351
|
Loh JT, Shaffer CL, Piazuelo MB, Bravo LE, McClain MS, Correa P, Cover TL. Analysis of cagA in Helicobacter pylori strains from Colombian populations with contrasting gastric cancer risk reveals a biomarker for disease severity. Cancer Epidemiol Biomarkers Prev 2011; 20:2237-49. [PMID: 21859954 DOI: 10.1158/1055-9965.epi-11-0548] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Helicobacter pylori infection is a risk factor for the development of gastric cancer, and the bacterial oncoprotein CagA contributes to gastric carcinogenesis. METHODS We analyzed H. pylori isolates from persons in Colombia and observed that there was marked variation among strains in levels of CagA expression. To elucidate the basis for this variation, we analyzed sequences upstream from the CagA translational initiation site in each strain. RESULTS A DNA motif (AATAAGATA) upstream of the translational initiation site of CagA was associated with high levels of CagA expression. Experimental studies showed that this motif was necessary but not sufficient for high-level CagA expression. H. pylori strains from a region of Colombia with high gastric cancer rates expressed higher levels of CagA than did strains from a region with lower gastric cancer rates, and Colombian strains of European phylogeographic origin expressed higher levels of CagA than did strains of African origin. Histopathologic analysis of gastric biopsy specimens revealed that strains expressing high levels of CagA or containing the AATAAGATA motif were associated with more advanced precancerous lesions than those found in persons infected with strains expressing low levels of CagA or lacking the AATAAGATA motif. CONCLUSIONS CagA expression varies greatly among H. pylori strains. The DNA motif identified in this study is associated with high levels of CagA expression, and may be a useful biomarker to predict gastric cancer risk. IMPACT These findings help to explain why some persons infected with cagA-positive H. pylori develop gastric cancer and others do not.
Collapse
Affiliation(s)
- John T Loh
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
352
|
Janjetic MA, Goldman CG, Barrado DA, Cueto Rua E, Balcarce N, Mantero P, Zubillaga MB, López LB, Boccio JR. Decreasing trend of Helicobacter pylori infection in children with gastrointestinal symptoms from Buenos Aires, Argentina. Helicobacter 2011; 16:316-9. [PMID: 21762272 DOI: 10.1111/j.1523-5378.2011.00850.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Helicobacter pylori infection is declining in developed and developing countries. The aim of this study was to retrospectively evaluate over an 8-year period the rate of H. pylori infection in children with gastrointestinal symptoms from Buenos Aires, Argentina. MATERIALS AND METHODS We reviewed the records of children referred from 2002 to 2009 to the gastroenterology unit of the Children Hospital "Superiora Sor Maria Ludovica" for evaluation of upper gastrointestinal signs and symptoms in which the (13) C-urea breath test was performed to diagnose H. pylori infection and a sociodemographic questionnaire was obtained. RESULTS Records of a total of 1030 children and adolescents with a mean age of 9.99 years were included in the analysis. We found an H. pylori prevalence of 41.2% (95% CI, 36.9-46.0%) for the triennium 2002-2004, dropping to 26.0% (95% CI, 20.7-31.8%) in the triennium 2007-2009. CONCLUSION Our results showed a significant decrease in H. pylori infection rates from children referred for upper gastrointestinal symptoms evaluation from 2002 to 2009, following the H. pylori epidemiologic trend reported in other countries.
Collapse
Affiliation(s)
- Mariana A Janjetic
- Laboratory of Stable Isotopes Applied to Biology and Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Suzuki M, Kiga K, Kersulyte D, Cok J, Hooper CC, Mimuro H, Sanada T, Suzuki S, Oyama M, Kozuka-Hata H, Kamiya S, Zou QM, Gilman RH, Berg DE, Sasakawa C. Attenuated CagA oncoprotein in Helicobacter pylori from Amerindians in Peruvian Amazon. J Biol Chem 2011; 286:29964-72. [PMID: 21757722 DOI: 10.1074/jbc.m111.263715] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Population genetic analyses of bacterial genes whose products interact with host tissues can give new understanding of infection and disease processes. Here we show that strains of the genetically diverse gastric pathogen Helicobacter pylori from Amerindians from the remote Peruvian Amazon contain novel alleles of cagA, a major virulence gene, and reveal distinctive properties of their encoded CagA proteins. CagA is injected into the gastric epithelium where it hijacks pleiotropic signaling pathways, helps Hp exploit its special gastric mucosal niche, and affects the risk that infection will result in overt gastroduodenal diseases including gastric cancer. The Amerindian CagA proteins contain unusual but functional tyrosine phosphorylation motifs and attenuated CRPIA motifs, which affect gastric epithelial proliferation, inflammation, and bacterial pathogenesis. Amerindian CagA proteins induced less production of IL-8 and cancer-associated Mucin 2 than did those of prototype Western or East Asian strains and behaved as dominant negative inhibitors of action of prototype CagA during mixed infection of Mongolian gerbils. We suggest that Amerindian cagA is of relatively low virulence, that this may have been selected in ancestral strains during infection of the people who migrated from Asia into the Americas many thousands of years ago, and that such attenuated CagA proteins could be useful therapeutically.
Collapse
Affiliation(s)
- Masato Suzuki
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
354
|
Lin WH, Wu CR, Fang TJ, Guo JT, Huang SY, Lee MS, Yang HL. Anti-Helicobacter pylori activity of fermented milk with lactic acid bacteria. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:1424-1431. [PMID: 21445876 DOI: 10.1002/jsfa.4327] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 12/29/2010] [Accepted: 01/10/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND Ten strains of lactic acid bacteria (LAB) were investigated for their anti-Helicobacter pylori effects. The bactericidal activity and organic acid content in spent culture supernatants (SCS) from fermented milk were measured. In addition, the exclusion effect of SCS against H. pylori infection of human gastric epithelial AGS cells was assayed. RESULTS Three LAB strains, LY1, LY5 and IF22, showed better anti-Helicobacter effects than the other strains. There were no significant differences in the bactericidal activity of LAB strains between original SCS, artificial SCS and SCS treated by heating or protease digestion. However, neutralised SCS lost this activity. These results suggest that the anti-H. pylori activity of SCS may be related to the concentration of organic acids and the pH value but not to protein components. In the AGS cell culture test, both fermented LY5-SCS and artificial LY5-SCS significantly reduced H. pylori infection and urease activity (P < 0.05). CONCLUSION In this study, in vitro methods were used to screen potential probiotics with anti-H. pylori activity. This may provide an excellent and rapid system for studying probiotics in the functional food and dairy industries.
