351
|
Impact of environmental temperature on production traits in pigs. Sci Rep 2020; 10:2106. [PMID: 32034216 PMCID: PMC7005870 DOI: 10.1038/s41598-020-58981-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/22/2020] [Indexed: 12/02/2022] Open
Abstract
There is an urgent need to identify the effects of temperature on production traits. This study aimed to determine the impact of pig production in three environments (T°Cgrowing-°Cfattening-°Cfinishing = T24-24-21, T19-19-19, and T23-17-15) on growth curve parameters, body weight gain (DBWG), feed intake (DFI), and feed efficiency during the growing, fattening and finishing stages, and on carcass yield of primal cuts (ham, shoulder, and loin) in 158 Duroc × Iberian pigs. Maturation rate was higher in T23-17-15 than in T19-19-19 (P < 0.001). Pigs in T23-17-15 reached a lower mature body weight (P < 0.05). During the growing stage, pigs in T23-17-15 had higher DFI than those in T24-24-21 and T19-19-19 (P < 0.05); during the fattening stage, DFI was lowest in T24-24-21 (P < 0.001). In the growing stage, pigs had highest DBWG in the warmest environments (T24-24-21 and T23-17-15) and lowest in the coldest environment (T19-19-19; P < 0.001). Feed efficiency was highest in warmer environments (P < 0.01). Temperature T24-24-21 favored loin yield, T19-19-19 favored ham yield, and T23-17-15 favored shoulder yield (P < 0.01). The results imply a favorable effect of temperature on feed efficiency, however, possible negative implications for animal health and welfare should be considered.
Collapse
|
352
|
Yan Z, Zhao M, Wu X, Zhang J. Metabolic Response of Pleurotus ostreatus to Continuous Heat Stress. Front Microbiol 2020; 10:3148. [PMID: 32038581 PMCID: PMC6990131 DOI: 10.3389/fmicb.2019.03148] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/29/2019] [Indexed: 11/13/2022] Open
Abstract
Heat stress seriously threatens the growth of Pleurotus ostreatus. Various studies have been performed to study the resistance of P. ostreatus to heat stress. Here, the metabolome was evaluated to determine the response of P. ostreatus mycelia to heat stress at different times (6, 12, 24, 48 h). More than 70 differential metabolites were detected and enriched in their metabolic pathways. Dynamic metabolites changes in enrichment pathways under heat stress showed that heat stress enhanced the degradation of unsaturated fatty acids and nucleotides, increased the content of amino acids and vitamins, and accelerated glycolysis and the tricarboxylic acid cycle in P. ostreatus. The time course changes of P. ostreatus metabolites under continuous heat stress demonstrated that amino acids continuously changed with heat stress, nucleotides clearly changed with heat stress at 12 and 48 h, and lipids exhibited an increasing trend with prolonged heat stress, while few types saccharides and vitamins changed under heat stress. Additionally, heat-treated P. ostreatus produced salicylic acid and other stress-resistant substances that were reported in plants. This study first reported the metabolites changes in P. ostreatus mycelia during 48 h of heat stress. The metabolic pathways and substances that changed with heat stress in this research will aid future studies on the resistance of P. ostreatus and other edible fungi to heat stress.
Collapse
Affiliation(s)
- Zhiyu Yan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mengran Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
353
|
Pate RT, Luchini D, Murphy MR, Cardoso FC. Effects of rumen-protected methionine on lactation performance and physiological variables during a heat stress challenge in lactating Holstein cows. J Dairy Sci 2020; 103:2800-2813. [PMID: 31954567 DOI: 10.3168/jds.2019-17305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/14/2019] [Indexed: 11/19/2022]
Abstract
Milk yield, content, and composition are altered by heat stress. Thirty-two multiparous, lactating Holstein cows [balanced by days in milk (mean ± standard deviation; 184 ± 59); body surface area (5.84 ± 0.34 m2)] were randomly assigned to 1 of 2 dietary treatments [total mixed ration with rumen-protected Met (RPM; Smartamine M; Adisseo Inc., Antony, France; 1.05 g of RPM/kg of dry matter intake) or total mixed ration without RPM (CON)], and within each dietary treatment group cows were randomly assigned to 1 of 2 environmental treatment groups in a split-plot crossover design. The study was divided into 2 periods with 2 phases per period. In phase 1 (9 d), all cows were in thermoneutral conditions and fed ad libitum. In phase 2 (9 d), group 1 (n = 16) was exposed to a heat stress challenge (HSC) using electric heat blankets. Group 2 (n = 16) remained in thermoneutral conditions but was pair-fed (PFTN) to HSC counterparts. After a 21-d washout period, the study was repeated (period 2) and the environmental treatments were inverted relative to treatments from phase 2 of period 1, whereas dietary treatments (RPM or CON) remained the same for each cow. Cows were milked 3× per day and samples were taken on d 1, 5, and 9 of each phase. Vaginal temperature was measured every 10 min, rectal temperature and skin temperature were measured 3× per day, and respiration rate and heart rate were recorded once per day. Cow activity was measured using an accelerometer. Paired difference values were calculated for each cow for each period based on the difference between phase 1 baseline means and phase 2 values for each variable. Cows in HSC had a greater increase in vaginal temperature and respiration rate (+0.2°C and +13.7 breaths/min, respectively) compared with cows in PFTN (0.0°C and -1.6 breaths/min, respectively). Cows in PFTN had a greater decrease in dry matter intake and milk yield (-3.9 and -2.6 kg/d, respectively) compared with cows in HSC (-3.2 and -0.9 kg/d, respectively). Cows in CON had a greater decrease in milk protein concentration for PFTN (-0.10 percentage units) and HSC (-0.06 percentage units) compared with cows in RPM for PFTN (0.00 percentage units) and HSC (-0.02 percentage units). Cows in CON for HSC had greater decrease in milk fat concentration compared with cows in RPM for HSC (-0.10 and +0.12 percentage units, respectively). In conclusion, HSC altered physiological and production parameters of cows. Additionally, RPM helped maintain milk protein and fat concentration during HSC, whereas dry matter intake, milk yield, and feed efficiencies were not affected by RPM.
Collapse
Affiliation(s)
- R T Pate
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | | | - M R Murphy
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - F C Cardoso
- Department of Animal Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
354
|
Bidne KL, Romoser MR, Ross JW, Baumgard LH, Keating AF. Heat stress during the luteal phase decreases luteal size but does not affect circulating progesterone in gilts1. J Anim Sci 2020; 97:4314-4322. [PMID: 31372640 DOI: 10.1093/jas/skz251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/31/2019] [Indexed: 01/06/2023] Open
Abstract
Heat stress (HS) occurs when heat dissipation mechanisms are insufficient to maintain euthermia, and it is associated with seasonal infertility (SI), which manifests as smaller litters, longer wean-to-estrus interval, increased abortions, and reduced conception rates. To understand HS-induced mechanisms underlying SI, crossbred post-pubertal gilts (167 ± 10 kg; n = 14) experienced either thermal neutral (TN, 20 ± 1 °C, n = 7) or cyclical HS (35 ± 1 °C for 12 h and 31.6 °C for 12 h, n = 7) conditions from 2 to 12 d post-estrus (dpe). Estrous cycles were synchronized via altrenogest administration for 14 d, phenotypic manifestation of estrus was observed and gilts were assigned to experimental treatment. Gilts were limit fed 2.7 kg daily with ad libitum water access. Blood was collected at 0, 4, 8, and 12 dpe via jugular venipuncture and animals were humanely euthanized at 12 dpe. The corpora lutea (CL) width were measured via digital calipers on both ovaries, and CL from one ovary were excised, weighed, and protein and steroid abundance analyzed via western blotting and ELISA, respectively. Relative to TN, HS increased (P < 0.01) rectal temperature and respiration rates and reduced (P < 0.01) feed intake. The CL from HS ovaries were reduced in diameter (P < 0.05) and weight (P < 0.01) relative to those from TN animals. No difference (P = 0.38) in CL or serum progesterone concentrations between groups was observed at any time point, though at 12 dpe the serum progesterone:CL weight was increased (P < 0.10) by HS. No treatment differences (P = 0.84) in circulating insulin were observed. Luteal protein abundance of steroid acute regulatory protein, 3 beta-hydroxysteroid, or prostaglandin F2α receptor were not different between treatments (P = 0.73). Taken together, these data demonstrate that the CL mass is HS sensitive, but this phenotype does not appear to be explained by the metrics evaluated herein. Regardless, HS-induced decreased CL size may have important implications to pig SI and warrants additional attention.
Collapse
Affiliation(s)
- Katie L Bidne
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | |
Collapse
|
355
|
Seibert JT, Adur MK, Schultz RB, Thomas PQ, Kiefer ZE, Keating AF, Baumgard LH, Ross JW. Differentiating between the effects of heat stress and lipopolysaccharide on the porcine ovarian heat shock protein response1. J Anim Sci 2019; 97:4965-4973. [PMID: 31782954 PMCID: PMC6915215 DOI: 10.1093/jas/skz343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/27/2019] [Indexed: 11/14/2022] Open
Abstract
Heat stress (HS) negatively affects both human and farm-animal health and undermines efficiency in a variety of economically important agricultural variables, including reproduction. HS impairs the intestinal barrier, allowing for translocation of the resident microflora and endotoxins, such as lipopolysaccharide (LPS), from the gastrointestinal lumen into systemic circulation. While much is known about the cellular function of heat shock proteins (HSPs) in most tissues, the in vivo ovarian HSP response to stressful stimuli remains ill-defined. The purpose of this study was to compare the effects of HS or LPS on ovarian HSP expression in pigs. We hypothesized that ovarian HSPs are responsive to both HS and LPS. Altrenogest (15 mg/d) was administered per os for estrus synchronization (14 d) prior to treatment and three animal paradigms were used: (i) gilts were exposed to cyclical HS (31 ± 1.4 °C) or thermoneutral (TN; 20 ± 0.5 °C) conditions immediately following altrenogest withdrawal for 5 d during follicular development; (ii) gilts were subjected to repeated (4×/d) saline (CON) or LPS (0.1 μg/kg BW) i.v. infusion immediately following altrenogest withdrawal for 5 d; and (iii) gilts were subjected to TN (20 ± 1 °C) or cyclical HS (31 to 35 °C) conditions 2 d post estrus (dpe) until 12 dpe during the luteal phase. While no differences were detected for transcript abundances of the assessed ovarian HSP, the protein abundance of specific HSP was influenced by stressors during the follicular and luteal phases. HS during the follicular phase tended (P < 0.1) to increase ovarian protein abundance of HSP90AA1 and HSPA1A, and increased (P ≤ 0.05) HSF1, HSPD1, and HSPB1 compared with TN controls, while HS decreased HSP90AB1 (P = 0.01). Exposure to LPS increased (P < 0.05) HSP90AA1 and HSPA1A and tended (P < 0.1) to increase HSF1 and HSPB1 compared with CON gilts, while HSP90AB1 and HSPD1 were not affected by LPS. HS during the luteal phase increased (P < 0.05) abundance of HSPB1 in corpora lutea (CL), decreased (P < 0.05) CL HSP90AB1, but did not impact HSF1, HSPD1, HSP90AA1, or HSPA1A abundance. Thus, these data support that HS and LPS similarly regulate expression of specific ovarian HSP, which suggest that HS effects on the ovary are in part mediated by LPS.
