thousands of years. This commensal relationship serves a pivotal role in various metabolic, physiological, and immunological processes. Recently we discovered impaired adrenal catecholamine stress responses in germ-free mice suggesting developmental modification of the reflex arc or absence of an ongoing microbiome signal. To determine whether maturational arrest or an absent bacteria-derived metabolite was the cause, we tested whether depleting gut microbiome in young adult animals could also alter the peripheral stress responses to insulin-induced hypoglycemia. Groups of C57Bl6 male mice were given regular water (control) or a cocktail of non-absorbable broad-spectrum antibiotics (Abx) in the drinking water for two weeks before injection with insulin or saline. Abx mice displayed a profound decrease in microbial diversity and abundance of Bacteroidetes and Firmicutes, plus a markedly enlarged caecum and no detectable by-products of bacterial fermentation (sp. short chain fatty acids, SCFA). Tonic and stress-induced epinephrine levels were attenuated. Recolonization (Abx + R) restored bacterial diversity, but not the sympathoadrenal system responsiveness or caecal acetate, propionate and butyrate levels. In contrast, corticosterone (HPA) and glucagon (parasympathetic) resting values and responses to hypoglycemia remained similar across all conditions. Oral supplementation with SCFA improved epinephrine responses to hypoglycaemia. Whole genome shotgun sequence profiling of fecal samples from control, Abx and Abx + R cohorts identified nine microbes (SCFA producers) absent from both Abx and Abx + R groups. These results implicate gut microbiome depletion plus its attendant reduction in SCFA signalling in adversely affecting the release of epinephrine in response to hypoglycemia. We speculate that regardless of postnatal age, a mutable microbiome messaging system exists throughout life. Unravelling these mechanisms could lead to new therapeutic possibilities through controlled manipulation of the gut microbiota and its ability to alter systemic neurotransmitter responsiveness. Gut microbiome depletion affects sympathoadrenal medullary stress axis. Recolonization restores bacterial diversity, but not the epinephrine response to hypoglycaemia. SCFA supplement during antibiotic treatment improves tonic and stress-induced epinephrine release. Delayed recovery of several SCFA producers after recolonization modulates peripheral catecholaminergic pathways.
Collapse
Affiliation(s)
- Edmund F. LaGamma
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Furong Hu
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
| | - Fernando Pena Cruz
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Philip Bouchev
- Ridgefield High School, Junior, Ridgefield, CT, 06877, USA
| | - Bistra B. Nankova
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
- Corresponding author. Department of Pediatrics, Biochemistry and Molecular Biology, Division of Newborn Medicine, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
354
|
Gu X, Yu T, Guo T, Kong J. A qPCR-based method for rapid quantification of six intestinal homeostasis-relevant bacterial genera in feces. Future Microbiol 2021; 16:895-906. [PMID: 34342236 DOI: 10.2217/fmb-2020-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Developing efficient methods for monitoring the complex microbial community to rapidly assess the health status. Materials & methods: The qPCR-based method was developed, verified and in situ applied in fecal samples. Results: Six primer pairs with high specificity were designed to perform qPCR assays under a unified reaction condition within 2.5 h. The limits of detection, amplification efficiency and feasibility of the qPCR-based method established here were verified. In situ application of 18 fecal samples showed that the amounts of Bacteroides, Streptococcus and Bifidobacterium in colorectal cancer patient feces were obviously lower than those of healthy volunteers. Conclusion: This qPCR-based method was a reliable tool for rapid quantification of the six intestinal homeostasis relevant bacterial genera in feces.
Collapse
Affiliation(s)
- Xinyi Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Tao Yu
- Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
355
|
Mulberry leaf-derived polysaccharide modulates the immune response and gut microbiota composition in immunosuppressed mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
356
|
Hild B, Dreier MS, Oh JH, McCulloch JA, Badger JH, Guo J, Thefaine CE, Umarova R, Hall KD, Gavrilova O, Rosshart SP, Trinchieri G, Rehermann B. Neonatal exposure to a wild-derived microbiome protects mice against diet-induced obesity. Nat Metab 2021; 3:1042-1057. [PMID: 34417593 PMCID: PMC9969744 DOI: 10.1038/s42255-021-00439-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Obesity and its consequences are among the greatest challenges in healthcare. The gut microbiome is recognized as a key factor in the pathogenesis of obesity. Using a mouse model, we show here that a wild-derived microbiome protects against excessive weight gain, severe fatty liver disease and metabolic syndrome during a 10-week course of high-fat diet. This phenotype is transferable only during the first weeks of life. In adult mice, neither transfer nor severe disturbance of the wild-type microbiome modifies the metabolic response to a high-fat diet. The protective phenotype is associated with increased secretion of metabolic hormones and increased energy expenditure through activation of brown adipose tissue. Thus, we identify a microbiome that protects against weight gain and its negative consequences through metabolic programming in early life. Translation of these results to humans may identify early-life therapeutics that protect against obesity.
Collapse
Affiliation(s)
- Benedikt Hild
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | - Matthew S Dreier
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Ji Hoon Oh
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - John A McCulloch
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Jonathan H Badger
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Juen Guo
- Integrative Physiology Section, Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Claire E Thefaine
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Regina Umarova
- Liver Diseases Virology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Kevin D Hall
- Integrative Physiology Section, Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Stephan P Rosshart
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
- Translational Microbiome Research Laboratory, Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Medical Center - University of Freiburg, Freiburg, Germany
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA.
| |
Collapse
|
357
|
Bodden C, Hannan AJ, Reichelt AC. Of 'junk food' and 'brain food': how parental diet influences offspring neurobiology and behaviour. Trends Endocrinol Metab 2021; 32:566-578. [PMID: 33941448 DOI: 10.1016/j.tem.2021.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023]
Abstract
Unhealthy lifestyles and mental health problems are increasingly prevalent globally. Not only are 'junk food'-induced overweight and obesity risk factors for the development of brain disorders but they are also associated intergenerationally with ill health. Here, we reflect on the current knowledge of how maternal and paternal diet influences offspring brain development and behaviour, potentially predisposing children to mental health problems. Mounting evidence indicates diet-induced maternal and paternal programming of infant metabolism and neurobehavioural function, with potential downstream effects on mental health and resilience. Beyond the central nervous system (CNS), the microbiota-gut-brain axis has emerged as an important mediator of host physiology. We discuss how intergenerational seeding of the gut microbiome via parental lineage can influence offspring gut health and neurobiology.
Collapse
Affiliation(s)
- Carina Bodden
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Amy C Reichelt
- Department of Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
358
|
Scavizzi F, Bassi C, Lupini L, Guerriero P, Raspa M, Sabbioni S. A comprehensive approach for microbiota and health monitoring in mouse colonies using metagenomic shotgun sequencing. Anim Microbiome 2021; 3:53. [PMID: 34325744 PMCID: PMC8323313 DOI: 10.1186/s42523-021-00113-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/16/2021] [Indexed: 01/13/2023] Open
Abstract
Background Health surveillance of murine colonies employed for scientific purposes aim at detecting unwanted infection that can affect the well-being of animals and personnel, and potentially undermine scientific results. In this study, we investigated the use of a next-generation sequencing (NGS) metagenomic approach for monitoring the microbiota composition and uncovering the possible presence of pathogens in mice housed in specific pathogen-free (SPF) or conventional (non-SPF) facilities.
Results Analysis of metagenomic NGS assay through public and free algorithms and databases allowed to precisely assess the composition of mouse gut microbiome and quantify the contribution of the different microorganisms at the species level. Sequence analysis allowed the uncovering of pathogens or the presence of imbalances in the microbiota composition. In several cases, fecal pellets taken from conventional facilities were found to carry gene sequences from bacterial pathogens (Helicobacter hepaticus, Helicobacter typhlonius, Chlamydia muridarum, Streptococcus pyogenes, Rodentibacter pneumotropicus, Citrobacter rodentium, Staphylococcus aureus), intestinal protozoa (Entamoeba muris, Tritrichomonas muris, Spironucleus muris) nematoda (Aspiculuris tetraptera, Syphacia obvelata), eukaryotic parasites (Myocoptes musculinus) and RNA virus (Norwalk virus). Thus, the use of NGS metagenomics can reduce the number of tests required for the detection of pathogens and avoid the use of sentinel mice. Conclusions In summary, in comparison with standard approaches, which require multiple types of test, NGS assay can detect bacteria, fungi, DNA and RNA viruses, and eukaryotic parasites from fecal pellets in a single test. Considering the need to protect animal well-being and to improve the success and reproducibility of preclinical studies, this work provides the proof-of-concept that the use of NGS metagenomics for health monitoring of laboratory mice is a feasible and dependable approach, that is able to broaden the current concept of health monitoring of laboratory mice from “pathogen surveillance” to a more inclusive “microbiota surveillance”. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00113-4.
Collapse
Affiliation(s)
- Ferdinando Scavizzi
- National Research Council (IBBC), CNR-Campus International Development, (EMMA-INFRAFRONTIER- IMPC), Monterotondo Scalo, Italy
| | - Cristian Bassi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy.,Laboratorio Per Le Tecnologie Delle Terapie Avanzate (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Laura Lupini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Paola Guerriero
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Marcello Raspa
- National Research Council (IBBC), CNR-Campus International Development, (EMMA-INFRAFRONTIER- IMPC), Monterotondo Scalo, Italy
| | - Silvia Sabbioni
- Laboratorio Per Le Tecnologie Delle Terapie Avanzate (LTTA), University of Ferrara, 44121, Ferrara, Italy. .,Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
359
|
Turroni F, Milani C, Ventura M, van Sinderen D. The human gut microbiota during the initial stages of life: insights from bifidobacteria. Curr Opin Biotechnol 2021; 73:81-87. [PMID: 34333445 DOI: 10.1016/j.copbio.2021.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022]
Abstract
Current scientific literature has identified the infant gut microbiota as a multifaceted organ influencing a range of aspects of host-health and development. Many scientific studies have focused on characterizing the main microbial taxa that constitute the resident bacterial population of the infant gut. This has generated a wealth of information on the bacterial composition of the infant gut microbiota, and on the functional role/s exerted by their key microbial members. In this context, one of the most prevalent, abundant and investigated microbial taxon in the human infant gut is the genus Bifidobacterium, due to the purported beneficial activities is bestows upon its host. This review discusses the most recent findings regarding the infant gut microbiota with a particular focus on the molecular mechanisms by which bifidobacteria impact on host health and well-being.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy.
