351
|
Zhou Y, Dang J, Chang KY, Yau E, Aza-Blanc P, Moscat J, Rana TM. miR-1298 Inhibits Mutant KRAS-Driven Tumor Growth by Repressing FAK and LAMB3. Cancer Res 2016; 76:5777-5787. [PMID: 27698189 PMCID: PMC5155639 DOI: 10.1158/0008-5472.can-15-2936] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/30/2016] [Indexed: 12/14/2022]
Abstract
Global miRNA functional screens can offer a strategy to identify synthetic lethal interactions in cancer cells that might be exploited therapeutically. In this study, we applied this strategy to identify novel gene interactions in KRAS-mutant cancer cells. In this manner, we discovered miR-1298, a novel miRNA that inhibited the growth of KRAS-driven cells both in vitro and in vivo Using miR-TRAP affinity purification technology, we identified the tyrosine kinase FAK and the laminin subunit LAMB3 as functional targets of miR-1298. Silencing of FAK or LAMB3 recapitulated the synthetic lethal effects of miR-1298 expression in KRAS-driven cancer cells, whereas coexpression of both proteins was critical to rescue miR-1298-induced cell death. Expression of LAMB3 but not FAK was upregulated by mutant KRAS. In clinical specimens, elevated LAMB3 expression correlated with poorer survival in lung cancer patients with an oncogenic KRAS gene signature, suggesting a novel candidate biomarker in this disease setting. Our results define a novel regulatory pathway in KRAS-driven cancers, which offers a potential therapeutic target for their eradication. Cancer Res; 76(19); 5777-87. ©2016 AACR.
Collapse
Affiliation(s)
- Ying Zhou
- Program for RNA Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Jason Dang
- Program for RNA Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California. Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Kung-Yen Chang
- Program for RNA Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California. Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Edwin Yau
- Division of Hematology-Oncology, Department of Internal Medicine, University of California San Diego, La Jolla, California. Solid Tumor Therapeutics Program, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Pedro Aza-Blanc
- Program for RNA Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Tariq M Rana
- Program for RNA Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California. Department of Pediatrics, University of California San Diego, La Jolla, California. Solid Tumor Therapeutics Program, Moores Cancer Center, University of California, San Diego, La Jolla, California. Institute for Genomic Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
352
|
Sun H, Ding C, Zhang H, Gao J. Let‑7 miRNAs sensitize breast cancer stem cells to radiation‑induced repression through inhibition of the cyclin D1/Akt1/Wnt1 signaling pathway. Mol Med Rep 2016; 14:3285-92. [PMID: 27574028 DOI: 10.3892/mmr.2016.5656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/12/2016] [Indexed: 11/06/2022] Open
Abstract
The tumor-suppressive let-7 family of microRNAs (miRNAs) has been previously identified to induce cell apoptosis, proliferation‑inhibition and suppression of the self‑renewal capacities of cancer stem cells (CSCs). However, let‑7‑mediated sensitization of tumors to radiation treatment remains to be investigated fully in triple negative breast cancer (TNBC), of which the clinical treatment is challenging. The inhibitory effect of let‑7 miRNAs on the self‑renewal ability of CSCs from TNBC was investigated. It was identified that radiation inhibited the self‑renewal ability of TNBC stem cells by inhibiting cyclin D1 and protein kinase B (Akt1) phosphorylation. Let‑7d stimulates radiation‑induced tumor repression, exerting synergistic effects with radiotherapy on stem cell renewal. Through western blotting, immunofluorescence and a luciferase assay, it was identified that reduced cyclin D1/Akt1/wingless type MMTV integration site family member 1 (Wnt1) signaling activity accounts for the let‑7‑induced radiation sensitization. Let‑7 directly inhibits cyclin D1 expression, resulting in low phosphorylation of Akt1, which is critical for the let‑7‑induced inhibition of mammosphere numbers. The let‑7d‑induced Akt1 inhibition contributed to tumor repression, with similar results to those obtained with Akt inhibitors. Furthermore, it was identified that the inhibition of Wnt1 is critical for the functioning of let‑7d, and that addition of recombinant Wnt1 abolished the effects of let‑7d on sensitization to radiotherapy. Let‑7d is suggested to be a promising therapeutic agent in the treatment of TNBC by targeting CSCs and sensitizing tumors to radiotherapy via inhibition of cyclin D1/Akt1/Wnt1 signaling.
Collapse
Affiliation(s)
- Huifang Sun
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Changmao Ding
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huiyu Zhang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
353
|
Deng M, Hou J, Hu J, Wang S, Chen M, Chen L, Ju Y, Li C, Meng S. Hepatitis B virus mRNAs functionally sequester let-7a and enhance hepatocellular carcinoma. Cancer Lett 2016; 383:62-72. [PMID: 27693636 DOI: 10.1016/j.canlet.2016.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection induces hepatocarcinogenesis and malignant progression, yet global effects of the redundant viral mRNAs produced during infection are unexplored. Here, microRNA (miRNA) target prediction and whole genome expression analysis revealed that HBV pre-C/C mRNA leads to upregulation of multiple let-7a targeted genes. A let-7a complementary region from nt 86 to 108 in the HBV genome was then identified in HBV pre-C/C, pre-S, and S mRNAs. The let-7a sequestration effect by HBV mRNAs was observed under transfection and virus infection, which is dependent on the let-7a response sequence. Moreover, we found reduced AGO2 binding, as well as functional mRNA and protein de-repression of let-7a targets (e.g., c-myc, K-RAS, and CCR7), upon viral mRNA expression. Let-7a levels in the liver were significantly decreased in hepatocellular carcinoma (HCC) patients with HBV infection and were negatively correlated with intrahepatic pre-S2 mRNA levels. Finally, both in vitro and in vivo studies demonstrated that let-7a inhibition by HBV mRNAs resulted in enhanced HCC cell colony formation and tumor growth, providing evidence of the oncogenic potential of HBV mRNAs.
Collapse
Affiliation(s)
- Mengmeng Deng
- School of Life Sciences, University of Science and Technology of China, Hefei, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Junwei Hou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jun Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Mi Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Lizhao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ying Ju
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
354
|
Nwaeburu CC, Bauer N, Zhao Z, Abukiwan A, Gladkich J, Benner A, Herr I. Up-regulation of microRNA let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl. Oncotarget 2016; 7:58367-58380. [PMID: 27521217 PMCID: PMC5295436 DOI: 10.18632/oncotarget.11122] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 01/17/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDA) is a highly malignant tumor with poor prognosis. MicroRNAs (miRs) may offer novel therapeutic approaches to treatment. The polyphenol quercetin, present in many fruits and vegetables, possesses anti-carcinogenic properties. To unravel the effect of quercetin to miR signaling we performed miR profiling in PDA cells before and after quercetin treatment, followed by biostatistical analysis. miR let-7c was among the top up-regulated candidates after quercetin treatment, as measured by qRT-PCR and confirmed in two established and one primary PDA cell lines. By computational analysis we identified the Notch-inhibitor Numbl as let-7c target gene. This was strengthened by luciferase assays, where lipofected let-7c mimics induced a Numbl 3-UTR wild type construct, but not the mutated counterpart. Let-7c induced Numbl mRNA and protein expression but inhibited Notch just like quercetin. It also inhibited colony formation, wound healing, and protein expression of progression markers. In vivo xenotransplantation of PDA cells and subsequent intravenous injection of let-7c resulted in a significant decrease in tumor mass without obvious toxic effects in the fertilized chick egg model. The delivery rate of the miR mimics to the tumor mass was 80%, whereas minor amounts were present in host tissue. By immunohistochemistry we demonstrated that let-7c inhibited Notch and progression markers but up-regulated Numbl. These findings show that quercetin-induced let-7c decreases tumor growth by posttranscriptional activation of Numbl and indirect inhibition of Notch.
Collapse
Affiliation(s)
- Clifford C. Nwaeburu
- Team Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Natalie Bauer
- Team Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Zhefu Zhao
- Team Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alia Abukiwan
- Team Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jury Gladkich
- Team Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Axel Benner
- Department of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingrid Herr
- Team Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
355
|
Wu N, Meng F, Invernizzi P, Bernuzzi F, Venter J, Standeford H, Onori P, Marzioni M, Alvaro D, Franchitto A, Gaudio E, Glaser S, Alpini G. The secretin/secretin receptor axis modulates liver fibrosis through changes in transforming growth factor-β1 biliary secretion in mice. Hepatology 2016; 64:865-79. [PMID: 27115285 PMCID: PMC4992423 DOI: 10.1002/hep.28622] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/28/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED The secretin/secretin receptor (SR) axis is up-regulated by proliferating cholangiocytes during cholestasis. Secretin stimulates biliary proliferation by down-regulation of let-7a and subsequent up-regulation of the growth-promoting factor, nerve growth factor (NGF). It is not known whether the secretin/SR axis plays a role in subepithelial fibrosis observed during cholestasis. Our aim was to determine the role of the secretin/SR axis in activation of biliary fibrosis in animal models and human primary sclerosing cholangitis (PSC). Studies were performed in wild-type (WT) mice with bile duct ligation (BDL), BDL SR(-/-) mice, or Mdr2(-/-) mouse models of cholestatic liver injury. In selected studies, the SR antagonist (Sec 5-27) was used to block the secretin/SR axis. Biliary proliferation and fibrosis were evaluated as well as secretion of secretin (by cholangiocytes and S cells), expression of markers of fibrosis, transforming growth factor-β1 (TGF-β1), transforming growth factor-β1 receptor (TGF-β1R), let-7a, and downstream expression of NGF. Correlative studies were performed in human control and PSC liver tissue biopsies, serum, and bile. SR antagonist reduced biliary proliferation and hepatic fibrosis in BDL WT and Mdr2(-/-) mice. There was decreased expression of let-7a in BDL and Mdr2(-/-) cholangiocytes that was associated with increased NGF expression. Inhibition of let-7a accelerated liver fibrosis was attributed to cholestasis. There was increased expression of TGF-β1 and TGF-β1R. Significantly higher expression of secretin, SR, and TGF-β1 was observed in PSC patient liver samples compared to healthy controls. In addition, there was higher expression of fibrosis genes and remarkably decreased expression of let-7a and increased expression of NGF compared to the control. CONCLUSION The secretin/SR axis plays a key role in regulating the biliary contribution to cholestasis-induced hepatic fibrosis. (Hepatology 2016;64:865-879).