Collapse
Affiliation(s)
- Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA
| | - Malavika K Adur
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - Porsha Q Thomas
- Department of Animal Science, Iowa State University, Ames, IA
| | - Zoe E Kiefer
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
356
|
Kpodo KR, Duttlinger AW, Radcliffe JS, Johnson JS. Time course determination of the effects of rapid and gradual cooling after acute hyperthermia on body temperature and intestinal integrity in pigs. J Therm Biol 2019; 87:102481. [PMID: 32001015 DOI: 10.1016/j.jtherbio.2019.102481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 01/05/2023]
Abstract
Rapid cooling after acute hyperthermia may cause a sustained increase in body temperature and exacerbate intestinal damage in pigs. Therefore, the study objective was to evaluate the temporal effects of rapid and gradual cooling on body temperature response and intestinal integrity after acute hyperthermia in pigs. In three repetitions, 54 pigs [83.3 ± 6.7 kg initial body weight (BW)], balanced by sex were exposed to thermoneutral conditions for 6 h (TN; n = 6 pigs/repetition; 21.1 ± 2.0°C), or heat stress conditions (HS; 39.3 ± 1.6°C) for 3 h, followed by a 3 h recovery period of gradual cooling [HSGC; n = 6 pigs/repetition; gradual decrease from HS to TN conditions] or rapid cooling [HSRC; n = 6 pigs/repetition; rapid TN exposure and cold water (4.0°C) dousing every 30 min for 1.5 h]. Feed was withheld throughout the entire 6 h period, but water was provided ad libitum. Gastrointestinal (TGI) and rectal (TR) temperatures were recorded every 15 min during the HS and recovery periods. Six pigs per repetition (n = 2/treatment) were euthanized and jejunal and ileal samples were collected for histology immediately after (d 0), 2 d after, and 4 d after the recovery period. Data were analyzed using PROC MIXED in SAS 9.4. Overall, rapid cooling reduced TR and TGI (P < 0.01; 0.95°C and 0.74°C, respectively) compared to gradual cooling. Jejunal villus height was reduced overall (P = 0.02; 14.01%) in HSGC compared to HSRC and TN pigs. Jejunal villus height-to-crypt depth ratio was reduced overall (P = 0.05; 16.76%) in HSGC compared to TN pigs. Ileal villus height was reduced overall (P < 0.01; 16.95%) in HSGC compared to HSRC and TN pigs. No other intestinal morphology differences were detected. In summary, HSRC did not cause a sustained increase in body temperature and did not negatively impact biomarkers of intestinal integrity in pigs.
Collapse
Affiliation(s)
- Kouassi R Kpodo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA; USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN, 47907, USA
| | - Alan W Duttlinger
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA; USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN, 47907, USA
| | - John S Radcliffe
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN, 47907, USA.
| |
Collapse
|
357
|
Lu Z, He XF, Ma BB, Zhang L, Li JL, Jiang Y, Zhou GH, Gao F. Increased fat synthesis and limited apolipoprotein B cause lipid accumulation in the liver of broiler chickens exposed to chronic heat stress. Poult Sci 2019; 98:3695-3704. [PMID: 30809677 DOI: 10.3382/ps/pez056] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/26/2019] [Indexed: 12/28/2022] Open
Abstract
Chronic heat stress can enhance fat synthesis in broilers, and excessive triglyceride (TG) synthesized by the liver needs to be transported to extrahepatic tissues by very low density lipoprotein (VLDL) otherwise will accumulate in the liver, which may even result in hepatic steatosis. To investigate the molecular mechanisms by which chronic heat stress enhances fat synthesis and results in lipid accumulation in the liver of chickens, 144 broilers (Arbor Acres, 28-day-old) were randomly allocated to the normal control (NC, 22°C), heat stress (HS, consistent 32°C), or pair-fed (PF, 22°C) groups for a 14-D trial. The 7 D of heat exposure significantly increased the respiratory rate, relative weight of abdominal fat, the levels of glucose, TG, corticosterone, insulin, and VLDL in plasma, as well as the levels of TG, total cholesterol, acyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) in the liver, and mRNA expression levels of carbohydrate response element-binding protein (ChREBP), ACC, FAS, and microsomal triglyceride transfer protein (MTTP) in comparison with the other 2 groups. After 14 D of heat exposure, the relative weights of abdominal fat and liver and levels of TG and FAS in the liver were significantly higher in the HS group than in the other 2 groups, and there were no significant differences in the respiratory rate, plasma corticosterone concentration, apolipoprotein B (ApoB) level in the liver, and mRNA expression levels of key genes of fat synthesis among the 3 groups. In conclusion, chronic heat exposure activated LXRα pathway and enhanced fat synthesis in the liver after 7 D of heat exposure. After 14 D of heat exposure, heat-stressed broilers exhibited an adaptation to the high temperature in parameters of stress and fat synthesis gene expression levels. Moreover, chronic heat stress resulted in lipid accumulation in the liver of broilers, which is probably because the limited ApoB was not enough to transport the excessive TG synthesized by the liver in chronic heat-stressed broilers.
Collapse
Affiliation(s)
- Z Lu
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - X F He
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - B B Ma
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - L Zhang
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - J L Li
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Y Jiang
- Ginling College, Nanjing Normal University, Nanjing 210097, China
| | - G H Zhou
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - F Gao
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
358
|
Chen X, Nedelkov K, Oh J, Harper M, Wall E, Felix T, Hristov A. Effect of a blend of artificial sweetener and capsicum on productive performance and blood chemistry in growing lambs. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
359
|
Wen X, Wu W, Fang W, Tang S, Xin H, Xie J, Zhang H. Effects of long-term heat exposure on cholesterol metabolism and immune responses in growing pigs. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.103857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
360
|
Xiong Y, Yi H, Wu Q, Jiang Z, Wang L. Effects of acute heat stress on intestinal microbiota in grow-finishing pigs, and associations with feed intake and serum profile. J Appl Microbiol 2019; 128:840-852. [PMID: 31671233 DOI: 10.1111/jam.14504] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Abstract
AIMS This study was conducted to assess the effects of acute heat stress (HS) on intestinal microbiota, and the associations with the changes in feed intake (FI) and serum profile. METHODS AND RESULTS Twenty four individually housed pigs (Duroc × Large White × Landrace, 30 ± 1 kg body weight) were randomly assigned to receive one of three treatments (8 pigs/treatment): (i) thermal neutral (TN) conditions (25 ± 1°C), (ii) HS conditions (35 ± 1°C), (iii) pair-feeding (PF) with HS under TN conditions. After 24-h treatment, pigs were monitored to assess FI, and samples of serum and faeces were collected to investigate serum profile, microbial composition and short chain fatty acids (SCFAs). The results showed that HS decreased (P < 0·05) FI compared with the TN group. Compared with TN group, HS changed the serum profile by affecting biochemical parameters and hormones related with energy metabolism and stress response; immune indicators were also altered in HS group. Most of changes in serum profile were independent of FI reduction. Additionally, HS shifted the diversity and composition of faecal microbial community by increasing (P < 0·05) Proteobacteria and decreasing (P < 0·05) Bacteroidetes. Moreover, HS decreased (P < 0·05) the concentrations of propionate, butyrate, valerate, iso-valerate and total SCFAs in faeces in an FI-independent manner. Furthermore, the Spearman correlation analysis implied that changes of serum profile have potential correlation with alterations of faecal microbiota and their SCFAs metabolites in acute HS-treated grow-finishing pigs. CONCLUSIONS Metabolism disorders caused by 24-h acute HS associated with changes of faecal microbiota and their SCFAs metabolites in an FI-independent manner in grow-finishing pigs. SIGNIFICANCE AND IMPACT OF THE STUDY These results give us a new insight of the intestinal damage caused by acute HS and the underlying mechanisms.
Collapse
Affiliation(s)
- Y Xiong
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - H Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Q Wu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Z Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - L Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
361
|
Gonzalez-Rivas PA, Chauhan SS, Ha M, Fegan N, Dunshea FR, Warner RD. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci 2019; 162:108025. [PMID: 31841730 DOI: 10.1016/j.meatsci.2019.108025] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/15/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Heat stress is one of the most stressful events in the life of livestock with harmful consequences for animal health, productivity and product quality. Ruminants, pigs and poultry are susceptible to heat stress due to their rapid metabolic rate and growth, high level of production, and species-specific characteristics such as rumen fermentation, sweating impairment, and skin insulation. Acute heat stress immediately before slaughter stimulates muscle glycogenolysis and can result in pale, soft and exudative (PSE) meat characterized by low water holding capacity (WHC). By contrast, animals subjected to chronic heat stress, have reduced muscle glycogen stores resulting in dark, firm and dry (DFD) meat with high ultimate pH and high WHC. Furthermore, heat stress leads to oxidative stress, lipid and protein oxidation, and reduced shelf life and food safety due to bacterial growth and shedding. This review discusses the scientific evidence regarding the effects of heat stress on livestock physiology and metabolism, and their consequences for meat quality and safety.
Collapse
Affiliation(s)
- Paula A Gonzalez-Rivas
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Surinder S Chauhan
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Minh Ha
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Narelle Fegan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
362
|
Ning Q, Qu K, Hanif Q, Jia Y, Cheng H, Zhang J, Chen N, Chen H, Huang B, Lei C. MTOR Variation Related to Heat Resistance of Chinese Cattle. Animals (Basel) 2019; 9:E915. [PMID: 31689894 PMCID: PMC6912800 DOI: 10.3390/ani9110915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
With the inexorable rise of global temperature, heat stress deserves more and more attention in livestock agriculture. Previous studies have shown that the mechanistic target of rapamycin (MTOR) (NC_037343.1:c.2062G>C) gene contributes to the repair of DNA damage repair and is associated with the adaptation of camels in dry and hot environments. However, it is unknown whether this mutation is related to the heat tolerance of Chinese cattle. In this study, PCR and sequencing were used to type the mutation locus in 1030 individuals of 37 cattle breeds. The analysis results showed that the frequency of G allele of the locus gradually diminished from the northern group to the southern group of native Chinese cattle, whereas the frequency of the C allele showed an opposite pattern, displaying a significant geographical difference across native Chinese cattle breeds. Additionally, an analysis of the locus in Chinese indigenous cattle revealed that this SNP was significantly associated with mean annual temperature (T), relative humidity (RH) and temperature humidity index (THI) (p < 0.01), suggesting that cattle with C allele was distributed in regions with higher T, RH and THI. In conclusion, this study proved that the mutation of MTOR gene in Chinese cattle could be associated with the heat tolerance.
Collapse
Affiliation(s)
- Qingqing Ning
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Kaixing Qu
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China.
| | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad 577, Pakistan.
| | - Yutang Jia
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agriculture Science, Hefei 230001, China.
| | - Haijian Cheng
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China.
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China.
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
363
|
Kim S, Park HT, Soh SH, Oh MW, Shim S, Yoo HS. Evaluation of the immunobiological effects of a regenerative far-infrared heating system in pigs. J Vet Sci 2019; 20:e61. [PMID: 31775188 PMCID: PMC6883191 DOI: 10.4142/jvs.2019.20.e61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 11/20/2022] Open
Abstract
Thermal conditions are an important environmental factor in maintaining healthy pigs because they affect feed intake, growth efficiency, reproduction and immune responses in pigs. RAVI, a regenerative far-infrared heating system, can effect pig production by emitting an optimal far-infrared wavelength. Far-infrared radiation has been reported to increase microvascular dilation and vascular flow volume. The purpose of this study was to evaluate the immunobiological differences between pigs raised with the RAVI system and the gasoline heater system. Twenty-six-week-old weaned pigs were raised in two rooms that were equipped with a RAVI system or a gasoline heater for 8 weeks. A porcine atrophic rhinitis vaccine was administered after two weeks and transcriptome analysis in whole blood were analyzed at 2-week intervals. Signaling pathway analyses of the RAVI group at 8 weeks showed the activation of pathways related to nitric oxide (NO) production. This suggests that the application of RAVI might induce the production of NO and iNOS, which are important for increasing the immune activity. Similar to the result of microarray, phenotypic changes were also observed at a later period of the experiment. The increase in body weight in the RAVI group was significantly higher than the gasoline heater group at 8 weeks. The antibody titer against the vaccine in the RAVI group was also higher than that the gasoline heater group at 4 weeks and 8 weeks. This evaluation of the use of a far-infrared heating system with pigs will be helpful for applications in the pig farm industry and pig welfare.