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland.
| |
Collapse
|
360
|
The Role of DNA Damage Response in Dysbiosis-Induced Colorectal Cancer. Cells 2021; 10:cells10081934. [PMID: 34440703 PMCID: PMC8391204 DOI: 10.3390/cells10081934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The high incidence of colorectal cancer (CRC) in developed countries indicates a predominant role of the environment as a causative factor. Natural gut microbiota provides multiple benefits to humans. Dysbiosis is characterized by an unbalanced microbiota and causes intestinal damage and inflammation. The latter is a common denominator in many cancers including CRC. Indeed, in an inflammation scenario, cellular growth is promoted and immune cells release Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), which cause DNA damage. Apart from that, many metabolites from the diet are converted into DNA damaging agents by microbiota and some bacteria deliver DNA damaging toxins in dysbiosis conditions as well. The interactions between diet, microbiota, inflammation, and CRC are not the result of a straightforward relationship, but rather a network of multifactorial interactions that deserve deep consideration, as their consequences are not yet fully elucidated. In this paper, we will review the influence of dysbiosis in the induction of DNA damage and CRC.
Collapse
|
361
|
Guillamón E, Andreo-Martínez P, Mut-Salud N, Fonollá J, Baños A. Beneficial Effects of Organosulfur Compounds from Allium cepa on Gut Health: A Systematic Review. Foods 2021; 10:foods10081680. [PMID: 34441457 PMCID: PMC8392556 DOI: 10.3390/foods10081680] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Dietary changes affect the composition and structure of gut microbiota (GM) in animals and humans. One of the beneficial effects of consuming products derived from plants is the positive influence on immunity and gastrointestinal health. Species belonging to the genus Allium contain many organosulfur compounds (OSCs) that have been widely studied showing their biological properties and beneficial effects on intestinal health and GM. This is the first systematic review of OSCs from Allium performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and it is based on the evidence that we found in literature about the benefits on the GM and intestinal health demonstrated by OSCs from Allium, and specifically from onion. OSCs from Allium cepa have shown a significant antibacterial activity against a broad spectrum of antibiotic-resistant Gram-positive and Gram-negative bacteria. In addition, the intake of OSCs from onion was able to modulate the composition of GM, increasing the beneficial bacterial populations in animal models. Moreover, the beneficial effects observed in murine models of colitis suggest that these compounds could be suitable candidates for the treatment of inflammatory bowel disease (IBD) or reverse the dysbiosis caused by a high-fat diet (HFD). Despite the evidence found both in vitro and in vivo, we have not found any article that tested OSCs different from allicin in clinical trials or dietary intervention studies in humans. In this sense, it would be interesting to conduct new research that tests the benefits of these compounds in human GM.
Collapse
Affiliation(s)
- Enrique Guillamón
- DMC Research Center, Camino de Jayena, 82, 18620 Granada, Spain; (E.G.); (N.M.-S.); (J.F.)
| | - Pedro Andreo-Martínez
- Department of Agricultural Chemistry, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain;
- Department of Chemical Engineering, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain
| | - Nuria Mut-Salud
- DMC Research Center, Camino de Jayena, 82, 18620 Granada, Spain; (E.G.); (N.M.-S.); (J.F.)
| | - Juristo Fonollá
- DMC Research Center, Camino de Jayena, 82, 18620 Granada, Spain; (E.G.); (N.M.-S.); (J.F.)
- Department of Nutrition and Bromatology, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Alberto Baños
- DMC Research Center, Camino de Jayena, 82, 18620 Granada, Spain; (E.G.); (N.M.-S.); (J.F.)
- Correspondence: ; Tel.: +34-958-576-486
| |
Collapse
|
362
|
Champagne-Jorgensen K, Mian MF, McVey Neufeld KA, Stanisz AM, Bienenstock J. Membrane vesicles of Lacticaseibacillus rhamnosus JB-1 contain immunomodulatory lipoteichoic acid and are endocytosed by intestinal epithelial cells. Sci Rep 2021; 11:13756. [PMID: 34215822 PMCID: PMC8253831 DOI: 10.1038/s41598-021-93311-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal bacteria have diverse and complex influence on their host. Evidence is accumulating that this may be mediated in part by bacterial extracellular membrane vesicles (MV), nanometer-sized particles important for intercellular communication. Little is known about the composition of MV from gram-positive beneficial bacteria nor how they interact with intestinal epithelial cells (IEC). Here we demonstrate that MV from Lacticaseibacillus rhamnosus JB-1 are endocytosed in a likely clathrin-dependent manner by both mouse and human IEC in vitro and by mouse IEC in vivo. We further show that JB-1 MV contain lipoteichoic acid (LTA) that activates Toll-like receptor 2 (TLR2) and induces immunoregulatory interleukin-10 expression by dendritic cells in an internalization-dependent manner. By contrast, neither LTA nor TLR2 appear to be required for JB-1 MV endocytosis by IEC. These results demonstrate a novel mechanism by which bacterial MV can influence host physiology and suggest one potential route for beneficial influence of certain bacteria and probiotics.
Collapse
Affiliation(s)
- Kevin Champagne-Jorgensen
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada. .,Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada. .,McMaster Brain-Body Institute, St. Joseph's Healthcare Hamilton, Juravinski Tower Room T3330, 50 Charlton Ave East, Hamilton, ON, L8N 4A6, Canada.
| | - M Firoz Mian
- Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Karen-Anne McVey Neufeld
- Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Andrew M Stanisz
- Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - John Bienenstock
- Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
363
|
DeCandia AL, Cassidy KA, Stahler DR, Stahler EA, vonHoldt BM. Social environment and genetics underlie body site-specific microbiomes of Yellowstone National Park gray wolves ( Canis lupus). Ecol Evol 2021; 11:9472-9488. [PMID: 34306636 PMCID: PMC8293786 DOI: 10.1002/ece3.7767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/20/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
The host-associated microbiome is an important player in the ecology and evolution of species. Despite growing interest in the medical, veterinary, and conservation communities, there remain numerous questions about the primary factors underlying microbiota, particularly in wildlife. We bridged this knowledge gap by leveraging microbial, genetic, and observational data collected in a wild, pedigreed population of gray wolves (Canis lupus) inhabiting Yellowstone National Park. We characterized body site-specific microbes across six haired and mucosal body sites (and two fecal samples) using 16S rRNA amplicon sequencing. At the phylum level, we found that the microbiome of gray wolves primarily consists of Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria, consistent with previous studies within Mammalia and Canidae. At the genus level, we documented body site-specific microbiota with functions relevant to microenvironment and local physiological processes. We additionally employed observational and RAD sequencing data to examine genetic, demographic, and environmental correlates of skin and gut microbiota. We surveyed individuals across several levels of pedigree relationships, generations, and social groups, and found that social environment (i.e., pack) and genetic relatedness were two primary factors associated with microbial community composition to differing degrees between body sites. We additionally reported body condition and coat color as secondary factors underlying gut and skin microbiomes, respectively. We concluded that gray wolf microbiota resemble similar host species, differ between body sites, and are shaped by numerous endogenous and exogenous factors. These results provide baseline information for this long-term study population and yield important insights into the evolutionary history, ecology, and conservation of wild wolves and their associated microbes.
Collapse
Affiliation(s)
- Alexandra L. DeCandia
- Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
- Smithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
| | - Kira A. Cassidy
- Yellowstone Center for ResourcesNational Park ServiceYellowstone National ParkWYUSA
| | - Daniel R. Stahler
- Yellowstone Center for ResourcesNational Park ServiceYellowstone National ParkWYUSA
| | - Erin A. Stahler
- Yellowstone Center for ResourcesNational Park ServiceYellowstone National ParkWYUSA
| | | |
Collapse
|
364
|
Chu XJ, Cao NW, Zhou HY, Meng X, Guo B, Zhang HY, Li BZ. The oral and gut microbiome in rheumatoid arthritis patients: a systematic review. Rheumatology (Oxford) 2021; 60:1054-1066. [PMID: 33450018 DOI: 10.1093/rheumatology/keaa835] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/12/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Recently, researchers have proposed a possible relationship between RA and the microbiome of the oral cavity and gut. However, this relation has not been systematically established. Herein, we conducted a comprehensive review of the pertinent literature to describe this possible association. METHODS We systematically performed searches in databases, namely EMBASE, the Cochrane Library, and PubMed, from inception to 7 June 2020 to identify case-control studies that compared the oral and gut microbiome in adult RA patients with those of controls. The primary outcome was specific bacterial changes between RA and controls. The secondary outcome was microbial diversity changes between RA and controls. RESULTS In total, 26 articles were considered eligible for inclusion and reported some differences. Therein, ≥3 articles reported decreased Faecalibacterium in the gut of early-RA (ERA)/RA patients compared with healthy controls (HCs). Also, ≥3 articles reported decreased Streptococcus and Haemophilus and increased Prevotella in the oral cavity of ERA/RA patients compared with HCs. In addition, some Prevotella species, including P. histicola and P. oulorum, showed increased trends in RA patients' oral cavity, compared with HCs. The α-diversity of the microbiome was either increased or not changed in the oral cavity of RA patients, but it was more commonly either decreased or not changed in the gut of RA patients. CONCLUSIONS In this systematic review, we identified the microbiome associated with RA patients in comparison with controls. More research is needed in the future to find the deep relationship between RA and the microbiome.
Collapse
Affiliation(s)
- Xiu-Jie Chu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Hefei, China
| | - Nv-Wei Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Hefei, China
| | - Hao-Yue Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Hefei, China
| | - Xiang Meng
- School of Stomatology, Anhui Medical University, Anhui Hefei, China
| | - Biao Guo
- Department of Human Resource, The Second Affiliated Hospital of Anhui Medical University, Anhui Hefei, China
| | - Hai-Yan Zhang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Anhui Hefei, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Hefei, China
| |
Collapse
|
365
|
Zhou D, Xue J, Miyamoto Y, Poulsen O, Eckmann L, Haddad GG. Microbiota Modulates Cardiac Transcriptional Responses to Intermittent Hypoxia and Hypercapnia. Front Physiol 2021; 12:680275. [PMID: 34248668 PMCID: PMC8267877 DOI: 10.3389/fphys.2021.680275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
The microbiota plays a critical role in regulating organismal health and response to environmental stresses. Intermittent hypoxia and hypercapnia, a condition that represents the main hallmark of obstructive sleep apnea in humans, is known to induce significant alterations in the gut microbiome and metabolism, and promotes the progression of atherosclerosis in mouse models. To further understand the role of the microbiome in the cardiovascular response to intermittent hypoxia and hypercapnia, we developed a new rodent cage system that allows exposure of mice to controlled levels of O2 and CO2 under gnotobiotic conditions. Using this experimental setup, we determined the impact of the microbiome on the transcriptional response to intermittent hypoxia and hypercapnia in the left ventricle of the mouse heart. We identified significant changes in gene expression in both conventionally reared and germ-free mice. Following intermittent hypoxia and hypercapnia exposure, we detected 192 significant changes in conventionally reared mice (96 upregulated and 96 downregulated) and 161 significant changes (70 upregulated and 91 downregulated) in germ-free mice. Only 19 of these differentially expressed transcripts (∼10%) were common to conventionally reared and germ-free mice. Such distinct transcriptional responses imply that the host microbiota plays an important role in regulating the host transcriptional response to intermittent hypoxia and hypercapnia in the mouse heart.