Collapse
Affiliation(s)
- Nan Wu
- Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Operational Funds, Baylor Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Francesca Bernuzzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Julie Venter
- Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Holly Standeford
- Research, Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Marco Marzioni
- Department of Medicine, Universita’ Politecnica delle Marche, Ancona, Italy
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy,Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| |
Collapse
|
356
|
Abstract
SIGNIFICANCE Breast cancer is a unique disease characterized by heterogeneous cell populations causing roadblocks in therapeutic medicine, owing to its complex etiology and primeval understanding of the biology behind its genesis, progression, and sustenance. Globocan statistics indicate over 1.7 million new breast cancer diagnoses in 2012, accounting for 25% of all cancer morbidities. RECENT ADVANCES Despite these dismal statistics, the introduction of molecular gene signature platforms, progressive therapeutic approaches in diagnosis, and management of breast cancer has led to more effective treatment strategies and control measures concurrent with an equally reassuring decline in the mortality rate. CRITICAL ISSUES However, an enormous body of research in this area is requisite as high mortality associated with metastatic and/or drug refractory tumors continues to present a therapeutic challenge. Despite advances in systemic chemotherapy, the median survival of patients harboring metastatic breast cancers continues to be below 2 years. FUTURE DIRECTIONS Hence, a massive effort to scrutinize and evaluate chemotherapeutics on the basis of the molecular classification of these cancers is undertaken with the objective to devise more attractive and feasible approaches to treat breast cancers and improve patients' quality of life. This review aims to summarize the current understanding of the biology of breast cancer as well as challenges faced in combating breast cancer, with special emphasis on the current battery of treatment strategies. We will also try and gain perspective from recent encounters on novel findings responsible for the progression and metastatic transformation of breast cancer cells in an endeavor to develop more targeted treatment options. Antioxid. Redox Signal. 25, 337-370.
Collapse
Affiliation(s)
- Deepika Raman
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Chuan Han Jonathan Foo
- 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore
| | - Marie-Veronique Clement
- 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,4 National University Cancer Institute , NUHS, Singapore, Singapore .,5 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
357
|
Structural and functional characterization of endothelial microparticles released by cigarette smoke. Sci Rep 2016; 6:31596. [PMID: 27530098 PMCID: PMC4987682 DOI: 10.1038/srep31596] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022] Open
Abstract
Circulating endothelial microparticles (EMPs) are emerging as biomarkers of chronic obstructive pulmonary disease (COPD) in individuals exposed to cigarette smoke (CS), but their mechanism of release and function remain unknown. We assessed biochemical and functional characteristics of EMPs and circulating microparticles (cMPs) released by CS. CS exposure was sufficient to increase microparticle levels in plasma of humans and mice, and in supernatants of primary human lung microvascular endothelial cells. CS-released EMPs contained predominantly exosomes that were significantly enriched in let-7d, miR-191; miR-126; and miR125a, microRNAs that reciprocally decreased intracellular in CS-exposed endothelium. CS-released EMPs and cMPs were ceramide-rich and required the ceramide-synthesis enzyme acid sphingomyelinase (aSMase) for their release, an enzyme which was found to exhibit significantly higher activity in plasma of COPD patients or of CS-exposed mice. The ex vivo or in vivo engulfment of EMPs or cMPs by peripheral blood monocytes-derived macrophages was associated with significant inhibition of efferocytosis. Our results indicate that CS, via aSMase, releases circulating EMPs with distinct microRNA cargo and that EMPs affect the clearance of apoptotic cells by specialized macrophages. These targetable effects may be important in the pathogenesis of diseases linked to endothelial injury and inflammation in smokers.
Collapse
|
358
|
Huang JF, Zhao N, Xu HQ, Xia H, Wei K, Fu WL, Huang Q. Sensitive and specific detection of miRNA using an isothermal exponential amplification method using fluorescence-labeled LNA/DNA chimera primers. Anal Bioanal Chem 2016; 408:7437-46. [PMID: 27485624 DOI: 10.1007/s00216-016-9829-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/17/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
MicroRNAs (miRNAs) are currently considered as potential biomarkers for various human diseases. In the present study, miRNA-triggered real-time fluorescent isothermal reaction with exponential amplification (ReFIRE) with or without Thermus aquaticus MutS (Taq MutS) was developed to analyze miRNAs using DNA polymerase, a nicking endonuclease, and fluorescently labeled primers. In the absence of Taq MutS, the ReFIRE system permitted the detection of 100 ymol of targeted miRNA in 80 min. However, this system enabled limited differentiation between homologous miRNA family members. Upon addition of Taq MutS to the ReFIRE system, non-specific amplification generated from the mishybridization between primers and primer dimers or primers and the template duplex was eliminated. The addition of Taq MutS enabled the ultrasensitive detection of as little as 10 ymol of targeted miRNAs in 50 min, which corresponds to less than 10 copies of miRNAs in a total volume of 20 μl. Additionally, the assay exhibited a dynamic range of up to 12 orders of magnitude. The ReFIRE system also showed high specificity, enabling differentiation between homologous miRNA family members exhibiting only single-base differences. The sensitivity, specificity, and dynamic range associated with this system were greater than most currently available miRNA isothermal amplification assays. Moreover, when target-specific primers were labeled with different fluorescent reporters, multiplex analysis was easily performed in a single tube, permitting accurate normalization of miRNA expression. This simple, fast, ultrasensitive, highly specific, and easy-to-multiplex method could significantly contribute to research investigations pertaining to the biological roles of miRNA, as well as clinical diagnosis of various diseases that involve miRNA disruptions. Graphical Abstract The principle of ReFIRE system.
Collapse
Affiliation(s)
- Jun-Fu Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Na Zhao
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Han-Qing Xu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Han Xia
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Kun Wei
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Wei-Ling Fu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Gaotanyan Road, Shapingba District, Chongqing, 400038, China.
| | - Qing Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Gaotanyan Road, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
359
|
Elevation of Il6 is associated with disturbed let-7 biogenesis in a genetic model of depression. Transl Psychiatry 2016; 6:e869. [PMID: 27529677 PMCID: PMC5022082 DOI: 10.1038/tp.2016.136] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 05/12/2016] [Accepted: 06/19/2016] [Indexed: 12/30/2022] Open
Abstract
Elevation of the proinflammatory cytokine IL-6 has been implicated in depression; however, the mechanisms remain elusive. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit gene expression post-transcriptionally. The lethal-7 (let-7) miRNA family was suggested to be involved in the inflammation process and IL-6 was shown to be one of its targets. In the present study, we report elevation of Il6 in the prefrontal cortex (PFC) of a genetic rat model of depression, the Flinders Sensitive Line (FSL) compared to the control Flinders Resistant Line. This elevation was associated with an overexpression of LIN28B and downregulation of let-7 miRNAs, the former an RNA-binding protein that selectively represses let-7 synthesis. Also DROSHA, a key enzyme in miRNA biogenesis was downregulated in FSL. Running was previously shown to have an antidepressant-like effect in the FSL rat. We found that running reduced Il6 levels and selectively increased let-7i and miR-98 expression in the PFC of FSL, although there were no differences in LIN28B and DROSHA expression. Pri-let-7i was upregulated in the running FSL group, which associated with increased histone H4 acetylation. In conclusion, the disturbance of let-7 family biogenesis may underlie increased proinflammatory markers in the depressed FSL rats while physical activity could reduce their expression, possibly through regulating primary miRNA expression via epigenetic mechanisms.
Collapse
|
360
|
Wen D, Peng Y, Liu D, Weizmann Y, Mahato RI. Mesenchymal stem cell and derived exosome as small RNA carrier and Immunomodulator to improve islet transplantation. J Control Release 2016; 238:166-175. [PMID: 27475298 DOI: 10.1016/j.jconrel.2016.07.044] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
Human bone marrow mesenchymal stem cells (hBMSCs) and their exosomes can suppress immune reaction and deliver small RNAs. Thus, they may improve islet transplantation by delivering small RNAs for promoting islet function and inhibiting immune rejection. Here, we proposed an hBMSC and its exosome-based therapy to overcome immune rejection and poor islet function, both of which hinder the success of islet transplantation. We found overexpressed siFas and anti-miR-375 in plasmid encoding shFas and anti-miR-375 transfected hBMSC-derived exosomes, which silenced Fas and miR-375 of human islets and improved their viability and function against inflammatory cytokines. This plasmid transfected hBMSCs downregulated Fas and miR-375 of human islets in a humanized NOD scid gamma (NSG) mouse model, whose immune reaction was inhibited by injecting hBMSC and peripheral blood mononuclear cell (PBMC) co-cultured exosomes. These exosomes suppressed immune reaction by inhibiting PBMC proliferation and enhancing regulatory T cell (Treg) function. Collectively, our studies elucidated the mechanisms of RNA delivery from hBMSCs to human islets and the immunosuppressive effect of hBMSC and peripheral blood mononuclear cell co-cultured exosomes for improving islet transplantation.
Collapse
Affiliation(s)
- Di Wen
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Yang Peng
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Di Liu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, United States
| | - Yossi Weizmann
- Department of Chemistry, University of Chicago, Chicago, IL 60637, United States
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
361
|
Chen X, Lu P, Wu Y, Wang DD, Zhou S, Yang SJ, Shen HY, Zhang XH, Zhao JH, Tang JH. MiRNAs-mediated cisplatin resistance in breast cancer. Tumour Biol 2016; 37:12905-12913. [DOI: 10.1007/s13277-016-5216-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
|
362
|
Noncoding RNAs Regulating p53 and c-Myc Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:337-65. [DOI: 10.1007/978-981-10-1498-7_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
363
|
Sharma A, Sahu S, Kumari P, Gopi SR, Malhotra R, Biswas S. Genome-wide identification and functional annotation of miRNAs in anti-inflammatory plant and their cross-kingdom regulation in Homo sapiens. J Biomol Struct Dyn 2016; 35:1389-1400. [DOI: 10.1080/07391102.2016.1185381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ankita Sharma
- Department of Genomics and Molecular Medicine, Institute of Genomics and Integrative Biology, Delhi, India
| | - Sarika Sahu
- School of Biotechnology, Shobhit University, Meerut, Uttar Pradesh, India
| | - Pooja Kumari
- Department of Genomics and Molecular Medicine, Institute of Genomics and Integrative Biology, Delhi, India
| | - Soundhara Rajan Gopi
- Department of Genomics and Molecular Medicine, Institute of Genomics and Integrative Biology, Delhi, India
| | - Rajesh Malhotra
- Department of Orthopaedics, All India Institute of Medical Science, New Delhi, India
| | - Sagarika Biswas
- Department of Genomics and Molecular Medicine, Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
364
|
Wang Y, Chen J, Yang W, Mo F, Senz J, Yap D, Anglesio MS, Gilks B, Morin GB, Huntsman DG. The oncogenic roles of DICER1 RNase IIIb domain mutations in ovarian Sertoli-Leydig cell tumors. Neoplasia 2016; 17:650-60. [PMID: 26408257 PMCID: PMC4674484 DOI: 10.1016/j.neo.2015.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/11/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022] Open
Abstract
DICER1, an endoribonuclease required for microRNA (miRNA) biogenesis, is essential for embryogenesis and the development of many organs including ovaries. We have recently identified somatic hotspot mutations in RNase IIIb domain of DICER1 in half of ovarian Sertoli-Leydig cell tumors, a rare class of sex-cord stromal cell tumors in young women. These hotspot mutations lost IIIb cleavage activity of DICER1 in vitro and failed to produce 5p-derived miRNAs in mouse Dicer1-null ES cells. However, the oncogenic potential of these hotspot DICER1 mutations has not been studied. Here, we further revealed that the global expression of 5p-derived miRNAs was dramatically reduced in ovarian Sertoli-Leydig cell tumors carrying DICER1 hotspot mutations compared with those without DICER1 hotspot mutation. The miRNA production defect was associated with the deregulation of genes controlling cell proliferation and the cell fate. Using an immortalized human granulosa cell line, SVOG3e, we determined that the D1709N-DICER1 hotspot mutation failed to produce 5p-derived miRNAs, deregulated the expression of several genes that control gonadal differentiation and cell proliferation, and promoted cell growth. Re-expression of let-7 significantly inhibited the growth of D1709N-DICER1 SVOG3e cells, accompanied by the suppression of key regulators of cell cycle control and ovarian gonad differentiation. Taken together, our data revealed that DICER1 hotspot mutations cause systemic loss of 5p-miRNAs that can both drive pseudodifferentiation of testicular elements and cause oncogenic transformation in the ovary.
