351
|
Polizzotti BD, Thomson LM, O'Connell DW, McGowan FX, Kheir JN. Optimization and characterization of stable lipid-based, oxygen-filled microbubbles by mixture design. J Biomed Mater Res B Appl Biomater 2014; 102:1148-56. [DOI: 10.1002/jbm.b.33096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/08/2013] [Accepted: 12/10/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Brian D. Polizzotti
- Department of Cardiology; Boston Children's Hospital; 300 Longwood Avenue, Enders 1228 Boston Massachusetts 02115
- Department of Pediatrics; Harvard Medical School; 300 Longwood Avenue, Enders 1228 Boston Massachusetts 02115
| | - Lindsay M. Thomson
- Department of Cardiology; Boston Children's Hospital; 300 Longwood Avenue, Enders 1228 Boston Massachusetts 02115
| | - Daniel W. O'Connell
- Department of Cardiology; Boston Children's Hospital; 300 Longwood Avenue, Enders 1228 Boston Massachusetts 02115
| | - Francis X. McGowan
- Department of Anesthesiology and Critical Care Medicine; Children's Hospital of Philadelphia, Civic Center Boulevard; Philadelphia Pennsylvania 19104
| | - John N. Kheir
- Department of Cardiology; Boston Children's Hospital; 300 Longwood Avenue, Enders 1228 Boston Massachusetts 02115
- Department of Pediatrics; Harvard Medical School; 300 Longwood Avenue, Enders 1228 Boston Massachusetts 02115
| |
Collapse
|
352
|
Wang S, Samiotaki G, Olumolade O, Feshitan JA, Konofagou EE. Microbubble type and distribution dependence of focused ultrasound-induced blood-brain barrier opening. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:130-7. [PMID: 24239362 PMCID: PMC3893303 DOI: 10.1016/j.ultrasmedbio.2013.09.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 05/11/2023]
Abstract
Focused ultrasound, in the presence of microbubbles, has been used non-invasively to induce reversible blood-brain barrier (BBB) opening in both rodents and non-human primates. This study was aimed at identifying the dependence of BBB opening properties on polydisperse microbubble (all clinically approved microbubbles are polydisperse) type and distribution by using a clinically approved ultrasound contrast agent (Definity microbubbles) and in-house prepared polydisperse (IHP) microbubbles in mice. A total of 18 C57 BL/6 mice (n = 3) were used in this study, and each mouse was injected with either Definity or IHP microbubbles via the tail vein. The concentration and size distribution of activated Definity and IHP microbubbles were measured, and the microbubbles were diluted to 6 × 10(8)/mL before injection. Immediately after microbubble administration, mice were subjected to focused ultrasound with the following parameters: frequency = 1.5 MHz, pulse repetition frequency = 10 Hz, 1000 cycles, in situ peak rarefactional acoustic pressures = 0.3, 0.45 and 0.6 MPa for a sonication duration of 60 s. Contrast-enhanced magnetic resonance imaging was used to confirm BBB opening and allowed for image-based analysis. Permeability of the treated region and volume of BBB opening did not significantly differ between the two types of microbubbles (p > 0.05) at peak rarefractional acoustic pressures of 0.45 and 0.6 MPa, whereas IHP microbubbles had significantly higher permeability and opening volume (p < 0.05) at the relatively lower pressure of 0.3 MPa. The results from this study indicate that microbubble type and distribution could have significant effects on focused ultrasound-induced BBB opening at lower pressures, but less important effects at higher pressures, possibly because of the stable cavitation that governs the former. This difference may have become less significant at higher pressures, where inertial cavitation typically occurs.
Collapse
Affiliation(s)
- Shutao Wang
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Gesthimani Samiotaki
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Oluyemi Olumolade
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jameel A. Feshitan
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E. Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| |
Collapse
|
353
|
Holowka EP, Bhatia SK. Smart Drug Delivery Systems. Drug Deliv 2014. [DOI: 10.1007/978-1-4939-1998-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
354
|
Introduction of Genes via Sonoporation and Electroporation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:231-54. [DOI: 10.1007/978-1-4471-6458-6_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
355
|
Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Sueishi M. Sonoporation: Gene transfer using ultrasound. World J Methodol 2013; 3:39-44. [PMID: 25237622 PMCID: PMC4145571 DOI: 10.5662/wjm.v3.i4.39] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 02/06/2023] Open
Abstract
Genes can be transferred using viral or non-viral vectors. Non-viral methods that use plasmid DNA and short interference RNA (siRNA) have advantages, such as low immunogenicity and low likelihood of genomic integration in the host, when compared to viral methods. Non-viral methods have potential merit, but their gene transfer efficiency is not satisfactory. Therefore, new methods should be developed. Low-frequency ultrasound irradiation causes mechanical perturbation of the cell membrane, allowing the uptake of large molecules in the vicinity of the cavitation bubbles. The collapse of these bubbles generates small transient holes in the cell membrane and induces transient membrane permeabilization. This formation of small pores in the cell membrane using ultrasound allows the transfer of DNA/RNA into the cell. This phenomenon is known as sonoporation and is a gene delivery method that shows great promise as a potential new approach in gene therapy. Microbubbles lower the threshold of cavity formation. Complexes of therapeutic genes and microbubbles improve the transfer efficiency of genes. Diagnostic ultrasound is potentially a suitable sonoporator because it allows the real-time monitoring of irradiated fields.
Collapse
Affiliation(s)
- Minoru Tomizawa
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| | - Fuminobu Shinozaki
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| | - Yasufumi Motoyoshi
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| | - Takao Sugiyama
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| | - Shigenori Yamamoto
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| | - Makoto Sueishi
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| |
Collapse
|
356
|
Cavalieri F, Best JP, Perez C, Tu J, Caruso F, Matula TJ, Ashokkumar M. Mechanical characterization of ultrasonically synthesized microbubble shells by flow cytometry and AFM. ACS APPLIED MATERIALS & INTERFACES 2013; 5:10920-10925. [PMID: 24125167 DOI: 10.1021/am403108y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The mechanical properties of the shell of ultrasonically synthesized lysozyme microbubbles, LSMBs, were evaluated by acoustic interrogation and nanoindentation techniques. The Young's modulus of LSMBs was found to be 1.0 ± 0.3 MPa and 0.6 ± 0.1 MPa when analyzed by flow cytometry and AFM, respectively. The shell elasticity and Young's modulus were not affected by the size of the microbubbles (MBs). The hydrogel-like protein shell of LSMBs offers a softer, more elastic and viscous interface compared to lipid-shelled MBs. We show that the acoustic interrogation technique is a real-time, fast, and high-throughput method to characterize the mechanical characteristics of air-filled microbubbles coated by a variety of materials.
Collapse
Affiliation(s)
- Francesca Cavalieri
- School of Chemistry, The University of Melbourne , Parkville, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
357
|
Alexander-Bryant AA, Vanden Berg-Foels WS, Wen X. Bioengineering strategies for designing targeted cancer therapies. Adv Cancer Res 2013; 118:1-59. [PMID: 23768509 DOI: 10.1016/b978-0-12-407173-5.00002-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The goals of bioengineering strategies for targeted cancer therapies are (1) to deliver a high dose of an anticancer drug directly to a cancer tumor, (2) to enhance drug uptake by malignant cells, and (3) to minimize drug uptake by nonmalignant cells. Effective cancer-targeting therapies will require both passive- and active-targeting strategies and a thorough understanding of physiologic barriers to targeted drug delivery. Designing a targeted therapy includes the selection and optimization of a nanoparticle delivery vehicle for passive accumulation in tumors, a targeting moiety for active receptor-mediated uptake, and stimuli-responsive polymers for control of drug release. The future direction of cancer targeting is a combinatorial approach, in which targeting therapies are designed to use multiple-targeting strategies. The combinatorial approach will enable combination therapy for delivery of multiple drugs and dual ligand targeting to improve targeting specificity. Targeted cancer treatments in development and the new combinatorial approaches show promise for improving targeted anticancer drug delivery and improving treatment outcomes.