Collapse
Affiliation(s)
- Wen-Hsin Lin
- School of Pharmacy, China Medical University, No. 91, Hsueh Shih Road, Taichung City 404, Taiwan
| | | | | | | | | | | | | |
Collapse
|
355
|
Chuang CH, Yang HB, Sheu SM, Hung KH, Wu JJ, Cheng HC, Chang WL, Sheu BS. Helicobacter pylori with stronger intensity of CagA phosphorylation lead to an increased risk of gastric intestinal metaplasia and cancer. BMC Microbiol 2011; 11:121. [PMID: 21619658 PMCID: PMC3117684 DOI: 10.1186/1471-2180-11-121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 05/27/2011] [Indexed: 12/18/2022] Open
Abstract
Background Nearly all Taiwanese H. pylori stains are cagA-genopositive and encode CagA protein. In this study, we evaluated whether different intensity of tyrosine phosphorylated-CagA (p-CagA) had an impact on the clinical diseases and histological outcomes in this area. Results We enrolled 469 dyspeptic patients and prospectively obtained the gastric biopsy specimens and the H. pylori isolates. These patients were categorized according to the clinical diseases, such as duodenal ulcer, gastric ulcer, gastric cancer, and gastritis with or without intestinal metaplasia. Their gastric specimens were reviewed by the updated Sydney's system. Furthermore, a total of 146 patients were randomly selected from each clinical category for evaluation of their isolates' p-CagA intensity by in vitro AGS cells co-culture. The p-CagA was sparse in 30 (20.5%), weak in 59 (40.5%), and strong in 57 (39%) isolates. The isolates from the patients of gastric cancer or gastritis with intestinal metaplasia had stronger p-CagA intensity than those of gastritis without intestinal metaplasia (p ≤ 0.002). Moreover, the patients infected with isolates with strong or weak p-CagA intensity had a higher risk of gastric intestinal metaplasia (p < 0.05, odds ratio 3.09~15.26) than those infected with sparse p-CagA isolates. Conclusions Infection with H. pylori stains with stronger p-CagA intensity may lead to an increased risk of gastric intestinal metaplasia and cancer.
Collapse
Affiliation(s)
- Chiao-Hsiung Chuang
- Department of Internal Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
356
|
Kumar Pachathundikandi S, Brandt S, Madassery J, Backert S. Induction of TLR-2 and TLR-5 expression by Helicobacter pylori switches cagPAI-dependent signalling leading to the secretion of IL-8 and TNF-α. PLoS One 2011; 6:e19614. [PMID: 21573018 PMCID: PMC3090411 DOI: 10.1371/journal.pone.0019614] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/09/2011] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is the causative agent for developing gastritis, gastric ulcer, and even gastric cancer. Virulent strains carry the cag pathogenicity island (cagPAI) encoding a type-IV secretion system (T4SS) for injecting the CagA protein. However, mechanisms of sensing this pathogen through Toll-like receptors (TLRs) and downstream signalling pathways in the development of different pathologies are widely unclear. Here, we explored the involvement of TLR-2 and TLR-5 in THP-1 cells and HEK293 cell lines (stably transfected with TLR-2 or TLR-5) during infection with wild-type H. pylori and isogenic cagPAI mutants. H. pylori triggered enhanced TLR-2 and TLR-5 expression in THP-1, HEK293-TLR2 and HEK293-TLR5 cells, but not in the HEK293 control. In addition, IL-8 and TNF-α cytokine secretion in THP-1 cells was induced in a cagPAI-dependent manner. Furthermore, we show that HEK293 cells are not competent for the uptake of T4SS-delivered CagA, and are therefore ideally suited for studying TLR signalling in the absence of T4SS functions. HEK293 control cells, which do not induce TLR-2 and TLR-5 expression during infection, only secreted cytokines in small amounts, in agreement with T4SS functions being absent. In contrast, HEK293-TLR2 and HEK293-TLR5 cells were highly competent for inducing the secretion of IL-8 and TNF-α cytokines in a cagPAI-independent manner, suggesting that the expression of TLR-2 or TLR-5 has profoundly changed the capability to trigger pro-inflammatory signalling upon infection. Using phospho-specific antibodies and luciferase reporter assays, we further demonstrate that H. pylori induces IRAK-1 and IκB phosphorylation in a TLR-dependent manner, and this was required for activation of transcription factor NF-κB. Finally, NF-κB activation in HEK293-TLR2 and HEK293-TLR5 cells was confirmed by expressing p65-GFP which was translocated from the cytoplasm into the nucleus. These data indicate that H. pylori-induced expression of TLR-2 and TLR-5 can qualitatively shift cagPAI-dependent to cagPAI-independent pro-inflammatory signalling pathways with possible impact on the outcome of H. pylori-associated diseases.
Collapse
Affiliation(s)
- Suneesh Kumar Pachathundikandi
- Institute for Medical Microbiology, Otto von Guericke University, Magdeburg, Germany
- Department of Biotechnology, University of Calicut, Calicut University (PO), Kerala, India
| | - Sabine Brandt
- Institute for Medical Microbiology, Otto von Guericke University, Magdeburg, Germany
| | - Joseph Madassery
- Department of Biotechnology, University of Calicut, Calicut University (PO), Kerala, India
| | - Steffen Backert
- Institute for Medical Microbiology, Otto von Guericke University, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
357
|
Dominguez-Bello MG, Blaser MJ, Ley RE, Knight R. Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 2011; 140:1713-9. [PMID: 21530737 PMCID: PMC10924805 DOI: 10.1053/j.gastro.2011.02.011] [Citation(s) in RCA: 266] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 02/04/2011] [Accepted: 02/09/2011] [Indexed: 12/02/2022]
Abstract
Little was known about the development of the gastrointestinal (GI) tract microbiota, until recently, because of difficulties in obtaining sufficient sequence information from enough people or time points. Now, with decreased costs of DNA sequencing and improved bioinformatic tools, we can compare GI tract bacterial communities among individuals, of all ages from infancy to adulthood. Some key recent findings are that the initial bacterial community, even in the GI tract, depends strongly on delivery mode; that the process of early development of the microbiota is highly unstable and idiosyncratic; that the microbiota differs considerably among children from different countries; and that older adults have substantially different GI tract communities than younger adults, indicating that the GI tract microbiota can change throughout life. We relate these observations to different models of evolution including the evolution of senescence and suggest that probiotics be selected based on patient age. Studies of the microbiota in older people might tell us which probiotics could increase longevity. Drug metabolism varies among individuals with different microbial communities, so age- and region-specific clinical trials are required to ensure safety and efficacy.
Collapse
Affiliation(s)
| | - Martin J. Blaser
- Departments of Medicine and Microbiology and University Langone Medical Center, New York, NY 10016
- Veterans Affairs Medical Center, New York University Langone Medical Center, New York, NY 10016
- Department of Biology, New York University, New York, NY 10003
| | - Ruth E. Ley
- Department of Microbiology, Cornell University, Ithaca, NY 14850
| | - Rob Knight
- Howard Hughes Medical Institute, Boulder, CO 80309
- Department of Chemistry & Biochemistry, University of Colorado at Boulder, Boulder, CO 80309
| |
Collapse
|
358
|
Genomes of two chronological isolates (Helicobacter pylori 2017 and 2018) of the West African Helicobacter pylori strain 908 obtained from a single patient. J Bacteriol 2011; 193:3385-6. [PMID: 21515762 DOI: 10.1128/jb.05006-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The diverse clinical outcomes of colonization by Helicobacter pylori reflect the need to understand the genomic rearrangements enabling the bacterium to adapt to host niches and exhibit varied colonization/virulence potential. We describe the genome sequences of the two serial isolates, H. pylori 2017 and 2018 (the chronological subclones of H. pylori 908), cultured in 2003 from the antrum and corpus, respectively, of an African patient who suffered from recrudescent duodenal ulcer disease. When compared with the genome of the parent strain, 908 (isolated from the antrum of the same patient in 1994), the genome sequences revealed genomic alterations relevant to virulence optimization or host-specific adaptation.