Collapse
Affiliation(s)
- Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, British Columbia Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Jiamin Chen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Winnie Yang
- Department of Molecular Oncology, British Columbia Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Fan Mo
- Vancouver Prostate Cancer Centre, Vancouver, BC, Canada
| | - Janine Senz
- Department of Molecular Oncology, British Columbia Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Damian Yap
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, British Columbia Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Michael S Anglesio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, British Columbia Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gregg B Morin
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, British Columbia Cancer Agency Cancer Research Centre, Vancouver, BC, Canada.
| |
Collapse
|
365
|
Maldotti M, Incarnato D, Neri F, Krepelova A, Rapelli S, Anselmi F, Parlato C, Basile G, Dettori D, Calogero R, Oliviero S. The long intergenic non-coding RNA CCR492 functions as a let-7 competitive endogenous RNA to regulate c-Myc expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1322-32. [PMID: 27344374 DOI: 10.1016/j.bbagrm.2016.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/06/2016] [Accepted: 06/22/2016] [Indexed: 02/03/2023]
Abstract
In mammals the cell-cycle progression through the G1 phase is a tightly regulated process mediated by the transcriptional activation of early genes in response to mitogenic stimuli, whose dysregulation often leads to tumorigenesis. We here report the discovery by RNA-seq of cell-cycle regulated (CCR) long intergenic non-coding RNAs (lincRNAs), potentially involved in the control of the cell-cycle progression. We identified 10 novel lincRNAs expressed in response to serum treatment in mouse embryonic fibroblasts (MEFs) and in BALB/c fibroblasts, comparably to early genes. By loss-of-function experiments we found that lincRNA CCR492 is required for G1/S progression, localizes in the cell cytoplasm and contains 4 let-7 microRNA recognition elements (MREs). Mechanistically, CCR492 functions as a competing endogenous RNA (ceRNA) to antagonize the function of let-7 microRNAs, leading to the de-repression of c-Myc. Moreover, we show that ectopic expression of CCR492 along with a constitutively active H-Ras promotes cell transformation. Thus, we identified a new lincRNA expressed as an early gene in mammalian cells to regulate the cell-cycle progression by upregulating c-Myc expression.
Collapse
Affiliation(s)
- Mara Maldotti
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy
| | - Danny Incarnato
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy
| | - Francesco Neri
- Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy
| | - Anna Krepelova
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy
| | - Stefania Rapelli
- Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy
| | - Francesca Anselmi
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy
| | - Caterina Parlato
- Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy
| | - Giulia Basile
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy
| | - Daniela Dettori
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Nizza 52, Torino, Italy
| | - Raffaele Calogero
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Nizza 52, Torino, Italy
| | - Salvatore Oliviero
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy.
| |
Collapse
|
366
|
Abstract
The RNA-binding protein Lin28 regulates the expression of the let-7 family of microRNAs (miRNAs) during early embryonic development. Lin28 recruits the 3' terminal uridylyl transferase (TUTase) Zcchc11 (TUT4) and/or Zcchc6 (TUT7) to precursor let-7 RNA (pre-let-7) to selectively block let-7 biogenesis. Uridylated pre-let-7 is targeted for decay by the downstream exonuclease Dis3l2 thereby preventing processing to mature let-7. Activation of this oncogenic pathway via up-regulation of Lin28 expression promotes cellular transformation, drives tumorigenesis in mouse models, and is frequently observed in a wide variety of cancer. Recent proof-of-principle experiments showed that Zcchc11 knockdown inhibits the tumorigenicity of Lin28-expressing human cancer cells and established this enzyme as a possible new therapeutic target for human malignancies. However, there are currently no known pharmacological agents capable of targeting this novel enzyme. In this study we developed and applied a sensitive biochemical assay that monitors Zcchc11 activity. Using this assay we performed an automated high-throughput screen of ∼ 15,000 chemicals to identify putative TUTase inhibitors. Several of these small molecules were validated as specific inhibitors of Zcchc11 activity. Our results demonstrate the feasibility of screening for TUTase inhibitors and present a relatively simple platform that can be exploited for future drug discovery efforts aimed at restoring let-7 expression in cancer.
Collapse
Affiliation(s)
- Shuibin Lin
- a Stem Cell Program ; Boston Children's Hospital ; Boston , MA USA
| | | |
Collapse
|
367
|
Saeidimehr S, Ebrahimi A, Saki N, Goodarzi P, Rahim F. MicroRNA-Based Linkage between Aging and Cancer: from Epigenetics View Point. CELL JOURNAL 2016; 18:117-26. [PMID: 27540517 PMCID: PMC4988411 DOI: 10.22074/cellj.2016.4303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 10/01/2015] [Indexed: 02/01/2023]
Abstract
Ageing is a complex process and a broad spectrum of physical, psychological, and
social changes over time. Accompanying diseases and disabilities, which can interfere
with cancer treatment and recovery, occur in old ages. MicroRNAs (miRNAs) are a
set of small non-coding RNAs, which have considerable roles in post-transcriptional
regulation at gene expression level. In this review, we attempted to summarize the current knowledge of miRNAs functions in ageing, with mainly focuses on malignancies
and all underlying genetic, molecular and epigenetics mechanisms. The evidences indicated the complex and dynamic nature of miRNA-based linkage of ageing and cancer
at genomics and epigenomics levels which might be generally crucial for understanding
the mechanisms of age-related cancer and ageing. Recently in the field of cancer and
ageing, scientists claimed that uric acid can be used to regulate reactive oxygen species (ROS), leading to cancer and ageing prevention; these findings highlight the role of
miRNA-based inhibition of the SLC2A9 antioxidant pathway in cancer, as a novel way to
kill malignant cells, while a patient is fighting with cancer.
Collapse
Affiliation(s)
| | - Ammar Ebrahimi
- Department of Medical Biotechnology, School of Advanced Medical Technology, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmaldin Saki
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parisa Goodarzi
- School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
368
|
Inhibition of colorectal cancer stem cell survival and invasive potential by hsa-miR-140-5p mediated suppression of Smad2 and autophagy. Oncotarget 2016; 6:19735-46. [PMID: 25980495 PMCID: PMC4637317 DOI: 10.18632/oncotarget.3771] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/15/2015] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third highest mortality cancer in the United States and frequently metastasizes to liver and lung. Smad2 is a key element downstream of the TGF-β signaling pathway to regulate cancer metastasis by promoting epithelial to mesenchymal transition and maintaining the cancer stem cell (CSC) phenotype. In this study, we show that hsa-miR-140-5p directly targets Smad2 and overexpression of hsa-miR-140-5p in CRC cell lines decreases Smad2 expression levels, leading decreased cell invasion and proliferation, and increasing cell cycle arrest. Ectopic expression of hsa-miR-140-5p in colorectal CSCs inhibited CSC growth and sphere formation in vitro by disrupting autophagy. We have systematically identified targets of hsa-miR-140-5p involved in autophagy. Furthermore, overexpression of hsa-miR-140-5p in CSCs abolished tumor formation and metastasis in vivo. In addition, there is a progressive loss of hsa-miR-140-5p expression from normal colorectal mucosa to primary tumor tissues, with further reduction in liver metastatic tissues. Higher hsa-miR-140 expression is significantly correlated with better survival in stage III and IV colorectal cancer patients. The functional and clinical significance of hsa-miR-140-5p suggests that it is a key regulator in CRC progression and metastasis, and may have potential as a novel therapeutic molecule to treat CRC.
Collapse
|
369
|
Wang B, Yao K, Huuskes BM, Shen HH, Zhuang J, Godson C, Brennan EP, Wilkinson-Berka JL, Wise AF, Ricardo SD. Mesenchymal Stem Cells Deliver Exogenous MicroRNA-let7c via Exosomes to Attenuate Renal Fibrosis. Mol Ther 2016; 24:1290-301. [PMID: 27203438 DOI: 10.1038/mt.2016.90] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 04/20/2016] [Indexed: 02/07/2023] Open
Abstract
The advancement of microRNA (miRNA) therapies has been hampered by difficulties in delivering miRNA to the injured kidney in a robust and sustainable manner. Using bioluminescence imaging in mice with unilateral ureteral obstruction (UUO), we report that mesenchymal stem cells (MSCs), engineered to overexpress miRNA-let7c (miR-let7c-MSCs), selectively homed to damaged kidneys and upregulated miR-let7c gene expression, compared with nontargeting control (NTC)-MSCs. miR-let7c-MSC therapy attenuated kidney injury and significantly downregulated collagen IVα1, metalloproteinase-9, transforming growth factor (TGF)-β1, and TGF-β type 1 receptor (TGF-βR1) in UUO kidneys, compared with controls. In vitro analysis confirmed that the transfer of miR-let7c from miR-let7c-MSCs occurred via secreted exosomal uptake, visualized in NRK52E cells using cyc3-labeled pre-miRNA-transfected MSCs with/without the exosomal inhibitor, GW4869. The upregulated expression of fibrotic genes in NRK52E cells induced by TGF-β1 was repressed following the addition of isolated exosomes or indirect coculture of miR-let7c-MSCs, compared with NTC-MSCs. Furthermore, the cotransfection of NRK52E cells using the 3'UTR of TGF-βR1 confirmed that miR-let7c attenuates TGF-β1-driven TGF-βR1 gene expression. Taken together, the effective antifibrotic function of engineered MSCs is able to selectively transfer miR-let7c to damaged kidney cells and will pave the way for the use of MSCs for therapeutic delivery of miRNA targeted at kidney disease.