Collapse
Affiliation(s)
- Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Jin Xue
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Orit Poulsen
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Gabriel G Haddad
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States.,Rady Children's Hospital-San Diego, San Diego, CA, United States
| |
Collapse
|
366
|
Amato KR, Arrieta MC, Azad MB, Bailey MT, Broussard JL, Bruggeling CE, Claud EC, Costello EK, Davenport ER, Dutilh BE, Swain Ewald HA, Ewald P, Hanlon EC, Julion W, Keshavarzian A, Maurice CF, Miller GE, Preidis GA, Segurel L, Singer B, Subramanian S, Zhao L, Kuzawa CW. The human gut microbiome and health inequities. Proc Natl Acad Sci U S A 2021; 118:e2017947118. [PMID: 34161260 PMCID: PMC8237592 DOI: 10.1073/pnas.2017947118] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Individuals who are minoritized as a result of race, sexual identity, gender, or socioeconomic status experience a higher prevalence of many diseases. Understanding the biological processes that cause and maintain these socially driven health inequities is essential for addressing them. The gut microbiome is strongly shaped by host environments and affects host metabolic, immune, and neuroendocrine functions, making it an important pathway by which differences in experiences caused by social, political, and economic forces could contribute to health inequities. Nevertheless, few studies have directly integrated the gut microbiome into investigations of health inequities. Here, we argue that accounting for host-gut microbe interactions will improve understanding and management of health inequities, and that health policy must begin to consider the microbiome as an important pathway linking environments to population health.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208;
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Meghan B Azad
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Michael T Bailey
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210
| | - Josiane L Broussard
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80521
| | - Carlijn E Bruggeling
- Department of Pathology, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Erika C Claud
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637
| | - Elizabeth K Costello
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Emily R Davenport
- Department of Biology, Huck Institutes of the Life Sciences, Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, 3584 CH Utrecht, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | | | - Paul Ewald
- Department of Biology, University of Louisville, Louisville, KY 40292
| | - Erin C Hanlon
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL 60637
| | | | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612
| | - Corinne F Maurice
- Microbiology and Immunology Department, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gregory E Miller
- Department of Psychology, Northwestern University, Evanston, IL 60208
- Institute for Policy Research, Northwestern University, Evanston, IL 60208
| | - Geoffrey A Preidis
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030
| | - Laure Segurel
- Eco-anthropologie, Muséum National d'Histoire Naturelle-CNRS-Université de Paris, 75016 Paris, France
| | - Burton Singer
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608
| | - Sathish Subramanian
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers New Jersey Institute for Food, Nutrition, and Health, Rutgers University-New Brunswick, New Brunswick, NJ 08901
| | - Christopher W Kuzawa
- Department of Anthropology, Northwestern University, Evanston, IL 60208
- Institute for Policy Research, Northwestern University, Evanston, IL 60208
| |
Collapse
|
367
|
Zhang F, Weckhorst JL, Assié A, Hosea C, Ayoub CA, Khodakova AS, Cabrera ML, Vidal Vilchis D, Félix MA, Samuel BS. Natural genetic variation drives microbiome selection in the Caenorhabditis elegans gut. Curr Biol 2021; 31:2603-2618.e9. [PMID: 34048707 PMCID: PMC8222194 DOI: 10.1016/j.cub.2021.04.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Host genetic landscapes can shape microbiome assembly in the animal gut by contributing to the establishment of distinct physiological environments. However, the genetic determinants contributing to the stability and variation of these microbiome types remain largely undefined. Here, we use the free-living nematode Caenorhabditis elegans to identify natural genetic variation among wild strains of C. elegans that drives assembly of distinct microbiomes. To achieve this, we first established a diverse model microbiome that represents the strain-level phylogenetic diversity naturally encountered by C. elegans in the wild. Using this community, we show that C. elegans utilizes immune, xenobiotic, and metabolic signaling pathways to favor the assembly of different microbiome types. Variations in these pathways were associated with enrichment for specific commensals, including the Alphaproteobacteria Ochrobactrum. Using RNAi and mutant strains, we showed that host selection for Ochrobactrum is mediated specifically by host insulin signaling pathways. Ochrobactrum recruitment is blunted in the absence of DAF-2/IGFR and modulated by the competitive action of insulin signaling transcription factors DAF-16/FOXO and PQM-1/SALL2. Further, the ability of C. elegans to enrich for Ochrobactrum as adults is correlated with faster animal growth rates and larger body size at the end of development. These results highlight a new role for the highly conserved insulin signaling pathways in the regulation of gut microbiome composition in C. elegans.
Collapse
Affiliation(s)
- Fan Zhang
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jessica L Weckhorst
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Quantitative and Computational Biosciences, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Ciara Hosea
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Christopher A Ayoub
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Anastasia S Khodakova
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Mario Loeza Cabrera
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Daniela Vidal Vilchis
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Marie-Anne Félix
- Ecole Normale Supérieure, IBENS, CNRS UMR8197, INSERM U1024, Paris, France
| | - Buck S Samuel
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Quantitative and Computational Biosciences, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
368
|
Henrick BM, Rodriguez L, Lakshmikanth T, Pou C, Henckel E, Arzoomand A, Olin A, Wang J, Mikes J, Tan Z, Chen Y, Ehrlich AM, Bernhardsson AK, Mugabo CH, Ambrosiani Y, Gustafsson A, Chew S, Brown HK, Prambs J, Bohlin K, Mitchell RD, Underwood MA, Smilowitz JT, German JB, Frese SA, Brodin P. Bifidobacteria-mediated immune system imprinting early in life. Cell 2021; 184:3884-3898.e11. [PMID: 34143954 DOI: 10.1016/j.cell.2021.05.030] [Citation(s) in RCA: 394] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/19/2021] [Accepted: 05/19/2021] [Indexed: 02/08/2023]
Abstract
Immune-microbe interactions early in life influence the risk of allergies, asthma, and other inflammatory diseases. Breastfeeding guides healthier immune-microbe relationships by providing nutrients to specialized microbes that in turn benefit the host's immune system. Such bacteria have co-evolved with humans but are now increasingly rare in modern societies. Here we show that a lack of bifidobacteria, and in particular depletion of genes required for human milk oligosaccharide (HMO) utilization from the metagenome, is associated with systemic inflammation and immune dysregulation early in life. In breastfed infants given Bifidobacterium infantis EVC001, which expresses all HMO-utilization genes, intestinal T helper 2 (Th2) and Th17 cytokines were silenced and interferon β (IFNβ) was induced. Fecal water from EVC001-supplemented infants contains abundant indolelactate and B. infantis-derived indole-3-lactic acid (ILA) upregulated immunoregulatory galectin-1 in Th2 and Th17 cells during polarization, providing a functional link between beneficial microbes and immunoregulation during the first months of life.
Collapse
Affiliation(s)
- Bethany M Henrick
- Evolve BioSystems, Inc., Davis, CA 95618, USA; Department of Food Science and Technology, University of Nebraska, Lincoln, Lincoln, NE 68588-6205, USA.
| | - Lucie Rodriguez
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Tadepally Lakshmikanth
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Christian Pou
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Ewa Henckel
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14152 Stockholm, Sweden; Department of Neonatology, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Aron Arzoomand
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Axel Olin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Jun Wang
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Jaromir Mikes
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Ziyang Tan
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Yang Chen
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | | | - Anna Karin Bernhardsson
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Constantin Habimana Mugabo
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Ylva Ambrosiani
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Anna Gustafsson
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14152 Stockholm, Sweden; Department of Neonatology, Karolinska University Hospital, 14186 Stockholm, Sweden
| | | | | | | | - Kajsa Bohlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14152 Stockholm, Sweden; Department of Neonatology, Karolinska University Hospital, 14186 Stockholm, Sweden
| | | | - Mark A Underwood
- Foods for Health Institute, University of California, Davis, Davis, CA 95616, USA; Department of Pediatrics, University of California Davis Children's Hospital, Sacramento, CA 95817, USA
| | - Jennifer T Smilowitz
- Foods for Health Institute, University of California, Davis, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA
| | - J Bruce German
- Foods for Health Institute, University of California, Davis, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA
| | - Steven A Frese
- Department of Food Science and Technology, University of Nebraska, Lincoln, Lincoln, NE 68588-6205, USA; Department of Nutrition, University of Nevada, Reno, Reno, NV 89557, USA
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden; Pediatric Rheumatology, Karolinska University Hospital, 17176 Solna, Sweden.
| |
Collapse
|
369
|
Potential Role of Probiotics in Ameliorating Psoriasis by Modulating Gut Microbiota in Imiquimod-Induced Psoriasis-Like Mice. Nutrients 2021; 13:nu13062010. [PMID: 34207960 PMCID: PMC8230682 DOI: 10.3390/nu13062010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is an immune-mediated systemic disease that may be treated with probiotics. In this study, probiotic strains that could or could not decrease interleukin (IL)-17 levels were applied to imiquimod (IMQ)-induced psoriasis-like mice via oral administration. Bifidobacterium adolescentis CCFM667, B. breve CCFM1078, Lacticaseibacillus paracasei CCFM1074, and Limosilactobacillus reuteri CCFM1132 ameliorated psoriasis-like pathological characteristics and suppressed the release of IL-23/T helper cell 17 (Th17) axis-related inflammatory cytokines, whereas B. animalis CCFM1148, L. paracasei CCFM1147, and L. reuteri CCFM1040 neither alleviated the pathological characteristics nor reduced the levels of inflammatory cytokines. All effective strains increased the contents of short-chain fatty acids, which were negatively correlated with the levels of inflammatory cytokines. By performing 16S rRNA gene sequencing, the diversity of gut microbiota in psoriasis-like mice was found to decrease, but all effective strains made some specific changes to the composition of gut microbiota compared to the ineffective strains. Furthermore, except for B. breve CCFM1078, all other effective strains decreased the abundance of the family Rikenellaceae, which was positively correlated with psoriasis-like pathological characteristics and was negatively correlated with propionate levels. These findings demonstrated effects of strain-specificity, and how probiotics ameliorated psoriasis and provide new possibilities for the treatment of psoriasis.