Collapse
Affiliation(s)
- Suji Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hong Tae Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sang Hee Soh
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Myung Whan Oh
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Soojin Shim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 PLUS and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
364
|
Lucy MC. Stress, strain, and pregnancy outcome in postpartum cows. Anim Reprod 2019; 16:455-464. [PMID: 32435289 PMCID: PMC7234163 DOI: 10.21451/1984-3143-ar2019-0063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/25/2019] [Indexed: 12/02/2022] Open
Abstract
Stress affects the productivity and fertility of cattle. Stress causes strain and individual animals experience different amounts of strain in response to the same amount of stress. The amount of strain determines the impact of stress on fertility. Typical stresses experienced by cattle include environmental, disease, production, nutritional, and psychological. The effect of stress on the reproductive system is mediated by body temperature (heat stress), energy metabolites and metabolic hormones (production and nutritional stresses), the functionality of the hypothalamus-pituitary-gonadal (HPG) axis and (or) the activation of the hypothalamus-pituitary-adrenal (HPA) axis. The strain that occurs in response to stress affects uterine health, oocyte quality, ovarian function, and the developmental capacity of the conceptus. Cows that have less strain in response to a given stress will be more fertile. The goal for future management and genetic selection in farm animals is to reduce production stress, manage the remaining strain, and genetically select cattle with minimal strain in response to stress.
Collapse
Affiliation(s)
- Matthew C. Lucy
- Division of Animal Sciences, University of Missouri, Animal Science Research Center, Columbia, MO, USA.
| |
Collapse
|
365
|
Colombo EA, Cooke RF, Millican AA, Schubach KM, Scatolin GN, Rett B, Brandão AP. Supplementing an immunomodulatory feed ingredient to improve thermoregulation and performance of finishing beef cattle under heat stress conditions. J Anim Sci 2019; 97:4085-4092. [PMID: 31396618 PMCID: PMC6776383 DOI: 10.1093/jas/skz266] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/06/2019] [Indexed: 11/12/2022] Open
Abstract
This experiment compared physiological and productive responses in finishing beef cattle managed under heat stress conditions, and supplemented (SUPP) or not (CON) with an immunomodulatory feed ingredient (Omnigen-AF; Phibro Animal Health, Teaneck, NJ). Crossbred yearling cattle (¾ Bos taurus × ¼ Bos indicus; 64 heifers and 64 steers) were ranked by initial body weight (BW) (440 ± 3 kg) and sex, and allocated to 1 of 16 unshaded drylot pens (8 heifers or steers/pen). Pens within sex were randomly assigned to receive SUPP or CON (n = 8/treatment). Cattle received a total-mixed ration (91% concentrate inclusion and 1.21 Mcal/kg of net energy for gain; dry matter [DM basis]) during the experiment (day 0 to 106). The immunomodulatory feed was offered as a top-dress to SUPP pens (56 g/d per animal; as-fed basis) beginning on day 7. Cattle BW were recorded on day 0, 14, 28, 42, 56, 70, 84, 98, and 106. Feed intake was evaluated from each pen by recording feed offer daily and refusals biweekly. Intravaginal temperature of heifers was recorded hourly from day 1 to 6, 29 to 41, and 85 to 97. Environmental temperature humidity index (THI) was also recorded hourly throughout the experiment, and averaged 79.8 ± 0.6. Concurrently with BW assessment, hair samples from the tail-switch were collected (3 animals/pen) for analysis of hair cortisol concentrations. Blood samples were collected on day 0, 28, 56, 84, and 106 from all animals for plasma extraction. Whole blood was collected on day 0, 56, and 106 (3 animals/pen) for analysis of heat shock protein (HSP) 70 and HSP72 mRNA expression. Cattle were slaughtered on day 107 at a commercial packing facility. Results obtained prior to day 7 served as independent covariate for each respective analysis. Heifers receiving SUPP had less (P ≤ 0.05) vaginal temperature from 1500 to 1900 h across sampling days (treatment × hour, P < 0.01; 39.05 vs. 39.19 °C, respectively; SEM = 0.04), when THI ranged from 85.3 to 90.1. Expression of HSP70 and HSP72 was less (P ≥ 0.03) for SUPP cattle on day 106 (22.6- vs. 51.5-fold effect for HSP70, SEM = 9.7, and 11.0- vs. 32.8-fold effect for HSP72; treatment × day, P ≤ 0.04). No treatment effects were detected (P ≥ 0.22) for performance, carcass traits, plasma concentrations of cortisol and haptoglobin, or hair cortisol concentrations. Results from this study suggest that SUPP ameliorated hyperthermia in finishing cattle exposed to heat stress conditions, but such benefit was not sufficient to improve productive responses.
Collapse
Affiliation(s)
- Eduardo A Colombo
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Reinaldo F Cooke
- Department of Animal Science, Texas A&M University, College Station, TX
| | | | - Kelsey M Schubach
- Department of Animal Science, Texas A&M University, College Station, TX
| | | | - Bruna Rett
- Department of Animal Science, Texas A&M University, College Station, TX
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Alice P Brandão
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
366
|
Lu Z, He X, Ma B, Zhang L, Li J, Jiang Y, Zhou G, Gao F. Dietary taurine supplementation decreases fat synthesis by suppressing the liver X receptor α pathway and alleviates lipid accumulation in the liver of chronic heat-stressed broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5631-5637. [PMID: 31106428 DOI: 10.1002/jsfa.9817] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chronic heat stress can enhance fat synthesis and result in lipid accumulation in the liver of broilers. To investigate the effects and molecular mechanisms of dietary taurine supplementation on fat synthesis and lipid accumulation in the liver of chronic heat-stressed broilers, 144 28 day-old chickens (Arbor Acres) were randomly distributed to normal control (NC, 22 °C, basal diet), heat stress (HS, consistent 32 °C, basal diet), or heat stress plus taurine (HS + T, consistent 32 °C, basal diet +5.00 g kg-1 taurine) groups for a 14-day feeding trial. RESULTS Compared with those of the HS group, dietary taurine supplementation significantly decreased the level of very-low-density lipoprotein and the activity of aspartate aminotransferase in plasma and the relative weight of liver in the HS + T group. In addition, dietary taurine supplementation also significantly decreased the levels of triglyceride, acyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), and suppressed the mRNA expression levels of liver X receptor α (LXRα), sterol response element-binding protein 1c, ACC and FAS in the liver of chronic heat-stressed broilers. Meanwhile, dietary taurine supplementation effectively alleviated lipid accumulation in the liver of broilers exposed to chronic heat stress. CONCLUSION Chronic heat stress significantly increased fat synthesis and resulted in excess lipid deposition in the liver of broilers. Dietary taurine supplementation can effectively decrease fat synthesis by suppressing the LXRα pathway and alleviate lipid accumulation in the liver of chronic heat-stressed broilers. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhuang Lu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaofang He
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Bingbing Ma
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| | - Guanghong Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
367
|
Dado-Senn B, Skibiel AL, Fabris TF, Dahl GE, Laporta J. Dry period heat stress induces microstructural changes in the lactating mammary gland. PLoS One 2019; 14:e0222120. [PMID: 31536517 PMCID: PMC6752841 DOI: 10.1371/journal.pone.0222120] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
The bovine dry period is a non-lactating period between consecutive lactations characterized by mammary gland involution and redevelopment phases to replace senescent mammary epithelial cells with active cells primed for the next lactation. Dairy cows exposed to heat stress during the dry period experience milk yield reductions between 3–7.5 kg/d in the next lactation, partially attributed to processes associated with mammary cell growth and turnover during the dry period. However, the carry-over impact of dry period heat stress on mammary morphology during lactation has yet to be determined. In the current study, we hypothesized that exposure to heat stress during the dry period would alter alveolar microstructure and cellular turnover (i.e. proliferation and apoptosis) during lactation. Cows were either subjected to heat stress (HT, access to shade; n = 12) or cooling (CL, access to shade, fans, and soakers; n = 12) for a 46 d dry period. Upon calving, all cows were treated similarly with access to cooling for their entire lactation. Six cows per treatment were randomly selected for mammary gland biopsies at 14, 42, and 84 days in milk. Tissues were sectioned and stained for histological analysis. During lactation, HT cows produced 4 kg less colostrum and 3.7 kg less milk compared with CL cows. Lactating mammary gland microstructure was impacted after exposure to dry period heat stress; HT cows had fewer alveoli and a higher proportion of connective tissue in the mammary gland relative to CL cows, however alveolar area was similar between treatments. Rates of mammary epithelial cell proliferation and apoptosis were similar between treatment groups. This suggests that heat stress exposure during the dry period leads to reductions in milk yield that could be caused, in part, by a reduction in alveoli number in the lactating mammary gland but not to dynamic alterations in cellular turnover once lactation is established.
Collapse
Affiliation(s)
- Bethany Dado-Senn
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Amy L. Skibiel
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Thiago F. Fabris
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Geoffrey E. Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Jimena Laporta
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
368
|
Lactational Responses of Heat-Stressed Dairy Goats to Dietary L-Carnitine Supplementation. Animals (Basel) 2019; 9:ani9080567. [PMID: 31426431 PMCID: PMC6718979 DOI: 10.3390/ani9080567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Endogenous carnitine synthesis is reduced by heat stress, and we hypothesized that carnitine supplementation would improve lipid metabolism and performance of dairy goats when exposed to high ambient temperature. In the current study, goats were exposed to thermal-neutral (15 to 20 °C) or heat stress (28 to 35 °C) conditions. In each environmental condition, goats were supplemented or not with rumen-protected carnitine in their diets. Goats exposed to heat stress experienced high body temperatures and respiratory rates, and reduced feed intake and milk production. Carnitine supplementation was transferred efficiently to blood, but had no effect on physiological or productive parameters in goats. We conclude that extra carnitine has no beneficial effects on goats’ performance and is not needed in thermal-neutral or heat stress conditions. Abstract Heat stress causes significant losses in milk production, and nutritional strategies are needed to alleviate its effects. Endogenous carnitine synthesis is also reduced by heat stress (HS). Carnitine plays a central role in fatty acid oxidation and buffers the toxic effects of acyl groups. We hypothesized that carnitine supplementation would make up for any carnitine deficiencies during HS and improve lipid metabolism. The objective was to evaluate rumen-protected L-carnitine (CAR) supplementation in dairy goats under thermo-neutral (TN) or HS conditions. Four Murciano-Granadina dairy goats were used in a four × four Latin square design. Goats were allocated to one of four treatments in a two × two factorial arrangement. Factors were 1) diet: control (CON) or supplementation with CAR (1 g/d); and 2) ambient conditions: TN (15 to 20 °C) or HS (0900 to 2100 h at 35 °C, 2100 to 0900 h at 28 °C). Blood free-, acetyl-, and total-carnitine concentrations increased almost three times by supplementation. Despite this efficient absorption, CAR had no effect on feed intake, milk production or blood metabolites in TN or HS conditions. Heat stress increased rectal temperature and respiratory rate. Additionally, HS goats experienced 26% loss in feed intake, but they tended to eat longer particle sizes. Compared to TN, heat-stressed goats lost more subcutaneous fat (difference in fat thickness measured before and after each period = −0.72 vs. +0.64 mm). In conclusion, supplemented L-carnitine was efficiently absorbed, but it had no lactational effects on performance of goats under thermo-neutral or heat stress conditions.