Collapse
Affiliation(s)
- Bo Wang
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Kevin Yao
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Brooke M Huuskes
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Hsin-Hui Shen
- Department of Microbiology, Monash University, Victoria, Australia
| | - Junli Zhuang
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin P Brennan
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | | | - Andrea F Wise
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Sharon D Ricardo
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| |
Collapse
|
370
|
Short SC. Science in Focus: MicroRNA in Glioma - Potential as Biomarkers and Therapeutic Targets. Clin Oncol (R Coll Radiol) 2016; 28:543-6. [PMID: 27184942 DOI: 10.1016/j.clon.2016.04.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022]
Affiliation(s)
- S C Short
- Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, UK.
| |
Collapse
|
371
|
Reid G, Kao SC, Pavlakis N, Brahmbhatt H, MacDiarmid J, Clarke S, Boyer M, van Zandwijk N. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 2016; 8:1079-85. [PMID: 27185582 DOI: 10.2217/epi-2016-0035] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
miRNAs are responsible for post-transcriptional control of gene expression, and are frequently downregulated in cancer. It has become well established that restoring miRNA levels can inhibit tumor growth, and many studies have demonstrated this in preclinical models. This in turn has led to the first clinical trials of miRNA replacement therapy. This special report focuses on the development of TargomiRs - miRNA mimics delivered by targeted bacterial minicells - and the very first clinical experience of a miRNA replacement therapy in thoracic cancer patients in the Phase I MesomiR-1 trial.
Collapse
Affiliation(s)
- Glen Reid
- Asbestos Diseases Research Institute, Concord, NSW 2139, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Steven C Kao
- Asbestos Diseases Research Institute, Concord, NSW 2139, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.,Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Sydney, Australia
| | - Nick Pavlakis
- Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW 2065, Australia.,Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | | | | | - Stephen Clarke
- Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW 2065, Australia.,Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Michael Boyer
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.,Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW 2050, Sydney, Australia
| | - Nico van Zandwijk
- Asbestos Diseases Research Institute, Concord, NSW 2139, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
372
|
Managing Pancreatic Adenocarcinoma: A Special Focus in MicroRNA Gene Therapy. Int J Mol Sci 2016; 17:ijms17050718. [PMID: 27187371 PMCID: PMC4881540 DOI: 10.3390/ijms17050718] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer is an aggressive disease and the fourth most lethal cancer in developed countries. Despite all progress in medicine and in understanding the molecular mechanisms of carcinogenesis, pancreatic cancer still has a poor prognosis, the median survival after diagnosis being around 3 to 6 months and the survival rate of 5 years being less than 4%. For pancreatic ductal adenocarcinoma (PDAC), which represents more than 90% of new pancreatic cancer cases, the prognosis is worse than for the other cancers with a patient mortality of approximately 99%. Therefore, there is a pressing need for developing new and efficient therapeutic strategies for pancreatic cancer. In this regard, microRNAs not only have been seen as potential diagnostic and prognostic molecular markers but also as promising therapeutic agents. In this context, this review provides an examination of the most frequently deregulated microRNAs (miRNAs) in PDAC and their putative molecular targets involved in the signaling pathways of pancreatic
carcinogenesis. Additionally, it is presented a summary of gene therapy clinical trials involving miRNAs and it is illustrated the therapeutic potential associated to these small non-coding RNAs, for PDAC treatment. The facts presented here constitute a strong evidence of the remarkable opportunity associated to the application of microRNA-based therapeutic strategies as a novel approach for cancer therapy.
Collapse
|
373
|
Jayaram H, Cepurna WO, Johnson EC, Morrison JC. MicroRNA Expression in the Glaucomatous Retina. Invest Ophthalmol Vis Sci 2016; 56:7971-82. [PMID: 26720444 DOI: 10.1167/iovs.15-18088] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE MicroRNAs are small, endogenous noncoding RNAs that modulate posttranscriptional gene expression. Although the contribution of microRNAs to the pathogenesis of glaucomatous damage is unknown, supporting evidence from central nervous system (CNS) research suggests they may play a role. It was therefore hypothesized that microRNAs known to be altered in CNS injury are also altered in experimental glaucoma. METHODS Intraocular pressure (IOP) was elevated in rats by unilateral injection of hypertonic saline and IOP monitored for 5 weeks. After rats were killed, retrobulbar optic nerve sections were graded for damage. MicroRNA was extracted from whole retinae of eyes with advanced nerve damage (n = 8) and from normal, noninjected control eyes (n = 8). Quantitative PCRs were performed using a panel of 17 microRNAs, reported from CNS research to be implicated in mechanisms also linked to glaucomatous damage. Computationally and experimentally derived gene targets were identified for the differentially expressed microRNAs. These were then integrated with existing gene array data. Functional interpretation was performed using the Molecular Signatures Database and DAVID Functional Annotation Clustering. RESULTS Eight microRNAs were significantly downregulated in glaucomatous retinae compared with controls (miR-181c, miR-497, miR-204, let-7a, miR-29b, miR-16, miR106b, and miR-25); miR-27a was significantly upregulated. Enrichment of targets associated with extracellular matrix/cell proliferation, immune system, and regulation of apoptosis were observed. Cholesterol homeostasis and mTORC-1 pathways showed reduced expression. CONCLUSIONS MicroRNAs are differentially expressed in retinae of eyes with advanced glaucomatous damage compared with normal controls. Integrating microRNA with gene expression data may improve understanding of the complex biological responses produced by chronically elevated IOP.
Collapse
|
374
|
Zhang Z, Li Y, Huang L, Xiao Q, Chen X, Zhong J, Chen Y, Yang D, Han Z, Shu Y, Dai M, Cao K. Let-7a suppresses macrophage infiltrations and malignant phenotype of Ewing sarcoma via STAT3/NF-κB positive regulatory circuit. Cancer Lett 2016; 374:192-201. [PMID: 26902422 DOI: 10.1016/j.canlet.2016.02.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/13/2016] [Accepted: 02/16/2016] [Indexed: 12/17/2022]
Abstract
The interaction between tumors cells, tumor-derived humoral factors and the bone marrow in the bone niches has been shown to be essential for bone tumor initiation and promotion. Among the tumor stromal cells, tumor-associated macrophages (TAMs) are usually the most abundant immune population. Previously, we reported that let-7a functions as a tumor suppressor in ES. Herein, we found that the suppressive effects are not only limited on the malignant phenotype of tumor cells but also on the regulation of macrophage infiltration. We observed that the let-7a expression is negatively related to macrophage infiltrations in ES. Moreover, overexpression of putative ts-miRNA let-7a significantly suppressed the recruitment of PBMCs in vitro and decreased the macrophage infiltrations in ES-xenografted tumors in vivo. Most importantly, a positive regulatory feedback loop consisting of let-7a, signal transducer and activator of transcription 3 (STAT3), and nuclear factor-kappa B (NF-κB) (let-7a/STAT3/NF-κB) was involved in let-7a-mediated suppressive effects. These data might provide evidence of a novel intracellular signaling network function in ES pathogenesis, and manipulating this novel feedback loop will have therapeutic potential for ES patients.
Collapse
Affiliation(s)
- Zhongzu Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Orthopedics, The Yongchuan Affiliated Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Yunyun Li
- Department of Gynecology and Obstetrics, The Yongchuan Affiliated Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Lu Huang
- Department of Children Health and Care, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
| | - Qianren Xiao
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Junlong Zhong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yiwei Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Dong Yang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhimin Han
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yong Shu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Kai Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
375
|
Jiang T, Wang X, Wu W, Zhang F, Wu S. Let-7c miRNA Inhibits the Proliferation and Migration of Heat-Denatured Dermal Fibroblasts Through Down-Regulating HSP70. Mol Cells 2016; 39:345-51. [PMID: 26923191 PMCID: PMC4844942 DOI: 10.14348/molcells.2016.2336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 02/07/2023] Open
Abstract
Wound healing is a complex physiological process necessitating the coordinated action of various cell types, signals and microRNAs (miRNAs). However, little is known regarding the role of miRNAs in mediating this process. In the present study, we show that let-7c miRNA is decreased in heat-denatured fibroblasts and that inhibiting let-7c expression leads to the increased proliferation and migration of dermal fibroblasts, whereas the overexpression of let-7c exerts an opposite effect. Further investigation has identified heat shock protein 70 as a direct target of let-7c and has demonstrated that the expression of HSP70 in fibroblasts is negatively correlated with let-7c levels. Moreover, down-regulation of let-7c expression is accompanied by up-regulation of Bcl-2 expression and down-regulation of Bax expression, both of which are the downstream genes of HSP70. Notably, the knockdown of HSP70 by HSP70 siRNA apparently abrogates the stimulatory effect of let-7c inhibitor on heat-denatured fibroblasts proliferation and migration. Overall, we have identified let-7c as a key regulator that inhibits fibroblasts proliferation and migration during wound healing.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033,
China
| | - Xingang Wang
- Department of Burns and Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033,
China
| | - Weiwei Wu
- Department of Burns Surgery, the First Bethune Hospital of Jilin University, Changchun 130021,
China
| | - Fan Zhang
- Center of Tuberculous Meningitis, Changchun City Hospital for Infectious Diseases, Changchun 130123,
China
| | - Shifeng Wu
- Department of Burns and Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033,
China
| |
Collapse
|
376
|
Arur S. Context-dependent regulation of Dicer activity and small RNA production: Implications to oocyte-to-embryo transition. WORM 2016; 4:e1086062. [PMID: 27123367 PMCID: PMC4826148 DOI: 10.1080/21624054.2015.1086062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/05/2015] [Accepted: 08/17/2015] [Indexed: 12/26/2022]
Abstract
Cellular and molecular mechanisms that suppress small RNAs in oocytes while maintaining them in zygotes remain unknown. Signal-mediated regulation of small RNA biogenesis pathway is emerging as a theme for regulating small RNA production. We recently reported that ERK-mediated phosphorylation of Dicer, a central player in small RNA biogenesis, induced Dicer to move from the cytoplasm to the nucleus. Dicer phosphorylation inhibited its function, e.g., the production of 26G endo-siRNAs in the female germline. Moreover, our findings showed that the inhibition of Dicer function was necessary for normal progression of meiosis I and oogenesis, and that Dicer function had to be restored before fertilization for normal progression of embryogenesis. Thus, extracellular signal-dependent inhibition and then reactivation of Dicer is essential for oocyte-to-embryo transition. Strikingly, signal-induced Dicer translocation from the cytoplasm to nucleus is evolutionarily conserved from worm, flies, mice to humans thereby suggesting the ERK-mediated control of Dicer activity may be a generalized mechanism for regulating small RNA biogenesis.
Collapse
Affiliation(s)
- Swathi Arur
- Department of Genetics; UT MD Anderson Cancer Center ; Houston, TX USA
| |
Collapse
|
377
|
Larrea E, Sole C, Manterola L, Goicoechea I, Armesto M, Arestin M, Caffarel MM, Araujo AM, Araiz M, Fernandez-Mercado M, Lawrie CH. New Concepts in Cancer Biomarkers: Circulating miRNAs in Liquid Biopsies. Int J Mol Sci 2016; 17:ijms17050627. [PMID: 27128908 PMCID: PMC4881453 DOI: 10.3390/ijms17050627] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022] Open
Abstract
The effective and efficient management of cancer patients relies upon early diagnosis and/or the monitoring of treatment, something that is often difficult to achieve using standard tissue biopsy techniques. Biological fluids such as blood hold great possibilities as a source of non-invasive cancer biomarkers that can act as surrogate markers to biopsy-based sampling. The non-invasive nature of these “liquid biopsies” ultimately means that cancer detection may be earlier and that the ability to monitor disease progression and/or treatment response represents a paradigm shift in the treatment of cancer patients. Below, we review one of the most promising classes of circulating cancer biomarkers: microRNAs (miRNAs). In particular, we will consider their history, the controversy surrounding their origin and biology, and, most importantly, the hurdles that remain to be overcome if they are really to become part of future clinical practice.