Collapse
|
370
|
Li Y, Jin Y, Zhang J, Pan H, Wu L, Liu D, Liu J, Hu J, Shen J. Recovery of human gut microbiota genomes with third-generation sequencing. Cell Death Dis 2021; 12:569. [PMID: 34078878 PMCID: PMC8172872 DOI: 10.1038/s41419-021-03829-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022]
Abstract
Human gut microbiota modulates normal physiological functions, such as maintenance of barrier homeostasis and modulation of metabolism, as well as various chronic diseases including type 2 diabetes and gastrointestinal cancer. Despite decades of research, the composition of the gut microbiota remains poorly understood. Here, we established an effective extraction method to obtain high quality gut microbiota genomes, and analyzed them with third-generation sequencing technology. We acquired a large quantity of data from each sample and assembled large numbers of reliable contigs. With this approach, we constructed tens of completed bacterial genomes in which there were several new bacteria species. We also identified a new conditional pathogen, Enterococcus tongjius, which is a member of Enterococci. This work provided a novel and reliable approach to recover gut microbiota genomes, facilitating the discovery of new bacteria species and furthering our understanding of the microbiome that underlies human health and diseases.
Collapse
Affiliation(s)
- Yanfei Li
- Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, 201318, Shanghai, China.,School of Basic Medical Sciences and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 201318, Shanghai, China
| | - Yueling Jin
- Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, 201318, Shanghai, China
| | | | - Haoying Pan
- Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, 201318, Shanghai, China
| | - Lan Wu
- Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, 201318, Shanghai, China.,School of Basic Medical Sciences and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 201318, Shanghai, China
| | - Dingsheng Liu
- Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, 201318, Shanghai, China
| | - Jinlong Liu
- Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, 201318, Shanghai, China
| | - Jing Hu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China.
| | - Junwei Shen
- Shanghai East Hospital, Tongji University School of Medicine, 200120, Shanghai, China.
| |
Collapse
|
371
|
Shen W, Wu D, Qiu W, Yi X. Evaluation of freeze-drying for quantification of the microbiome and metabolome in neonatal faecal samples. MEDICINE IN MICROECOLOGY 2021. [DOI: 10.1016/j.medmic.2021.100044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
372
|
Troyer EA, Kohn JN, Ecklu-Mensah G, Aleti G, Rosenberg DR, Hong S. Searching for host immune-microbiome mechanisms in obsessive-compulsive disorder: A narrative literature review and future directions. Neurosci Biobehav Rev 2021; 125:517-534. [PMID: 33639178 PMCID: PMC8106658 DOI: 10.1016/j.neubiorev.2021.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
Obsessive-compulsive disorder (OCD) is disabling and often treatment-refractory. Host immunity and gut microbiota have bidirectional communication with each other and with the brain. Perturbations to this axis have been implicated in neuropsychiatric disorders, but immune-microbiome signaling in OCD is relatively underexplored. We review support for further pursuing such investigations in OCD, including: 1) gut microbiota has been associated with OCD, but causal pathogenic mechanisms remain unclear; 2) early environmental risk factors for OCD overlap with critical periods of immune-microbiome development; 3) OCD is associated with increased risk of immune-mediated disorders and changes in immune parameters, which are separately associated with the microbiome; and 4) gut microbiome manipulations in animal models are associated with changes in immunity and some obsessive-compulsive symptoms. Theoretical pathogenic mechanisms could include microbiota programming of cytokine production, promotion of expansion and trafficking of peripheral immune cells to the CNS, and regulation of microglial function. Immune-microbiome signaling in OCD requires further exploration, and may offer novel insights into pathogenic mechanisms and potential treatment targets for this disabling disorder.
Collapse
Affiliation(s)
- Emily A Troyer
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States.
| | - Jordan N Kohn
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States
| | - Gertrude Ecklu-Mensah
- Department of Medicine and Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States
| | - Gajender Aleti
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, United States
| | - Suzi Hong
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States; Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
373
|
Salzman NH, Schwimmer JB. Pediatric nonalcoholic fatty liver disease and the microbiome: Mechanisms contributing to pathogenesis and progression. ACTA ACUST UNITED AC 2021; 19:22-29. [PMID: 34222711 DOI: 10.1016/j.coemr.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of pediatric liver disease in the United States, and often associated with obesity and metabolic syndrome. NAFLD comprises a broad spectrum of liver diseases, from hepatic steatosis to steatohepatitis, fibrosis and cirrhosis. Disease progression is considered a multi-modal process of liver injury. The intestinal microbiome has been implicated in several aspects of NAFLD pathophysiology. Pediatric studies associating the intestinal microbiome with NAFLD have been limited in number and complicated by inconsistencies in study design and approach. Nevertheless, they provide support for involvement of the intestinal microbiome in NAFLD development and progression and point to common mechanisms shared by microbiome-associated inflammatory diseases with potential to inform future therapeutic intervention.
Collapse
Affiliation(s)
- Nita H Salzman
- Division of Gastroenterology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin.,Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeffrey B Schwimmer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, California.,Department of Gastroenterology, Rady Children's Hospital San Diego, Dan Diego, California
| |
Collapse
|
374
|
de Steenhuijsen Piters WAA, Binkowska J, Bogaert D. Early Life Microbiota and Respiratory Tract Infections. Cell Host Microbe 2021; 28:223-232. [PMID: 32791114 DOI: 10.1016/j.chom.2020.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022]
Abstract
Over the last decade, it has become clear that respiratory and intestinal tract microbiota are related to pathogenesis of respiratory tract infections (RTIs). Host and environmental factors can drive respiratory microbiota maturation in early life, which in turn is related to consecutive susceptibility to RTIs. Moreover, during RTIs, including viral bronchiolitis, the local microbiome appears to play an immunomodulatory role through complex interactions, though causality has not yet been fully demonstrated. The microbiota is subsequently associated with recovery after RTIs and can be related to persistent or long-term sequelae. In this Review, we explore the epidemiological evidence supporting these associations and link to mechanistic insights. The long-term consequences of childhood RTIs and the comprehensive role of the microbiota at various stages in RTI pathogenesis call for early life preventative and therapeutic interventions to promote respiratory health.
Collapse
Affiliation(s)
- Wouter A A de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| | - Justyna Binkowska
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
375
|
Sudhakar P, Machiels K, Verstockt B, Korcsmaros T, Vermeire S. Computational Biology and Machine Learning Approaches to Understand Mechanistic Microbiome-Host Interactions. Front Microbiol 2021; 12:618856. [PMID: 34046017 PMCID: PMC8148342 DOI: 10.3389/fmicb.2021.618856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The microbiome, by virtue of its interactions with the host, is implicated in various host functions including its influence on nutrition and homeostasis. Many chronic diseases such as diabetes, cancer, inflammatory bowel diseases are characterized by a disruption of microbial communities in at least one biological niche/organ system. Various molecular mechanisms between microbial and host components such as proteins, RNAs, metabolites have recently been identified, thus filling many gaps in our understanding of how the microbiome modulates host processes. Concurrently, high-throughput technologies have enabled the profiling of heterogeneous datasets capturing community level changes in the microbiome as well as the host responses. However, due to limitations in parallel sampling and analytical procedures, big gaps still exist in terms of how the microbiome mechanistically influences host functions at a system and community level. In the past decade, computational biology and machine learning methodologies have been developed with the aim of filling the existing gaps. Due to the agnostic nature of the tools, they have been applied in diverse disease contexts to analyze and infer the interactions between the microbiome and host molecular components. Some of these approaches allow the identification and analysis of affected downstream host processes. Most of the tools statistically or mechanistically integrate different types of -omic and meta -omic datasets followed by functional/biological interpretation. In this review, we provide an overview of the landscape of computational approaches for investigating mechanistic interactions between individual microbes/microbiome and the host and the opportunities for basic and clinical research. These could include but are not limited to the development of activity- and mechanism-based biomarkers, uncovering mechanisms for therapeutic interventions and generating integrated signatures to stratify patients.
Collapse
Affiliation(s)
- Padhmanand Sudhakar
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Kathleen Machiels
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Bram Verstockt
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Tamas Korcsmaros
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
376
|
Vaginal Aging-What We Know and What We Do Not Know. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094935. [PMID: 34066357 PMCID: PMC8125346 DOI: 10.3390/ijerph18094935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022]
Abstract
The aging of the organism is a complex and multifactorial process. It can be viewed in the context of the whole organism, but also of individual tissues and organs. The problem of vaginal aging and the related genitourinary syndrome of menopause significantly reduces the quality of women’s lives. The aging process of the vagina includes estrogen deficiencies, changes in the microbiome, and changes at the genetic level associated with DNA methylation. During the menopause, the number of Lactobacillus colonies decreases, and the number of pathological bacteria colonies increases. The decrease in estrogen levels results in a decrease in vaginal epithelial permeability, perfusion, and elastin levels, resulting in vaginal dryness and atrophy. Changes at the molecular level are the least clear. It can also be assumed that, similarly to the tissues studied so far, there are changes in cytosine methylation and TET (ten-eleven translocation) expression. The interrelationships between DNA methylation, hormonal changes, and the vaginal microbiome have not yet been fully elucidated.
Collapse
|
377
|
Fuhri Snethlage CM, Nieuwdorp M, van Raalte DH, Rampanelli E, Verchere BC, Hanssen NMJ. Auto-immunity and the gut microbiome in type 1 diabetes: Lessons from rodent and human studies. Best Pract Res Clin Endocrinol Metab 2021; 35:101544. [PMID: 33985913 DOI: 10.1016/j.beem.2021.101544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an auto-immune disease that destructs insulin-producing pancreatic beta-cells within the islets of Langerhans. The incidence of T1D has tripled over the last decades, while the pathophysiology of the disease is still largely unknown. Currently, there is no cure for T1D. The only treatment option consists of blood-glucose regulation with insulin injections and intensive monitoring of blood glucose levels. In recent years, perturbations in the ecosystem of the gut microbiome also referred to as dysbiosis, have gained interest as a possible contributing factor in the development of T1D. Changes in the microbiome seem to occur before the onset of T1D associated auto-antibodies. Furthermore, rodent studies demonstrate that administering antibiotics at a young age may accelerate the onset of T1D. This review provides an overview of the research performed on the epidemiology, pathophysiology, interventions, and possible treatment options in the field of the gut microbiome and T1D.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Max Nieuwdorp
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Daniël H van Raalte
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands; Amsterdam Diabetes Center, Department of Internal Medicine, Amsterdam UMC, Location VUMC, the Netherlands
| | - Elena Rampanelli
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Bruce C Verchere
- BC Children's Hospital Research Institute, Pathology & Laboratory Medicine and Surgery, Vancouver, Canada
| | - Nordin M J Hanssen
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands.