Collapse
Affiliation(s)
- Angela A Alexander-Bryant
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Craniofacial Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Wendy S Vanden Berg-Foels
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Craniofacial Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xuejun Wen
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Craniofacial Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Orthopedic Surgery, Medical University of South Carolina, Charleston, South Carolina, USA.,Institute for Biomedical Engineering and Nanotechnology, Tongji University School of Medicine, Shanghai, China.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.,College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
358
|
Cavalli R, Bisazza A, Lembo D. Micro- and nanobubbles: a versatile non-viral platform for gene delivery. Int J Pharm 2013; 456:437-45. [PMID: 24008081 DOI: 10.1016/j.ijpharm.2013.08.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/20/2013] [Accepted: 08/24/2013] [Indexed: 01/01/2023]
Abstract
Micro- and nanobubbles provide a promising non-viral strategy for ultrasound mediated gene delivery. Microbubbles are spherical gas-filled structures with a mean diameter of 1-8 μm, characterised by their core-shell composition and their ability to circulate in the bloodstream following intravenous injection. They undergo volumetric oscillations or acoustic cavitation when insonified by ultrasound and, most importantly, they are able to resonate at diagnostic frequencies. It is due to this behaviour that microbubbles are currently being used as ultrasound contrast agents, but their use in therapeutics is still under investigation. For example, microbubbles could play a role in enhancing gene delivery to cells: when combined with clinical ultrasound exposure, microbubbles are able to favour gene entry into cells by cavitation. Two different delivery strategies have been used to date: DNA can be co-administered with the microbubbles (i.e. the contrast agent) or 'loaded' in purposed-built bubble systems - indeed a number of different technological approaches have been proposed to associate genes within microbubble structures. Nanobubbles, bubbles with sizes in the nanometre order of magnitude, have also been developed with the aim of obtaining more efficient gene delivery systems. Their small sizes allow the possibility of extravasation from blood vessels into the surrounding tissues and ultrasound-targeted site-specific release with minimal invasiveness. In contrast, microbubbles, due to their larger sizes, are unable to extravasate, thus and their targeting capacity is limited to specific antigens present within the vascular lumen. This review provides an overview of the use of microbubbles as gene delivery systems, with a specific focus on recent research into the development of nanosystems. In particular, ultrasound delivery mechanisms, formulation parameters, gene-loading approaches and the advantages of nanometric systems will be described.
Collapse
Affiliation(s)
- Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy.
| | | | | |
Collapse
|
359
|
Patel JV, Kessel D. Re: CO2 microbubble contrast enhancement in x-ray angiography. Clin Radiol 2013; 68:1179-80. [PMID: 23896310 DOI: 10.1016/j.crad.2013.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
Affiliation(s)
- J V Patel
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | |
Collapse
|
360
|
Martin KH, Dayton PA. Current status and prospects for microbubbles in ultrasound theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:329-345. [PMID: 23504911 DOI: 10.1002/wnan.219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Encapsulated microbubbles have been developed over the past two decades to provide improvements both in imaging as well as new therapeutic applications. Microbubble contrast agents are used currently for clinical imaging where increased sensitivity to blood flow is required, such as echocardiography. These compressible spheres oscillate in an acoustic field, producing nonlinear responses which can be uniquely distinguished from surrounding tissue, resulting in substantial enhancements in imaging signal-to-noise ratio. Furthermore, with sufficient acoustic energy the oscillation of microbubbles can mediate localized biological effects in tissue including the enhancement of membrane permeability or increased thermal energy deposition. Structurally, microbubbles are comprised of two principal components--an encapsulating shell and an inner gas core. This configuration enables microbubbles to be loaded with drugs or genes for additional therapeutic effect. Application of sufficient ultrasound energy can release this payload, resulting in site-specific delivery. Extensive preclinical studies illustrate that combining microbubbles and ultrasound can result in enhanced drug delivery or gene expression at spatially selective sites. Thus, microbbubles can be used for imaging, for therapy, or for both simultaneously. In this sense, microbubbles combined with acoustics may be one of the most universal theranostic tools.
Collapse
Affiliation(s)
- K Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | | |
Collapse
|
361
|
Mou F, Chen C, Ma H, Yin Y, Wu Q, Guan J. Self-Propelled Micromotors Driven by the Magnesium-Water Reaction and Their Hemolytic Properties. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300913] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
362
|
Mou F, Chen C, Ma H, Yin Y, Wu Q, Guan J. Self-Propelled Micromotors Driven by the Magnesium-Water Reaction and Their Hemolytic Properties. Angew Chem Int Ed Engl 2013; 52:7208-12. [DOI: 10.1002/anie.201300913] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Indexed: 01/17/2023]
|
363
|
Chen X, Wan JMF, Yu ACH. Sonoporation as a cellular stress: induction of morphological repression and developmental delays. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1075-1086. [PMID: 23499345 DOI: 10.1016/j.ultrasmedbio.2013.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
For sonoporation to be established as a drug/gene delivery paradigm, it is essential to account for the biological impact of this membrane permeation strategy on living cells. Here we provide new insight into the cellular impact of sonoporation by demonstrating in vitro that this way of permeating the plasma membrane may inadvertently induce repressive cellular features even while enhancing exogenous molecule uptake. Both suspension-type (HL-60) and monolayer (ZR-75-30) cells were considered in this investigation, and they were routinely exposed to 1-MHz pulsed ultrasound (pulse length, 100 cycles; pulse repetition frequency, 1 kHz; exposure period, 60 s) with calibrated field profile (spatial-averaged peak negative pressure, 0.45 MPa) and in the presence of microbubbles (cell:bubble ratio, 10:1). The post-exposure morphology of sonoporated cells (identified as those with calcein internalization) was examined using confocal microscopy, and their cell cycle progression kinetics were analyzed using flow cytometry. Results show that for both cell types investigated, sonoporated cells exhibited membrane shrinkage and intra-cellular lipid accumulation over a 2-h period. Also, as compared with normal cells, the deoxyribonucleic acid synthesis duration of sonoporated cells was significantly lengthened, indicative of a delay in cell cycle progression. These features are known to be characteristics of a cellular stress response, suggesting that sonoporation indeed constitutes as a stress to living cells. This issue may need to be addressed in optimizing sonoporation for drug/gene delivery purposes. On the other hand, it raises opportunities for developing other therapeutic applications via sonoporation.
Collapse
Affiliation(s)
- Xian Chen
- Medical Engineering Program, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | |
Collapse
|
364
|
Sirsi SR, Fung C, Garg S, Tianning MY, Mountford PA, Borden MA. Lung surfactant microbubbles increase lipophilic drug payload for ultrasound-targeted delivery. Theranostics 2013; 3:409-19. [PMID: 23781287 PMCID: PMC3677411 DOI: 10.7150/thno.5616] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/27/2013] [Indexed: 12/12/2022] Open
Abstract
The cavitation response of circulating microbubbles to targeted ultrasound can be used for noninvasive, site-specific delivery of shell-loaded materials. One challenge for microbubble-mediated delivery of lipophilic compounds is the limitation of drug loading into the microbubble shell, which is commonly a single phospholipid monolayer. In this study, we investigated the use of natural lung surfactant extract (Survanta®, Abbott Nutrition) as a microbubble shell material in order to improve drug payload and delivery. Pulmonary surfactant extracts such as Survanta contain hydrophobic surfactant proteins (SP-B and SP-C) that facilitate lipid folding and retention on lipid monolayers. Here, we show that Survanta-based microbubbles exhibit wrinkles in bright-field microscopy and increased lipid retention on the microbubble surface in the form of surface-associated aggregates observed with fluorescence microscopy. The payload of a model lipophilic drug (DiO), measured by flow cytometry, increased by over 2-fold compared to lipid-coated microbubbles lacking SP-B and SP-C. Lung surfactant microbubbles were highly echogenic to contrast enhanced ultrasound imaging at low acoustic intensities. At higher ultrasound intensity, excess lipid was observed to be acoustically cleaved for localized release. To demonstrate targeting, a biotinylated lipopolymer was incorporated into the shell, and the microbubbles were subjected to a sequence of radiation force and fragmentation pulses as they passed through an avidinated hollow fiber. Lung surfactant microbubbles showed a 3-fold increase in targeted deposition of the model fluorescent drug compared to lipid-only microbubbles. Our results demonstrate that lung surfactant microbubbles maintain the acoustic responsiveness of lipid-coated microbubbles with the added benefit of increased lipophilic drug payload.