Collapse
|
359
|
Novel gastric helicobacters and oral campylobacters are present in captive and wild cetaceans. Vet Microbiol 2011; 152:138-45. [PMID: 21592686 DOI: 10.1016/j.vetmic.2011.04.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/04/2011] [Accepted: 04/14/2011] [Indexed: 12/30/2022]
Abstract
The mammalian gastric and oral mucosa may be colonized by mixed Helicobacter and Campylobacter species, respectively, in individual animals. To better characterize the presence and distribution of Helicobacter and Campylobacter among marine mammals, we used PCR and 16S rDNA sequence analysis to examine gastric and oral samples from ten dolphins (Tursiops gephyreus), one killer whale (Orcinus orca), one false killer whale (Pseudorca crassidens), and three wild La Plata river dolphins (Pontoporia blainvillei). Helicobacter spp. DNA was widely distributed in gastric and oral samples from both captive and wild cetaceans. Phylogenetic analysis demonstrated two Helicobacter sequence clusters, one closely related to H. cetorum, a species isolated from dolphins and whales in North America. The second related cluster was to sequences obtained from dolphins in Australia and to gastric non-H. pylori helicobacters, and may represent a novel taxonomic group. Dental plaque sequences from four dolphins formed a third cluster within the Campylobacter genus that likely represents a novel species isolated from marine mammals. Identification of identical Helicobacter spp. DNA sequences from dental plaque, saliva and gastric fluids from the same hosts, suggests that the oral cavity may be involved in transmission. These results demonstrate that Helicobacter and Campylobacter species are commonly distributed in marine mammals, and identify taxonomic clusters that may represent novel species.
Collapse
|
360
|
Francois F, Roper J, Joseph N, Pei Z, Chhada A, Shak JR, de Perez AZO, Perez-Perez GI, Blaser MJ. The effect of H. pylori eradication on meal-associated changes in plasma ghrelin and leptin. BMC Gastroenterol 2011; 11:37. [PMID: 21489301 PMCID: PMC3089783 DOI: 10.1186/1471-230x-11-37] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 04/14/2011] [Indexed: 12/16/2022] Open
Abstract
Background Appetite and energy expenditure are regulated in part by ghrelin and leptin produced in the gastric mucosa, which may be modified by H. pylori colonization. We prospectively evaluated the effect of H. pylori eradication on meal-associated changes in serum ghrelin and leptin levels, and body weight. Methods Veterans referred for upper GI endoscopy were evaluated at baseline and ≥8 weeks after endoscopy, and H. pylori status and body weight were ascertained. During the first visit in all subjects, and during subsequent visits in the initially H. pylori-positive subjects and controls, blood was collected after an overnight fast and 1 h after a standard high protein meal, and levels of eight hormones determined. Results Of 92 enrolled subjects, 38 were H. pylori-negative, 44 H. pylori-positive, and 10 were indeterminate. Among 23 H. pylori-positive subjects who completed evaluation after treatment, 21 were eradicated, and 2 failed eradication. After a median of seven months following eradication, six hormones related to energy homeostasis showed no significant differences, but post-prandial acylated ghrelin levels were nearly six-fold higher than pre-eradication (p = 0.005), and median integrated leptin levels also increased (20%) significantly (p < 0.001). BMI significantly increased (5 ± 2%; p = 0.008) over 18 months in the initially H. pylori-positive individuals, but was not significantly changed in those who were H. pylori-negative or indeterminant at baseline. Conclusions Circulating meal-associated leptin and ghrelin levels and BMI changed significantly after H. pylori eradication, providing direct evidence that H. pylori colonization is involved in ghrelin and leptin regulation, with consequent effects on body morphometry.
Collapse
Affiliation(s)
- Fritz Francois
- New York University Langone Medical Center, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Ricci V, Romano M, Boquet P. Molecular cross-talk between Helicobacter pylori and human gastric mucosa. World J Gastroenterol 2011; 17:1383-99. [PMID: 21472096 PMCID: PMC3070011 DOI: 10.3748/wjg.v17.i11.1383] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/19/2010] [Accepted: 12/26/2010] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) has co-evolved with humans to be transmitted from person to person and to colonize the stomach persistently. A well-choreographed equilibrium between the bacterial effectors and host responses permits microbial persistence and health of the host, but confers a risk for serious diseases including gastric cancer. During its long coexistence with humans, H. pylori has developed complex strategies to limit the degree and extent of gastric mucosal damage and inflammation, as well as immune effector activity. The present editorial thus aims to introduce and comment on major advances in the rapidly developing area of H. pylori/human gastric mucosa interaction (and its pathological sequelae), which is the result of millennia of co-evolution of, and thus of reciprocal knowledge between, the pathogen and its human host.
Collapse
|
362
|
|
363
|
Tegtmeyer N, Wessler S, Backert S. Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis. FEBS J 2011; 278:1190-202. [PMID: 21352489 DOI: 10.1111/j.1742-4658.2011.08035.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori is a very successful human-specific bacterium worldwide. Infections of the stomach with this pathogen can induce pathologies, including chronic gastritis, peptic ulcers and even gastric cancer. Highly virulent H. pylori strains encode the cytotoxin-associated gene (cag)-pathogenicity island, which expresses a type IV secretion system (T4SS). This T4SS forms a syringe-like pilus structure for the injection of virulence factors such as the CagA effector protein into host target cells. This is achieved by a number of T4SS proteins, including CagI, CagL, CagY and CagA, which by itself binds the host cell integrin member β(1) followed by delivery of CagA across the host cell membrane. A role of CagA interaction with phosphatidylserine has also been shown to be important for the injection process. After delivery, CagA becomes phosphorylated by oncogenic tyrosine kinases and mimics a host cell factor for the activation or inactivation of some specific intracellular signalling pathways. We review recent progress aiming to characterize the CagA-dependent and CagA-independent signalling capabilities of the T4SS, which include the induction of membrane dynamics, disruption of cell-cell junctions and actin-cytoskeletal rearrangements, as well as pro-inflammatory, cell cycle-related and anti-apoptotic transcriptional responses. The contribution of these signalling pathways to pathogenesis during H. pylori infections is discussed.