| |
Collapse
|
378
|
Foegeding NJ, Jones ZS, Byndloss MX. Western lifestyle as a driver of dysbiosis in colorectal cancer. Dis Model Mech 2021; 14:dmm049051. [PMID: 34060626 PMCID: PMC8214737 DOI: 10.1242/dmm.049051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Landmark discoveries in the gut microbiome field have paved the way for new research aimed at illuminating the influence of microbiota in colorectal cancer. A major challenge is to account for the effect of inherently variable environmental factors on the host and the gut microbiome, while concurrently determining their contribution to carcinogenesis. Here, we briefly discuss the role of the gut microbial community in colorectal cancer and elaborate on the recent insight that environmental factors related to a Western diet and lifestyle may drive the bloom of tumorigenic members of the gut microbiota. We also discuss how future research focused on untangling host-microbe interactions in the colon may influence medical insights that relate to the prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Nora J. Foegeding
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Zachary S. Jones
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Mariana X. Byndloss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
379
|
Fuhri Snethlage CM, Nieuwdorp M, Hanssen NMJ. Faecal microbiota transplantation in endocrine diseases and obesity. Best Pract Res Clin Endocrinol Metab 2021; 35:101483. [PMID: 33414033 DOI: 10.1016/j.beem.2020.101483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prevalence of type 1 (T1D) and type 2 diabetes mellitus (T2D) has greatly increased worldwide over the last century. Although the exact pathophysiology of both these conditions is distinct and still largely unknown, T1D as well as T2D, have been linked to distinct perturbations of the gut microbiome. Faecal microbiota transplantation (FMT) is a potent, and if performed well, a safe method to modulate the composition of the gut microbiome and thus positively influences the course of these hyperglycaemic conditions in humans. In this review, we provide an overview of how FMT is commonly performed and summarise how this procedure may reduce the insulin-resistance driving T2D, and the underlying auto-immunity driving T1D. Insights derived from FMT studies in T1D and T2D may help identify beneficial microbiota and associated metabolites that may serve as future treatments for these conditions.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Amsterdam Diabetes Centrum, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Max Nieuwdorp
- Amsterdam Diabetes Centrum, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Nordin M J Hanssen
- Amsterdam Diabetes Centrum, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands.
| |
Collapse
|
380
|
Unraveling the Balance between Genes, Microbes, Lifestyle and the Environment to Improve Healthy Reproduction. Genes (Basel) 2021; 12:genes12040605. [PMID: 33924000 PMCID: PMC8073673 DOI: 10.3390/genes12040605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
Humans’ health is the result of a complex and balanced interplay between genetic factors, environmental stimuli, lifestyle habits, and the microbiota composition. The knowledge about their single contributions, as well as the complex network linking each to the others, is pivotal to understand the mechanisms underlying the onset of many diseases and can provide key information for their prevention, diagnosis and therapy. This applies also to reproduction. Reproduction, involving almost 10% of our genetic code, is one of the most critical human’s functions and is a key element to assess the well-being of a population. The last decades revealed a progressive decline of reproductive outcomes worldwide. As a consequence, there is a growing interest in unveiling the role of the different factors involved in human reproduction and great efforts have been carried out to improve its outcomes. As for many other diseases, it is now clear that the interplay between the underlying genetics, our commensal microbiome, the lifestyle habits and the environment we live in can either exacerbate the outcome or mitigate the adverse effects. Here, we aim to analyze how each of these factors contribute to reproduction highlighting their individual contribution and providing supporting evidence of how to modify their impact and overall contribution to a healthy reproductive status.
Collapse
|
381
|
Antibiotic Followed by a Potential Probiotic Increases Brown Adipose Tissue, Reduces Biometric Measurements, and Changes Intestinal Microbiota Phyla in Obesity. Probiotics Antimicrob Proteins 2021; 13:1621-1631. [PMID: 33818711 DOI: 10.1007/s12602-021-09760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
The development of adjuvant therapies for obesity treatment is justified by the high prevalence of this disease worldwide, and the relationship between obesity and intestinal microbiota is a promising target for obesity treatment. Therefore, this study aimed at investigating the adjuvant treatment of obesity through the use of potential probiotics and antibiotics, either separately or sequentially. In the first phase of the experiment, animals had diet-induced obesity with consumption of a high saturated fat diet and a fructose solution. After this period, there was a reduction in caloric supply, that is the conventional treatment of obesity, and the animals were divided into 5 experimental groups: control group (G1), obese group (G2), potential probiotic group (G3), antibiotic group (G4), and antibiotic followed by potential probiotic group (G5). The adjuvant treatments lasted 4 weeks and were administered daily, via gavage: Animals in G1 and G2 received distilled water, the G3 obtained Lactobacillus gasseri LG-G12, and the G4 received ceftriaxone. The G5 received ceftriaxone for 2 weeks, followed by the offer of Lactobacillus gasseri LG-G12 for another 2 weeks. Parameters related to obesity, such as biometric measurements, food consumption, biochemical tests, histological assessments, short-chain fatty acids concentration, and composition of the intestinal microbiota, were analyzed. The treatment with caloric restriction and sequential supply of antibiotics and potential probiotics was able to reduce biometric measures, increase brown adipose tissue, and alter the intestinal microbiota phyla, standing out as a promising treatment for obesity.
Collapse
|
382
|
Requena T, Velasco M. The human microbiome in sickness and in health. Rev Clin Esp 2021; 221:233-240. [PMID: 31522775 DOI: 10.1016/j.rce.2019.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
Abstract
The study of the human microbiome has led to an exceptional increase in the current understanding of the importance of microbiota for health throughout all stages of life. Human microbial colonization occurs in the skin, genitourinary system and, mainly, in the oral cavity and intestinal tract. In these locations, the human microbiota establishes a symbiotic relationship with the host and helps maintain the physiological homeostasis. Lifestyle, age, diet and use of antibiotics are the main regulators of the composition and functionality of human microbiota. Recent studies have indicated the reduction in microbial diversity as one of the contributors to the development of diseases. In addition to phylogenetic diversity studies, further metagenomic studies are needed at the functional level of the human microbiome to improve our understanding of its involvement in human health.
Collapse
Affiliation(s)
- T Requena
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL-CSIC), Madrid, España.
| | - M Velasco
- Sección de Enfermedades Infecciosas, Medicina Interna, Hospital Universitario Fundación Alcorcón, Alcorcón, España
| |
Collapse
|
383
|
Ma G, Du H, Hu Q, Yang W, Pei F, Xiao H. Health benefits of edible mushroom polysaccharides and associated gut microbiota regulation. Crit Rev Food Sci Nutr 2021; 62:6646-6663. [PMID: 33792430 DOI: 10.1080/10408398.2021.1903385] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Edible mushrooms have been an important part of the human diet for thousands of years, and over 100 varieties have been cultivated for their potential human health benefits. In recent years, edible mushroom polysaccharides (EMPs) have been studied for their activities against obesity, inflammatory bowel disease (IBD), and cancer. Particularly, accumulating evidence on the exact causality between these health risks and specific gut microbiota species has been revealed and characterized, and most of the beneficial health effects of EMPs have been associated with its reversal impacts on gut microbiota dysbiosis. This demonstrates the key role of EMPs in decreasing health risks through gut microbiota modulation effects. This review article compiles and summarizes the latest studies that focus on the health benefits and underlying functional mechanisms of gut microbiota regulation via EMPs. We conclude that EMPs can be considered a dietary source for the improvement and prevention of several health risks, and this review provides the theoretical basis and technical guidance for the development of novel functional foods with the utilization of edible mushrooms.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Wenjian Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Fei Pei
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
384
|
Cuna A, Morowitz MJ, Ahmed I, Umar S, Sampath V. Dynamics of the preterm gut microbiome in health and disease. Am J Physiol Gastrointest Liver Physiol 2021; 320:G411-G419. [PMID: 33439103 PMCID: PMC8238167 DOI: 10.1152/ajpgi.00399.2020] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Advances in metagenomics have allowed a detailed study of the gut microbiome, and its role in human health and disease. Infants born prematurely possess a fragile gut microbial ecosystem that is vulnerable to perturbation. Alterations in the developing gut microbiome in preterm infants are linked to life-threatening diseases such as necrotizing enterocolitis (NEC) and late-onset sepsis; and may impact future risk of asthma, atopy, obesity, and psychosocial disease. In this mini-review, we summarize recent literature on the origins and patterns of development of the preterm gut microbiome in the perinatal period. The host-microbiome-environmental factors that portend development of dysbiotic intestinal microbial patterns associated with NEC and sepsis are reviewed. Strategies to manipulate the microbiome and mitigate dysbiosis, including the use of probiotics and prebiotics will also be discussed. Finally, we explore the challenges and future directions of gut microbiome research in preterm infants.
Collapse
Affiliation(s)
- Alain Cuna
- 1Division of Neonatology, Children’s Mercy Kansas City, Kansas City, Missouri,2School of Medicine, University of Missouri Kansas City, Kansas City, Missouri
| | | | - Ishfaq Ahmed
- 4Department of Math, Science and Business Technology, Kansas City Kansas Community College, Kansas City, Kansas
| | - Shahid Umar
- 5Departments of Surgery and Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Venkatesh Sampath
- 1Division of Neonatology, Children’s Mercy Kansas City, Kansas City, Missouri,2School of Medicine, University of Missouri Kansas City, Kansas City, Missouri
| |
Collapse
|
385
|
Barnett MPG, Young W, Armstrong K, Brewster D, Cooney JM, Ellett S, Espley RV, Laing W, Maclean P, McGhie T, Pringle G, Roy NC, Ferguson LR. A Polyphenol Enriched Variety of Apple Alters Circulating Immune Cell Gene Expression and Faecal Microbiota Composition in Healthy Adults: A Randomized Controlled Trial. Nutrients 2021; 13:nu13041092. [PMID: 33801641 PMCID: PMC8065949 DOI: 10.3390/nu13041092] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Polyphenols within fruits and vegetables may contribute to health benefits due to their consumption, with the anthocyanin sub-set also adding colour. The Lemonade™ apple variety has green skin and white flesh, with low anthocyanin content, while some apple varieties have high anthocyanin content in both the skin and flesh. Effects of red compared with white-fleshed apples were studied in healthy human subjects in a randomized, placebo-controlled, cross-over intervention trial. Twenty-five healthy subjects consumed dried daily portions of the red-fleshed or placebo (white-fleshed) apple for two weeks, followed by one-week washout and further two-week crossover period. During the study, volunteers provided faecal samples for microbiota composition analysis and blood samples for peripheral blood mononuclear cell (PBMC) gene expression analysis. Subtle differences were observed in the faecal microbiota of subjects that were fed the different apples, with significant (p < 0.05) reductions in relative abundances of Streptococcus, Ruminococcus, Blautia, and Roseburia, and increased relative abundances of Sutterella, Butyricicoccus, and Lactobacillus in subjects after consuming the red apple. Changes in PBMC gene expression showed 18 mRNA transcripts were differentially expressed between the two groups, of which 16 were immunoglobulin related genes. Pathway analysis showed that these genes had roles in pathways such as immunoglobulin production, B cell-mediated immunity, complement activation, and phagocytosis. In conclusion, this study shows that anthocyanin-rich apples may influence immune function compared to control apples, with changes potentially associated with differences in the faecal microbiota.