Collapse
|
365
|
Wang CH, Yeh CK. Controlling the size distribution of lipid-coated bubbles via fluidity regulation. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:882-892. [PMID: 23453628 DOI: 10.1016/j.ultrasmedbio.2013.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 01/06/2013] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
Lipid-coated bubbles exhibit oscillation responses capable of enhancing the sensitivity of ultrasound imaging by improving contrast. Further improvements in performance enhancement require control of the size distribution of bubbles to promote correspondence between their resonance frequency and the frequency of the ultrasound. Here we describe a size-controlling technique that can shift the size distribution using a currently available agitation method. This technique is based on regulating the membrane dynamic fluidity of lipid mixtures and provides a general size-controlling variable that could also be applied in other fabrication methods. Three materials (1,2-dihexadecanoyl-sn-glycero-3-phosphocholine, 1,2-dioctadecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) and polyethylene glycol 40 stearate) with distinct initial fluidities and phase behaviors were used to demonstrate the use of fluidity regulation to control bubble sizes. Bubble size distributions of different formulations were determined by electrical impedance sensing, and bubble volumes and surface areas were calculated. To confirm the relationship between regulated fluidity and mean bubble size, the membrane fluidity of each composition was determined by fluorescence anisotropy, with the results indicating linear relations in the compositions with similar main transition temperatures. Compositions with a higher molar proportion of polyethylene glycol 40 stearate showed higher fluidities and larger bubbles. B-mode ultrasound imaging was performed to investigate the echogenicity and lifetime of the fabricated bubbles, with the results indicating that co-mixing a high-transition-temperature charged lipid (i.e., 1,2-dioctadecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol)) extends the tailoring range of this fluidity regulation technique, allowing refined and continuous changes in mean bubble size (from 0.93 to 2.86 μm in steps of ∼0.5 μm), and also prolongs bubble lifetime. The polydispersity of each composition was also determined to evaluate practicality in particular applications. Our study demonstrates a feasible approach to naturally controling bubble size distribution and provides a practical reference for other fabrication systems and ultrasound imaging applications.
Collapse
Affiliation(s)
- Chung-Hsin Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | |
Collapse
|
366
|
Electrochemical investigation of the interaction between lysozyme-shelled microbubbles and vitamin C. Anal Bioanal Chem 2013; 405:5531-8. [DOI: 10.1007/s00216-013-6895-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 11/25/2022]
|
367
|
Martin KH, Dayton PA. Current status and prospects for microbubbles in ultrasound theranostics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:329-45. [PMID: 23504911 DOI: 10.1002/wnan.1219] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Encapsulated microbubbles have been developed over the past two decades to provide improvements both in imaging as well as new therapeutic applications. Microbubble contrast agents are used currently for clinical imaging where increased sensitivity to blood flow is required, such as echocardiography. These compressible spheres oscillate in an acoustic field, producing nonlinear responses which can be uniquely distinguished from surrounding tissue, resulting in substantial enhancements in imaging signal-to-noise ratio. Furthermore, with sufficient acoustic energy the oscillation of microbubbles can mediate localized biological effects in tissue including the enhancement of membrane permeability or increased thermal energy deposition. Structurally, microbubbles are comprised of two principal components--an encapsulating shell and an inner gas core. This configuration enables microbubbles to be loaded with drugs or genes for additional therapeutic effect. Application of sufficient ultrasound energy can release this payload, resulting in site-specific delivery. Extensive preclinical studies illustrate that combining microbubbles and ultrasound can result in enhanced drug delivery or gene expression at spatially selective sites. Thus, microbbubles can be used for imaging, for therapy, or for both simultaneously. In this sense, microbubbles combined with acoustics may be one of the most universal theranostic tools.
Collapse
Affiliation(s)
- K Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | | |
Collapse
|
368
|
Ren ST, Liao YR, Kang XN, Li YP, Zhang H, Ai H, Sun Q, Jing J, Zhao XH, Tan LF, Shen XL, Wang B. The antitumor effect of a new docetaxel-loaded microbubble combined with low-frequency ultrasound in vitro: preparation and parameter analysis. Pharm Res 2013; 30:1574-85. [PMID: 23417512 DOI: 10.1007/s11095-013-0996-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/28/2013] [Indexed: 01/10/2023]
Abstract
PURPOSE To develop a novel docetaxel (DOC)-loaded lipid microbubbles (MBs) for achieving target therapy and overcoming the poor water-solubility drawback of DOC. METHODS A novel DOC-loaded microbubble (DOC + MB) was prepared by lyophilization and the physicochemical properties including ultrasound contrast imaging of the liver were measured. The anti-tumor effect of the DOC + MBs combined with low-frequency ultrasound (LFUS; 0.8 Hz, 2.56 W/cm², 50% cycle duty) on the DLD-1 cancer cell line was examined using an MTT assay. RESULTS The physicochemical properties of the two tested formats of DOC + MBs (1.0 mg and 1.6 mg) was shown: concentration, (6.74 ± 0.02) × 10⁸ bubbles/mL and (8.27 ± 0.15) × 10⁸ bubbles/mL; mean size, 3.296 ± 0.004 μm and 3.387 ± 0.005 μm; pH value, 6.67 ± 0.11 and 6.56 ± 0.05; release rate, 3.41% and 12.50%; Zeta potential, -37.95 ± 7.84 mV and -44.35 ± 8.70 mV; and encapsulation efficiency, 54.9 ± 6.21% and 46.3 ± 5.69%, respectively. Compared with SonoVue, the DOC + MBs similarly enhanced the echo signal of the liver imaging. The anti-tumor effect of the DOC + MBs/LFUS group was significantly better than that of DOC alone and that of the normal MBs/LFUS groups. CONCLUSIONS The self-made DOC + MBs have potential as a new ultrasound contrast agent and drug-loaded microbubble, and can obviously enhance the antitumor effect of DOC under LFUS exposure.
Collapse
Affiliation(s)
- Shu-Ting Ren
- Department of Pathology and Therapeutic Vaccines Engineering Center of Shaanxi Province, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
369
|
Cavalieri F, Micheli L, Kaliappan S, Teo BM, Zhou M, Palleschi G, Ashokkumar M. Antimicrobial and biosensing ultrasound-responsive lysozyme-shelled microbubbles. ACS APPLIED MATERIALS & INTERFACES 2013; 5:464-471. [PMID: 23265433 DOI: 10.1021/am302660j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Air-filled lysozyme microbubbles (LSMBs) were engineered as a support for the immobilization of gold nanoparticles and an enzyme, alkaline phosphatase, in order to develop micro-antimicrobial and biosensing devices. Gold nanoparticles immobilized on LSMBs significantly improved the antimicrobial efficacy of the microbubbles against M. lysodeikticus. The surface functionalization of the microbubbles with gold nanoparticles did not affect their echogenicity when exposed to an ultrasound imaging probe. Alkaline phosphatase was conjugated on the surface of microbubbles without compromising its enzymatic activity. The functionalized microbubbles were used for the detection of paraoxon in aqueous solutions.