Collapse
Affiliation(s)
- Nicole Tegtmeyer
- School of Biomolecular and Biomedical Sciences, Science Center West, Belfield Campus, University College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
364
|
|
365
|
Lewis ND, Asim M, Barry DP, de Sablet T, Singh K, Piazuelo MB, Gobert AP, Chaturvedi R, Wilson KT. Immune evasion by Helicobacter pylori is mediated by induction of macrophage arginase II. THE JOURNAL OF IMMUNOLOGY 2011; 186:3632-41. [PMID: 21296975 DOI: 10.4049/jimmunol.1003431] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori infection persists for the life of the host due to the failure of the immune response to eradicate the bacterium. Determining how H. pylori escapes the immune response in its gastric niche is clinically important. We have demonstrated in vitro that macrophage NO production can kill H. pylori, but induction of macrophage arginase II (Arg2) inhibits inducible NO synthase (iNOS) translation, causes apoptosis, and restricts bacterial killing. Using a chronic H. pylori infection model, we determined whether Arg2 impairs host defense in vivo. In C57BL/6 mice, expression of Arg2, but not arginase I, was abundant and localized to gastric macrophages. Arg2(-/-) mice had increased histologic gastritis and decreased bacterial colonization compared with wild-type (WT) mice. Increased gastritis scores correlated with decreased colonization in individual Arg2(-/-) mice but not in WT mice. When mice infected with H. pylori were compared, Arg2(-/-) mice had more gastric macrophages, more of these cells were iNOS(+), and these cells expressed higher levels of iNOS protein, as determined by flow cytometry and immunofluorescence microscopy. There was enhanced nitrotyrosine staining in infected Arg2(-/-) versus WT mice, indicating increased NO generation. Infected Arg2(-/-) mice exhibited decreased macrophage apoptosis, as well as enhanced IFN-γ, IL-17a, and IL-12p40 expression, and reduced IL-10 levels consistent with a more vigorous Th1/Th17 response. These studies demonstrate that Arg2 contributes to the immune evasion of H. pylori by limiting macrophage iNOS protein expression and NO production, mediating macrophage apoptosis, and restraining proinflammatory cytokine responses.
Collapse
Affiliation(s)
- Nuruddeen D Lewis
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
366
|
Chiurillo MA, Moran YH, Cañas M, Valderrama EJ, Armanie E. Infection with specific Helicobacter pylori-cag pathogenicity island strains is associated with interleukin-1B gene polymorphisms in Venezuelan chronic gastritis patients. Dig Dis Sci 2011; 56:449-56. [PMID: 20585978 DOI: 10.1007/s10620-010-1316-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 06/14/2010] [Indexed: 12/17/2022]
Abstract
BACKGROUND The cag pathogenicity island (cag-PAI) is one of the major virulence factors of Helicobacter pylori, showing considerable geographic variation. AIM We investigated the prevalence of cagA, cagE, and cagT genes of cag-PAI and their association with proinflammatory IL-1B-511/-31/+3954 polymorphisms in Venezuelan chronic gastritis patients from a high-risk gastric cancer region. METHODS Presence of cag-PAI genes and IL-1B polymorphisms in 121 biopsy specimens was evaluated by polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP), respectively. RESULTS cagA (+) and triple-positive (cagAET (+)) strains were detected in 79.3% and 70.2% of patients, respectively. We found that infection with cagA (+) and cagAET (+) strains was associated (P < 0.05) with hosts harboring both IL-1B +3954C allele and IL-1B-511T/-31C/+3954C haplotype (TCC (+)). The frequency of gastric atrophy was significantly higher (P < 0.020) among cagAET (+)/IL-1B-TCC (+) combined genotype carriers. CONCLUSION Carriage of IL-1B +3954C allele and IL-1B-TCC (+) haplotype could favor colonization of bacterial cagAET (+) strains, and the combination of these bacterial and host haplotypes could play a synergistic role in development of premalignant gastric lesions. This work contributes to understanding of the complex interaction between H. pylori virulence factors and cytokine genotypes involved in gastrointestinal diseases.
Collapse
Affiliation(s)
- Miguel Angel Chiurillo
- Decanato de Ciencias de la Salud, Universidad Centroccidental Lisandro Alvarado (UCLA), Barquisimeto, Venezuela.
| | | | | | | | | |
Collapse
|
367
|
Chu SH, Lim JW, Kim DG, Lee ES, Kim KH, Kim H. Down-regulation of Bcl-2 is mediated by NF-κB activation in Helicobacter pylori-induced apoptosis of gastric epithelial cells. Scand J Gastroenterol 2011; 46:148-55. [PMID: 20969490 DOI: 10.3109/00365521.2010.525255] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Bcl-2 family is involved in the regulation of apoptosis. NF-κB activation is associated with either the expression of Bcl-2 or down-regulation of Bcl-2 depending on cell types and stimuli. Previously, we showed NF-κB activation, decrease in the level of Bcl-2, and apoptosis in Helicobacter pylori (H. pylori)-infected gastric epithelial cells. The present study aims to investigate the relation of Bcl-2 expression and NF-κB activation in H. pylori-induced apoptotic cell death of AGS (gastric adenocarcinoma) cells. MATERIAL AND METHODS AGS cells were transfected with mutant IκBα to suppress NF-κB activation or Bcl-2 gene to induce overexpression of Bcl-2. mRNA expression of Bcl-2, p53 and Bax, DNA fragmentation, cell viability, and the numbers of apoptotic cells were determined. RESULTS H. pylori induced decrease in Bcl-2, but increase in p53 and Bax at the levels of mRNA and protein in AGS cells. H. pylori-induced increment of apoptotic cells and decrease in Bcl-2 level were inhibited in the cells transfected with mutant IκBα gene as compared with the cells transfected with control vector. H. pylori-induced apoptosis determined by apoptotic cells, DNA fragmentation, and cell viability was inhibited in the cells transfected with Bcl-2 gene. CONCLUSION Down-regulation of Bcl-2 is mediated by NF-κB activation, which may be the underlying mechanism of apoptosis in H. pylori-infected gastric epithelial cells.
Collapse
Affiliation(s)
- Sang Hui Chu
- Nursing Policy and Research Institute, Biobehavioral Research Center, Yonsei University College of Nursing, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
368
|
Twing KI, Kirchman DL, Campbell BJ. Temporal study of Helicobacter pylori presence in coastal freshwater, estuary and marine waters. WATER RESEARCH 2011; 45:1897-905. [PMID: 21193216 DOI: 10.1016/j.watres.2010.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/11/2010] [Accepted: 12/09/2010] [Indexed: 05/02/2023]
Abstract
Helicobacter pylori, a gastric pathogen, is believed to be transmitted via the fecal-oral route as well as the oral-oral route. Its presence and viability in environmental waters is not well characterized. The goals of this study were to test H. pylori presence via molecular methods in freshwater, estuarine and beach sites in Delaware over both short and long time scales and to establish whether fecal indicator bacteria, including total Enterococcus and human-specific Bacteroidetes species, are predictive of the pathogen in these waters. The presence of Helicobacter pylori was initially tested by PCR with newly designed 23S rRNA gene primers against Helicobacter spp. and confirmed by sequencing. Two coastal beach sites were repeatedly positive in 2007. Clone library analysis indicated the persistence of one operational taxonomic unit (OTU) over time at one site. Detection of H. pylori was also determined by PCR assays from DNA and RNA for the 16S rRNA gene, as well as DNA for the ureA and cagA genes. Approximately 21% of the samples were positive for H. pylori 16S rRNA gene and 80% of those were also positive for H. pylori 16S rRNA, indicating that this potential pathogen is not only present in natural waters, but also probably viable. There was no correlation between the occurrence of H. pylori and fecal indicator bacteria, suggesting that standard water quality tests are ineffective in predicting the presence of this pathogen in natural waters. These results demonstrate the widespread presence of potentially viable H. pylori in coastal marine and estuarine waters. Additionally, the repeatedly positive samples indicate either a continual contamination source or persistence of H. pylori in marine waters.