Collapse
|
369
|
Fang W, Wen X, Meng Q, Wu W, Everaert N, Xie J, Zhang H. Alteration in bile acids profile in Large White pigs during chronic heat exposure. J Therm Biol 2019; 84:375-383. [PMID: 31466777 DOI: 10.1016/j.jtherbio.2019.07.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/01/2019] [Accepted: 07/25/2019] [Indexed: 12/25/2022]
Abstract
Bile acids (BAs) are critical for cholesterol homeostasis and new roles in metabolism and endocrinology have been demonstrated recently. It remains unknown whether BA metabolism can be affected by heat stress (HS). The objective of this study was to describe the shifts in serum, hepatic and intestinal BA profiles induced by chronic HS. Twenty-seven Large White pigs weighing 40.8 ± 2.7 kg were assigned to one of the three treatments: a control group (CON, 23 °C), a HS group (33 °C), or a pair-fed group (PF, 23 °C and fed the same amount as HS group) for 21 d. The concentrations of taurine-conjugated BAs (TUDCA and THDCA in serum and TCDCA, TUDCA, THDCA and THCA in liver) were decreased in HS and PF pigs. However, in HS pigs, a reduction in taurine-conjugated BAs (TCBA) correlated with decreased liver genes expression of BA synthesis, conjugation and uptake transport. BA regulated-genes (FXR, TGR5 and FGFR4) in HS pigs and TGR5, FGFR4 and KLβ in PF pigs were down-regulated in liver. In ileum, total BAs and glycoursodeoxycholic acid concentrations were higher in HS pigs than other groups and PF group, respectively (P < 0.05). TCBA (P = 0.01) and tauroursodeoxycholic acid (P < 0.01) were decreased in PF group. BA transporters (OSTα and MRP3) were up-regulated in HS pigs compared with CON and PF pigs, respectively (P < 0.01). In cecum, ursodeoxycholic acid was higher in HS (P = 0.02) group than CON group. The expression of apical sodium-coupled bile acid transporter (P = 0.04) was lower in HS pigs than CON pigs, while OSTβ (P < 0.01) was greater in HS group than PF group. These results suggest that chronic HS suppressed liver activity of synthesis and uptake of TCBA, at least in part, which was independent of reduced feed intake.
Collapse
Affiliation(s)
- Wei Fang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Unit, Liège University, Passage des Déportés 2, Gembloux, Belgium
| | - Xiaobin Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, China
| | - Weida Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, China
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Unit, Liège University, Passage des Déportés 2, Gembloux, Belgium
| | - Jingjing Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, China.
| |
Collapse
|
370
|
Bioinformatics analysis of candidate genes for milk production traits in water buffalo (Bubalus bubalis). Trop Anim Health Prod 2019; 52:63-69. [DOI: 10.1007/s11250-019-01984-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022]
|
371
|
Relationship between insulin, glucose, non-esterified fatty acid and indices of insulin resistance in obese cows during the dry period and early lactation. ACTA VET BRNO 2019. [DOI: 10.2754/avb201988020143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to determine to relationship between glucose, insulin, non-esterified fatty acid (NEFA) and indices of insulin resistance in the dry period (DP) and early lactation (EL). The importance of this study was in determining the relation between insulin sensitivity in DP and insulin resistance in EL. A total of 30 normally fed Holstein-Friesian cows with a high body condition score (> 3.75) were included in the study. Blood samples were collected in DP (weeks 5-7 ante partum) and EL (weeks 1-2 post partum). Cows in EL showed higher insulin resistance in comparison to DP due to a lower concentration of glucose and insulin, higher concentration of NEFA, lower value of revised quantitative insulin sensitivity check index and higher values of glucose:insulin and NEFA:insulin ratios (lower pancreas responsivnes to glucose and antilipolytic effect of insulin). Higher concentrations of insulin and glucose in the DP lead to a decrease in their concentrations and an increase in glucose:insulin and NEFA:insulin ratios in the EL. The revised quantitative insulin sensitivity check index in DP negatively correlates with the same index in EL, while positively correlating with the NEFA and NEFA:insulin ratio in EL. The EL revised quantitative insulin sensitivity check index value was influenced by dynamic changes (DP minus EL) in the insulin, NEFA, and glucose concentrations. The relationship between the indicators shows that higher insulin sensitivity in the DP increases resistance in EL in normally fed obese dairy cows.
Collapse
|
372
|
Gao ST, Ma L, Zhou Z, Zhou ZK, Baumgard LH, Jiang D, Bionaz M, Bu DP. Heat stress negatively affects the transcriptome related to overall metabolism and milk protein synthesis in mammary tissue of midlactating dairy cows. Physiol Genomics 2019; 51:400-409. [PMID: 31298615 DOI: 10.1152/physiolgenomics.00039.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inadequate dry matter intake only partially accounts for the decrease in milk protein synthesis during heat stress (HS) in dairy cows. Our hypothesis is that reduced milk protein synthesis during HS in dairy cows is also caused by biological changes within the mammary gland. The objective of this study was to assess the hypothesis via RNA-Seq analysis of mammary tissue. Herein, four dairy cows were used in a crossover design where HS was induced for 9 days in environmental chambers. There was a 30-day washout between periods. Mammary tissue was collected via biopsy at the end of each environmental period (HS or pair-fed and thermal neutral) for transcriptomic analysis. RNA-Seq analysis revealed HS affected >2,777 genes (false discovery rate-adjusted P value < 0.05) in mammary tissue. Expression of main milk protein-encoding genes and several key genes related to regulation of protein synthesis and amino acid and glucose transport were downregulated by HS. Bioinformatics analysis revealed an overall decrease of mammary tissue metabolic activity by HS (especially carbohydrate and lipid metabolism) and an increase in immune activation and inflammation. Network analysis revealed a major role of TNF, IFNG, S100A8, S100A9, and IGF-1 in inducing/controlling the inflammatory response, with a central role of NF-κB in the process of immunoactivation. The same analysis indicated an overall inhibition of PPARγ. Collectively, these data suggest HS directly controls milk protein synthesis via reducing the transcription of metabolic-related genes and increasing inflammation-related genes.
Collapse
Affiliation(s)
- S T Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Z Zhou
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Z K Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - D Jiang
- Statistics, Oregon State University, Corvallis, Oregon
| | - M Bionaz
- Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon
| | - D P Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
373
|
Ali MA, El-Tarabany MS. Blood biochemical indices, growth performance and economic efficiency of growing native Baladi and crossbred calves under hot summer conditions. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2018.1478620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Mohamed A. Ali
- Faculty of Veterinary Medicine, Department of Animal Wealth Development, Zagazig University, Sharkia, Egypt
| | - Mahmoud S. El-Tarabany
- Faculty of Veterinary Medicine, Department of Animal Wealth Development, Zagazig University, Sharkia, Egypt
| |
Collapse
|
374
|
Cui Y, Wang C, Hao Y, Gu X, Wang H. Chronic Heat Stress Induces Acute Phase Responses and Serum Metabolome Changes in Finishing Pigs. Animals (Basel) 2019; 9:ani9070395. [PMID: 31261803 PMCID: PMC6680871 DOI: 10.3390/ani9070395] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 01/12/2023] Open
Abstract
Simple Summary There is limited information on the serum metabolome of heat-stressed finishing pigs. Our results indicated that heat stress led to oxidative stress and acute phase response. Pigs chronically exposed to high ambient temperature were in negative energy balance status. Three gut microbiome-derived metabolites (fluorine, lyxose 1, and D-galacturonic) were likely to be biomarkers for monitoring animal health. Abstract Heat stress (HS) is a main environmental challenge affecting the animal welfare and production efficiency in pig industry. In recent years, numerous reports have studied the alterations in gene expressions and protein profiles in heat-stressed pigs. However, the use of metabolome to unravel adaptive mechanisms of finishing pig in response to chronic HS have not yet been elucidated. We aimed to investigate the effects of chronic HS on serum metabolome in finishing pigs, and to identify the biomarkers of heat stress. Pigs (n = 8 per treatment) were exposed to either thermal neutral (TN; 22 °C) or heat stress (HS, 30 °C) conditions for three weeks. Serum metabonomics of TN- and HS-treated pigs were compared using the GC-MS approach. Metabonomics analysis revealed that twenty-four metabolites had significantly different levels in TN compared to HS (variable importance in the projection values >1 and p < 0.05). These metabolites are involved in carbohydrate, amino acid, fatty acid, amines metabolism, and gut microbiome-derived metabolism. Three serum monoses (glucose, mannose 2, and galactose) and 6-phosphogluconic acid were decreased, indicating insufficient source of fuel for energy supply, resulting in negative energy balance (NEB) in heat-stressed pigs. Increased levels of non-esterified fatty acid (myristic acid, palmitic acid, and linoleic acid) and short-chain fatty acids (3-hydroxybutanoic acid and maleic acid) suggested fat decomposition compensating for energy shortage, which was an adaptive response to NEB. Increased concentrations of fluorine, lyxose 1, and D-galacturonic acid were significantly correlated with the levels of acute phase proteins (HP, LBP, α2-HSG, and Lysozyme), suggesting acute phase response in HS-stressed pigs. These metabolites are expected to be novel biomarkers of chronic HS in pigs, yet the use of which awaits further validation.
Collapse
Affiliation(s)
- Yanjun Cui
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, China.
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, China.
| | - Chong Wang
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, China.
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, China.
| | - Yue Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Haifeng Wang
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
375
|
Transcriptomic Analysis Provides Novel Insights into Heat Stress Responses in Sheep. Animals (Basel) 2019; 9:ani9060387. [PMID: 31238576 PMCID: PMC6617286 DOI: 10.3390/ani9060387] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The general increase in global temperatures has meant that heat stress has become an increasingly significant problem for sheep. This has both direct and indirect impact on their physiological functions, productivity, and health of sheep. Sheep generally live in high-temperature environments; however, the genes and pathways that play regulatory roles in the heat stress responses of sheep remain unclear. In this study, we applied RNA-Seq technology to analyze liver tissues of sheep from heat-stressed and control groups, and screened genes and pathways related to sheep heat stress. This work provides a theoretical foundation for the breeding and production of heat-resistant sheep. Abstract With the intensified and large-scale development of sheep husbandry and global warming, sheep heat stress has become an increasingly important issue. However, little is known about the molecular mechanisms related to sheep responses to heat stress. In this study, transcriptomic analysis of liver tissues of sheep in the presence and absence of heat stress was conducted, with the goal of identifying genes and pathways related to regulation when under such stress. After a comparison with the sheep reference genome, 440,226,436 clean reads were obtained from eight libraries. A p-value ≤ 0.05 and fold change ≥ 2 were taken as thresholds for categorizing differentially expressed genes, of which 1137 were identified. The accuracy and reliability of the RNA-Seq results were confirmed by qRT-PCR. The identified differentially expressed genes were significantly associated with 419 GO terms and 51 KEGG pathways, which suggested their participation in biological processes such as response to stress, immunoreaction, and fat metabolism. This study’s results provide a comprehensive overview of sheep heat stress-induced transcriptional expression patterns, laying a foundation for further analysis of the molecular mechanisms of sheep heat stress.
Collapse
|
376
|
Lees AM, Sejian V, Wallage AL, Steel CC, Mader TL, Lees JC, Gaughan JB. The Impact of Heat Load on Cattle. Animals (Basel) 2019; 9:E322. [PMID: 31174286 PMCID: PMC6616461 DOI: 10.3390/ani9060322] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/16/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
Heat stress and cold stress have a negative influence on cattle welfare and productivity. There have been some studies investigating the influence of cold stress on cattle, however the emphasis within this review is the influence of heat stress on cattle. The impact of hot weather on cattle is of increasing importance due to the changing global environment. Heat stress is a worldwide phenomenon that is associated with reduced animal productivity and welfare, particularly during the summer months. Animal responses to their thermal environment are extremely varied, however, it is clear that the thermal environment influences the health, productivity, and welfare of cattle. Whilst knowledge continues to be developed, managing livestock to reduce the negative impact of hot climatic conditions remains somewhat challenging. This review provides an overview of the impact of heat stress on production and reproduction in bovines.
Collapse
Affiliation(s)
- Angela M Lees
- School of Agriculture and Food Sciences, The University of Queensland; Gatton, QLD 4343, Australia.
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2350, Australia.
| | - Veerasamy Sejian
- Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India.
| | - Andrea L Wallage
- School of Agriculture and Food Sciences, The University of Queensland; Gatton, QLD 4343, Australia.
| | - Cameron C Steel
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2350, Australia.
| | - Terry L Mader
- Department of Animal Science, University of Nebraska, Lincoln, NE 68588, USA.