Collapse
Affiliation(s)
- Francesca Cavalieri
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00173 Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
370
|
Capece S, Chiessi E, Cavalli R, Giustetto P, Grishenkov D, Paradossi G. A general strategy for obtaining biodegradable polymer shelled microbubbles as theranostic devices. Chem Commun (Camb) 2013; 49:5763-5. [DOI: 10.1039/c3cc42037j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
371
|
Mullin LB, Phillips LC, Dayton PA. Nanoparticle delivery enhancement with acoustically activated microbubbles. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:65-77. [PMID: 23287914 PMCID: PMC3822910 DOI: 10.1109/tuffc.2013.2538] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The application of microbubbles and ultrasound to deliver nanoparticle carriers for drug and gene delivery is an area that has expanded greatly in recent years. Under ultrasound exposure, microbubbles can enhance nanoparticle delivery by increasing cellular and vascular permeability. In this review, the underlying mechanisms of enhanced nanoparticle delivery with ultrasound and microbubbles and various proposed delivery techniques are discussed. Additionally, types of nanoparticles currently being investigated in preclinical studies, as well as the general limitations and benefits of a microbubble- based approach to nanoparticle delivery, are reviewed.
Collapse
Affiliation(s)
- Lee B Mullin
- Joint Department of Biomedical Engineering The University of North Carolina at Chapel Hill, and North Carolina State University
| | - Linsey C Phillips
- Joint Department of Biomedical Engineering The University of North Carolina at Chapel Hill, and North Carolina State University
| | - Paul A Dayton
- Joint Department of Biomedical Engineering The University of North Carolina at Chapel Hill, and North Carolina State University
- Author to whom correspondence should be addressed Paul A. Dayton Campus Box 7575, UNC Chapel Hill Chapel Hill, NC 27599
| |
Collapse
|
372
|
Molecular Targeting of Imaging and Drug Delivery Probes in Atherosclerosis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-417150-3.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
373
|
|
374
|
Benchimol MJ, Hsu MJ, Schutt CE, Hall DJ, Mattrey RF, Esener SC. Phospholipid/Carbocyanine Dye-Shelled Microbubbles as Ultrasound-Modulated Fluorescent Contrast Agents. SOFT MATTER 2013; 9:2384-2388. [PMID: 23526919 PMCID: PMC3601761 DOI: 10.1039/c2sm26900g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fluorescent microbubbles have been fabricated with the capacity to have their emission modulated by ultrasound. These contrast agent particles could potentially be used in the future to extract fluorescence modulation from a strong light background to increase imaging depth and resolution in scattering media. Fluorescence intensity modulation was demonstrated at the ultrasound driving frequency.
Collapse
Affiliation(s)
- Michael J. Benchimol
- Department of Electrical & Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mark J. Hsu
- Department of Electrical & Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Carolyn E. Schutt
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - David J. Hall
- Department of Radiology, University of California at San Diego, Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, California 92093, USA
| | - Robert F. Mattrey
- Department of Radiology, University of California at San Diego, Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, California 92093, USA
| | - Sadik C. Esener
- Department of Electrical & Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
375
|
Sirsi SR, Borden MA. Advances in ultrasound mediated gene therapy using microbubble contrast agents. Am J Cancer Res 2012; 2:1208-22. [PMID: 23382777 PMCID: PMC3563148 DOI: 10.7150/thno.4306] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/01/2012] [Indexed: 12/19/2022] Open
Abstract
Microbubble ultrasound contrast agents have the potential to dramatically improve gene therapy treatments by enhancing the delivery of therapeutic DNA to malignant tissue. The physical response of microbubbles in an ultrasound field can mechanically perturb blood vessel walls and cell membranes, enhancing drug permeability into malignant tissue. In this review, we discuss literature that provided evidence of specific mechanisms that enhance in vivo gene delivery utilizing microbubble contrast agents, namely their ability to 1) improving cell membrane permeability, 2) modulate vascular permeability, and 3) enhance endocytotic uptake in cells. Additionally, we review novel microbubble vectors that are being developed in order to exploit these mechanisms and deliver higher gene payloads with greater target specificity. Finally, we discuss some future considerations that should be addressed in the development of next-generation microbubbles in order to improve in vivo microbubble gene delivery. Overall, microbubbles are rapidly gaining popularity as efficient gene carriers, and combined with their functionality as imaging contrast agents, they represent powerful theranostic tools for image guided gene therapy applications.
Collapse
|
376
|
Lima EG, Durney KM, Sirsi SR, Nover AB, Ateshian GA, Borden MA, Hung CT. Microbubbles as biocompatible porogens for hydrogel scaffolds. Acta Biomater 2012; 8:4334-41. [PMID: 22868194 PMCID: PMC3654399 DOI: 10.1016/j.actbio.2012.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/13/2012] [Accepted: 07/10/2012] [Indexed: 11/23/2022]
Abstract
In this study, we explored the application of lipid-shelled, gas-filled microbubbles as a method for creating on-demand microporous hydrogels for cartilage tissue engineering. The technique allowed for homogenous distribution of cells and micropores within the scaffold, increasing the absorption coefficient of large solutes (70kDa dextran) over controls in a concentration-dependent manner. The stability of the gas phase of the microbubbles depended on several factors, including the initial size distribution of the microbubble suspension, as well as the temperature and pressure during culture. Application of pressure cycles provided controlled release of the gas phase to generate fluid-filled micropores with remnant lipid. The resulting microporous agarose scaffolds were biocompatible, leading to a twofold increase in engineered cartilage properties (E(Y)=492±42kPa for the bubble group vs. 249±49kPa for the bubble-free control group) over a 42-day culture period. Our results suggest that microbubbles offer a simple and robust method of modulating mass transfer in cell-seeded hydrogels through mild pressurization, and the methodology may be expanded in the future to include focused ultrasound for improved spatio-temporal control.
Collapse
Affiliation(s)
- Eric G Lima
- Cooper Union, Department of Mechanical Engineering, 41 Cooper Square, New York, NY 10003, USA.
| | | | | | | | | | | | | |
Collapse
|
377
|
Castle J, Butts M, Healey A, Kent K, Marino M, Feinstein SB. Ultrasound-mediated targeted drug delivery: recent success and remaining challenges. Am J Physiol Heart Circ Physiol 2012. [PMID: 23203969 DOI: 10.1152/ajpheart.00265.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The potential clinical value of developing a novel, nonviral, ultrasound-directed gene and drug delivery system is immense. Investigators soon will initiate clinical trials with the goal of treating a wide variety of maladies using noninvasive, ultrasound-based technology. The ongoing, scientific validation associated with promising preclinical success portents a novel range of therapeutics. The clinical utility and eventual clinical successes await vigorous testing. This review highlights the recent successes and challenges within the field of ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Jason Castle
- General Electric Global Research, Niskayuna, New York, USA
| | | | | | | | | | | |
Collapse
|
378
|
Kwan JJ, Borden MA. Lipid monolayer collapse and microbubble stability. Adv Colloid Interface Sci 2012; 183-184:82-99. [PMID: 22959721 DOI: 10.1016/j.cis.2012.08.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 08/10/2012] [Accepted: 08/10/2012] [Indexed: 12/16/2022]
Abstract
Microbubbles are micrometer-size gaseous particles suspended in water, and they are often stabilized by a lipid monolayer shell. Natural microbubbles are found in freshwater and saltwater systems, and engineered microbubbles have a variety of applications in food sciences, biotechnology and medicine. Lipid-coated microbubbles are found to have remarkable stability and mechanical behavior owing to the resistance of the lipid monolayer encapsulation to collapse. The purpose of this review is to tie in recent observations of lipid-coated microbubble dissolution and gas exchange with current literature on the physics of lipid monolayer collapse in the context of lung surfactant. Based on this analysis, we conclude that microbubble shells collapse through the nucleation of microscopic folds, which then catalyze the formation and aggregation of new folds, leading to macroscopic folding events. This process results in a cyclic behavior of crumple-to-smooth transitions, which can be modulated through lipid composition. Eventually, the microbubbles stabilize at 1-2 μm diameter, regardless of initial size or lipid composition, and various mechanisms for this stabilization are postulated. Our ultimate goal is to inspire the reader to consider lipid monolayer collapse as the main long-term stabilizing mechanism for lipid-coated microbubbles, and to stimulate the use of microbubbles as a platform for studying monolayer collapse phenomena.