Collapse
Affiliation(s)
- Katrina I Twing
- School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA
| | | | | |
Collapse
|
369
|
Moss SF, Moise L, Lee DS, Kim W, Zhang S, Lee J, Rogers AB, Martin W, De Groot AS. HelicoVax: epitope-based therapeutic Helicobacter pylori vaccination in a mouse model. Vaccine 2011; 29:2085-91. [PMID: 21236233 DOI: 10.1016/j.vaccine.2010.12.130] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/22/2010] [Accepted: 12/27/2010] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori is the leading cause of gastritis, peptic ulcer disease and gastric adenocarcinoma and lymphoma in humans. Due to the decreasing efficacy of anti-H. pylori antibiotic therapy in clinical practice, there is renewed interest in the development of anti-H. pylori vaccines. In this study an in silico-based approach was utilized to develop a multi-epitope DNA-prime/peptide-boost immunization strategy using informatics tools. The efficacy of this construct was then assessed as a therapeutic vaccine in a mouse model of gastric cancer induced by chronic H. pylori infection. The multi-epitope vaccine administered intranasally induced a broad immune response as determined by interferon-gamma production in ELISpot assays. This was associated with a significant reduction in H. pylori colonization compared with mice immunized with the same vaccine intramuscularly, given an empty plasmid, or given a whole H. pylori lysate intranasally as the immunogen. Total scores of gastric histological changes were not significantly different among the 4 experimental groups. These results suggest that further development of an epitope-based mucosal vaccine may be beneficial in eradicating H. pylori and reducing the burden of the associated gastric diseases in humans.
Collapse
Affiliation(s)
- Steven F Moss
- Department of Medicine, Division of Gastroenterology, Rhode Island Hospital & Warren Alpert Medical School of Brown University, Providence, RI 02903, USA. Steven
| | | | | | | | | | | | | | | | | |
Collapse
|
370
|
Abstract
PURPOSE OF REVIEW Host-microbe dialogue is involved not only in maintenance of mucosal homeostasis but also in the pathogenesis of several infectious, inflammatory, and neoplastic disorders of the gut. This has led to a resurgence of interest in the colonic microbiota in health and disease. Recent landmark findings are addressed here. RECENT FINDINGS Reciprocal signalling between the immune system and the microbiota plays a pivotal role in linking alterations in gut microbiota with risk of metabolic disease in the host, notably insulin resistance, obesity, and chronic low-grade inflammation. Loss of ancestral indigenous organisms consequent upon a modern lifestyle may contribute to an increased frequency of various metabolic and immuno-allergic diseases. The potential to address this underpins the science of pharmabiotics. SUMMARY Advances in understanding host-microbe interactions within the gut can inform rational probiotic or pharmabiotic selection criteria. In addition, the gut microbiota may be a repository for drug discovery as well as a therapeutic target.
Collapse
|
371
|
|
372
|
|
373
|
Costa F, D'Elios MM. Management of Helicobacter pylori infection. Expert Rev Anti Infect Ther 2010; 8:887-92. [PMID: 20695744 DOI: 10.1586/eri.10.75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Helicobacter pylori is the cause of peptic ulcer, gastric cancer and gastric lymphoma. Diagnosis of H. pylori infection can be made using invasive and noninvasive tests. Invasive tests based on endoscopy, such as histology, are recommended when a gastric malignancy is suspected. Alternatively, noninvasive tests, such as the urea breath test and stool tests are useful for H. pylori diagnosis and follow-up. Triple therapy with either amoxicillin or metronidazole, clarithromycin and proton pump inhibitor given twice daily for 7-14 days is the recommended first-line treatment, after having checked the individual clarithromycin antimicrobial susceptibility. A triple therapy with levofloxacin, amoxicillin and proton pump inhibitor for 10-14 days should be used as second-line treatment, where the strains are susceptible to fluoroquinolone. Alternatively, bismuth-based quadruple therapy is recommended.
Collapse
|
374
|
Nossa CW, Blanke SR. Helicobacter pylori activation of PARP-1: usurping a versatile regulator of host cellular health. Gut Microbes 2010; 1:373-8. [PMID: 21468218 PMCID: PMC3056101 DOI: 10.4161/gmic.1.6.13572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 02/03/2023] Open
Abstract
Chronic infection of the human stomach by Helicobacter pylori is an important risk factor for gastric cancer. H. pylori produces a cache of virulence factors that promote colonization and persistence, which, in turn, contributes to a robust inflammatory response at the host-pathogen interface. Recently, we reported that H. pylori activates the abundant nuclear regulator poly(ADP-ribose) polymerase (PARP)-1, resulting in the production of the catabolite poly(ADP-ribose) (PAR). PARP-1 is emerging as a key player in establishing homeostasis at the host-pathogen interface. In this article, we summarize the discovery of H. pylori-dependent PARP-1 activation, and discuss potential roles for PARP-1 in H. pylori-mediated gastric disease. In light of the remarkable successes that have reported for treating inflammatory disorders and cancers with PARP-1 inhibitors, we discuss the prospects of targeting PARP-1 for treatment of H. pylori-associated gastric disease.
Collapse
Affiliation(s)
- Carlos W Nossa
- Department of Microbiology and the Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | | |
Collapse
|
375
|
Maldonado-Contreras A, Goldfarb KC, Godoy-Vitorino F, Karaoz U, Contreras M, Blaser MJ, Brodie EL, Dominguez-Bello MG. Structure of the human gastric bacterial community in relation to Helicobacter pylori status. ISME JOURNAL 2010; 5:574-9. [PMID: 20927139 DOI: 10.1038/ismej.2010.149] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human stomach is naturally colonized by Helicobacter pylori, which, when present, dominates the gastric bacterial community. In this study, we aimed to characterize the structure of the bacterial community in the stomach of patients of differing H. pylori status. We used a high-density 16S rRNA gene microarray (PhyloChip, Affymetrix, Inc.) to hybridize 16S rRNA gene amplicons from gastric biopsy DNA of 10 rural Amerindian patients from Amazonas, Venezuela, and of two immigrants to the United States (from South Asia and Africa, respectively). H. pylori status was determined by PCR amplification of H. pylori glmM from gastric biopsy samples. Of the 12 patients, 8 (6 of the 10 Amerindians and the 2 non-Amerindians) were H. pylori glmM positive. Regardless of H. pylori status, the PhyloChip detected Helicobacteriaceae DNA in all patients, although with lower relative abundance in patients who were glmM negative. The G2-chip taxonomy analysis of PhyloChip data indicated the presence of 44 bacterial phyla (of which 16 are unclassified by the Taxonomic Outline of the Bacteria and Archaea taxonomy) in a highly uneven community dominated by only four phyla: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Positive H. pylori status was associated with increased relative abundance of non-Helicobacter bacteria from the Proteobacteria, Spirochetes and Acidobacteria, and with decreased abundance of Actinobacteria, Bacteroidetes and Firmicutes. The PhyloChip detected richness of low abundance phyla, and showed marked differences in the structure of the gastric bacterial community according to H. pylori status.