- Mader Consulting, Gretna, NE 68028, USA.
| | - Jarrod C Lees
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2350, Australia.
| | - John B Gaughan
- School of Agriculture and Food Sciences, The University of Queensland; Gatton, QLD 4343, Australia.
| |
Collapse
|
377
|
Heat Stress-Responsive Transcriptome Analysis in the Liver Tissue of Hu Sheep. Genes (Basel) 2019; 10:genes10050395. [PMID: 31121974 PMCID: PMC6562622 DOI: 10.3390/genes10050395] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/21/2019] [Accepted: 05/03/2019] [Indexed: 12/26/2022] Open
Abstract
Heat stress has a severe effect on animal health and can reduce the productivity and reproductive efficiency; it is therefore necessary to explore the molecular mechanism involved in heat stress response, which is helpful for the cultivation of an animal breed with resistance to heat stress. However, little research about heat stress-responsive molecular analysis has been reported in sheep. Therefore, in this study, RNA sequencing (RNA-Seq) was used to investigate the transcriptome profiling in the liver of Hu sheep with and without heat stress. In total, we detected 520 and 22 differentially expressed mRNAs and lncRNAs, respectively. The differentially expressed mRNAs were mainly associated with metabolic processes, the regulation of biosynthetic processes, and the regulation of glucocorticoid; additionally, they were significantly enriched in the heat stress related pathways, including the carbon metabolism, the PPAR signaling pathway, and vitamin digestion and absorption. The co-located differentially expressed lncRNA Lnc_001782 might positively influence the expression of the corresponding genes APOA4 and APOA5, exerting co-regulative effects on the liver function. Thus, we made the hypothesis that Lnc_001782, APOA4 and APOA5 might function synergistically to regulate the anti-heat stress ability in Hu sheep. This study provides a catalog of Hu sheep liver mRNAs and lncRNAs, and will contribute to a better understanding of the molecular mechanism underlying heat stress responses.
Collapse
|
378
|
Mayorga EJ, Kvidera SK, Seibert JT, Horst EA, Abuajamieh M, Al-Qaisi M, Lei S, Ross JW, Johnson CD, Kremer B, Ochoa L, Rhoads RP, Baumgard LH. Effects of dietary chromium propionate on growth performance, metabolism, and immune biomarkers in heat-stressed finishing pigs1. J Anim Sci 2019; 97:1185-1197. [PMID: 30590717 DOI: 10.1093/jas/sky484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/24/2018] [Indexed: 01/31/2023] Open
Abstract
Study objectives were to determine the effects of chromium (Cr) propionate (Cr propionate 0.04%; 0.5 g/kg of feed to deliver 200 parts per billion Cr/d; KemTRACE Cr, Kemin Industries, Inc., Des Moines, IA) on growth performance, metabolism, and health biomarkers in heat-stressed and nutrient-restricted pigs. Crossbred barrows (n = 96; 105 ± 1 kg BW) were enlisted in an experiment conducted in two replicates, blocked by initial BW, and randomly assigned to one of six dietary-environmental treatments: (i) thermoneutral (TN) and fed ad libitum a control diet (TNCtl), (ii) TN and fed ad libitum a Cr supplemented diet (TNCr), (iii) TN and pair-fed a control diet (PFCtl), (iv) TN and pair-fed a Cr supplemented diet (PFCr), (v) heat stress (HS) and ad libitum fed a control diet (HSCtl), or (vi) HS and ad libitum fed a Cr supplemented diet (HSCr). The study consisted of three experimental periods (P). During P0 (5 d), all pigs were housed in TN conditions (21.3 ± 0.1 °C, 56.8 ± 0.3% relative humidity [RH]) and fed the control diet ad libitum. During P1 (5 d), pigs were fed their respective dietary treatments ad libitum and kept in TN conditions. During P2 (35 d), HSCtl and HSCr-treated pigs were fed ad libitum and exposed to progressive cyclical HS conditions (27 to 31 °C, 50 ± 0.3% RH), while TNCtl, TNCr, PFCtl, and PFCr pigs remained in TN conditions and were fed ad libitum or pair-fed to their respective HSCtl and HSCr counterparts to eliminate the confounding effects of dissimilar feed intake. Overall, HS pigs had increased (P < 0.01) rectal temperature, skin temperature, and respiration rate (0.3 °C, 3.8 °C, and 32 breaths per minute, respectively) relative to TN pigs. Overall, HS decreased ADFI and ADG (20 and 21%, respectively; P < 0.01) compared with TN controls. Final BW tended to be increased in HSCr (2.7 kg, P = 0.06) compared with HSCtl pigs. Similarly, ADG tended to be increased during P2 in HSCr relative to HSCtl-treatment (0.77 vs. 0.72 kg/d; P = 0.10). There were no effects of Cr on most production parameters, but ADFI tended to be increased in Cr relative to Ctl-fed pigs (3.19 vs. 3.09 kg/d; P = 0.08). No effects of Cr supplementation were detected on circulating glucose, insulin, NEFA, cholesterol, triglycerides, or lipopolysaccharide binding protein. However, blood neutrophils were increased in HSCr (37%; P < 0.01) relative to HSCtl pigs. In summary, these results suggest Cr supplementation may benefit growth performance during HS.
Collapse
Affiliation(s)
- Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA
| | - Sara K Kvidera
- Department of Animal Science, Iowa State University, Ames, IA
| | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | | - Samantha Lei
- Department of Animal Science, Iowa State University, Ames, IA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA.,Iowa Pork Industry Center, Ames, IA
| | - Colin D Johnson
- Department of Animal Science, Iowa State University, Ames, IA.,Iowa Pork Industry Center, Ames, IA
| | | | | | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| | | |
Collapse
|
379
|
Tao S, Dahl GE, Laporta J, Bernard JK, Orellana Rivas RM, Marins TN. PHYSIOLOGY SYMPOSIUM: Effects of heat stress during late gestation on the dam and its calf12. J Anim Sci 2019; 97:2245-2257. [PMID: 30753515 PMCID: PMC6488308 DOI: 10.1093/jas/skz061] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/10/2019] [Indexed: 12/14/2022] Open
Abstract
Heat stress during late gestation in cattle negatively affects the performance of the dam and its calf. This brief exposure to an adverse environment before parturition affects the physiological responses, tissue development, metabolism, and immune function of the dam and her offspring, thereby limiting their productivity. During the dry period of a dairy cow, heat stress blunts mammary involution by attenuating mammary apoptosis and autophagic activity and reduces subsequent mammary cell proliferation, leading to impaired milk production in the next lactation. Dairy cows in early lactation that experience prepartum heat stress display reduced adipose tissue mobilization and lower degree of insulin resistance in peripheral tissues. Similar to mammary gland development, placental function is impaired by heat stress as evidenced by reduced secretion of placental hormones (e.g., estrone sulfate) in late gestation cows, which partly explains the reduced fetal growth rate and lighter birth weight of the calves. Compared with dairy calves born to dams that are exposed to evaporative cooling during summer, calves born to noncooled dry cows maintain lower BW until 1 yr of age, but display a stronger ability to absorb glucose during metabolic challenges postnatally. Immunity of the calves, both passive and cell-mediated immune function, is also impaired by prenatal heat stress, resulting in increased susceptibility of the calves to diseases in their postnatal life. In fact, dairy heifers born to heat-stressed dry cows without evaporative cooling have a greater chance leaving the herd before puberty compared with heifers born to dry cows provided with evaporative cooling (12.2% vs. 22.7%). Dairy heifers born to late-gestation heat-stressed dry cows have lower milk yield at maturity during their first and second lactations. Emerging evidence suggests that late-gestation heat stress alters the mammary gland microstructure of the heifers during the first lactation and exerts epigenetic alterations that might explain, in part, their impaired productivity.
Collapse
Affiliation(s)
- Sha Tao
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA
| | - Geoffrey E Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Jimena Laporta
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - John K Bernard
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA
| | | | - Thiago N Marins
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA
| |
Collapse
|
380
|
Evaluating the Effects of In Utero Heat Stress on Piglet Physiology and Behavior Following Weaning and Transport. Animals (Basel) 2019; 9:ani9040191. [PMID: 31022859 PMCID: PMC6523716 DOI: 10.3390/ani9040191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/15/2019] [Accepted: 04/22/2019] [Indexed: 11/16/2022] Open
Abstract
The study objective was to determine whether in utero heat stress (IUHS) affects piglet physiology and behavior following common production practices. A total of 12 gilts were confirmed pregnant and allocated to either heat stress (HS; n = 6) or thermoneutral (TN; n = 6) conditions on day 30⁻60 of gestation. At weaning (22.5 ± 2.3 days of age), 1 boar and 1 barrow of median weight were selected from each litter and transported for approximately 7 h. Piglets were then blocked into pens (n = 2/pen) by in utero treatment (IUHS (n = 12) or in utero thermoneutral (IUTN, n = 12)) and sexual status (boar (n = 6/in utero treatment) or barrow (n = 6/in utero treatment)). Plasma cortisol, non-esterified fatty acids (NEFA), insulin and glucose were evaluated 1 day prior to transport (pre-transport) and immediately after transport (post-transport). Behavioral data were collected on day 1⁻7 for 60 min at four different time points each day. In utero heat stressed piglets exhibited reduced cortisol concentrations compared to IUTN piglets immediately post-transport (p = 0.04). Glucose concentrations were not affected by in utero treatment. Insulin concentrations were reduced in IUTN piglets post-transport compared to pre-transport (p = 0.002), but no differences were detected for IUHS pigs. Non-esterified fatty acids tended to be reduced overall for IUHS vs. IUTN pigs (p = 0.08). Overall, IUHS piglets performed more drinking behaviors (p = 0.02) and tended to perform more aggressive behaviors (p = 0.07) than IUTN piglets in the 7 days post-transport. In summary, there was some evidence for altered physiological and behavioral responses among IUHS piglets compared to IUTN piglets following weaning and transport.
Collapse
|
381
|
Johnson JS, Baumgard LH. PHYSIOLOGY SYMPOSIUM: Postnatal consequences of in utero heat stress in pigs. J Anim Sci 2019; 97:962-971. [PMID: 30534960 DOI: 10.1093/jas/sky472] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/06/2018] [Indexed: 12/15/2022] Open
Abstract
Postnatal heat stress negatively impacts pig productivity and well-being as animals attempt to manage the resultant strain response. This is especially true when postnatal heat stress is combined with production stressors (e.g., mixing, weaning, transport, handling, and isolation) that have the potential to increase disease occurrence, morbidity and mortality. While pigs can utilize adaptive physiological mechanisms to compensate, these are often unfavorable to efficient livestock production. Specifically, postnatal heat stress decreases weight gain, reduces growth and production efficiency, alters carcass composition, and increases morbidity and mortality. Consequently, decreased animal performance constrains profitability and affects economic sustainability. In addition to the negative effects of postnatal heat stress, prenatal heat stress has long-term consequences that may compromise future piglet well-being and performance. Pigs gestated under heat stress conditions have an increased postnatal stress response and an increase in maintenance energy requirements. Furthermore, prenatal heat stress decreases swine birth weight, and increases teratogenicity, core body temperature set-point, and alters postnatal body composition (more adipose tissue and less skeletal muscle). Taken together, the effects of heat stress during pre- and postnatal pig development negatively influences productivity and well-being, a scenario that threatens the sustainability of global swine production.
Collapse
Affiliation(s)
- Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN
| | | |
Collapse
|
382
|
Affiliation(s)
- Mokshata Gupta
- Division of Animal Nutrition, ICAR- Indian Veterinary Research Institute, Izatnagar, India
| | - Tanmay Mondal
- Division of Physiology & Climatology, ICAR- Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
383
|
Jeelani R, Konwar D, Khan A, Kumar D, Chakraborty D, Brahma B. Reassessment of temperature-humidity index for measuring heat stress in crossbred dairy cattle of a sub-tropical region. J Therm Biol 2019; 82:99-106. [PMID: 31128665 DOI: 10.1016/j.jtherbio.2019.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/04/2019] [Accepted: 03/30/2019] [Indexed: 01/03/2023]
Abstract
The temperature-humidity index (THI) has been extensively applied for assessing heat stress in moderate to hot conditions in dairy cattle. However, there exist wide variation between researchers in defining an appropriate range of THI values for denoting different levels of stress. The present study was aimed to reassess previously described heat stress indicators of dairy cattle of sub-tropical region of India. From comparative evaluation of meteorological data over previous four years (2014-2017) the period of year when high THI prevailed in the region was determined. Accordingly, the time period of sample collection and observation on animals was decided, so that a THI range of 68-86 could be covered. After analyzing physiological, biochemical parameters and expression profile of heat shock response (HSR) genes of animals in response to different THI, it was evident from the study that animal undergoes few or little changes at THI 72, but major physiological changes occurred after THI reached 74. At THI range 74-79, no drastic change in these parameters occurred suggesting animals undergo transient acclimatization in this range to maintain homeostasis. Once THI reached and crossed 80, this homeostasis was perturbed and animals experienced major physiological changes again. Overall, the study suggests that THI values indicating level of heat stress are dependent on the geographic location, as well as type of animal and therefore, existing THI should be recalibrated for different climatic region for accurate assessment of the heat stress.