Collapse
Affiliation(s)
- Erika Larrea
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Carla Sole
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Lorea Manterola
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Ibai Goicoechea
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Armesto
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Arestin
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María M Caffarel
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - Angela M Araujo
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Araiz
- Hematology Department, Donostia Hospital, 20014 San Sebastián, Spain.
| | | | - Charles H Lawrie
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
378
|
Davudian S, Mansoori B, Shajari N, Mohammadi A, Baradaran B. BACH1, the master regulator gene: A novel candidate target for cancer therapy. Gene 2016; 588:30-7. [PMID: 27108804 DOI: 10.1016/j.gene.2016.04.040] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/28/2016] [Accepted: 04/20/2016] [Indexed: 01/17/2023]
Abstract
BACH1 (BTB and CNC homology 1, basic leucine zipper transcription factor 1) is a transcriptional factor and a member of cap 'n' collar (CNC) and basic region leucine zipper factor family. In contrast to other bZIP family members, BACH1 appeared as a comparatively specific transcription factor. It acts as transcription regulator and is recognized as a recently hypoxia regulator and functions as an inducible repressor for the HO-1 gene in many human cell types in response to stress oxidative. In regard to studies lately, although, BACH1 has been related to the regulation of oxidative stress and heme oxidation, it has never been linked to invasion and metastasis. Recent studies have showed that BACH1 is involved in bone metastasis of breast cancer by up-regulating vital metastatic genes like CXCR4 and MMP1. This newly discovered aspect of BACH1 gene provides new insight into cancer progression study and stands on its master regulator role in metastasis process, raising the possibility of considering it as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Sadaf Davudian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
379
|
Alsaweed M, Lai CT, Hartmann PE, Geddes DT, Kakulas F. Human Milk Cells and Lipids Conserve Numerous Known and Novel miRNAs, Some of Which Are Differentially Expressed during Lactation. PLoS One 2016; 11:e0152610. [PMID: 27074017 PMCID: PMC4830559 DOI: 10.1371/journal.pone.0152610] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/16/2016] [Indexed: 12/21/2022] Open
Abstract
Human milk (HM) is rich in miRNAs, which are thought to contribute to infant protection and development. We used deep sequencing to profile miRNAs in the cell and lipid fractions of HM obtained post-feeding from 10 lactating women in months 2, 4, and 6 postpartum. In both HM fractions, 1,195 mature known miRNAs were identified, which were positively associated with the cell (p = 0.048) and lipid (p = 0.010) content of HM. An additional 5,167 novel miRNA species were predicted, of which 235 were high-confidence miRNAs. HM cells contained more known miRNAs than HM lipids (1,136 and 835 respectively, p<0.001). Although the profile of the novel miRNAs was very different between cells and lipids, with the majority conserved in the cell fraction and being mother-specific, 2/3 of the known miRNAs common between cells and lipids were similarly expressed (p>0.05). Great similarities between the two HM fractions were also found in the profile of the top 20 known miRNAs. These were largely similar also between the three lactation stages examined, as were the total miRNA concentration, and the number and expression of the known miRNAs common between cells and lipids (p>0.05). Yet, approximately a third of all known miRNAs were differentially expressed during the first 6 months of lactation (p<0.05), with more pronounced miRNA upregulation seen in month 4. These findings indicate that although the total miRNA concentration of HM cells and lipids provided to the infant does not change in first 6 months of lactation, the miRNA composition is altered, particularly in month 4 compared to months 2 and 6. This may reflect the remodeling of the gland in response to infant feeding patterns, which usually change after exclusive breastfeeding, suggesting adaptation to the infant’s needs.
Collapse
Affiliation(s)
- Mohammed Alsaweed
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
- College of Applied Medical Sciences, Majmaah University, Almajmaah, Riyadh, Saudi Arabia
| | - Ching Tat Lai
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter E. Hartmann
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Donna T. Geddes
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Foteini Kakulas
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| |
Collapse
|
380
|
Manikandan M, Deva Magendhra Rao AK, Arunkumar G, Manickavasagam M, Rajkumar KS, Rajaraman R, Munirajan AK. Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism. Mol Cancer 2016; 15:28. [PMID: 27056547 PMCID: PMC4823852 DOI: 10.1186/s12943-016-0512-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/31/2016] [Indexed: 12/22/2022] Open
Abstract
Background The advantages and utility of microRNAs (miRNAs) as diagnostic and prognostic cancer markers is at the vanguard in recent years. In this study, we attempted to identify and validate the differential expression of miRNAs in oral squamous cell carcinoma (OSCC), to correlate their expression with the clinico-pathological profile of tumours and to identify the signaling pathways through which the aberrantly expressed miRNAs effect tumourigenesis. Methods miRCURY LNA™ array with probes specific to 1168 miRNAs and TaqMan assays specific for 10 miRNAs was employed to evaluate and validate miRNA expression in a discovery cohort (n = 29) and validation cohort (n = 61) of primary OSCC tissue specimens, respectively. A computational pipeline with sequential integration of data from miRTarBase, CytoScape, UniProtKB and DIANA-miRPath was utilized to map the target genes of deregulated miRNAs and associated molecular pathways. Results Microarray profiling identified 46 miRNAs that were differentially expressed in OSCC. Unsupervised clustering demonstrated a high degree of molecular heterogeneity across the tumour samples as the clusters did not represent any of their clinico-pathological characteristics. The differential expression of 10 miRNAs were validated by RT-qPCR (let-7a, let-7d, let-7f and miR-16 were downregulated while miR-29b, miR-142-3p, miR-144, miR-203, and miR-223 were upregulated in OSCC; the expression of miR-1275 was variable in tumours, with high levels associated to regional lymph node invasion; additionally, miR-223 exhibited an association with advanced tumour stage/size). In silico analyses of the experimentally confirmed target genes of miRNAs revamp the relationship of upregulated miRNAs with tumour suppressor genes and of downregulated miRNAs with oncogenes. Further, the differentially expressed miRNAs may play a role by simultaneously activating genes of PI3K/Akt signaling on one hand and by repressing genes of p53 signaling pathway on the other. Conclusions The identified differentially expressed miRNAs and signaling pathways deregulated in OSCC have implications for the development of novel therapeutic strategies. To the best of our knowledge, this is the first report to show the association of miR-1275 with nodal invasion and the upregulation of miR-144 in OSCC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0512-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mayakannan Manikandan
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani campus, Chennai, 600113, Tamil Nadu, India
| | - Arungiri Kuha Deva Magendhra Rao
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani campus, Chennai, 600113, Tamil Nadu, India
| | - Ganesan Arunkumar
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani campus, Chennai, 600113, Tamil Nadu, India
| | - Meenakshisundaram Manickavasagam
- Department of Medical Oncology, Government Arignar Anna Memorial Cancer Research Institute and Hospital, Karapettai, Kanchipuram, 631502, Tamil Nadu, India
| | | | - Ramamurthy Rajaraman
- Centre for Oncology, Government Royapettah Hospital & Kilpauk Medical College, Chennai, 600014, Tamil Nadu, India
| | - Arasambattu Kannan Munirajan
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani campus, Chennai, 600113, Tamil Nadu, India.
| |
Collapse
|
381
|
Rivera A, Barr T, Rais M, Engelmann F, Messaoudi I. microRNAs Regulate Host Immune Response and Pathogenesis During Influenza Infection in Rhesus Macaques. Viral Immunol 2016; 29:212-27. [PMID: 27008411 DOI: 10.1089/vim.2015.0074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
microRNAs (miRNAs) are small noncoding RNAs that are key regulators of biological processes, including the immune response to viral infections. Differential expression levels of cellular miRNAs and their predicted targets have been described in the lungs of H1N1-infected BALB/c mice, the lungs of H5N1 influenza-infected cynomolgus macaques, and in peripheral blood mononuclear cells (PBMCs) of critically ill patients infected with 2009 pandemic H1N1. However, a longitudinal analysis of changes in the expression of miRNAs and their targets during influenza infection and how they relate to viral replication and host response has yet to be carried out. In the present study, we conducted a comprehensive analysis of innate and adaptive immune responses as well as the expression of several miRNAs and their validated targets in both peripheral blood and bronchoalveolar lavage (BAL) collected from rhesus macaques over the course of infection with the 2009 H1N1 virus A/Mexico/4108/2009 (MEX4108). We describe a distinct set of differentially expressed miRNAs in BAL and PBMCs, which regulate the expression of genes involved in inflammation, immune response, and regulation of cell cycle and apoptosis.
Collapse
Affiliation(s)
- Andrea Rivera
- 1 Division of Biomedical Sciences, University of California , Riverside, Riverside, California
| | - Tasha Barr
- 1 Division of Biomedical Sciences, University of California , Riverside, Riverside, California
| | - Maham Rais
- 1 Division of Biomedical Sciences, University of California , Riverside, Riverside, California
| | - Flora Engelmann
- 1 Division of Biomedical Sciences, University of California , Riverside, Riverside, California
| | - Ilhem Messaoudi
- 1 Division of Biomedical Sciences, University of California , Riverside, Riverside, California.,2 Oregon Primate Research Center , Beaverton, Oregon
| |
Collapse
|
382
|
Huang Z, Gan J, Long Z, Guo G, Shi X, Wang C, Zang Y, Ding Z, Chen J, Zhang J, Dong L. Targeted delivery of let-7b to reprogramme tumor-associated macrophages and tumor infiltrating dendritic cells for tumor rejection. Biomaterials 2016; 90:72-84. [PMID: 26994345 DOI: 10.1016/j.biomaterials.2016.03.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 02/28/2016] [Accepted: 03/06/2016] [Indexed: 02/04/2023]
Abstract
Both tumor associated macrophages (TAMs) and tumor infiltrating dendritic cells (TIDCs) are important components in the tumor microenvironment that mediate tumor immunosuppression and promote cancer progression. Targeting these cells and altering their phenotypes may become a new strategy to recover their anti-tumor activities and thereby restore the local immune surveillance against tumor. In this study, we constructed a nucleic acid delivery system for the delivery of let-7b, a synthetic microRNA mimic. Our carrier has an affinity for the mannose receptors on TAMs/TIDCs and is responsive to the low-pH tumor microenvironment. The delivery of let-7b could reactivate TAMs/TIDCs by acting as a TLR-7 agonist and suppressing IL-10 production in vitro. In a breast cancer mouse model, let-7b delivered by this system efficiently reprogrammed the functions of TAMs/TIDCs, reversed the suppressive tumor microenvironment, and inhibited tumor growth. Taken together, this strategy, designed based upon TAMs/TIDCs-targeting delivery and the dual biological functions of let-7b (TLR-7 ligand and IL-10 inhibitor), may provide a new approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Jingjing Gan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Ziyan Long
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Guangxing Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Xiafei Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
383
|
MicroRNA In Lung Cancer: Novel Biomarkers and Potential Tools for Treatment. J Clin Med 2016; 5:jcm5030036. [PMID: 27005669 PMCID: PMC4810107 DOI: 10.3390/jcm5030036] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer death in men and women worldwide. The lack of specific and sensitive tools for early diagnosis as well as still-inadequate targeted therapies contribute to poor outcomes. MicroRNAs are small non-coding RNAs, which regulate gene expression post-transcriptionally by translational repression or degradation of target mRNAs. A growing body of evidence suggests various roles of microRNAs including development and progression of lung cancer. In lung cancer, several studies have showed that certain microRNA profiles classified lung cancer subtypes, and that specific microRNA expression signatures distinguished between better-prognosis and worse-prognosis lung cancers. Furthermore, microRNAs circulate in body fluids, and therefore may serve as promising biomarkers for early diagnosis of lung cancer as well as for predicting prognosis of patients. In the present review, we briefly summarize microRNAs in the development and progression of lung cancer, focusing on possible applications of microRNAs as novel biomarkers and tools for treatment.