Collapse
|
376
|
Structure of the human gastric bacterial community in relation to Helicobacter pylori status. ISME JOURNAL 2010. [PMID: 20927139 DOI: 10.1038/ismej] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human stomach is naturally colonized by Helicobacter pylori, which, when present, dominates the gastric bacterial community. In this study, we aimed to characterize the structure of the bacterial community in the stomach of patients of differing H. pylori status. We used a high-density 16S rRNA gene microarray (PhyloChip, Affymetrix, Inc.) to hybridize 16S rRNA gene amplicons from gastric biopsy DNA of 10 rural Amerindian patients from Amazonas, Venezuela, and of two immigrants to the United States (from South Asia and Africa, respectively). H. pylori status was determined by PCR amplification of H. pylori glmM from gastric biopsy samples. Of the 12 patients, 8 (6 of the 10 Amerindians and the 2 non-Amerindians) were H. pylori glmM positive. Regardless of H. pylori status, the PhyloChip detected Helicobacteriaceae DNA in all patients, although with lower relative abundance in patients who were glmM negative. The G2-chip taxonomy analysis of PhyloChip data indicated the presence of 44 bacterial phyla (of which 16 are unclassified by the Taxonomic Outline of the Bacteria and Archaea taxonomy) in a highly uneven community dominated by only four phyla: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Positive H. pylori status was associated with increased relative abundance of non-Helicobacter bacteria from the Proteobacteria, Spirochetes and Acidobacteria, and with decreased abundance of Actinobacteria, Bacteroidetes and Firmicutes. The PhyloChip detected richness of low abundance phyla, and showed marked differences in the structure of the gastric bacterial community according to H. pylori status.
Collapse
|
377
|
Regulation of p53 tumor suppressor by Helicobacter pylori in gastric epithelial cells. Gastroenterology 2010; 139:1333-43. [PMID: 20547161 PMCID: PMC2949494 DOI: 10.1053/j.gastro.2010.06.018] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 05/26/2010] [Accepted: 06/04/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Infection with the gastric mucosal pathogen Helicobacter pylori is the strongest identified risk factor for distal gastric cancer. These bacteria colonize a significant part of the world's population. We investigated the molecular mechanisms of p53 regulation in H pylori-infected cells. METHODS Mongolian gerbils were challenged with H pylori and their gastric tissues were analyzed by immunohistochemistry and immunoblotting with p53 antibodies. Gastric epithelial cells were co-cultured with H pylori and the regulation of p53 was assessed by real-time polymerase chain reaction, immunoblotting, immunofluorescence, and cell survival assays. Short hairpin RNA and dominant-negative mutants were used to inhibit activities of Human Double Minute 2 (HDM2) and AKT1 proteins. RESULTS We found that in addition to previously reported up-regulation of p53, H pylori can also negatively regulate p53 by increasing ubiquitination and proteasomal degradation via activation of the serine/threonine kinase AKT1, which phosphorylates and activates the ubiquitin ligase HDM2. These effects were mediated by the bacterial virulence factor CagA; ectopic expression of CagA in gastric epithelial cells increased phosphorylation of HDM2 along with the ubiquitination and proteasomal degradation of p53. The decrease in p53 levels increased survival of gastric epithelial cells that had sustained DNA damage. CONCLUSIONS H pylori is able to inhibit the tumor suppressor p53. H pylori activates AKT1, resulting in phosphorylation and activation of HDM2 and subsequent degradation of p53 in gastric epithelial cells. H pylori-induced dysregulation of p53 is a potential mechanism by which the microorganism increases the risk of gastric cancer in infected individuals.
Collapse
|
378
|
Abstract
Helicobacter pylori is a genetically diverse organism that is adapted for colonization of the human stomach. All strains contain a gene encoding a secreted, pore-forming toxin known as VacA. Genetic variation at this locus could be under strong selection as H. pylori adapts to the host immune response, colonizes new human hosts, or inhabits different host environments. Here, we analyze the molecular evolution of VacA. Phylogenetic reconstructions indicate the subdivision of VacA sequences into three main groups with distinct geographic distributions. Divergence of the three groups is principally due to positively selected sequence changes in the p55 domain, a central region required for binding of the toxin to host cells. Divergent amino acids map to surface-exposed sites in the p55 crystal structure. Comparative phylogenetic analyses of vacA sequences and housekeeping gene sequences indicate that vacA does not share the same evolutionary history as the core genome. Further, rooting the VacA tree with outgroup sequences from the close relative Helicobacter acinonychis reveals that the ancestry of VacA is different from the African origin that typifies the core genome. Finally, sequence analyses of the virulence determinant CagA reveal three main groups strikingly similar to the three groups of VacA sequences. Taken together, these results indicate that positive selection has shaped the phylogenetic structure of VacA and CagA, and each of these virulence determinants has evolved separately from the core genome.
Collapse
|
379
|
Backert S, Naumann M. What a disorder: proinflammatory signaling pathways induced by Helicobacter pylori. Trends Microbiol 2010; 18:479-86. [PMID: 20863705 DOI: 10.1016/j.tim.2010.08.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 12/14/2022]
Abstract
Infection of gastric epithelial cells with Helicobacter pylori induces strong proinflammatory responses by activating nuclear transcription factors NF-κB and AP-1. Several reports indicate that multiple bacterial factors and cellular molecules are involved in this signaling. Injected peptidoglycan, CagA or OipA and urease, and at least 16 different signaling cascades have been implicated in H. pylori-induced proinflammatory signaling. Many of these reports are contradictory, thus generating a highly puzzling scenario. Here we discuss the pros and cons of the multiple signaling activities in the induction of proinflammatory responses and associated problems, and give suggestions for finding ways out of this dilemma.
Collapse
Affiliation(s)
- Steffen Backert
- University College Dublin, School of Biomolecular and Biomedical Sciences, Belfield Campus, Dublin 4, Ireland.
| | | |
Collapse
|
380
|
Perez-Perez GI, Maw AM, Feingold-Link L, Gunn J, Bowers AL, Minano C, Rautelin H, Kosunen TU, Blaser MJ. Longitudinal analysis of serological responses of adults to Helicobacter pylori antigens. J Infect Dis 2010; 202:916-23. [PMID: 20698790 PMCID: PMC2924458 DOI: 10.1086/655660] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Because Helicobacter pylori persist for decades in the human stomach, the aim of this study was to examine the long-term course of H. pylori-specific serum immunoglobulin G (IgG) responses with respect to subclass and antigenic target. We studied paired serum samples obtained in 1973 and in 1994 in Vammala, Finland, from 64 healthy H. pylori-positive adults and from other healthy control subjects. H. pylori serum immunoglobulin A, IgG, and IgG subclass responses were determined by antigen-specific enzyme-linked immunosorbent assays. H. pylori-specific IgG1 and IgG4 subtype responses from 47 subjects were similar in 1973 and 1994, but not when compared with unrelated persons. H. pylori-specific IgG1:IgG4 ratios among the participants varied >1000-fold; however, 57 (89.1%) of 64 subjects had an IgG1:IgG4 ratio >1.0, consistent with a predominant IgG1 (Th1) response. Furthermore, ratios in individual hosts were stable over the 21-year period (r = 0.56; P < .001). The immune response to heat shock protein HspA was unchanged in 49 (77%) of the 64 subjects tested; of the 15 whose serostatus changed, all seroconverted and were significantly younger than those whose status did not change. These findings indicate that H. pylori-specific antibody responses are host-specific with IgG1:IgG4 ratios stable over 21 years, IgG1 responses predominating, and HspA seroconversion with aging.