Collapse
|
379
|
Donose BC, Harnisch F, Taran E. Electrochemically produced hydrogen bubble probes for gas evolution kinetics and force spectroscopy. Electrochem commun 2012. [DOI: 10.1016/j.elecom.2012.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
380
|
Kariya S, Komemushi A, Nakatani M, Yoshida R, Sawada S, Tanigawa N. CO2 microbubble contrast enhancement in x-ray angiography. Clin Radiol 2012; 68:346-51. [PMID: 22981730 DOI: 10.1016/j.crad.2012.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/26/2012] [Accepted: 08/06/2012] [Indexed: 12/23/2022]
Abstract
AIM To demonstrate that carbon dioxide (CO2) microbubble contrast enhancement depicts blood vessels when used for x-ray examinations. MATERIALS AND METHODS Microbubbles were generated by cavitation of physiological saline to which CO2 gas had been added using an ejector-type microbubble generator. The input pressure values for CO2 gas and physiological saline that produced a large quantity of CO2 microbubbles were obtained in a phantom. In an animal study, angiography was performed in three swine using three types of contrast: CO2 microbubbles, conventional CO2 gas, and iodinated contrast medium. For CO2 microbubble contrast enhancement, physiological saline, and CO2 gas were supplied at the input pressures calculated in the phantom experiment. Regions of interest were set in the abdominal aorta, external iliac arteries, and background. The difference in digital values between each artery and the background was calculated. RESULTS The input pressures obtained in the phantom experiment were 0.16 MPa for physiological saline and 0.5 MPa for CO2 gas, with physiological saline input volume being 8.1 ml/s. Three interventional radiologists all evaluated the depictions of all arteries as "present" in the CO2 microbubble contrast enhancement, conventional CO2 contrast enhancement, and iodinated contrast enhancement performed in three swine. Digital values for all vessels with microbubble CO2 contrast enhancement were higher than background values. CONCLUSIONS In x-ray angiography, blood vessels can be depicted by CO2 microbubble contrast enhancement, in which a large quantity of CO2 microbubbles is generated within blood vessels.
Collapse
Affiliation(s)
- S Kariya
- Department of Radiology, Kansai Medical University, Hirakata, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
381
|
Halford A, Ohl CD, Azarpazhooh A, Basrani B, Friedman S, Kishen A. Synergistic effect of microbubble emulsion and sonic or ultrasonic agitation on endodontic biofilm in vitro. J Endod 2012; 38:1530-4. [PMID: 23063230 DOI: 10.1016/j.joen.2012.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 07/20/2012] [Accepted: 07/26/2012] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Irrigation dynamics and antibacterial activity determine the efficacy of root canal disinfection. Sonic or ultrasonic agitation of irrigants is expected to improve irrigation dynamics. This study examined the effects of microbubble emulsion (ME) combined with sonic or ultrasonic agitation on irrigation dynamics and reduction of biofilm bacteria within root canal models. METHODS Two experiments were conducted. First, high-speed imaging was used to characterize the bubble dynamics generated in ME by sonic or ultrasonic agitation within canals of polymer tooth models. Second, 5.25% NaOCl irrigation or ME was sonically or ultrasonically agitated in canals of extracted teeth with 7-day-grown Enterococcus faecalis biofilms. Dentinal shavings from canal walls were sampled at 1 mm and 3 mm from the apical terminus, and colony-forming units (CFUs) were enumerated. Mean log CFU/mL values were analyzed with analysis of variance and post hoc tests. RESULTS High-speed imaging demonstrated strongly oscillating and vaporizing bubbles generated within ME during ultrasonic but not sonic agitation. Compared with CFU counts in controls, NaOCl-sonic and NaOCl-ultrasonic yielded significantly lower counts (P < .05) at both measurement levels. ME-sonic yielded significantly lower counts (P = .002) at 3 mm, whereas ME-ultrasonic yielded highly significantly lower counts (P = .000) at both measurement levels. At 3 mm, ME-ultrasonic yielded significantly lower CFU counts (P = .000) than ME-sonic, NaOCl-sonic, and NaOCl-ultrasonic. CONCLUSIONS Enhanced bubble dynamics and reduced E. faecalis biofilm bacteria beyond the level achieved by sonic or ultrasonic agitation of NaOCl suggested a synergistic effect of ME combined with ultrasonic agitation.
Collapse
Affiliation(s)
- Andrew Halford
- Discipline of Endodontics, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
382
|
Insonation frequency selection may assist detection and therapeutic delivery of targeted ultrasound contrast agents. Ther Deliv 2012; 2:213-22. [PMID: 22833947 DOI: 10.4155/tde.10.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Ultrasound-targeted drug delivery relies on the unique nature of ultrasound contrast agents--they are microbubbles that respond strongly to ultrasound. Intravenously injected microbubbles are smaller than a blood cell. By increasing the ultrasound power, the bubbles can be ruptured at the targeted endothelial wall, locally releasing any molecules in the bubble shell. Furthermore, ultrasound-activated microbubbles are known to cause sonoporation--the process by which ultrasound drives molecules through cellular membranes. However, techniques are required to selectively detect and rupture only those microbubbles on target walls. METHOD Experiments are presented on the behaviour of microbubbles on walls. For accuracy, imaging measurements are made on model microbubbles larger than contrast agents. Bubble size was varied and the resonant frequency peak determined. RESULTS Microbubbles on walls have a shifted frequency in good agreement with theory: a 20-25% downshift from the frequency when far from walls. Effects other than the presence of the wall account for less than 5% of the shift. DISCUSSION Theory predicts the frequency downshift should be sustained for actual contrast-agent sized bubbles. The effect of real, compliant cell walls requires investigation. An appropriate downshift in the applied ultrasound frequency could selectively tune gene or drug delivery. To make this feasible, it may be necessary to manufacture monodispersed microbubbles.
Collapse
|
383
|
James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 2012; 92:897-965. [PMID: 22535898 DOI: 10.1152/physrev.00049.2010] [Citation(s) in RCA: 736] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular imaging is revolutionizing the way we study the inner workings of the human body, diagnose diseases, approach drug design, and assess therapies. The field as a whole is making possible the visualization of complex biochemical processes involved in normal physiology and disease states, in real time, in living cells, tissues, and intact subjects. In this review, we focus specifically on molecular imaging of intact living subjects. We provide a basic primer for those who are new to molecular imaging, and a resource for those involved in the field. We begin by describing classical molecular imaging techniques together with their key strengths and limitations, after which we introduce some of the latest emerging imaging modalities. We provide an overview of the main classes of molecular imaging agents (i.e., small molecules, peptides, aptamers, engineered proteins, and nanoparticles) and cite examples of how molecular imaging is being applied in oncology, neuroscience, cardiology, gene therapy, cell tracking, and theranostics (therapy combined with diagnostics). A step-by-step guide to answering biological and/or clinical questions using the tools of molecular imaging is also provided. We conclude by discussing the grand challenges of the field, its future directions, and enormous potential for further impacting how we approach research and medicine.