Collapse
Affiliation(s)
- Rakhshan Jeelani
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, 181104, India
| | - Dipanjali Konwar
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, 181104, India
| | - Asma Khan
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, 181104, India
| | - Dhirendra Kumar
- Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, 181104, India
| | - Dibyendu Chakraborty
- Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, 181104, India
| | - Biswajit Brahma
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, 181104, India.
| |
Collapse
|
384
|
Poullet N, Bambou JC, Loyau T, Trefeu C, Feuillet D, Beramice D, Bocage B, Renaudeau D, Gourdine JL. Effect of feed restriction and refeeding on performance and metabolism of European and Caribbean growing pigs in a tropical climate. Sci Rep 2019; 9:4878. [PMID: 30890729 PMCID: PMC6424954 DOI: 10.1038/s41598-019-41145-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/28/2019] [Indexed: 01/11/2023] Open
Abstract
Reduction in feed intake is a common physiological response of growing pigs facing stressful environmental conditions. The present experiment aims to study (1) the effects of a short-term feed restriction and refeeding on pig performance and metabolism and (2) the differential response between two breeds, Large White (LW), which has been selected for high performance, and Creole (CR), which is adapted to tropical conditions. A trial of 36 castrated male pigs (18 LW and 18 CR) was carried out. For each breed, half of the animals were restrictively fed at 50% of the standard feed allowance for 6 days and then fed normally for the next 14 days. Growth performance, thermoregulatory responses, plasma hormones and metabolites were measured. Results showed that, for all traits, the difference in response between the two breeds was small and rarely significant, which may be due to the short duration of the feed restriction. Irrespective of breed, feed restriction induced a reduction of growth rate and feed efficiency that was rapidly compensated for upon refeeding. Feed restriction also reduced skin temperature, rectal temperature and respiratory rate, as well as blood urea and cholesterol, which are of interest as potential biomarkers for feed restriction.
Collapse
Affiliation(s)
| | | | - Thomas Loyau
- UR143 URZ, INRA, Petit-Bourg (Guadeloupe), F-97170, France.,IDEXX Laboratories, 84 Rue Charles Michels, Saint-Denis, F-93200, France
| | - Christine Trefeu
- UMR1348 PEGASE, INRA Agrocampus Ouest, St Gilles, F-35590, France
| | | | - David Beramice
- UE1294 PTEA, INRA, F-97170, Petit-Bourg (Guadeloupe), France
| | - Bruno Bocage
- UE1294 PTEA, INRA, F-97170, Petit-Bourg (Guadeloupe), France
| | - David Renaudeau
- UMR1348 PEGASE, INRA Agrocampus Ouest, St Gilles, F-35590, France
| | | |
Collapse
|
385
|
Anzures-Olvera F, Véliz FG, de Santiago A, García JE, Mellado J, Macías-Cruz U, Avendaño-Reyes L, Mellado M. The impact of hair coat color on physiological variables, reproductive performance and milk yield of Holstein cows in a hot environment. J Therm Biol 2019; 81:82-88. [PMID: 30975427 DOI: 10.1016/j.jtherbio.2019.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/18/2019] [Accepted: 02/26/2019] [Indexed: 11/20/2022]
Abstract
Vulnerable animals to heat stress have been described as ones with dark or black hides due to increasing absorption of solar radiation. The effect of coat color in pluriparous contemporary Holstein cows in a hot environment (mean annual temperature 24.6 °C), on body surface temperature (infrared thermography), physiological and hematological variables as well as milk yield and reproductive performance was assessed using 178 Holstein pluriparous cows (74 predominantly white and 104 predominantly black). Data were collected in the morning and afternoon in July (mean temperature-humidity index 82 units). Body condition score at mid-lactation (128 ± 32 days in milk at the start of the experiment) was higher (P < 0.01) in predominantly white than in black cows (3.3 vs. 3.2). Respiration rate did not differ between groups (72 ± 23 vs. 73 ± 20 breaths/min for white and black cows, respectively, sampling time combined). In contrast, rectal temperature of black cows was 0.1 °C higher (P ≤ 0.01) than white cows, regardless of sampling time. The only significant hematologic change was a slight increase in mean corpuscular volume in black cows (54.7 fL, P < 0.01) compared to white cows (53.8 fL), but it remained within the reference range. Differences due to coat color did not alter body surface temperatures at any time of the day. Conception rates, services per conception, calving intervals and fetal losses were not associated with hair coat color, but cows with predominantly white coat produced 394 kg more (P < 0.01) fat-corrected milk in 305 days compared to cows with predominantly black coat. It was concluded that in this hot-arid environment with cows housed in facilities with extensive cooling, black hair coat moderately reduces 305-d milk yield without affecting milk composition, body surface temperature, and reproductive performance.
Collapse
Affiliation(s)
- F Anzures-Olvera
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, Saltillo, Coah, Mexico
| | - F G Véliz
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, Saltillo, Coah, Mexico
| | - A de Santiago
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, Saltillo, Coah, Mexico
| | - J E García
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico
| | - J Mellado
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico
| | - U Macías-Cruz
- Institute of Agricultural Sciences, Autonomous University of Baja California, Mexicali, Mexico
| | - L Avendaño-Reyes
- Institute of Agricultural Sciences, Autonomous University of Baja California, Mexicali, Mexico
| | - M Mellado
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico.
| |
Collapse
|
386
|
Abuajamieh M, Kvidera SK, Mayorga EJ, Kaiser A, Lei S, Seibert JT, Horst EA, Sanz Fernandez MV, Ross JW, Selsby JT, Keating AF, Rhoads RP, Baumgard LH. The effect of recovery from heat stress on circulating bioenergetics and inflammatory biomarkers. J Anim Sci 2019; 96:4599-4610. [PMID: 30476152 DOI: 10.1093/jas/sky345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/21/2018] [Indexed: 11/14/2022] Open
Abstract
Heat stress (HS) jeopardizes animal productivity and health. The intestinal barrier is sensitive to HS and heat-induced hyperpermeability plays a key role in its pathophysiology. However, the biology of recovery following HS is less understood. Thus, study objectives were to determine the temporal pattern of metabolic, inflammatory, and intestinal histological parameters during HS recovery. Female pigs (n = 32; 19.5 ± 0.5 kg BW) were sacrificed following exposure to 1 of 4 environmental treatments: 1) constant thermoneutral (TN) conditions (TNC; 24.2 ± 0.5°C), 2) no TN recovery post HS (0D), 3) 3 d of TN recovery post HS (3D), and 4) 7 d of TN recovery post HS (7D). The HS protocol was cyclical (33.6 ± 1.8 to 37.4 ± 2.1°C) and lasted for 3 d for all HS treatments. During the 3 d of HS, rectal temperature, skin temperature, and respiration rates were increased (1.3°C, 4.8°C, and 77 breaths/min, respectively; P < 0.01) and ADFI was decreased (27%; P < 0.01) compared to TNC pigs. Skin temperature tended to be decreased 0.6°C in 3D pigs during days 1-3 of recovery (P = 0.06) and was decreased 1.6 and 0.7°C during days 1-3 and 4-7 of recovery, respectively, in 7D pigs (P ≤ 0.03) compared to TNC. Relative to TNC pigs, ADFI remained 14% decreased during days 1-3 of recovery in both 3D and 7D pigs, and 17% decreased during days 4-7 in 7D pigs (P ≤ 0.01). Plasma glucose was decreased (10%; P = 0.03) for 0D and 3D relative to TNC pigs. Circulating lipopolysaccharide-binding protein was increased in 3D and 7D vs. TNC pigs (110 and 147%, respectively; P = 0.01) and tended to increase linearly with increasing recovery time (P = 0.08). Circulating tumor necrosis factor alpha was decreased (15%) in 0D pigs and increased linearly with advancing recovery time (P < 0.01). Jejunum and ileum villus height were reduced 17 and 11% in 0D vs. TNC pigs and increased linearly with progressive recovery time (P < 0.01). Jejunum and ileum mucosal surface areas were reduced 17 and 9% in 0D pigs and remained decreased in the jejunum while the ileum recovered to TNC levels by day 3 of recovery. Relative to TNC pigs, goblet cell area was similar in jejunum and colon of 0D pigs but was reduced in the ileum of 0D pigs and in jejunum, ileum, and colon of 3D and 7D relative to TNC pigs (P < 0.01). In summary, HS has deleterious effects on intestinal morphology that seem to improve with recovery time. In contrast, feed consumption remained suppressed and inflammatory biomarkers indicative of leaky gut increased following the heat load.
Collapse
Affiliation(s)
- Mohannad Abuajamieh
- Department of Animal Science, Iowa State University, Ames, IA.,Department of Animal Production, The University of Jordan, Amman, Jordan
| | - Sara K Kvidera
- Department of Animal Science, Iowa State University, Ames, IA.,Micronutrients USA LLC, Indianapolis, IN
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA
| | - Adrianne Kaiser
- Department of Animal Science, Iowa State University, Ames, IA
| | - Samantha Lei
- Department of Animal Science, Iowa State University, Ames, IA
| | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, IA
| | - Maria V Sanz Fernandez
- Department of Animal Science, Iowa State University, Ames, IA.,Department of Animal Reproduction, INIA, Madrid, Spain
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - Robert P Rhoads
- Department of Animal & Poultry Sciences, Virginia Tech University, Blacksburg, VA
| | | |
Collapse
|
387
|
Contreras-Jodar A, Nayan NH, Hamzaoui S, Caja G, Salama AAK. Heat stress modifies the lactational performances and the urinary metabolomic profile related to gastrointestinal microbiota of dairy goats. PLoS One 2019; 14:e0202457. [PMID: 30735497 PMCID: PMC6368375 DOI: 10.1371/journal.pone.0202457] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/16/2019] [Indexed: 01/02/2023] Open
Abstract
The aim of the study is to identify the candidate biomarkers of heat stress (HS) in the urine of lactating dairy goats through the application of proton Nuclear Magnetic Resonance (1H NMR)-based metabolomic analysis. Dairy does (n = 16) in mid-lactation were submitted to thermal neutral (TN; indoors; 15 to 20°C; 40 to 45% humidity) or HS (climatic chamber; 37°C day, 30°C night; 40% humidity) conditions according to a crossover design (2 periods of 21 days). Thermophysiological traits and lactational performances were recorded and milk composition analyzed during each period. Urine samples were collected at day 15 of each period for 1H NMR spectroscopy analysis. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) assessment with cross validation were used to identify the goat urinary metabolome from the Human Metabolome Data Base. HS increased rectal temperature (1.2°C), respiratory rate (3.5-fold) and water intake (74%), but decreased feed intake (35%) and body weight (5%) of the lactating does. No differences were detected in milk yield, but HS decreased the milk contents of fat (9%), protein (16%) and lactose (5%). Metabolomics allowed separating TN and HS urinary clusters by PLS-DA. Most discriminating metabolites were hippurate and other phenylalanine (Phe) derivative compounds, which increased in HS vs. TN does. The greater excretion of these gut-derived toxic compounds indicated that HS induced a harmful gastrointestinal microbiota overgrowth, which should have sequestered aromatic amino acids for their metabolism and decreased the synthesis of neurotransmitters and thyroid hormones, with a negative impact on milk yield and composition. In conclusion, HS markedly changed the thermophysiological traits and lactational performances of dairy goats, which were translated into their urinary metabolomic profile through the presence of gut-derived toxic compounds. Hippurate and other Phe-derivative compounds are suggested as urinary biomarkers to detect heat-stressed dairy animals in practice.