Collapse
Affiliation(s)
- Guillermo I Perez-Perez
- Department of Medicine, New York University Langone Medical Center, New York, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Abstract
Helicobacter pylori infections are thought to eventually lead to symptoms as a result of the long-lasting interactions between the bacterium and its host. Mechanisms that allow this bacterium to cause a life-long infection involve modulation of both the immune response and host cellular processes. Last year many novel findings that improve our knowledge on how H. pylori virulence factors interact with the host were reported, but because of space limitations we can only discuss a limited number of these studies. Among those are studies on the genetic variation of genes encoding outer membrane proteins and the mimicry of host antigens, factors that alter host-cell metabolism and factors that modulate the host's immune response.
Collapse
Affiliation(s)
- Daniela Basso
- Department of Laboratory Medicine, University-Hospital of Padova, Via Giustiniani 2, Padua, Italy.
| | | | | |
Collapse
|
382
|
Helicobacter pylori in the pathogenesis of gastric cancer and gastric lymphoma. Cancer Lett 2010; 305:228-38. [PMID: 20692762 DOI: 10.1016/j.canlet.2010.07.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/11/2010] [Accepted: 07/13/2010] [Indexed: 12/13/2022]
Abstract
Chronic gastric infection by the gram-negative bacterium Helicobacter pylori is strongly associated with the development of distal gastric carcinoma and gastric mucosal lymphoma in humans. Eradication of H. pylori with combination antibiotic therapy cures most cases of gastric lymphoma and slows progression to gastric adenocarcinoma. H. pylori promotes gastric neoplasia, principally via the induction of an intense gastric inflammatory response that lasts over decades. This persistent inflammatory state produces chronic oxidative stress and adaptive changes in gastric epithelial and immune cell pathobiology that in a minority of infected subjects eventually proceeds to frank neoplastic transformation.
Collapse
|
383
|
González-Rivera C, Gangwer KA, McClain MS, Eli IM, Chambers MG, Ohi MD, Lacy DB, Cover TL. Reconstitution of Helicobacter pylori VacA toxin from purified components. Biochemistry 2010; 49:5743-52. [PMID: 20527875 PMCID: PMC2910095 DOI: 10.1021/bi100618g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Helicobacter pylori VacA is a pore-forming toxin that causes multiple alterations in human cells and contributes to the pathogenesis of peptic ulcer disease and gastric cancer. The toxin is secreted by H. pylori as an 88 kDa monomer (p88) consisting of two domains (p33 and p55). While an X-ray crystal structure for p55 exists and p88 oligomers have been visualized by cryo-electron microscopy, a detailed analysis of p33 has been hindered by an inability to purify this domain in an active form. In this study, we expressed and purified a recombinant form of p33 under denaturing conditions and optimized conditions for the refolding of the soluble protein. We show that refolded p33 can be added to purified p55 in trans to cause vacuolation of HeLa cells and inhibition of IL-2 production by Jurkat cells, effects identical to those produced by the p88 toxin from H. pylori. The p33 protein markedly enhances the cell binding properties of p55. Size exclusion chromatography experiments suggest that p33 and p55 assemble into a complex consistent with the size of a p88 monomer. Electron microscopy of these p33/p55 complexes reveals small rod-shaped structures that can convert to oligomeric flower-shaped structures in the presence of detergent. We propose that the oligomerization observed in these experiments mimics the process by which VacA oligomerizes when in contact with membranes of host cells.
Collapse
Affiliation(s)
- Christian González-Rivera
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kelly A. Gangwer
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Mark S. McClain
- Department of Medicine Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Ilyas M. Eli
- Department of Cell and Developmental Biology Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Melissa G. Chambers
- Department of Cell and Developmental Biology Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Melanie D. Ohi
- Department of Cell and Developmental Biology Vanderbilt University School of Medicine, Nashville, TN 37232
| | - D. Borden Lacy
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Timothy L. Cover
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Medicine Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Veterans Affairs Tennessee Valley Healthcare System Nashville, TN 37212
| |
Collapse
|
384
|
Abstract
Numerous genes are involved in innate and adaptive immunity and these have been modified over millions of years. During this evolution, the mucosal immune system has developed two anti-inflammatory strategies: immune exclusion by the use of secretory antibodies to control epithelial colonization of microorganisms and to inhibit the penetration of potentially harmful agents; and immunosuppression to counteract local and peripheral hypersensitivity against innocuous antigens, such as food proteins. The latter strategy is called oral tolerance when induced via the gut. Homeostatic mechanisms also dampen immune responses to commensal bacteria. The mucosal epithelial barrier and immunoregulatory network are poorly developed in newborns. The perinatal period is, therefore, critical with regard to the induction of food allergy. The development of immune homeostasis depends on windows of opportunity during which innate and adaptive immunity are coordinated by antigen-presenting cells. The function of these cells is not only orchestrated by microbial products but also by dietary constituents, including vitamin A and lipids, such as polyunsaturated omega-3 fatty acids. These factors may in various ways exert beneficial effects on the immunophenotype of the infant. The same is true for breast milk, which provides immune-inducing factors and secretory immunoglobulin A, which reinforces the gut epithelial barrier. It is not easy to dissect the immunoregulatory network and identify variables that lead to food allergy. This Review discusses efforts to this end and outlines the scientific basis for future food allergy prevention.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Centre for Immune Regulation (CIR), University of Oslo and Department and Institute of Pathology, Oslo University Hospital, Rikshospitalet, N-0027 Oslo, Norway.