Collapse
Affiliation(s)
- Michelle L James
- Molecular Imaging Program, Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | | |
Collapse
|
384
|
Cavalli R, Bisazza A, Trotta M, Argenziano M, Civra A, Donalisio M, Lembo D. New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization. Int J Nanomedicine 2012; 7:3309-18. [PMID: 22802689 PMCID: PMC3396386 DOI: 10.2147/ijn.s30912] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The development of nonviral gene delivery systems is one of the most intriguing topics in nanomedicine. However, despite the advances made in recent years, several key issues remain unsettled. One of the main problems relates to the difficulty in designing nanodevices for targeted delivery of genes and other drugs to specific anatomic sites. In this study, we describe the development of a novel chitosan nanobubble-based gene delivery system for ultrasound-triggered release. METHODS AND RESULTS Chitosan was selected for the nanobubble shell because of its low toxicity, low immunogenicity, and excellent biocompatibility, while the core consisted of perfluoropentane. DNA-loaded chitosan nanobubbles were formed with a mean diameter of less than 300 nm and a positive surface charge. Transmission electron microscopic analysis confirmed composition of the core-shell structure. The ability of the chitosan nanobubbles to complex with and protect DNA was confirmed by agarose gel assay. Chitosan nanobubbles were found to be stable following insonation (2.5 MHz) for up to 3 minutes at 37°C. DNA release was evaluated in vitro in both the presence and absence of ultrasound. The release of chitosan nanobubble-bound plasmid DNA occurred after just one minute of insonation. In vitro transfection experiments were performed by exposing adherent COS7 cells to ultrasound in the presence of different concentrations of plasmid DNA-loaded nanobubbles. In the absence of ultrasound, nanobubbles failed to trigger transfection at all concentrations tested. In contrast, 30 seconds of ultrasound promoted a moderate degree of transfection. Cell viability experiments demonstrated that neither ultrasound nor the nanobubbles affected cell viability under these experimental conditions. CONCLUSION Based on these results, chitosan nanobubbles have the potential to be promising tools for ultrasound-mediated DNA delivery.
Collapse
Affiliation(s)
- Roberta Cavalli
- Department of Pharmaceutical Sciences and Technology, University of Turin, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
385
|
Chen CC, Sirsi SR, Borden MA. Effect of surface architecture on in vivo ultrasound contrast persistence of targeted size-selected microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:492-503. [PMID: 22305060 PMCID: PMC3273728 DOI: 10.1016/j.ultrasmedbio.2011.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 05/04/2023]
Abstract
Ultrasound molecular imaging is a powerful diagnostic modality using microbubbles coated with targeting ligands specific for endothelial biomarkers. The circulation persistence of ligand-bearing contrast agents is a key determinant in their contrast enhancement and targeting capability. Prior studies have shown that targeted microbubbles with ligands attached to the shell using the conventional exposed-ligand architecture (ELA) could trigger undesired ligand-induced complement activation and decreased circulation time. Microbubbles with the buried-ligand architecture (BLA), however, were found to inhibit complement activation and prolong circulation time. In the present study, we extended the stealth BLA microbubble design to size-selected (4 to 5-μm diameter) microbubbles targeted with cyclic RGD peptide using the postlabeling technique. Microbubble circulation persistence was measured in the healthy mouse kidney using a Visualsonics Vevo 770 scanner operating at 40 MHz in fundamental mode. The circulation persistence for targeted BLA microbubbles was significantly longer compared with their ELA counterparts and similar to no-ligand controls. Use of the BLA instead of the ELA increased the circulation half-life approximately two-fold. Analysis of the time-intensity and time-fluctuation curves with a two-compartment pharmacokinetic model showed a minimal degree of nonspecific vascular adhesion for any group. These results demonstrate the importance of surface architecture in the design of targeted microbubbles for ultrasound molecular imaging.
Collapse
Affiliation(s)
- Cherry C. Chen
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| | - Shashank R. Sirsi
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309
| | - Mark A. Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309
- Corresponding Author Address: Mark A. Borden, PhD, Department of Mechanical Engineering, University of Colorado, 1111 Engineering Drive, Boulder, CO 80309-0427, Phone: 303-492-7750, Fax: 303-492-3498,
| |
Collapse
|
386
|
Nomikou N, Fowley C, Byrne NM, McCaughan B, McHale AP, Callan JF. Microbubble–sonosensitiser conjugates as therapeutics in sonodynamic therapy. Chem Commun (Camb) 2012; 48:8332-4. [DOI: 10.1039/c2cc33913g] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
387
|
Wang CH, Kang ST, Lee YH, Luo YL, Huang YF, Yeh CK. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials 2011; 33:1939-47. [PMID: 22142768 DOI: 10.1016/j.biomaterials.2011.11.036] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 11/15/2011] [Indexed: 11/19/2022]
Abstract
Tumor therapy requires multi-functional treatment strategies with specific targeting of therapeutics to reduce general toxicity and increase efficacy. In this study we fabricated and functionally tested aptamer-conjugated and doxorubicin (DOX)-loaded acoustic droplets comprising cores of liquid perfluoropentane compound and lipid-based shell materials. Conjugation of sgc8c aptamers provided the ability to specifically target CCRF-CEM cells for both imaging and therapy. High-intensity focused ultrasound (HIFU) was introduced to trigger targeted acoustic droplet vaporization (ADV) which resulted in both mechanical cancer cell destruction by inertial cavitation and chemical treatment through localized drug release. HIFU insonation showed a 56.8% decrease in cell viability with aptamer-conjugated droplets, representing a 4.5-fold increase in comparison to non-conjugated droplets. In addition, the fully-vaporized droplets resulted in the highest DOX uptake by cancer cells, compared to non-vaporized or partially vaporized droplets. Optical studies clearly illustrated the transient changes that occurred upon ADV of droplet-targeted CEM cells, and B-mode ultrasound imaging revealed contrast enhancement by ADV in ultrasound images. In conclusion, our fabricated droplets functioned as a hybrid chemical and mechanical strategy for the specific destruction of cancer cells upon ultrasound-mediated ADV, while simultaneously providing ultrasound imaging capability.
Collapse
Affiliation(s)
- Chung-Hsin Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
388
|
Guzowski J, Korczyk PM, Jakiela S, Garstecki P. Automated high-throughput generation of droplets. LAB ON A CHIP 2011; 11:3593-5. [PMID: 21927762 DOI: 10.1039/c1lc20595a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We report a microfluidic technique for high-throughput generation of droplets of nanolitre volume in parallel channels with online control of the volumes, volume fraction and distribution of droplet volumes with the use of two external valves.
Collapse
Affiliation(s)
- Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | |
Collapse
|
389
|
Ren ST, Zhang H, Wang YW, Jing BB, Li YX, Liao YR, Kang XN, Zang WJ, Wang B. The preparation of a new self-made microbubble-loading urokinase and its thrombolysis combined with low-frequency ultrasound in vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1828-1837. [PMID: 21925787 DOI: 10.1016/j.ultrasmedbio.2011.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 05/31/2023]
Abstract
Urokinase (uPA) is used widely for thrombosis therapy in the clinic. However, ways to minimize its adverse effect of hemorrhage are still being studied. As a new technique for the local delivery of genes and drugs, ultrasound (US) contrast agents, microbubbles (MBs), have been mentioned. The purpose of this study is to explore a more efficacious and safer thrombolytic method by preparing three groups of self-made microbubble-loading uPA (uPA-MBs) (1 uPA-MBs, 5 uPA-MBs and 10 uPA-MBs) using freeze-drying methods and measuring their thrombolysis when combined in vitro with low-frequency US. The results showed the mean concentration, mean diameter, pH value and encapsulation efficiency of uPA of the three groups of uPA-MBs were approximately 2.08-2.82 × 10(8)/mL, ∼3.13 μm, 6.89-6.99 and from (78.08% ± 0.57%) to (57.23% ± 0.94%), respectively. Under US exposure, the loaded uPA demonstrated bioactivity by agarose fibrin plate and in vitro thrombolysis of the three uPA-MBs also showed higher effects than in the group of those who received uPA-MBs alone, the control group or the US group. In conclusion, the physiochemical properties of these self-made uPA-MBs are suitable for intravenous administration but 1 uPA-MB and 5 uPA-MBs are better than 10 uPA-MBs. uPA-MBs combined with US can decrease the in vitro dosage of uPA for thrombolysis.