Collapse
Affiliation(s)
- Alexandra Contreras-Jodar
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Nazri Hj. Nayan
- Department of Animal Science, Faculty of Agriculture, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Soufiane Hamzaoui
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gerardo Caja
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
- * E-mail: (GC); (AAKS)
| | - Ahmed A. K. Salama
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
- * E-mail: (GC); (AAKS)
| |
Collapse
|
388
|
Dickson MJ, Kvidera SK, Horst EA, Wiley CE, Mayorga EJ, Ydstie J, Perry GA, Baumgard LH, Keating AF. Impacts of chronic and increasing lipopolysaccharide exposure on production and reproductive parameters in lactating Holstein dairy cows. J Dairy Sci 2019; 102:3569-3583. [PMID: 30738665 DOI: 10.3168/jds.2018-15631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/05/2018] [Indexed: 01/25/2023]
Abstract
Lipopolysaccharide (LPS) administration causes immunoactivation, which negatively affects production and fertility, but experimental exposure via an acute bolus is unlikely to resemble natural infections. Thus, the objectives were to characterize effects of chronic endotoxemia on production parameters and follicular development in estrous-synchronized lactating cows. Eleven Holstein cows (169 ± 20 d in milk; 681 ± 16 kg of body weight) were acclimated to their environmental surroundings for 3 d and then enrolled in 2 experimental periods (P). During P1 (3 d) cows consumed feed ad libitum and baseline samples were obtained. During P2 (7 d), cows were assigned to continuous infusion of either (1) saline-infused and pair-fed (CON-PF; 40 mL/h of saline i.v.; n = 5) or (2) LPS infused and ad libitum fed (LPS-AL; Escherichia coli O55:B5; 0.017, 0.020, 0.026, 0.036, 0.055, 0.088, and 0.148 μg/kg of body weight/h i.v. on d 1 to 7, respectively; n = 6). Controls were pair-fed to the LPS-AL group to eliminate confounding effects of dissimilar nutrient intake. Infusing LPS temporally caused mild hyperthermia on d 1 to 3 (+0.49°C) relative to baseline. Dry matter intake of LPS-AL cows decreased (28%) on d 1 of P2, then progressively returned to baseline. Relative to baseline, milk yield from LPS-AL cows was decreased on d 1 of P2 (12%). No treatment differences were observed in milk yield during P2. Follicular growth, dominant follicle size, serum progesterone (P4), and follicular P4 and 17β-estradiol concentrations were similar between treatments. Serum 17β-estradiol tended to increase (115%) and serum amyloid A and LPS-binding protein were increased (118 and 40%, respectively) in LPS-AL relative to CON-PF cows. Compared with CON-PF, neutrophils in LPS-AL cows were initially increased (45%), then gradually decreased. In contrast, monocytes were initially decreased (40%) and progressively increased with time in the LPS-AL cows. Hepatic mRNA abundance of cytochrome P450 family 2 subfamily C (CYP2C) or CYP3A was not affected by LPS, nor was there a treatment effect on toll-like receptor 4 or LBP; however, acyloxyacyl hydrolase and RELA subunit of nuclear factor kappa B tended to be increased in LPS-AL cows. These data suggest lactating dairy cows become tolerant to chronic and exponentially increasing LPS infusion in terms of production and reproductive parameters.
Collapse
Affiliation(s)
- M J Dickson
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - C E Wiley
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - J Ydstie
- Department of Animal Science, Iowa State University, Ames 50011
| | - G A Perry
- Department of Animal Science, South Dakota State University, Brookings 57006
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011
| | - A F Keating
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
389
|
Wilms J, Berends H, Martín-Tereso J. Hypertonic milk replacers increase gastrointestinal permeability in healthy dairy calves. J Dairy Sci 2019; 102:1237-1246. [DOI: 10.3168/jds.2018-15265] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
|
390
|
He J, Zheng W, Lu M, Yang X, Xue Y, Yao W. A controlled heat stress during late gestation affects thermoregulation, productive performance, and metabolite profiles of primiparous sow. J Therm Biol 2019; 81:33-40. [PMID: 30975421 DOI: 10.1016/j.jtherbio.2019.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
Abstract
Heat stress (HS) alters metabolic parameters and reduces productive performance in lactating sows. However, the impact of HS on metabolomic profiles of sows during late gestation is not fully understood. We present here, a study investigating the productive performance and metabolic responses in sows when exposed to HS during late gestation. Twelve first-parity Landrace × Large White F1 sows were randomly assigned into two environmental treatments including the thermoneutral (TN) (18-22 °C; n = 6) and HS (28-32 °C; n = 6) conditions from 85 d of gestation until farrowing. Rectal temperature (RT), respiration rates (RR), and surface temperature (ST) were measured every 4 h from 0800 h to 2000 h during the 2nd week. Farrowing and litter Data, as well as duration of eating, were monitored to assess sows' productive performance. Blood biochemical parameters and urinary metabolomic profiles were measured on d107 of gestation to analyze the host metabolic responses. Our results show that HS increased RT, RR, and ST (P < 0.0001). Duration of parturition was prolonged during the delivery in HS group (P < 0.05). Piglet body weight (BW) at d 10 and weaning were reduced by 18% and 17% respectively due to maternal HS (P < 0.001). Duration of eating increased as a result of HS (P < 0.001), consistent with the significant changes observed in serum ghrelin (P < 0.05). Moreover, serum ACTH, cortisol, insulin, creatinine, and BUN saw increase as well (P < 0.05). Plasma NEFA were elevated by HS (P < 0.001). Additionally, HS elevated (VIP>1, log2fold change>0.585, and P < 0.05) the relative concentrations of 5-aminovaleric acid, β-alanine, cysteine, isoleucine, glyceric acid, erythronic acid, mannitol, erythritol, 2-methyl-1,3-butanediol, and pantothenic acid in urine. These ten metabolites mainly affected the pantothenate and CoA biosynthesis, β-alanine metabolism, and glycerolipid metabolism in pregnant sows. In summary, our study suggests that the controlled HS during late gestation elevates thermal responses, reduces productive performance, and more importantly, enhances the catabolism of lipid and protein of first-parity pregnant sow.
Collapse
Affiliation(s)
- Jianwen He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; National Experimental Teaching Center for Animal Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingzhou Lu
- College of Engineering, Laboratory of Modern Facility Agriculture Technology and Equipment Engineering of Jiangsu Province, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Xiaojing Yang
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yongqiang Xue
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; National Experimental Teaching Center for Animal Science, Nanjing Agricultural University, Nanjing 210095, PR China; Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
391
|
Gerazova-Efremova K, Dinevska-Kjovkarovska S, Miova B. Heat-Shock Protein 70-Mediated Heat Preconditioning Attenuates Hepatic Carbohydrate and Oxidative Disturbances in Rats With Type 1 Diabetes. Can J Diabetes 2019; 43:345-353. [PMID: 30853267 DOI: 10.1016/j.jcjd.2019.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Heat preconditioning and heat-shock protein (HSP) synthesis have significant cytoprotective effects against the development of cellular injury caused by the application of a subsequent stressor, which were found to depend on the time period between the stressors. We aimed to determine the most efficient recovery time (6 h or 24 h) following heat-stress exposure and prior application of diabetic streptozotocin (STZ) on the moderation of carbohydrate and oxidative metabolic disturbances caused by diabetes. METHODS Experiment animals (Wistar rats) were exposed to acute heat stress at 41±1°C for 45 min, followed by 6-h or 24-h recovery times at room temperature before sacrifice or STZ administration. RESULTS Our findings indicate that acute heat stress with 6-h or 24-h recovery periods results in a significant rise in the hepatic heat-shock protein 70 (HSP70) levels (even more so after 24 h), glycogen breakdown and stable glycemia, followed by reduced glycolytic and gluconeogenic activity (after 24 h) (glucose-6-phosphatase, fructose-1,6-bisphosphatase); stimulates antioxidative activity (glutathione peroxidase, glutathione reductase) (after 6 h); and decreases glutathione and catalase activity (after 24 h). Heat preconditioning (with 6-h and 24-h recovery periods) prior to STZ-induced diabetes increases HSP70 levels and causes lower serum glucose levels, higher glycogen and glucose-6-phosphate levels, lower glucose-6-phosphatase levels and glycogen phosphorylase and hexokinase levels but also elevates glutathione reductase and glutathione peroxidase activity compared to untreated STZ animals. CONCLUSIONS Based on our findings, heat preconditioning and HSP70 induction in rats with type 1 diabetes attenuates STZ-induced metabolic alterations in hepatic carbohydrate metabolism and oxidative states. These changes are more evident at 24 h recovery post-acute heat stress, based on the most evident accumulation of HSP70 in this time frame.
Collapse
Affiliation(s)
- Katerina Gerazova-Efremova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University of Saints Cyril and Methodius, Skopje, Republic of Macedonia
| | - Suzana Dinevska-Kjovkarovska
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University of Saints Cyril and Methodius, Skopje, Republic of Macedonia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University of Saints Cyril and Methodius, Skopje, Republic of Macedonia.
| |
Collapse
|
392
|
Salama AAK, Duque M, Wang L, Shahzad K, Olivera M, Loor JJ. Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro. J Dairy Sci 2019; 102:2469-2480. [PMID: 30639019 DOI: 10.3168/jds.2018-15219] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
Heat stress (HS) causes reductions in milk production, but it is unclear whether this effect is due to reduced number or functional capacity (or both) of mammary cells. Methionine supplementation improves milk protein, whereas Arg is taken up in excess by mammary cells to produce energy and nonessential AA that can be incorporated into milk protein. To evaluate molecular mechanisms by which mammary functional capacity is affected by HS and Met or Arg, mammary alveolar (MAC-T) cells were incubated at thermal-neutral (37°C) or HS (42°C) temperatures. Treatments were optimal AA profiles (control; Lys:Met = 2.9:1.0; Lys:Arg = 2.1:1.0), control plus Met (Lys:Met = 2.5:1.0), or control plus Arg (Lys:Arg = 1.0:1.0). After incubation for 6 h, cells were harvested and RNA and protein were extracted for quantitative real-time PCR and Western blotting. Protein abundance of mechanistic target of rapamycin (MTOR), eukaryotic initiation factor 2a, serine-threonine protein kinase (AKT), 4E binding protein 1 (EIF4EBP1), and phosphorylated EIF4EBP1 was lower during HS. The lower phosphorylated EIF4EBP1 with HS would diminish translation initiation and reduce protein synthesis. Both Met and Arg had no effect on MTOR proteins, but the phosphorylated EIF4EBP1 decreased by AA, especially Arg. Additionally, Met but not Arg decreased the abundance of phosphorylated eukaryotic elongation factor 2, which could be positive for protein synthesis. Although HS upregulated the heat shock protein HSPA1A, the apoptotic gene BAX, and the translation inhibitor EIF4EBP1, the mRNA abundance of PPARG, FASN, ACACA (lipogenesis), and BCL2L1 (antiapoptotic) decreased. Greater supply of Met or Arg reversed most of the effects of HS occurring at the mRNA level and upregulated the abundance of HSPA1A. In addition, compared with the control, supply of Met or Arg upregulated genes related to transcription and translation (MAPK1, MTOR, SREBF1, RPS6KB1, JAK2), insulin signaling (AKT2, IRS1), AA transport (SLC1A5, SLC7A1), and cell proliferation (MKI67). Upregulation of microRNA related to cell growth arrest and apoptosis (miR-34a, miR-92a, miR-99, and miR-184) and oxidative stress (miR-141 and miR-200a) coupled with downregulation of fat synthesis-related microRNA (miR-27ab and miR-221) were detected with HS. Results suggest that HS has a direct negative effect on synthesis of protein and fat, mediated in part by coordinated changes in mRNA, microRNA, and protein abundance of key networks. The positive responses with Met and Arg raise the possibility that supplementation with these AA during HS might have a positive effect on mammary metabolism.