| |
Collapse
|
385
|
McLean MH, El-Omar EM. Esophageal cancers and Helicobacter pylori: do host genes matter? Gastroenterology 2010; 139:17-9. [PMID: 20639080 DOI: 10.1053/j.gastro.2010.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
386
|
D'Elios MM, de Bernard M. To treat or not to treat Helicobacter pylori to benefit asthma patients. Expert Rev Respir Med 2010; 4:147-50. [PMID: 20406078 DOI: 10.1586/ers.10.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
387
|
Host-interactive genes in Amerindian Helicobacter pylori diverge from their Old World homologs and mediate inflammatory responses. J Bacteriol 2010; 192:3078-92. [PMID: 20400544 DOI: 10.1128/jb.00063-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is the dominant member of the gastric microbiota and has been associated with an increased risk of gastric cancer and peptic ulcers in adults. H. pylori populations have migrated and diverged with human populations, and health effects vary. Here, we describe the whole genome of the cag-positive strain V225d, cultured from a Venezuelan Piaroa Amerindian subject. To gain insight into the evolution and host adaptation of this bacterium, we undertook comparative H. pylori genomic analyses. A robust multiprotein phylogenetic tree reflects the major human migration out of Africa, across Europe, through Asia, and into the New World, placing Amerindian H. pylori as a particularly close sister group to East Asian H. pylori. In contrast, phylogenetic analysis of the host-interactive genes vacA and cagA shows substantial divergence of Amerindian from Old World forms and indicates new genotypes (e.g., VacA m3) involving these loci. Despite deletions in CagA EPIYA and CRPIA domains, V225d stimulates interleukin-8 secretion and the hummingbird phenotype in AGS cells. However, following a 33-week passage in the mouse stomach, these phenotypes were lost in isolate V225-RE, which had a 15-kb deletion in the cag pathogenicity island that truncated CagA and eliminated some of the type IV secretion system genes. Thus, the unusual V225d cag architecture was fully functional via conserved elements, but the natural deletion of 13 cag pathogenicity island genes and the truncation of CagA impaired the ability to induce inflammation.
Collapse
|
388
|
Criteria for inclusion of vaccinations in public programmes. Vaccine 2010; 28:2924-31. [DOI: 10.1016/j.vaccine.2010.02.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/29/2010] [Accepted: 02/10/2010] [Indexed: 11/18/2022]
|
389
|
Lee IO, Kim JH, Choi YJ, Pillinger MH, Kim SY, Blaser MJ, Lee YC. Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells. J Biol Chem 2010; 285:16042-50. [PMID: 20348091 DOI: 10.1074/jbc.m110.111054] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Helicobacter pylori protein CagA may undergo tyrosine phosphorylation following its entry into human gastric epithelial cells with downstream effects on signal transduction. Disruption of the gp130 receptor that modulates the balance of the SHP2/ERK and JAK/STAT pathways enhanced peptic ulceration and gastric cancer in gp130 knock-out mice. In this study, we evaluated the effect of translocated CagA in relation to its tyrosine phosphorylation status on the gp130-mediated signal switch between the SHP2/ERK and JAK/STAT3 pathways. We showed that in the presence of CagA, SHP2 was recruited to gp130. Phosphorylated CagA showed enhanced SHP2 binding activity and ERK1/2 phosphorylation, whereas unphosphorylated CagA showed preferential STAT3 activation. These findings indicate that the phosphorylation status of CagA affects the signal switch between the SHP2/ERK and JAK/STAT3 pathways through gp130, providing a novel mechanism to explain H. pylori signaling.
Collapse
Affiliation(s)
- In Ohk Lee
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seodaemunku Shinchondong 134, Seoul 120-752, Korea
| | | | | | | | | | | | | |
Collapse
|
390
|
Queiroz DMDM, Cunha RPDA, Saraiva IEB, Rocha AMC. Helicobacter pylori virulence factors as tools to study human migrations. Toxicon 2010; 56:1193-7. [PMID: 20144640 DOI: 10.1016/j.toxicon.2010.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/25/2010] [Accepted: 01/28/2010] [Indexed: 01/19/2023]
Abstract
Helicobacter pylori is one of the most common infections worldwide. In most individuals it consists in a lifelong host-pathogen relationship without consequences, but in some subjects it is associated with peptic ulcer disease and gastric cancer. Polymorphism in genes that code bacterial virulence factors, cagA and vacA, are independently associated with the infection severe outcomes and are geographically diverse. In the last decade, accumulated knowledge allowed to characterize typical H. pylori strain patterns for all the major human populations; patterns that can be used to study the origin of specific human groups. Thus, the presence or absence of cagA, cagA EPIYA genotypes, and vacA subtypes can be used as tools to study not only the geographic origin of specific human populations, but also to identify markers of historical contact between different ethnicities. We report here a study including a set of native Amazon Amerindians that had supposedly been some, but little, contact with European Brazilian colonizer and/or African slaves. They harbor H. pylori strains in a mixed pattern with Asian and Iberian Peninsula characteristics. It is possible that this finding represents H. pylori recombination upon short contact between human groups. Alternatively, it could be due to a founder effect from a small cluster of Asian origin native Americans.
Collapse
Affiliation(s)
- Dulciene Maria de Magalhães Queiroz
- Laboratory of Research in Bacteriology, Faculdade de Medicina, Universidade Federal de Minas Gerais. Av. Alfredo Balena 190/216., 30130-100 Belo Horizonte, MG, Brazil.
| | | | | | | |
Collapse
|
391
|
Peterson DA, Jimenez Cardona RA. Specificity of the Adaptive Immune Response to the Gut Microbiota. Adv Immunol 2010; 107:71-107. [DOI: 10.1016/b978-0-12-381300-8.00003-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
392
|
Ahmed N, Tenguria S, Nandanwar N. Helicobacter pylori--a seasoned pathogen by any other name. Gut Pathog 2009; 1:24. [PMID: 20030808 PMCID: PMC2806874 DOI: 10.1186/1757-4749-1-24] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 12/23/2009] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a well known inhabitant of human stomach which is linked to peptic ulcer disease and gastric adenocarcinoma. It was recently shown in several studies that H. pylori can be harnessed as a surrogate marker of human migration and that its population structure and stratification patterns exactly juxtapose to those of Homo sapiens. This is enough a testimony to convey that H. pylori may have coevolved with their host. Several protective effects of H. pylori colonization have been considered as evidence of a presumed symbiotic relationship. Contrary to this assumption is the presence of a strong virulence apparatus within H. pylori; why a co-evolved parasite would try inflicting its host with serious infection and even causing cancer? The answer is perhaps embedded in the evolutionary history of both the bacterium and the host. We discuss a hypothetical scenario wherein H. pylori may have acquired virulence genes from donors within its environment that varied with change in human history and ecology. The H. pylori genomes sequenced to date portray fairly high abundance of such laterally acquired genes which have no assigned functions but could be linked to inflammatory responses or other pathogenic attributes. Therefore, the powerful virulence properties and survival strategies of Helicobacter make it a seasoned pathogen; thus the efforts to portray it as a commensal or a (harmless) 'bacterial parasite' need rethinking.
Collapse
Affiliation(s)
- Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| | | | | |
Collapse
|
393
|
Honey K. Tales from the gene pool: a genomic view of infectious disease. J Clin Invest 2009; 119:2452-4. [PMID: 19729842 DOI: 10.1172/jci40662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Research into the pathogenesis, prevention, and control of infectious and parasitic diseases remains a global priority, as these scourges continue to be a substantial cause of mortality and morbidity. The plethora of molecular tools that are now readily available has facilitated a genome-wide approach to studying the pathogenesis of such diseases, with direct implications for disease prevention and treatment. The articles in this Review Series describe how genome-wide approaches have provided insight into a range of human pathogens, leading to greater understanding of the human diseases that they cause, and highlight some of the challenges that must be overcome if we are to maximize what we learn from the wealth of genomic information now available.
Collapse
Affiliation(s)
- Karen Honey
- The Journal of Clinical Investigation, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|