Collapse
Affiliation(s)
- Shu-Ting Ren
- Department of Pathology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
390
|
Zhao YZ, Xu YY, Li X, Lu CT, Zhang L, Dai DD, Sun CZ, Lv HF, Li XK, Yang W. An in vivo experiment to improve pulmonary absorption of insulin using microbubbles. Diabetes Technol Ther 2011; 13:1013-21. [PMID: 21745138 DOI: 10.1089/dia.2011.0113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Gas-filled phospholipid-based ultrasonic microbubbles (PUMs) are widely used in diagnostic imaging. The micro- or nanoparticle size and the physiochemical nature of shell provide the potential for a new way to improve pulmonary absorption for peptides and proteins. METHODS Male Sprague-Dawley rats were fasted for 12 h. Then insulin solution and insulin-PUM mixture solution were administered by intratracheal instillation. The hypoglycemic effect was observed to evaluate insulin absorption after lung administration. Fluorescein isothiocyanate-dextran (molecular mass, 4 kDa) was used as the index of evaluating drug alveolar deposition and absorption by visualization techniques. RESULTS Administration of insulin solution containing PUMs significantly reduced the blood glucose levels of Sprague-Dawley rats, compared with administration of insulin-only solution. The minimum reductions of the blood glucose concentration produced by insulin solution containing PUMs and by an insulin-only solution reached 60.81% and 34.60% of the initial glucose levels, respectively, and their bioavailabilities relative to subcutaneous injection were 48.58% and 29.09%, respectively. Histopathological study of the lung showed no changes in the morphology of the pulmonary alveoli after administration to these drugs. Only a slight inflammatory cell infiltration in the alveoli could be found in some rats. CONCLUSION These results suggested that PUMs might be used as an effective way to improve pulmonary absorption for peptides and proteins.
Collapse
|
391
|
Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors. J Control Release 2011; 157:224-34. [PMID: 21945680 DOI: 10.1016/j.jconrel.2011.09.071] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/07/2011] [Accepted: 09/10/2011] [Indexed: 02/07/2023]
Abstract
Microbubble ultrasound contrast agents are being developed as image-guided gene carriers for targeted delivery in vivo. In this study, novel polyplex-microbubbles were synthesized, characterized and evaluated for systemic circulation and tumor transfection. Branched polyethylenimine (PEI; 25 kDa) was modified with polyethylene glycol (PEG; 5 kDa), thiolated and covalently attached to maleimide groups on lipid-coated microbubbles. The PEI-microbubbles demonstrated increasingly positive surface charge and DNA loading capacity with increasing maleimide content. The in vivo ultrasound contrast persistence of PEI-microbubbles was measured in the healthy mouse kidney, and a two-compartment pharmacokinetic model accounting for free and adherent microbubbles was developed to describe the anomalous time-intensity curves. The model suggested that PEI loading dramatically reduced free circulation and increased nonspecific adhesion to the vasculature. However, DNA loading to form polyplex-microbubbles increased circulation in the bloodstream and decreased nonspecific adhesion. PEI-microbubbles coupled to a luciferase bioluminescence reporter plasmid DNA were shown to transfect tumors implanted in the mouse kidney. Site-specific delivery was achieved using ultrasound applied over the tumor area following bolus injection of the DNA/PEI-microbubbles. In vivo imaging showed over 10-fold higher bioluminescence from the tumor region compared to untreated tissue. Ex vivo analysis of excised tumors showed greater than 40-fold higher expression in tumor tissue than non-sonicated control (heart) tissue. These results suggest that the polyplex-microbubble platform offers improved control of DNA loading and packaging suitable for ultrasound-guided tissue transfection.
Collapse
|
392
|
Sheeran PS, Wong VP, Luois S, Mcfarland RJ, Ross WD, Feingold S, Matsunaga TO, Dayton PA. Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1518-30. [PMID: 21775049 PMCID: PMC4450864 DOI: 10.1016/j.ultrasmedbio.2011.05.021] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/09/2011] [Accepted: 05/16/2011] [Indexed: 05/03/2023]
Abstract
Currently available microbubbles used for ultrasound imaging and therapeutics are limited to intravascular space due to their size distribution in the micron range. Phase-change contrast agents (PCCAs) have been proposed as a means to overcome this limitation, since droplets formed in the hundred nanometer size range might be able to extravasate through leaky microvasculature, after which they could be activated to form larger highly echogenic microbubbles. Existing PCCAs in the sub-micron size range require substantial acoustic energy to be vaporized, increasing the likelihood of unwanted bioeffects. Thus, there exists a need for PCCAs with reduced acoustic activation energies for use in imaging studies. In this article, it is shown that decafluorobutane, which is normally a gas at room temperature, can be incorporated into metastable liquid sub-micron droplets with appropriate encapsulation methods. The resulting droplets are activatable with substantially less energy than other favored PCCA compounds. Decafluorobutane nanodroplets may present a new means to safely extend ultrasound imaging beyond the vascular space.
Collapse
Affiliation(s)
- Paul S. Sheeran
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC, USA
| | - Vincent P. Wong
- Biomedical Engineering Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | - Samantha Luois
- Undergraduate Biology Research Program, The University of Arizona, Tucson, AZ, USA
- Department of Radiology Research, The University of Arizona, Tucson, AZ, USA
| | - Ryan J. Mcfarland
- Department of Radiology Research, The University of Arizona, Tucson, AZ, USA
| | - William D. Ross
- Department of Internal Medicine, School of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Steven Feingold
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC, USA
| | - Terry O. Matsunaga
- Undergraduate Biology Research Program, The University of Arizona, Tucson, AZ, USA
- Department of Radiology Research, The University of Arizona, Tucson, AZ, USA
| | - Paul A. Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC, USA
| |
Collapse
|
393
|
Chen CC, Borden MA. The role of poly(ethylene glycol) brush architecture in complement activation on targeted microbubble surfaces. Biomaterials 2011. [PMID: 21683439 DOI: 10.3233/mas-2012-0234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Complement fixation to surface-conjugated ligands plays a critical role in determining the fate of targeted colloidal particles after intravenous injection. In the present study, we examined the immunogenicity of targeted microbubbles with various surface architectures and ligand surface densities using a flow cytometry technique. Targeted microbubbles were generated using a post-labeling technique with a physiological targeting ligand, cyclic arginine-glycine-asparagine (RGD), attached to the distal end of the poly(ethylene glycol) (PEG) moieties on the microbubble surface. Microbubbles were incubated in human serum, washed and then mixed with fluorescent antibodies specific for various serum components. We found that complement C3/C3b was the main human serum factor to bind in vitro to the microbubble surface, compared to IgG or albumin. We also investigated the effect of PEG brush architecture on C3/C3b fixation to the microbubble surface. RGD peptide was able to trigger a complement immune response, and complement C3/C3b fixation depended on microbubble size and RGD peptide surface density. When the targeting ligand was attached to shorter PEG chains that were shielded by a PEG overbrush layer (buried-ligand architecture), significantly less complement activation was observed when compared to the more traditional exposed-ligand motif. The extent of this protective role by the PEG chains depended on the overbrush length. Taken together, our results confirm that the buried-ligand architecture may significantly reduce ligand-mediated immunogenicity. More generally, this study illustrates the use of flow cytometry and microbubbles to analyze the surface interactions between complex biological media and surface-engineered biomaterials.