Collapse
|
384
|
Mitxelena J, Apraiz A, Vallejo-Rodríguez J, Malumbres M, Zubiaga AM. E2F7 regulates transcription and maturation of multiple microRNAs to restrain cell proliferation. Nucleic Acids Res 2016; 44:5557-5570. [PMID: 26961310 PMCID: PMC4937299 DOI: 10.1093/nar/gkw146] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
E2F transcription factors (E2F1-8) are known to coordinately regulate the expression of a plethora of target genes, including those coding for microRNAs (miRNAs), to control cell cycle progression. Recent work has described the atypical E2F factor E2F7 as a transcriptional repressor of cell cycle-related protein-coding genes. However, the contribution of E2F7 to miRNA gene expression during the cell cycle has not been defined. We have performed a genome-wide RNA sequencing analysis to identify E2F7-regulated miRNAs and show that E2F7 plays as a major role in the negative regulation of a set of miRNAs that promote cellular proliferation. We provide mechanistic evidence for an interplay between E2F7 and the canonical E2F factors E2F1-3 in the regulation of multiple miRNAs. We show that miR-25, -26a, -27b, -92a and -7 expression is controlled at the transcriptional level by the antagonistic activity of E2F7 and E2F1-3. By contrast, let-7 miRNA expression is controlled indirectly through a novel E2F/c-MYC/LIN28B axis, whereby E2F7 and E2F1-3 modulate c-MYC and LIN28B levels to impact let-7 miRNA processing and maturation. Taken together, our data uncover a new regulatory network involving transcriptional and post-transcriptional mechanisms controlled by E2F7 to restrain cell cycle progression through repression of proliferation-promoting miRNAs.
Collapse
Affiliation(s)
- Jone Mitxelena
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Aintzane Apraiz
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Jon Vallejo-Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Ana M Zubiaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| |
Collapse
|
385
|
Luo W, Lin S, Li G, Nie Q, Zhang X. Integrative Analyses of miRNA-mRNA Interactions Reveal let-7b, miR-128 and MAPK Pathway Involvement in Muscle Mass Loss in Sex-Linked Dwarf Chickens. Int J Mol Sci 2016; 17:276. [PMID: 26927061 PMCID: PMC4813140 DOI: 10.3390/ijms17030276] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 01/21/2023] Open
Abstract
The sex-linked dwarf (SLD) chicken is an ideal model system for understanding growth hormone (GH)-action and growth hormone receptor (GHR) function because of its recessive mutation in the GHR gene. Skeletal muscle mass is reduced in the SLD chicken with a smaller muscle fiber diameter. Our previous study has presented the mRNA and miRNA expression profiles of the SLD chicken and normal chicken between embryo day 14 and seven weeks of age. However, the molecular mechanism of GHR-deficient induced muscle mass loss is still unclear, and the key molecules and pathways underlying the GHR-deficient induced muscle mass loss also remain to be illustrated. Here, by functional network analysis of the differentially expressed miRNAs and mRNAs between the SLD and normal chickens, we revealed that let-7b, miR-128 and the MAPK pathway might play key roles in the GHR-deficient induced muscle mass loss, and that the reduced cell division and growth are potential cellular processes during the SLD chicken skeletal muscle development. Additionally, we also found some genes and miRNAs involved in chicken skeletal muscle development, through the MAPK, PI3K-Akt, Wnt and Insulin signaling pathways. This study provides new insights into the molecular mechanism underlying muscle mass loss in the SLD chickens, and some regulatory networks that are crucial for chicken skeletal muscle development.
Collapse
Affiliation(s)
- Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Shumao Lin
- College of Life Science, Foshan University, Foshan 528231, Guangdong, China.
| | - Guihuan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
386
|
Chen X, Zhang Y, Shi Y, Lian H, Tu H, Han S, Yin J, Peng B, Zhou B, He X, Liu W. MiR-129 triggers autophagic flux by regulating a novel Notch-1/ E2F7/Beclin-1 axis to impair the viability of human malignant glioma cells. Oncotarget 2016; 7:9222-9235. [PMID: 26824182 PMCID: PMC4891036 DOI: 10.18632/oncotarget.7003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/01/2016] [Indexed: 12/19/2022] Open
Abstract
Abnormalities of autophagy have been implicated in an increasing number of human cancers, including glioma. To date, there is a wealth of evidence indicating that microRNAs (miRNAs) contribute significantly to autophagy in a variety of cancers. Previous studies have suggested that miR-129 functioned as an important inhibitor of the cell cycle and could promote the apoptosis of many cancer cell lines in vitro. Here, we reported that miR-129 acted as a potent inducer of autophagy. Forced expression of miR-129 could induce autophagic flux by targetedly suppressing Notch-1 in glioma cells. The autophagy induced by miR-129 could restrain the activity of mammalian target of rapamycin (mTOR) and upregulate Beclin-1. Moreover, we demonstrated that E2F transcription factor 7 (E2F7) could also trigger autophagic flux by upregulating Beclin-1 and mediating miR-129-induced autophagy. Additionally, knockdown of Notch-1 could upregulate the expression of E2F7, whereas downregulation of E2F7 alleviated shNotch-1-induced autophagic flux. In particular, knockdown of endogenous Beclin-1 could effectively reduce autophagic flux stimulated by miR-129 and E2F7. Interestingly, upon attenuation of miR-129- or E2F7-triggered autophagic flux rescued cell viability suppressed by them. More importantly, intratumoral injection of pHAGE-miR-129 lentivirus in a nude mouse xenograft model significantly restrained tumor growth and triggered autophagy. In conclusion, these findings identify a new function for miR-129 as a potent inducer of autophagy through a novel Notch-1/E2F7/Beclin-1 axis in glioma.
Collapse
Affiliation(s)
- Xiong Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yingying Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yingying Shi
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Haiwei Lian
- Department of Neurosurgery, Wuhan University Renmin Hospital, Wuhan 430060, China
| | - Huilin Tu
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Song Han
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jun Yin
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Biwen Peng
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Beiyan Zhou
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, Texas 77843, USA
| | - Xiaohua He
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Wanhong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, China
| |
Collapse
|
387
|
Rupaimoole R, Calin GA, Lopez-Berestein G, Sood AK. miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discov 2016; 6:235-46. [PMID: 26865249 DOI: 10.1158/2159-8290.cd-15-0893] [Citation(s) in RCA: 512] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED miRNAs are a key component of the noncoding RNA family. The underlying mechanisms involved in the interplay between the tumor microenvironment and cancer cells involve highly dynamic factors such as hypoxia and cell types such as cancer-associated fibroblasts and macrophages. Although miRNA levels are known to be altered in cancer cells, recent evidence suggests a critical role for the tumor microenvironment in regulating miRNA biogenesis, methylation, and transcriptional changes. Here, we discuss the complex protumorigenic symbiotic role between tumor cells, the tumor microenvironment, and miRNA deregulation. SIGNIFICANCE miRNAs play a central role in cell signaling and homeostasis. In this article, we provide insights into the regulatory mechanisms involved in the deregulation of miRNAs in cancer cells and the tumor microenvironment and discuss therapeutic intervention strategies to overcome this deregulation.
Collapse
Affiliation(s)
- Rajesha Rupaimoole
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
388
|
Tang R, Yang C, Ma X, Wang Y, Luo D, Huang C, Xu Z, Liu P, Yang L. MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in gastric cancer. Oncotarget 2016; 7:5972-84. [PMID: 26745603 PMCID: PMC4868734 DOI: 10.18632/oncotarget.6821] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
In contrast to normal differentiated cells that depend on aerobicoxidation for energy production, cancer cells use aerobic glycolysis as the main source (Warburg's effect). The M2 splice isoform of pyruvate kinase (PKM2) is the key regulator for the aerobic glycolysis, high expression of PKM2 contributes to the aerobic glycolysis, promotes the growth of tumors. In the present study, we found that PKM2 was highly expressed in gastric cancer (GC) tissues and had a strongly inverse correlation with the expression of microRNA-let-7a (miR-let-7a). Furthermore, we found that the overexpression of miR-let-7a markedly suppressed the proliferation, migration, and invasion of GC cells by down-regulating the expression of PKM2. MicroRNAs (miRNAs) are important regulators play key roles in tumorigenesis and tumor progression. Although previous reports showed that let-7 family members act as tumor suppressors in many cancers. The specific regulatory mechanism of miR-let-7a to PKM2 in gastric cancer is still unclear. In this study, we revealed that miR-let-7a function as the antitumor and gene regulatory effects of PKM2 in GC cells.