Collapse
Affiliation(s)
- Matthew P. G. Barnett
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; (W.Y.); (K.A.); (P.M.); (N.C.R.)
- Riddet Institute, Palmerston North 4442, New Zealand
- Correspondence: (M.P.G.B.);
(L.R.F.); Tel.: +64-9-923-1138 (L.R.F.)
| | - Wayne Young
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; (W.Y.); (K.A.); (P.M.); (N.C.R.)
- Riddet Institute, Palmerston North 4442, New Zealand
- The High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Kelly Armstrong
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; (W.Y.); (K.A.); (P.M.); (N.C.R.)
| | - Diane Brewster
- The New Zealand Institute for Plant and Food Research, Auckland 1025, New Zealand; (D.B.); (R.V.E.); (G.P.)
| | - Janine M. Cooney
- The New Zealand Institute for Plant and Food Research, Hamilton 3214, New Zealand;
| | - Stephanie Ellett
- Discipline of Nutrition and Dietetics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research, Auckland 1025, New Zealand; (D.B.); (R.V.E.); (G.P.)
| | - William Laing
- The New Zealand Institute for Plant and Food Research, Palmerston North 4410, New Zealand; (W.L.); (T.M.)
| | - Paul Maclean
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; (W.Y.); (K.A.); (P.M.); (N.C.R.)
| | - Tony McGhie
- The New Zealand Institute for Plant and Food Research, Palmerston North 4410, New Zealand; (W.L.); (T.M.)
| | - Greg Pringle
- The New Zealand Institute for Plant and Food Research, Auckland 1025, New Zealand; (D.B.); (R.V.E.); (G.P.)
| | - Nicole C. Roy
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; (W.Y.); (K.A.); (P.M.); (N.C.R.)
- Riddet Institute, Palmerston North 4442, New Zealand
- The High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin 9016, New Zealand
| | - Lynnette R. Ferguson
- Discipline of Nutrition and Dietetics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- Correspondence: (M.P.G.B.);
(L.R.F.); Tel.: +64-9-923-1138 (L.R.F.)
| |
Collapse
|
386
|
Wu Y, Zhou X, Zhang X, Niu H, Lyu L, Liang C, Chen S, Gong P, Pan J, Li Y, Jiang S, Han X, Zhang L. Breast milk flora plays an important role in infantile eczema: cohort study in Northeast China. J Appl Microbiol 2021; 131:2981-2993. [PMID: 33735474 DOI: 10.1111/jam.15076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/17/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022]
Abstract
AIMS Infantile eczema, usually coupled with a range of hypersensitive phenotypes, has come into notice with its rising prevalence and unclear pathogenesis. Recent studies show close ties between eczema and an infant's intestinal flora. To gain a further understanding of the interactions between microbiota and eczema, we studied the breast milk flora as a new factor and present the links among breast milk flora, infant intestinal flora and infantile eczema through a cohort study in Northeast China. METHODS AND RESULTS Fifty-two families were recruited with either an eczema or healthy infant younger than 6 months. Analysis and predictions using amplicon sequencing of microbiota found that Bifidobacterium and Bacteroidetes were enriched in healthy and eczema infant stools, respectively, consistent with previous reports. For breast milk flora, more 'positive' bacteria such as Akkermansia were enriched in breast milk from healthy infants' mothers. Further, higher bacterial delivery efficiencies were found in pairs of breast milk flora and infants' stool flora of families with eczema infants compared with families with healthy infants. Bacteroidetes, a widely known indicator of eczema, was found delivered more in eczema pairs. Further metagenomic predictions revealed that the breast milk microbiota participated significantly less in metabolism and immune system pathways, particularly in antigen processing and presentation and in Th17 cell-related pathways. CONCLUSIONS In conclusion, as with other components of breast milk, the breast milk microbiota closely associates with infants' health via mother-infant bacterial delivery and metabolic functions. SIGNIFICANCE AND IMPACT OF THE STUDY Our research aimed to fill the gap between the eczema and breast milk flora and describe the connections among breast milk and intestinal flora and eczema.
Collapse
Affiliation(s)
- Y Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - X Zhou
- Department of Adolescent Medical Clinic, Qingdao Central Hospital, Qingdao, China
| | - X Zhang
- Child Healthcare Department, Harbin Children's Hospital, Harbin, China
| | - H Niu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - L Lyu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - C Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - S Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - P Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - J Pan
- Feihe Innovation Center, Heilongjiang Feihe Dairy Co Ltd, Beijing, China
| | - Y Li
- Feihe Innovation Center, Heilongjiang Feihe Dairy Co Ltd, Beijing, China
| | - S Jiang
- Feihe Innovation Center, Heilongjiang Feihe Dairy Co Ltd, Beijing, China
| | - X Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - L Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
387
|
Cugini C, Ramasubbu N, Tsiagbe VK, Fine DH. Dysbiosis From a Microbial and Host Perspective Relative to Oral Health and Disease. Front Microbiol 2021; 12:617485. [PMID: 33763040 PMCID: PMC7982844 DOI: 10.3389/fmicb.2021.617485] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The significance of microbiology and immunology with regard to caries and periodontal disease gained substantial clinical or research consideration in the mid 1960's. This enhanced emphasis related to several simple but elegant experiments illustrating the relevance of bacteria to oral infections. Since that point, the understanding of oral diseases has become increasingly sophisticated and many of the original hypotheses related to disease causality have either been abandoned or amplified. The COVID pandemic has reminded us of the importance of history relative to infectious diseases and in the words of Churchill "those who fail to learn from history are condemned to repeat it." This review is designed to present an overview of broad general directions of research over the last 60 years in oral microbiology and immunology, reviewing significant contributions, indicating emerging foci of interest, and proposing future directions based on technical advances and new understandings. Our goal is to review this rich history (standard microbiology and immunology) and point to potential directions in the future (omics) that can lead to a better understanding of disease. Over the years, research scientists have moved from a position of downplaying the role of bacteria in oral disease to one implicating bacteria as true pathogens that cause disease. More recently it has been proposed that bacteria form the ecological first line of defense against "foreign" invaders and also serve to train the immune system as an acquired host defensive stimulus. While early immunological research was focused on immunological exposure as a modulator of disease, the "hygiene hypothesis," and now the "old friends hypothesis" suggest that the immune response could be trained by bacteria for long-term health. Advanced "omics" technologies are currently being used to address changes that occur in the host and the microbiome in oral disease. The "omics" methodologies have shaped the detection of quantifiable biomarkers to define human physiology and pathologies. In summary, this review will emphasize the role that commensals and pathobionts play in their interaction with the immune status of the host, with a prediction that current "omic" technologies will allow researchers to better understand disease in the future.
Collapse
Affiliation(s)
- Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | | | | | | |
Collapse
|
388
|
Volkova A, Ruggles KV. Predictive Metagenomic Analysis of Autoimmune Disease Identifies Robust Autoimmunity and Disease Specific Microbial Signatures. Front Microbiol 2021; 12:621310. [PMID: 33746917 PMCID: PMC7969817 DOI: 10.3389/fmicb.2021.621310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Within the last decade, numerous studies have demonstrated changes in the gut microbiome associated with specific autoimmune diseases. Due to differences in study design, data quality control, analysis and statistical methods, many results of these studies are inconsistent and incomparable. To better understand the relationship between the intestinal microbiome and autoimmunity, we have completed a comprehensive re-analysis of 42 studies focusing on the gut microbiome in 12 autoimmune diseases to identify a microbial signature predictive of multiple sclerosis (MS), inflammatory bowel disease (IBD), rheumatoid arthritis (RA) and general autoimmune disease using both 16S rRNA sequencing data and shotgun metagenomics data. To do this, we used four machine learning algorithms, random forest, eXtreme Gradient Boosting (XGBoost), ridge regression, and support vector machine with radial kernel and recursive feature elimination to rank disease predictive taxa comparing disease vs. healthy participants and pairwise comparisons of each disease. Comparing the performance of these models, we found the two tree-based methods, XGBoost and random forest, most capable of handling sparse multidimensional data, to consistently produce the best results. Through this modeling, we identified a number of taxa consistently identified as dysregulated in a general autoimmune disease model including Odoribacter, Lachnospiraceae Clostridium, and Mogibacteriaceae implicating all as potential factors connecting the gut microbiome to autoimmune response. Further, we computed pairwise comparison models to identify disease specific taxa signatures highlighting a role for Peptostreptococcaceae and Ruminococcaceae Gemmiger in IBD and Akkermansia, Butyricicoccus, and Mogibacteriaceae in MS. We then connected a subset of these taxa with potential metabolic alterations based on metagenomic/metabolomic correlation analysis, identifying 215 metabolites associated with autoimmunity-predictive taxa.
Collapse
Affiliation(s)
- Angelina Volkova
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, United States
| | - Kelly V. Ruggles
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, United States
- Division of Translational Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
389
|
No evidence for a placental microbiome in human pregnancies at term. Am J Obstet Gynecol 2021; 224:296.e1-296.e23. [PMID: 32871131 DOI: 10.1016/j.ajog.2020.08.103] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The placenta plays an important role in the modulation of pregnancy immunity; however, there is no consensus regarding the existence of a placental microbiome in healthy full-term pregnancies. OBJECTIVE This study aimed to investigate the existence and origin of a placental microbiome. STUDY DESIGN A cross-sectional study comparing samples (3 layers of placental tissue, amniotic fluid, vernix caseosa, and saliva, vaginal, and rectal samples) from 2 groups of full-term births: 50 women not in labor with elective cesarean deliveries and 26 with vaginal deliveries. The comparisons were performed using polymerase chain reaction amplification and DNA sequencing techniques and bacterial culture experiments. RESULTS There were no significant differences regarding background characteristics between women who delivered by elective cesarean and those who delivered vaginally. Quantitative measurements of bacterial content in all 3 placental layers (quantitative polymerase chain reaction of the 16S ribosomal RNA gene) did not show any significant difference among any of the sample types and the negative controls. Here, 16S ribosomal RNA gene sequencing of the maternal side of the placenta could not differentiate between bacteria in the placental tissue and contamination of the laboratory reagents with bacterial DNA. Probe-specific quantitative polymerase chain reaction for bacterial taxa suspected to be present in the placenta could not detect any statistically significant difference between the 2 groups. In bacterial cultures, substantially more bacteria were observed in the placenta layers from vaginal deliveries than those from cesarean deliveries. In addition, 16S ribosomal RNA gene sequencing of bacterial colonies revealed that most of the bacteria that grew on the plates were genera typically found in human skin; moreover, it revealed that placentas delivered vaginally contained a high prevalence of common vaginal bacteria. Bacterial growth inhibition experiments indicated that placental tissue may facilitate the inhibition of bacterial growth. CONCLUSION We found no evidence to support the existence of a placental microbiome in our study of 76 term pregnancies, which used polymerase chain reaction amplification and sequencing techniques and bacterial culture experiments. Incidental findings of bacterial species could be due to contamination or to low-grade bacterial presence in some locations; such bacteria do not represent a placental microbiome per se.