Collapse
Affiliation(s)
- Cherry C Chen
- Chemical Engineering Department, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
394
|
Xu YY, Lu CT, Fu HX, Zhao YZ, Yang W, Li X, Zhang L, Li XK, Zhang M. Comparing the enhancement efficiency between liposomes and microbubbles for insulin pulmonary absorption. Diabetes Technol Ther 2011; 13:759-65. [PMID: 21510752 DOI: 10.1089/dia.2010.0231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The present study investigated the enhancement efficiency between liposomes and microbubbles for insulin pulmonary absorption. METHODS Two types of phospholipid-based vesicle-liposomes and microbubbles-were prepared, and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cytotoxicity test was used to evaluate their in vitro toxicity in A549 cells. Cellular uptake of insulin combined with liposomes or microbubbles was determined using A549 cells. With intratracheal insufflation of Sprague-Dawley rats, an insulin mixture with liposomes or microbubbles was administered to assess its potential for promoting drug pulmonary absorption. RESULTS Both liposomes and microbubbles had a narrow and monodispersed size distribution with average diameter of 3.1 μm and 1.0 μm, respectively. From the MTT cytotoxicity test, a phospholipid-based vesicle concentration of <25% (vol/vol) in the final volume was the safe dosage range that could avoid severe cytotoxic effects. The intracellular uptake amount of insulin in the insulin-microbubble mixture was significantly higher than that in the insulin-liposome mixture. The minimum reductions of the blood glucose concentration produced by insulin-microbubble and insulin-liposome mixtures were 60.8% and 35.0% of the initial glucose levels, respectively, and their bioavailabilities relative to subcutaneous injection were 48.6% and 30.8%, respectively. CONCLUSIONS Microbubbles have much better efficiency than liposomes in the rate and extent of insulin pulmonary absorption. Microbubbles might be recommended as a potential agent for enhancing protein intrapulmonary absorption.
Collapse
Affiliation(s)
- Yan-Yan Xu
- Wenzhou Medical College, Wenzhou, Zhejiang Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
395
|
Chen CC, Borden MA. The role of poly(ethylene glycol) brush architecture in complement activation on targeted microbubble surfaces. Biomaterials 2011; 32:6579-87. [PMID: 21683439 DOI: 10.1016/j.biomaterials.2011.05.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/10/2011] [Indexed: 12/12/2022]
Abstract
Complement fixation to surface-conjugated ligands plays a critical role in determining the fate of targeted colloidal particles after intravenous injection. In the present study, we examined the immunogenicity of targeted microbubbles with various surface architectures and ligand surface densities using a flow cytometry technique. Targeted microbubbles were generated using a post-labeling technique with a physiological targeting ligand, cyclic arginine-glycine-asparagine (RGD), attached to the distal end of the poly(ethylene glycol) (PEG) moieties on the microbubble surface. Microbubbles were incubated in human serum, washed and then mixed with fluorescent antibodies specific for various serum components. We found that complement C3/C3b was the main human serum factor to bind in vitro to the microbubble surface, compared to IgG or albumin. We also investigated the effect of PEG brush architecture on C3/C3b fixation to the microbubble surface. RGD peptide was able to trigger a complement immune response, and complement C3/C3b fixation depended on microbubble size and RGD peptide surface density. When the targeting ligand was attached to shorter PEG chains that were shielded by a PEG overbrush layer (buried-ligand architecture), significantly less complement activation was observed when compared to the more traditional exposed-ligand motif. The extent of this protective role by the PEG chains depended on the overbrush length. Taken together, our results confirm that the buried-ligand architecture may significantly reduce ligand-mediated immunogenicity. More generally, this study illustrates the use of flow cytometry and microbubbles to analyze the surface interactions between complex biological media and surface-engineered biomaterials.
Collapse
Affiliation(s)
- Cherry C Chen
- Chemical Engineering Department, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
396
|
Walton CB, Anderson CD, Boulay R, Shohet RV. Introduction to the ultrasound targeted microbubble destruction technique. J Vis Exp 2011:2963. [PMID: 21694693 DOI: 10.3791/2963] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In UTMD, bioactive molecules, such as negatively charged plasmid DNA vectors encoding a gene of interest, are added to the cationic shells of lipid microbubble contrast agents. In mice these vector-carrying microbubbles can be administered intravenously or directly to the left ventricle of the heart. In larger animals they can also be infused through an intracoronary catheter. The subsequent delivery from the circulation to a target organ occurs by acoustic cavitation at a resonant frequency of the microbubbles. It seems likely that the mechanical energy generated by the microbubble destruction results in transient pore formation in or between the endothelial cells of the microvasculature of the targeted region. As a result of this sonoporation effect, the transfection efficiency into and across the endothelial cells is enhanced, and transgene-encoding vectors are deposited into the surrounding tissue. Plasmid DNA remaining in the circulation is rapidly degraded by nucleases in the blood, which further reduces the likelihood of delivery to non-sonicated tissues and leads to highly specific target-organ transfection.
Collapse
Affiliation(s)
- Chad B Walton
- Department of Medicine, JABSOM, University of Hawaii, USA
| | | | | | | |
Collapse
|
397
|
Ogończyk D, Siek M, Garstecki P. Microfluidic formulation of pectin microbeads for encapsulation and controlled release of nanoparticles. BIOMICROFLUIDICS 2011; 5:13405. [PMID: 21522495 PMCID: PMC3082342 DOI: 10.1063/1.3569944] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 02/17/2011] [Indexed: 05/06/2023]
Abstract
We report a method for formulation of pectin microbeads using microfluidics. The technique uses biocompatible ingredients and allows for controlled external gelation with hydrogen and calcium ions delivered from an organic phase of rapeseed oil. This method allows for encapsulation of nanoparticles into the microparticles of gel and for control of the rate of their release.
Collapse
Affiliation(s)
- D Ogończyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | | |
Collapse
|
398
|
Yang H, Xiong X, Zhang L, Wu C, Liu Y. Adhesion of bio-functionalized ultrasound microbubbles to endothelial cells by targeting to vascular cell adhesion molecule-1 under shear flow. Int J Nanomedicine 2011; 6:2043-51. [PMID: 21976979 PMCID: PMC3181063 DOI: 10.2147/ijn.s24808] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The expression of certain endothelial cell adhesion molecules is increased during endothelial dysfunction or inflammatory activation. This has led to the concept of using microbubbles for targeted molecular imaging or drug delivery. In this approach, microbubbles with a specific ligand to receptors expressed at the site of specific diseases are constructed. The present study aimed to engineer a novel type of bio-functionalized microbubbles (vascular cell adhesion molecule 1 [VCAM-1]-targeted microbubbles), and determine whether VCAM-1-targeted microbubbles exhibit specific adhesion to lipopolysaccharide (LPS)-activated endothelial cells. Our data showed that VCAM-1 expression was significantly upregulated in both LPS-activated endothelial cells in vitro and endothelium in a rat atherosclerosis model in vivo. Targeted microbubbles were designed by conjugating anti-VCAM-1 monoclonal antibodies to the shell of microbubbles using biotin-avidin bridging chemistry methods. Microbubble adhesion to endothelial cells was assessed in a flow chamber at two shear stress conditions (6.3 and 10.4 dynes/cm²). Our data showed that microbubble adhesion depends on both the surface anti-VCAM-1 antibody densities and the exposed shear stresses. Adhesion of VCAM-1-targeted microbubbles onto LPS-activated endothelial cells increased with the surface antibody densities, and decreased with the exposed shear stresses. These findings showed that the specific ligand-carrying microbubbles have considerable potential in targeted ultrasound molecular imaging or ultrasound-assisted drug/gene delivery applications.
Collapse
Affiliation(s)
- Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan
| | | | | | | | | |
Collapse
|
399
|
|
400
|
Swanson EJ, Mohan V, Kheir J, Borden MA. Phospholipid-stabilized microbubble foam for injectable oxygen delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:15726-15729. [PMID: 20873807 DOI: 10.1021/la1029432] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A detailed study is presented on the synthesis and characterization of purely oxygen-filled microbubbles (OMBs) stabilized by phospholipids. Microbubbles with a diameter of less than 10 μm were generated and concentrated to >50 vol % in saline. The lipid acyl chain length had little effect on the size distribution but profoundly affected the foam stability. For example, OMBs stabilized by dipalmitoyl phosphatidylcholine (DPPC) degraded over 3 weeks, but OMBs stabilized with distearoyl phosphatidylcholine (DSPC) retained over half of their initially encapsulated gas. Interestingly, the polydisperse size distribution remained nearly constant as the foam slowly broke down. Injection into an undersaturated solution led to the immediate release of the oxygen gas core. Injectable gas delivery by OMBs may find use in a variety of medical and industrial fields.
Collapse
Affiliation(s)
- Edward J Swanson
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|