Collapse
Affiliation(s)
- Ran Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Yang
- Liver Transplantation Center of the First Affiliated Hospital and Key Laboratory on Living Donor Liver Transplantation, Ministry of Health, Nanjing Medical University, Nanjing, China
| | - Xiang Ma
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Younan Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dakui Luo
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chi Huang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Liu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
389
|
Di Fiore R, Drago-Ferrante R, Pentimalli F, Di Marzo D, Forte IM, Carlisi D, De Blasio A, Tesoriere G, Giordano A, Vento R. Let-7d miRNA Shows Both Antioncogenic and Oncogenic Functions in Osteosarcoma-Derived 3AB-OS Cancer Stem Cells. J Cell Physiol 2016; 231:1832-41. [PMID: 26679758 DOI: 10.1002/jcp.25291] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/15/2015] [Indexed: 12/24/2022]
Abstract
Osteosarcoma (OS), an aggressive highly invasive and metastatic bone-malignancy, shows therapy resistance and recurrence, two features that likely depend on cancer stem cells (CSCs), which hold both self-renewing and malignant potential. So, effective anticancer therapies against OS should specifically target and destroy CSCs. We previously found that the let-7d microRNA was downregulated in the 3AB-OS-CSCs, derived from the human OS-MG63 cells. Here, we aimed to assess whether let-7d modulation affected tumorigenic and stemness properties of these OS-CSCs. We found that let-7d-overexpression reduced cell proliferation by decreasing CCND2 and E2F2 cell-cycle-activators and increasing p21 and p27 CDK-inhibitors. Let-7d also decreased sarcosphere-and-colony forming ability, two features associated with self-renewing, and it reduced the expression of stemness genes, including Oct3/4, Sox2, Nanog, Lin28B, and HMGA2. Moreover, let-7d induced mesenchymal-to-epithelial-transition, as shown by both N-Cadherin-E-cadherin-switch and decrease in vimentin. Surprisingly, such switch was accompanied by enhanced migratory/invasive capacities, with a strong increase in MMP9, CXCR4 and VersicanV1. Let-7d- overexpression also reduced cell sensitivity to apoptosis induced by both serum-starvation and various chemotherapy drugs, concomitant with decrease in caspase-3 and increase in BCL2 expression. Our data suggest that let-7d in 3AB-OS-CSCs could induce plastic-transitions from CSCs-to-non-CSCs and vice-versa. To our knowledge this is the first study to comprehensively examine the expression and functions of let-7d in OS-CSCs. By showing that let-7d has both tumor suppressor and oncogenic functions in this context, our findings suggest that, before prospecting new therapeutic strategies based on let-7d modulation, it is urgent to better define its multiple functions. J. Cell. Physiol. 231: 1832-1841, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy
| | - Rosa Drago-Ferrante
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy
| | - Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Domenico Di Marzo
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Iris Maria Forte
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Daniela Carlisi
- Laboratory of Biochemistry, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Polyclinic, Palermo, Italy
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy
| | - Giovanni Tesoriere
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Renza Vento
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
390
|
Prahm KP, Novotny GW, Høgdall C, Høgdall E. Current status on microRNAs as biomarkers for ovarian cancer. APMIS 2016; 124:337-55. [PMID: 26809719 DOI: 10.1111/apm.12514] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/10/2015] [Indexed: 01/05/2023]
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy in the Western world, and has a very poor prognosis, often due to late diagnosis and emergence of chemotherapy resistance. Therefore, there is an essential need for new diagnostic and prognostic markers that can improve and initiate more personalized treatment, eventually improving survival of the patients. MicroRNAs are small, non-coding RNA molecules, that post-transcriptionally regulate gene expression. Several studies have within the last decade shown that microRNAs are deregulated in OC and have potential as diagnostic and prognostic biomarkers for OC. Recently studies have also focused on microRNAs as predictors of chemotherapy responses and their potential as therapeutic targets. However, many of the published studies are difficult to interpret as a whole due to various methods of analysis. Future focus should be aimed at developing a general standardized analytical method, which can limit differences between studies thus allowing easier comparison across them. In addition, validation of studies in independent series that ideally should be histotype-specific is essential to determine the clinical role of microRNAs in different types of OC. In this review we summarize the current knowledge of microRNAs as potential biomarkers for OC, with focus on their clinical relevance.
Collapse
Affiliation(s)
- Kira Philipsen Prahm
- Molecular Unit, Department of Pathology, Danish Cancer Biobank, Herlev Hospital, University of Copenhagen, Herlev, Denmark.,Department of Gynaecology, Juliane Marie Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Guy Wayne Novotny
- Molecular Unit, Department of Pathology, Danish Cancer Biobank, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Claus Høgdall
- Department of Gynaecology, Juliane Marie Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Høgdall
- Molecular Unit, Department of Pathology, Danish Cancer Biobank, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
391
|
Pal MK, Jaiswar SP, Dwivedi VN, Tripathi AK, Dwivedi A, Sankhwar P. MicroRNA: a new and promising potential biomarker for diagnosis and prognosis of ovarian cancer. Cancer Biol Med 2016; 12:328-41. [PMID: 26779370 PMCID: PMC4706521 DOI: 10.7497/j.issn.2095-3941.2015.0024] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of death among all gynecological malignancies. Despite the technological and medical advances over the past four decades, such as the development of several biological markers (mRNA and proteins biomarkers), the mortality rate of ovarian cancer remains a challenge because of its late diagnosis, which is specifically attributed to low specificities and sensitivities. Under this compulsive scenario, recent advances in expression biology have shifted in identifying and developing specific and sensitive biomarkers, such as microRNAs (miRNAs) for cancer diagnosis and prognosis. MiRNAs are a novel class of small non-coding RNAs that deregulate gene expression at the posttranscriptional level, either by translational repression or by mRNA degradation. These mechanisms may be involved in a complex cascade of cellular events associated with the pathophysiology of many types of cancer. MiRNAs are easily detectable in tissue and blood samples of cancer patients. Therefore, miRNAs hold good promise as potential biomarkers in ovarian cancer. In this review, we attempted to provide a comprehensive profile of key miRNAs involved in ovarian carcinoma to establish miRNAs as more reliable non-invasive clinical biomarkers for early detection of ovarian cancer compared with protein and DNA biomarkers.
Collapse
Affiliation(s)
- Manish K Pal
- 1 Department of Obstetrics and Gynecology, King George Medical University, Lucknow, UP 226003, India ; 2 Biochemistry and Molecular Biology Laboratory Center for Advanced Study in Zoology, Department of Zoology, Banaras Hindu University, Varanasi, UP 221005, India ; 3 Endocrinology Division, Central Drug Research Institute, Lucknow, UP 226001, India ; 4 Photobiology Division, Indian Institute of Toxicology Research, MG Marg, Lucknow, UP 226001, India
| | - Shyam P Jaiswar
- 1 Department of Obstetrics and Gynecology, King George Medical University, Lucknow, UP 226003, India ; 2 Biochemistry and Molecular Biology Laboratory Center for Advanced Study in Zoology, Department of Zoology, Banaras Hindu University, Varanasi, UP 221005, India ; 3 Endocrinology Division, Central Drug Research Institute, Lucknow, UP 226001, India ; 4 Photobiology Division, Indian Institute of Toxicology Research, MG Marg, Lucknow, UP 226001, India
| | - Vinaya N Dwivedi
- 1 Department of Obstetrics and Gynecology, King George Medical University, Lucknow, UP 226003, India ; 2 Biochemistry and Molecular Biology Laboratory Center for Advanced Study in Zoology, Department of Zoology, Banaras Hindu University, Varanasi, UP 221005, India ; 3 Endocrinology Division, Central Drug Research Institute, Lucknow, UP 226001, India ; 4 Photobiology Division, Indian Institute of Toxicology Research, MG Marg, Lucknow, UP 226001, India
| | - Amit K Tripathi
- 1 Department of Obstetrics and Gynecology, King George Medical University, Lucknow, UP 226003, India ; 2 Biochemistry and Molecular Biology Laboratory Center for Advanced Study in Zoology, Department of Zoology, Banaras Hindu University, Varanasi, UP 221005, India ; 3 Endocrinology Division, Central Drug Research Institute, Lucknow, UP 226001, India ; 4 Photobiology Division, Indian Institute of Toxicology Research, MG Marg, Lucknow, UP 226001, India
| | - Ashish Dwivedi
- 1 Department of Obstetrics and Gynecology, King George Medical University, Lucknow, UP 226003, India ; 2 Biochemistry and Molecular Biology Laboratory Center for Advanced Study in Zoology, Department of Zoology, Banaras Hindu University, Varanasi, UP 221005, India ; 3 Endocrinology Division, Central Drug Research Institute, Lucknow, UP 226001, India ; 4 Photobiology Division, Indian Institute of Toxicology Research, MG Marg, Lucknow, UP 226001, India
| | - Pushplata Sankhwar
- 1 Department of Obstetrics and Gynecology, King George Medical University, Lucknow, UP 226003, India ; 2 Biochemistry and Molecular Biology Laboratory Center for Advanced Study in Zoology, Department of Zoology, Banaras Hindu University, Varanasi, UP 221005, India ; 3 Endocrinology Division, Central Drug Research Institute, Lucknow, UP 226001, India ; 4 Photobiology Division, Indian Institute of Toxicology Research, MG Marg, Lucknow, UP 226001, India
| |
Collapse
|
392
|
Abstract
Gene therapy is a prospective strategy to modulate gene expression level in specific cells to treat human inherited diseases, cancers, and acquired disorders. A subset of noncoding RNAs, microRNAs (miRNAs) and small interference RNAs (siRNAs), compose an important class of widely used effectors for gene therapy, especially in cancer treatment. Functioning through the RNA interference (RNAi) mechanism, miRNA and siRNA show potent ability in silencing oncogenic factors for cancer gene therapy. For a better understanding of this field, we reviewed the mechanism and biological function, the principles of design and synthesis, and the delivery strategies of noncoding RNAs with clinical potentials in cancer gene therapy.
Collapse
Affiliation(s)
- Xiaomin Zhong
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Center for Stem Cell Biology and Tissue Engineering, Department of Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, P.R. China.
| | - Dongmei Zhang
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Minmin Xiong
- Center for Stem Cell Biology and Tissue Engineering, Department of Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, P.R. China
| | - Lin Zhang
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
393
|
Chen X, Fan S, Song E. Noncoding RNAs: New Players in Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:1-47. [PMID: 27376730 DOI: 10.1007/978-981-10-1498-7_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The world of noncoding RNAs (ncRNAs) has gained widespread attention in recent years due to their novel and crucial potency of biological regulation. Noncoding RNAs play essential regulatory roles in a broad range of developmental processes and diseases, notably human cancers. Regulatory ncRNAs represent multiple levels of structurally and functionally distinct RNAs, including the best-known microRNAs (miRNAs), the complicated long ncRNAs (lncRNAs), and the newly identified circular RNAs (circRNAs). However, the mechanisms by which they act remain elusive. In this chapter, we will review the current knowledge of the ncRNA field, discussing the genomic context, biological functions, and mechanisms of action of miRNAs, lncRNAs, and circRNAs. We also highlight the implications of the biogenesis and gene expression dysregulation of different ncRNA subtypes in the initiation and development of human malignancies.
Collapse
Affiliation(s)
- Xueman Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, China
| | - Siting Fan
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, China
| | - Erwei Song
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, China.
| |
Collapse
|
394
|
Emmadi R, Canestrari E, Arbieva ZH, Mu W, Dai Y, Frasor J, Wiley E. Correlative Analysis of miRNA Expression and Oncotype Dx Recurrence Score in Estrogen Receptor Positive Breast Carcinomas. PLoS One 2015; 10:e0145346. [PMID: 26717565 PMCID: PMC4696739 DOI: 10.1371/journal.pone.0145346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022] Open
Abstract
Altered expression of miRNAs has been observed in many types of cancer, including breast cancer, and shown to contribute to cancer growth, aggressiveness, and response to therapies. In this pilot study, we investigated the possible correlation of miRNAs with risk of recurrence of estrogen receptor positive, lymph node-negative mammary carcinomas as determined by the Oncotype DX® Breast Cancer assay. To accomplish this, we extracted RNA from a collection of breast carcinomas that had previously been analyzed by Oncotype DX®. Multiple Let-7 family members were negatively correlated with the recurrence score (RS), which is consistent with their tumor suppressor properties. Additional miRNAs were found to positively correlate with RS, including miR-377-5p, miR-633b, miR-548t and miR-3648. Pathway analysis of putative and validated targets suggests that these miRNAs may have a diverse range of functions that may contribute to tumor recurrence. Taken together, these findings provide evidence that a miRNA expression signature can be developed to aid existing methods to determine the risk of recurrence for women with estrogen receptor positive breast cancers treated with endocrine therapy.