Collapse
Affiliation(s)
- A A K Salama
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - M Duque
- Grupo de Investigación Biogénesis, Facultad de Ciencias Agrarias, Universidad de Antioquia, Carrera 75 # 65-87, Medellín, Colombia
| | - L Wang
- Department of Animal Science, Southwest University, Rongchang, Chongqing 402460, China
| | - K Shahzad
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - M Olivera
- Grupo de Investigación Biogénesis, Facultad de Ciencias Agrarias, Universidad de Antioquia, Carrera 75 # 65-87, Medellín, Colombia
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
393
|
Heat preconditioning and aspirin treatment attenuate hepatic carbohydrate-related disturbances in diabetic rats. J Therm Biol 2019; 79:190-198. [PMID: 30612679 DOI: 10.1016/j.jtherbio.2018.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/19/2018] [Accepted: 12/09/2018] [Indexed: 02/06/2023]
Abstract
Heat preconditioning (HP) is a powerful adaptive and protective phenomenon and induces moderation of diabetic alterations in glycogen metabolism of rats. Aspirin (acetylsalicylic acid, ASA), as a multifunctional drug has also been reported to exert hypoglycemic effects in the treatment of diabetes. We estimated the effect of HP (45 min/41 ± 0.5 °C/24 h recovery) and single dose aspirin (100 mg/kg b.w./i.p) treatment over carbohydrate-related enzymes and substrates in a time-dependent (2, 7 and 14 days) manner of duration of diabetes in the liver of rats. Heat preconditioning resulted in lower liver glucose concentration, but higher HK activity and lower G6P-ase; very evident and significantly higher glycogen content and GPho-ase activity, as well as very evident and significantly lower F1,6BP-ase and higher PFK activity compared to control diabetic animals. Aspirin pretreatment of HP-diabetic animals is manifested with significantly lower blood and liver glucose, higher G6P concentration, lower G6P-ase and HK activity as well as higher Glk content and GPho-ase activity, compared both to diabetic and HP-diabetic animals. In conclusion, both HP and aspirin, as physiological and pharmacological inductors of HSP70, respectively, attenuate the carbohydrate-related disturbances in diabetic rats, with almost tendency to normalisation to the control values for most of the estimated parameters.
Collapse
|
394
|
Al-Qaisi M, Horst E, Kvidera S, Mayorga E, Timms L, Baumgard L. Technical note: Developing a heat stress model in dairy cows using an electric heat blanket. J Dairy Sci 2019; 102:684-689. [DOI: 10.3168/jds.2018-15128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/28/2018] [Indexed: 11/19/2022]
|
395
|
Abdelnour SA, Abd El-Hack ME, Khafaga AF, Arif M, Taha AE, Noreldin AE. Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. J Therm Biol 2019; 79:120-134. [DOI: 10.1016/j.jtherbio.2018.12.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/02/2018] [Accepted: 12/11/2018] [Indexed: 11/30/2022]
|
396
|
Safa S, Kargar S, Moghaddam GA, Ciliberti MG, Caroprese M. Heat stress abatement during the postpartum period: effects on whole lactation milk yield, indicators of metabolic status, inflammatory cytokines, and biomarkers of the oxidative stress. J Anim Sci 2019; 97:122-132. [PMID: 30346551 PMCID: PMC6313133 DOI: 10.1093/jas/sky408] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/18/2018] [Indexed: 01/28/2023] Open
Abstract
The objective of this study was to determine the effect of cooling upon calving in alleviating the adverse effects of heat stress in Holstein lactating cows. Production performance, indicators of metabolic status, immune response, and biomarkers of oxidative stress were measured. Based on mature equivalent milk production, parity, and calving date, 46 multiparous lactating cows were allotted to groups of equal sizes (n = 23); heat stressed (HS; BW = 658 ± 28 kg [mean ± SD]; BCS = 2.7 ± 0.18; parity = 3 ± 0.12) and cooled (CL; BW = 668 ± 23 kg; BCS = 2.8 ± 0.14; parity = 3 ± 0.25). Cows were housed in sand-bedded individual stalls equipped with misters and fans which were on from 1000 to 1800 hours for CL group. DMI and milk yield were measured from calving for 7 wk. Body condition score and BW were recorded weekly. Blood samples were collected weekly to measure the metabolic and antioxidant status, inflammatory cytokines, and immunoglobulins. Rectal temperature was measured daily at 1400 hour. Mean daily maximum temperature, minimum relative humidity, and maximum temperature-humidity index was 37.0 °C, 31.9%, and 83.4 for HS and 27.3 °C, 44.9%, and 75.7 for CL, respectively. Heat-stressed cows exhibited greater rectal temperature (39.8 vs. 39.1 °C) and lower feed intake (19.8 vs. 21.3 kg/d) relative to CL cows. Milk yield, including raw (31.2 vs. 38.6 kg/d) and fat- and protein-corrected (32.1 vs. 35.7 kg/d) milk, was lower in HS vs. CL cows, respectively. The percentages of milk protein (3.25 vs. 3.06), lactose (4.73 vs. 4.58), and solids-not-fat (8.63 vs. 8.38) but not milk fat (4.31 vs. 3.59) were higher in HS cows than in CL cows, respectively. Somatic cell score was greater in HS cows as compared with CL cows. Cooled cows lost less body condition as compared with HS cows. Blood plasma concentrations of glucose, non-esterified fatty acids, and β-hydroxybutyric acid were lower in HS cows. Blood plasma concentrations of malondialdehyde (2.13 vs. 1.84 nmol/mL), reactive oxygen species (579 vs. 561 U/mL), and total antioxidant capacity (4.49 vs. 4.06 U/mL) were greater in HS cows than in CL cows. Blood plasma concentrations of the inflammatory cytokines (tumor necrosis factor-α, interleukin-1α, and interleukin-2) and immunoglobulins (IgA, IgM, and IgG) were lower in HS cows than in CL cows. These findings demonstrated that cooling dairy cows during the early postpartum improved the production performance, indicators of metabolic status, immune response, and antioxidant capacity.
Collapse
Affiliation(s)
- Soroush Safa
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Shahryar Kargar
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Gholam Ali Moghaddam
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Maria Giovanna Ciliberti
- Department of the Sciences of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli, Foggia, Italy
| | - Mariangela Caroprese
- Department of the Sciences of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli, Foggia, Italy
| |
Collapse
|
397
|
Mayorga EJ, Renaudeau D, Ramirez BC, Ross JW, Baumgard LH. Heat stress adaptations in pigs. Anim Front 2019; 9:54-61. [PMID: 32002240 PMCID: PMC6951998 DOI: 10.1093/af/vfy035] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA
| | - David Renaudeau
- French National Institute for Agricultural Research, INRA, UMR1348 PEGASE, INRA Agrocampus Ouest, St Gilles, France
| | - Brett C Ramirez
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| | | |
Collapse
|
398
|
Saoca C, Rizzo M, Pugliese M, Monteverde V, Giudice E, Piccione G. Intra-monthly variability of some physiological and blood parameters in pigs under different environmental conditions. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1559414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Concetta Saoca
- Department of Veterinary Sciences, University of Messina. Polo Universitario dell’Annunziata, Messina, Italy
| | - Maria Rizzo
- Department of Veterinary Sciences, University of Messina. Polo Universitario dell’Annunziata, Messina, Italy
| | - Michela Pugliese
- Department of Veterinary Sciences, University of Messina. Polo Universitario dell’Annunziata, Messina, Italy
| | - Vincenzo Monteverde
- Department of Zootechnical Productions and Animal Welfare, Experimental Zooprophylactic Institute of Sicily “A. Mirri”, Palermo, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina. Polo Universitario dell’Annunziata, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina. Polo Universitario dell’Annunziata, Messina, Italy
| |
Collapse
|
399
|
da Fonseca de Oliveira AC, Vanelli K, Sotomaior CS, Weber SH, Costa LB. Impacts on performance of growing-finishing pigs under heat stress conditions: a meta-analysis. Vet Res Commun 2018; 43:37-43. [PMID: 30569275 DOI: 10.1007/s11259-018-9741-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
High ambient temperatures are a challenge for animal production around the world, and they are one of the major reasons for economic and productive losses in pig production. Under stress conditions, the energy contribution to productive functions is reduced, generating health imbalances, decreased productivity rates and changes in animal behavior. Despite the numerous articles published on this subject, the variability of results on performance parameters is high. For this reason, the objective of the present study was to evaluate the actual impact of high ambient temperature (HAT) (29 °C to 35 °C) on growing-finishing pig performance, compared with animals kept in a thermoneutral environment (TNT) (18 °C to 25 °C), based on meta-analysis. Data on average daily gain (ADG), average daily feed intake (FI) and feed gain ratio (F:G) were extracted from 22 (n = 22) papers published in scientific journals. The values were analyzed using an expansion of the t-test, considering the random effect of each study. Results showed that HAT reduced the values of ADG (654.38 vs 595.81 g/d) and FI (2.141 vs 1.875 g/d) when compared with the thermoneutral group. There was no statistical difference between the F:G values for both groups. In conclusion, high ambient temperatures negatively influence performance parameters of growing-finishing pigs when compared with those in thermoneutral conditions.
Collapse
Affiliation(s)
| | - Karoline Vanelli
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, 80215-901, Brazil
| | - Cristina Santos Sotomaior
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, 80215-901, Brazil
| | - Saulo Henrique Weber
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, 80215-901, Brazil
| | - Leandro Batista Costa
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, 80215-901, Brazil
| |
Collapse
|
400
|
Gu Z, Li L, Tang S, Liu C, Fu X, Shi Z, Mao H. Metabolomics Reveals that Crossbred Dairy Buffaloes Are More Thermotolerant than Holstein Cows under Chronic Heat Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12889-12897. [PMID: 30472851 DOI: 10.1021/acs.jafc.8b02862] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Heat stress (HS) threatens the worldwide dairy industry by decreasing animal production performance and health. Holstein cows and dairy buffaloes are the most important dairy animals, but their differences in the metabolic mechanism of thermotolerance remain elusive. In this study, we used serum metabolomics to evaluate the differences in thermotolerance between Holstein cows and crossbred dairy buffaloes under chronic heat stress (HS) and thermal-neutral conditions. In response to HS, the body temperatures and respiratory rates were increased more for Holstein cows than for dairy buffaloes (38.78 vs 38.24 °C, p < 0.001; 43.6 vs 32.5 breaths/min, p < 0.001). HS greatly affected serum metabolites associated with amino acids, fatty acids, and bile acids. The enriched metabolic pathways of these serum metabolites are closely related to HS. We demonstrated that buffaloes adapt to HS by adopting a metabolism of branched-chain amino acids and ketogenic amino acids and gluconeogenesis, but Holstein cows decrease the effect of HS with citrulline and proline metabolism. Both physiological parameters and serum metabolic profiles indicate that dairy buffaloes are more thermotolerant than Holstein cows, providing the feasibility to vigorously develop the buffalo dairy industry in tropical and subtropical regions.
Collapse
Affiliation(s)
- Zhaobing Gu
- Faculty of Animal Science and Technology , Yunnan Agricultural University , Kunming 650201 , China
| | - Lin Li
- Faculty of Animal Science and Technology , Yunnan Agricultural University , Kunming 650201 , China
| | - Shoukun Tang
- Bureau of Animal Husbandry and Veterinary Medicine , Mangshi 678499 , China
| | - Chuanbin Liu
- Bureau of Animal Husbandry and Veterinary Medicine , Mangshi 678499 , China
| | - Xianhai Fu
- Bureau of Animal Husbandry and Veterinary Medicine , Mangshi 678499 , China
| | - Zhengxiang Shi
- Department of Agricultural Structure and Bioenvironmental Engineering, College of Water Resources and Civil Engineering , China Agricultural University , Beijing 100083 , China
| | - Huaming Mao
- Faculty of Animal Science and Technology , Yunnan Agricultural University , Kunming 650201 , China
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science , Kunming 650201 , China
| |
Collapse
|