Collapse
|
390
|
Shaffer JP, Marotz C, Belda-Ferre P, Martino C, Wandro S, Estaki M, Salido RA, Carpenter CS, Zaramela LS, Minich JJ, Bryant M, Sanders K, Fraraccio S, Ackermann G, Humphrey G, Swafford AD, Miller-Montgomery S, Knight R. A comparison of DNA/RNA extraction protocols for high-throughput sequencing of microbial communities. Biotechniques 2021; 70:149-159. [PMID: 33512248 PMCID: PMC7931620 DOI: 10.2144/btn-2020-0153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
One goal of microbial ecology researchers is to capture the maximum amount of information from all organisms in a sample. The recent COVID-19 pandemic, caused by the RNA virus SARS-CoV-2, has highlighted a gap in traditional DNA-based protocols, including the high-throughput methods the authors previously established as field standards. To enable simultaneous SARS-CoV-2 and microbial community profiling, the authors compared the relative performance of two total nucleic acid extraction protocols with the authors' previously benchmarked protocol. The authors included a diverse panel of environmental and host-associated sample types, including body sites commonly swabbed for COVID-19 testing. Here the authors present results comparing the cost, processing time, DNA and RNA yield, microbial community composition, limit of detection and well-to-well contamination between these protocols.
Collapse
Affiliation(s)
- Justin P Shaffer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Clarisse Marotz
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Cameron Martino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Bioinformatics & Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Stephen Wandro
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Micronoma Inc., San Diego, CA, USA
| | - Mehrbod Estaki
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Rodolfo A Salido
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Carolina S Carpenter
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Livia S Zaramela
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jeremiah J Minich
- Marine Biology Research Division, University of California, San Diego, La Jolla, CA, USA
| | - MacKenzie Bryant
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Karenina Sanders
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Serena Fraraccio
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Micronoma Inc., San Diego, CA, USA
| | - Gail Ackermann
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Gregory Humphrey
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Austin D Swafford
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Sandrine Miller-Montgomery
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Micronoma Inc., San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
- Micronoma Inc., San Diego, CA, USA
| |
Collapse
|
391
|
Abstract
Scientists have invested considerable resources in the study of the microbiota of the human body. These microorganisms play pivotal roles in immunity and disease. Of which, probiotics are live beneficial microorganisms that keep your intestinal or lung microbiota healthy, and occupy a special role in combating the infections. Thus, it is critical to understand their contributions to these processes. Technology can facilitate advanced studies of the microbiota, including how it develops and its positive and negatives effects on the immune system. This paper investigates how several factors (e.g. birth delivery mode, metabolic activities, types of microorganisms, and immune system interactions) affect the microbiota, particularly in early life. The paper also discusses how gastrointestinal microbes in particular may be associated with certain disease processes, such as those related to schizophrenia, autism, and diabetes. Clinical studies show that certain probiotic strains, like Lactobacillus rhamnosus GG and Bifidobacterium animalis ssp. lactis help to prevent infection of pathogenic organisms (both bacterial and viral). This research may yield crucial contributions to disease prevention and public health. The dysbiosis may result in changes in the acquired immunity later on. The probiotic strains can prevent viral replication during SARS-CoV-2 or COVID-19 infection by reducing proinflammatory cytokines. There has been much interest into the intestinal flora as proposed by the diversity, volume, and proposed role in disease. Future research in the field of microbiome should be done in order to uncover their association to gut virome by noting both their influence on each other and relevant health and disease.
Collapse
|
392
|
Podlesny D, Fricke WF. Strain inheritance and neonatal gut microbiota development: A meta-analysis. Int J Med Microbiol 2021; 311:151483. [PMID: 33689953 DOI: 10.1016/j.ijmm.2021.151483] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/15/2021] [Accepted: 02/23/2021] [Indexed: 01/11/2023] Open
Abstract
As many inflammatory and metabolic disorders have been associated with structural deficits of the human gut microbiota, the principles and mechanisms that govern its initialization and development are of considerable scientific interest and clinical relevance. However, our current understanding of the developing gut microbiota dynamics remains incomplete. We carried out a large-scale, comprehensive meta-analysis of over 1900 available metagenomic shotgun samples from neonates, infants, adolescents, and their families, using our recently introduced SameStr program for strain-level microbiota profiling and the detection of microbial strain transfer and persistence. We found robust associations between fecal microbiota composition and age, as well as delivery mode, which was measurable for up to two years of life. C-section was associated with increased relative abundances of non-gut species and delayed transition from a predominantly oxygen-tolerant to intolerant microbial community. Unsupervised networks based on shared strain profiles generated family-specific clusters connecting infants, their siblings, parents and grandparents and, in one case, suggested strain transfer between neonates from the same hospital ward, but could also be used to identify potentially mislabeled metagenome samples. Vaginally delivered newborns shared more strains with their mothers than C-section infants, but strain sharing was reduced if mothers underwent antibiotic treatment. Shared strains persisted in infants throughout the first year of life and belonged to the same bacterial species as strains that were shared between adults and their parents. Irrespective of delivery type, older children shared strains with their mothers and fathers and, into adulthood, could be accurately distinguished from unrelated sample pairs. Prominent fecal commensal bacteria were both among frequently transferred (e.g. Bacteroides and Sutterella) and newly acquired taxa (e.g. Blautia, Faecalibacterium, and Ruminococcus). Our meta-analysis presents a more detailed and comprehensive picture of the highly dynamic neonatal and infant fecal microbiota development than previous studies and presents evidence for taxonomic and functional compositional differences early in life between infants born naturally or by C-section, which persist well into adolescence.
Collapse
Affiliation(s)
- Daniel Podlesny
- Department of Microbiome Research and Applied Bioinformatics, University of Hohenheim, Stuttgart, Germany
| | - W Florian Fricke
- Department of Microbiome Research and Applied Bioinformatics, University of Hohenheim, Stuttgart, Germany; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
393
|
McNamara MP, Singleton JM, Cadney MD, Ruegger PM, Borneman J, Garland T. Early-life effects of juvenile Western diet and exercise on adult gut microbiome composition in mice. J Exp Biol 2021; 224:jeb239699. [PMID: 33431595 PMCID: PMC7929929 DOI: 10.1242/jeb.239699] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
Alterations to the gut microbiome caused by changes in diet, consumption of antibiotics, etc., can affect host function. Moreover, perturbation of the microbiome during critical developmental periods potentially has long-lasting impacts on hosts. Using four selectively bred high runner and four non-selected control lines of mice, we examined the effects of early-life diet and exercise manipulations on the adult microbiome by sequencing the hypervariable internal transcribed spacer region of the bacterial gut community. Mice from high runner lines run ∼3-fold more on wheels than do controls, and have several other phenotypic differences (e.g. higher food consumption and body temperature) that could alter the microbiome, either acutely or in terms of coevolution. Males from generation 76 were given wheels and/or a Western diet from weaning until sexual maturity at 6 weeks of age, then housed individually without wheels on standard diet until 14 weeks of age, when fecal samples were taken. Juvenile Western diet reduced bacterial richness and diversity after the 8-week washout period (equivalent to ∼6 human years). We also found interactive effects of genetic line type, juvenile diet and/or juvenile exercise on microbiome composition and diversity. Microbial community structure clustered significantly in relation to both line type and diet. Western diet also reduced the relative abundance of Muribaculum intestinale These results constitute one of the first reports of juvenile diet having long-lasting effects on the adult microbiome after a substantial washout period. Moreover, we found interactive effects of diet with early-life exercise exposure, and a dependence of these effects on genetic background.
Collapse
Affiliation(s)
- Monica P McNamara
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Jennifer M Singleton
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Paul M Ruegger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 91521, USA
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 91521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| |
Collapse
|
394
|
Peluzio MDCG, Dias MDME, Martinez JA, Milagro FI. Kefir and Intestinal Microbiota Modulation: Implications in Human Health. Front Nutr 2021; 8:638740. [PMID: 33693024 PMCID: PMC7938729 DOI: 10.3389/fnut.2021.638740] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
In the last decades changes in the pattern of health and disease in Latin America and in the world has been observed, with an increase in cases of chronic non-communicable diseases. Changes in intestinal microbiota composition can contribute to the development of these diseases and be useful in their management. In this context, the consumption of fermented foods with probiotic properties, such as kefir, stands out due to its gut microbiota-modulating capacity. There is an increasing interest in the commercial use of kefir since it can be marketed as a natural beverage containing health-promoting bacteria and has been gaining international popularity in Latin America. Also the consumption of these drinks in Latin America seems to be even more relevant, given the socioeconomic situation of this population, which highlights the need for disease prevention at the expense of its treatment. In this narrative review, we discuss how kefir may work against obesity, diabetes mellitus, liver disease, cardiovascular disorders, immunity, and neurological disorders. Peptides, bioactive compounds and strains occurring in kefir, can modulate gut microbiota composition, low-grade inflammation and intestinal permeability, which consequently may generate health benefits. Kefir can also impact on the regulation of organism homeostasis, with a direct effect on the gut-brain axis, being a possible strategy for the prevention of metabolic diseases. Further studies are needed to standardize these bioactive compounds and better elucidate the mechanisms linking kefir and intestinal microbiota modulation. However, due to the benefits reported, low cost and ease of preparation, kefir seems to be a promising approach to prevent and manage microbiota-related diseases in Latin America and the rest of the world.
Collapse
Affiliation(s)
| | | | - J Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Carlos III Health Institute, Madrid, Spain.,Instituto de Investigación Sanitaria de Navarra, Navarra Institute for Health Research, Pamplona, Spain.,Madrid Institute of Advanced Studies (IMDEA Food), Food Institute, Madrid, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Carlos III Health Institute, Madrid, Spain.,Instituto de Investigación Sanitaria de Navarra, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
395
|
Byrd KM, Gulati AS. The "Gum-Gut" Axis in Inflammatory Bowel Diseases: A Hypothesis-Driven Review of Associations and Advances. Front Immunol 2021; 12:620124. [PMID: 33679761 PMCID: PMC7933581 DOI: 10.3389/fimmu.2021.620124] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
In modern medicine, the oral cavity has often been viewed as a passive conduit to the upper airways and gastrointestinal tract; however, its connection to the rest of the body has been increasingly explored over the last 40 years. For several diseases, the periodontium and gingiva are at the center of this oral-systemic link. Over 50 systemic conditions have been specifically associated with gingival and periodontal inflammation, including inflammatory bowel diseases (IBD), which have recently been elevated from simple "associations" to elegant, mechanistic investigations. IBD and periodontitis have been reported to impact each other's progression via a bidirectional relationship whereby chronic oral or intestinal inflammation can impact the other; however, the precise mechanisms for how this occurs remain unclear. Classically, the etiology of gingival inflammation (gingivitis) is oral microbial dysbiosis in the subgingival crevice that can lead to destructive periodontal disease (periodontitis); however, the current understanding of gingival involvement in IBD is that it may represent a separate disease entity from classical gingivitis, arising from mechanisms related to systemic inflammatory activation of niche-resident immune cells. Synthesizing available evidence, we hypothesize that once established, IBD can be driven by microbiomial and inflammatory changes originating specifically from the gingival niche through saliva, thereby worsening IBD outcomes and thus perpetuating a vicious cycle. In this review, we introduce the concept of the "gum-gut axis" as a framework for examining this reciprocal relationship between the periodontium and the gastrointestinal tract. To support and explore this gum-gut axis, we 1) provide a narrative review of historical studies reporting gingival and periodontal manifestations in IBD, 2) describe the current understanding and advances for the gum-gut axis, and 3) underscore the importance of collaborative treatment and research plans between oral and GI practitioners to benefit this patient population.