Collapse
Affiliation(s)
- Rajyasree Emmadi
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Emanuele Canestrari
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Zarema H. Arbieva
- Core Genomics Facility, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Wenbo Mu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yang Dai
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Elizabeth Wiley
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
395
|
Arora A, Singh S, Bhatt AN, Pandey S, Sandhir R, Dwarakanath BS. Interplay Between Metabolism and Oncogenic Process: Role of microRNAs. TRANSLATIONAL ONCOGENOMICS 2015; 7:11-27. [PMID: 26740741 PMCID: PMC4696840 DOI: 10.4137/tog.s29652] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/11/2015] [Accepted: 11/18/2015] [Indexed: 12/17/2022]
Abstract
Cancer is a complex disease that arises from the alterations in the composition and regulation of several genes leading to the disturbances in signaling pathways, resulting in the dysregulation of cell proliferation and death as well as the ability of transformed cells to invade the host tissue and metastasize. It is increasingly becoming clear that metabolic reprograming plays a critical role in tumorigenesis and metastasis. Therefore, targeting this phenotype is considered as a promising approach for the development of therapeutics and adjuvants. The process of metabolic reprograming is linked to the activation of oncogenes and/or suppression of tumor suppressor genes, which are further regulated by microRNAs (miRNAs) that play important roles in the interplay between oncogenic process and metabolic reprograming. Looking at the advances made in the recent past, it appears that the translation of knowledge from research in the areas of metabolism, miRNA, and therapeutic response will lead to paradigm shift in the management of this disease.
Collapse
Affiliation(s)
- Aastha Arora
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.; Department of Biochemistry, Panjab University, Chandigarh, India
| | - Saurabh Singh
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Anant Narayan Bhatt
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Sanjay Pandey
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.; Dr B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Bilikere S Dwarakanath
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.; Sri Ramachandra University, Chennai, India
| |
Collapse
|
396
|
Tuna M, Machado AS, Calin GA. Genetic and epigenetic alterations of microRNAs and implications for human cancers and other diseases. Genes Chromosomes Cancer 2015; 55:193-214. [PMID: 26651018 DOI: 10.1002/gcc.22332] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a well-studied group of noncoding RNAs that control gene expression by interacting mainly with messenger RNA. It is known that miRNAs and their biogenesis regulatory machineries have crucial roles in multiple cell processes; thus, alterations in these genes often lead to disease, such as cancer. Disruption of these genes can occur through epigenetic and genetic alterations, resulting in aberrant expression of miRNAs and subsequently of their target genes. This review focuses on the disruption of miRNAs and their key regulatory machineries by genetic alterations, with emphasis on mutations and epigenetic changes in cancer and other diseases.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Epidemiology, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Andreia S Machado
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
397
|
Kotagama K, Babb CS, Wolter JM, Murphy RP, Mangone M. A human 3'UTR clone collection to study post-transcriptional gene regulation. BMC Genomics 2015; 16:1036. [PMID: 26645212 PMCID: PMC4673713 DOI: 10.1186/s12864-015-2238-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/24/2015] [Indexed: 11/16/2022] Open
Abstract
Background 3′untranslated regions (3′UTRs) are poorly understood portions of eukaryotic mRNAs essential for post-transcriptional gene regulation. Sequence elements in 3′UTRs can be target sites for regulatory molecules such as RNA binding proteins and microRNAs (miRNAs), and these interactions can exert significant control on gene networks. However, many such interactions remain uncharacterized due to a lack of high-throughput (HT) tools to study 3′UTR biology. HT cloning efforts such as the human ORFeome exemplify the potential benefits of genomic repositories for studying human disease, especially in relation to the discovery of biomarkers and targets for therapeutic agents. Currently there are no publicly available human 3′UTR libraries. To address this we have prepared the first version of the human 3′UTRome (h3′UTRome v1) library. The h3′UTRome is produced to a single high quality standard using the same recombinational cloning technology used for the human ORFeome, enabling universal operating methods and high throughput experimentation. The library is thoroughly sequenced and annotated with simple online access to information, and made publically available through gene repositories at low cost to all scientists with minimal restriction. Results The first release of the h3′UTRome library comprises 1,461 human 3′UTRs cloned into Gateway® entry vectors, ready for downstream analyses. It contains 3′UTRs for 985 transcription factors, 156 kinases, 171 RNA binding proteins, and 186 other genes involved in gene regulation and in disease. We demonstrate the feasibility of the h3′UTRome library by screening a panel of 87 3′UTRs for targeting by two miRNAs: let-7c, which is implicated in tumorigenesis, and miR-221, which is implicated in atherosclerosis and heart disease. The panel is enriched with genes involved in the RAS signaling pathway, putative novel targets for the two miRNAs, as well as genes implicated in tumorigenesis and heart disease. Conclusions The h3′UTRome v1 library is a modular resource that can be utilized for high-throughput screens to identify regulatory interactions between trans-acting factors and 3′UTRs, Importantly, the library can be customized based on the specifications of the researcher, allowing the systematic study of human 3′UTR biology. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2238-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kasuen Kotagama
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, USA.
| | - Cody S Babb
- Virginia G. Piper Center For Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ, USA.
| | - Justin M Wolter
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, USA.
| | - Ronan P Murphy
- School of Health & Human Performance, Dublin City University, Dublin, Ireland.
| | - Marco Mangone
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, USA. .,Virginia G. Piper Center For Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
398
|
Wu K, Yang Y, Zhao J, Zhao S. BAG3-mediated miRNA let-7g and let-7i inhibit proliferation and enhance apoptosis of human esophageal carcinoma cells by targeting the drug transporter ABCC10. Cancer Lett 2015; 371:125-33. [PMID: 26655271 DOI: 10.1016/j.canlet.2015.11.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/23/2015] [Accepted: 11/27/2015] [Indexed: 12/17/2022]
Abstract
Cisplatin (diamminedichloroplatinum, DDP) is widely used as the first-line treatment for patients with unresectable or no metastatic cancer. However, the appearance of DDP resistance frequently occurred in the treatment of cancers, including esophageal carcinoma (EC). The purposes of this study are to determine the antitumor effects of miR-let-7g/i (let-7g/i) on EC cells and to investigate whether let-7g and let-7i have a relationship with the drug resistance gene ABCC10 on EC cells. qRT-PCR and western blot analysis demonstrated that Bcl2-associated athanogene 3 (BAG3) and miR-let-7g/i have the opposite expression levels in primary esophageal squamous cell carcinoma tissues and EC cell lines. Overexpression of miR-let-7g/i significantly inhibited the cell proliferation and promoted DDP-induced apoptosis of EC109 and TE10 cells. Finally, ABCC10, a drug resistance gene, was identified as a functional and direct target gene of miR-let-7g/i. Luciferase reporter assay confirmed that let-7g and let-7i combined directly with 3'UTR of ABCC10, in consequence, inhibiting ABCC10 expression and enhancing cellular sensitivity to drugs. This study provides the first demonstration that miR-let-7g/i target ABCC10 and modulate DDP resistance in EC cell lines.
Collapse
Affiliation(s)
- Kai Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jia Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
399
|
Singh S, Zheng Y, Jagadeeswaran G, Ebron JS, Sikand K, Gupta S, Sunker R, Shukla GC. Deep sequencing of small RNA libraries from human prostate epithelial and stromal cells reveal distinct pattern of microRNAs primarily predicted to target growth factors. Cancer Lett 2015; 371:262-73. [PMID: 26655274 DOI: 10.1016/j.canlet.2015.10.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 01/14/2023]
Abstract
Complex epithelial and stromal cell interactions are required during the development and progression of prostate cancer. Regulatory small non-coding microRNAs (miRNAs) participate in the spatiotemporal regulation of messenger RNA (mRNA) and regulation of translation affecting a large number of genes involved in prostate carcinogenesis. In this study, through deep-sequencing of size fractionated small RNA libraries we profiled the miRNAs of prostate epithelial (PrEC) and stromal (PrSC) cells. Over 50 million reads were obtained for PrEC in which 860,468 were unique sequences. Similarly, nearly 76 million reads for PrSC were obtained in which over 1 million were unique reads. Expression of many miRNAs of broadly conserved and poorly conserved miRNA families were identified. Sixteen highly expressed miRNAs with significant change in expression in PrSC than PrEC were further analyzed in silico. ConsensusPathDB showed the target genes of these miRNAs were significantly involved in adherence junction, cell adhesion, EGRF, TGF-β and androgen signaling. Let-7 family of tumor-suppressor miRNAs expression was highly pervasive in both, PrEC and PrSC cells. In addition, we have also identified several miRNAs that are unique to PrEC or PrSC cells and their predicted putative targets are a group of transcription factors. This study provides perspective on the miRNA expression in PrEC and PrSC, and reveals a global trend in miRNA interactome. We conclude that the most abundant miRNAs are potential regulators of development and differentiation of the prostate gland by targeting a set of growth factors. Additionally, high level expression of the most members of let-7 family miRNAs suggests their role in the fine tuning of the growth and proliferation of prostate epithelial and stromal cells.
Collapse
Affiliation(s)
- Savita Singh
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA; Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Yun Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jey Sabith Ebron
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA; Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Kavleen Sikand
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University South Campus, Sector-25, Chandigarh, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Ramanjulu Sunker
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Girish C Shukla
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA; Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA.
| |
Collapse
|
400
|
Abstract
Uveal melanoma (UM) is an intraocular malignant tumor in adults that is characterized by rapid progression and recurrence. Irradiation has become the primary therapy for UM patients who are not candidates for surgery. However, after large-dose fraction irradiation treatment, some patients undergo subsequent enucleation because of radiotherapy-related complications. This situation has raised concerns on how to optimize the effectiveness of radiation treatment. Recent investigations of microRNAs are changing our understanding of UM tumor biology and are helping to identify novel targets for radiotherapy. The radioresistant UM cell lines OM431 and OCM1 were selected and exposed to irradiation, and let-7b was found to be downregulated after exposure. We then confirmed that let-7b mimics could inhibit UM growth both in vitro and in vivo. More specifically, transfection with let-7b mimics markedly resensitized OCM1 and OM431 cells to irradiation by reducing the population of S-phase cells. Cyclin D1 plays a vital role in cell cycle arrest, which is induced by let-7b overexpression. Cyclin D1 is also a target of let-7b and its expression is suppressed by upregulation of let-7b. Collectively, our results indicate that let-7b overexpression can in turn downregulate cyclin D1 expression and enhance the radiosensitivity of UM through cell cycle arrest. Let-7b could serve as a marker for radiosensitivity and could enhance the therapeutic benefit of UM cell irradiation.
Collapse
|