Collapse
Affiliation(s)
- Kevin M. Byrd
- Division of Oral & Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
- Department of Innovation & Technology Research, ADA Science & Research Institute, Gaithersburg, MD, United States
| | - Ajay S. Gulati
- Division of Gastroenterology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
396
|
Coscia A, Bardanzellu F, Caboni E, Fanos V, Peroni DG. When a Neonate Is Born, So Is a Microbiota. Life (Basel) 2021; 11:life11020148. [PMID: 33669262 PMCID: PMC7920069 DOI: 10.3390/life11020148] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the role of human microbiota as a short- and long-term health promoter and modulator has been affirmed and progressively strengthened. In the course of one’s life, each subject is colonized by a great number of bacteria, which constitute its specific and individual microbiota. Human bacterial colonization starts during fetal life, in opposition to the previous paradigm of the “sterile womb”. Placenta, amniotic fluid, cord blood and fetal tissues each have their own specific microbiota, influenced by maternal health and habits and having a decisive influence on pregnancy outcome and offspring outcome. The maternal microbiota, especially that colonizing the genital system, starts to influence the outcome of pregnancy already before conception, modulating fertility and the success rate of fertilization, even in the case of assisted reproduction techniques. During the perinatal period, neonatal microbiota seems influenced by delivery mode, drug administration and many other conditions. Special attention must be reserved for early neonatal nutrition, because breastfeeding allows the transmission of a specific and unique lactobiome able to modulate and positively affect the neonatal gut microbiota. Our narrative review aims to investigate the currently identified pre- and peri-natal factors influencing neonatal microbiota, before conception, during pregnancy, pre- and post-delivery, since the early microbiota influences the whole life of each subject.
Collapse
Affiliation(s)
- Alessandra Coscia
- Neonatology Unit, Department of Public Health and Pediatrics, Università degli Studi di Torino, 10124 Turin, Italy;
| | - Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy; (E.C.); (V.F.)
- Correspondence:
| | - Elisa Caboni
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy; (E.C.); (V.F.)
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy; (E.C.); (V.F.)
| | - Diego Giampietro Peroni
- Clinical and Experimental Medicine Department, Section of Pediatrics, University of Pisa, Via Roma, 55, 56126 Pisa PI, Italy;
| |
Collapse
|
397
|
Integrative Review of Gut Microbiota and Expression of Symptoms Associated With Neonatal Abstinence Syndrome. Nurs Res 2021; 69:S66-S78. [PMID: 32555010 DOI: 10.1097/nnr.0000000000000452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND Neonatal exposure and subsequent withdrawal from maternal substance use disorder are a growing problem and consequence of the current opioid epidemic. Neonatal abstinence syndrome (NAS) is defined by a specified cluster of symptoms with treatment guided by the expression and severity of these symptoms. The mechanisms or pathophysiology contributing to the development of NAS symptoms are not well known, but one factor that may influence NAS symptoms is the gut microbiota. OBJECTIVES The purpose of this integrative review was to examine evidence that might show if and how the gut microbiota influence expression and severity of symptoms similar to those seen in NAS. METHODS Using published guidelines, a review of research studies that focused on the gut microbiome and symptoms similar to those seen in NAS was conducted, using the Cochrane, EMBASE, and Scopus databases, from 2009 through 2019. RESULTS The review results included findings of aberrant microbial diversity, differences in microbial communities between study groups, and associations between specific taxa and symptoms. In studies involving interventions, there were reports of improved microbial diversity, community structure, and symptoms. DISCUSSION The review findings provide evidence that the gut microbiota may play a role in modifying variability in the expression and severity of symptoms associated with NAS. Future research should focus on examining the gut microbiota in infants with and without the syndrome as well as exploring the relationship between symptom expression and aberrant gut microbiota colonization in infants with NAS.
Collapse
|
398
|
Kumbhare SV, Patangia DV, Mongad DS, Bora A, Bavdekar AR, Shouche YS. Gut microbial diversity during pregnancy and early infancy: an exploratory study in the Indian population. FEMS Microbiol Lett 2021; 367:5735435. [PMID: 32053163 DOI: 10.1093/femsle/fnaa022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
The gut microbial community is known to influence the human health and disease state and is shaped by various factors since birth. It is now evident that understanding the alterations in these commensal microbes during crucial stages of life is of utmost importance to determine and predict the health status of an individual. To study the gut microbiota in two such vital stages, pregnancy and infancy, we analyzed gut microbial communities from 20 mother-infant dyads at different stages of pregnancy and early infancy. In total, we analyzed 80 fecal samples for profiling the gut microbial community using 16S rRNA gene-based sequencing. We observed no significant alterations in the gut bacterial diversity during pregnancy; however, significant alterations were observed during the period from birth to six months in infants, with a reduction in Staphylococcus and Enterococcus and an increase in Bifidobacterium and Streptococcus with a more stable microbial community at the age of six months.
Collapse
Affiliation(s)
- Shreyas V Kumbhare
- National Centre for Cell Science, Savitribai Phule University of Pune Campus, Ganeshkhind, Pune, Maharashtra, India, 411007
| | - Dhrati V Patangia
- National Centre for Cell Science, Savitribai Phule University of Pune Campus, Ganeshkhind, Pune, Maharashtra, India, 411007
| | - Dattatray S Mongad
- National Centre for Cell Science, Savitribai Phule University of Pune Campus, Ganeshkhind, Pune, Maharashtra, India, 411007
| | - Abhijeet Bora
- King Edward Memorial Hospital Research Centre, Pune, Maharashtra, India, 411011
| | - Ashish R Bavdekar
- King Edward Memorial Hospital Research Centre, Pune, Maharashtra, India, 411011
| | - Yogesh S Shouche
- National Centre for Cell Science, Savitribai Phule University of Pune Campus, Ganeshkhind, Pune, Maharashtra, India, 411007
| |
Collapse
|
399
|
An Antibiotic-Impacted Microbiota Compromises the Development of Colonic Regulatory T Cells and Predisposes to Dysregulated Immune Responses. mBio 2021; 12:mBio.03335-20. [PMID: 33531385 PMCID: PMC7858066 DOI: 10.1128/mbio.03335-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The assembly of microbial communities that populate all mucosal surfaces of the human body begins right after birth. This process is prone to disruption as newborns and young infants are increasingly exposed to antibiotics, both deliberately for therapeutic purposes, and as a consequence of transmaternal exposure. Antibiotic exposure early in life and other practices impacting the vertical transmission and ordered assembly of a diverse and balanced gut microbiota are associated with a higher risk of immunological and metabolic disorders such as asthma and allergy, autoimmunity, obesity, and susceptibility to opportunistic infections. In this study, we used a model of perinatal exposure to the broad-spectrum antibiotic ampicillin to examine how the acquisition of a dysbiotic microbiota affects neonatal immune system development. We found that the resultant dysbiosis imprints in a manner that is irreversible after weaning, leading to specific and selective alteration of the colonic CD4+ T-cell compartment. In contrast, colonic granulocyte and myeloid lineages and other mucosal T-cell compartments are unaffected. Among colonic CD4+ T cells, we observed the most pronounced effects on neuropilin-negative, RORγt- and Foxp3-positive regulatory T cells, which are largely absent in antibiotic-exposed mice even as they reach adulthood. Immunomagnetically isolated dendritic cells from antibiotic-exposed mice fail to support the generation of Foxp3+ regulatory T cells (Tregs) from naive T cells ex vivo. The perinatally acquired dysbiotic microbiota predisposes to dysregulated effector T-cell responses to Citrobacter rodentium or ovalbumin challenge. The transfer of the antibiotic-impacted, but not healthy, fecal microbiota into germfree recipients recapitulates the selective loss of colonic neuropilin-negative, RORγt- and Foxp3-positive Tregs. The combined data indicate that the early-life acquisition of a dysbiotic microbiota has detrimental effects on the diversity and microbial community composition of offspring that persist into adulthood and predisposes to inappropriate T-cell responses that are linked to compromised immune tolerance.
Collapse
|
400
|
Strand MA, Jin Y, Sandve SR, Pope PB, Hvidsten TR. Transkingdom network analysis provides insight into host-microbiome interactions in Atlantic salmon. Comput Struct Biotechnol J 2021; 19:1028-1034. [PMID: 33613868 PMCID: PMC7876536 DOI: 10.1016/j.csbj.2021.01.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The Atlantic salmon gut constitutes an intriguing system for studying host-microbiota interactions due to the dramatic environmental change salmon experiences during its life cycle. Yet, little is known about the role of interactions in this system and there is a general deficit in computational methods for integrative analysis of omics data from host-microbiota systems. METHODS We developed a pipeline to integrate host RNAseq data and microbial 16S rRNA amplicon sequencing data using weighted correlation network analysis. Networks are first inferred from each dataset separately, followed by module detections and finally robust identification of interactions via comparisons of representative module profiles. Through the use of module profiles, this network-based dimensionality reduction approach provides a holistic view into the discovery of potential host-microbiota symbionts. RESULTS We analyzed host gene expression from the gut epithelial tissue and microbial abundances from the salmon gut in a long-term feeding trial spanning the fresh-/salt-water transition and including two feeds resembling the fatty acid compositions available in salt- and fresh-water environments, respectively. We identified several host modules with significant correlations to both microbiota modules and variables such as feed, growth and sex. Although the strongest associations largely coincided with the fresh-/salt-water transition, there was a second layer of correlations associating smaller host modules to both variables and microbiota modules. Hence, we identify extensive reprogramming of the gut epithelial transcriptome and large scale coordinated changes in gut microbiota composition associated with water type as well as evidence of host-microbiota interactions linked to feed.
Collapse
Affiliation(s)
- Marius A. Strand
- Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Yang Jin
- Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Simen R. Sandve
- Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Phil B. Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Torgeir R. Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| |
Collapse
|