351
|
Zhang Y, Cartland SP, Henriquez R, Patel S, Gammelgaard B, Flouda K, Hawkins CL, Rayner BS. Selenomethionine supplementation reduces lesion burden, improves vessel function and modulates the inflammatory response within the setting of atherosclerosis. Redox Biol 2019; 29:101409. [PMID: 31926617 PMCID: PMC6928357 DOI: 10.1016/j.redox.2019.101409] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vasculature characterised by the infiltration of activated neutrophils and macrophages at sites of damage within the vessel wall, which contributes to lesion formation and plaque progression. Selenomethionine (SeMet) is an organic form of selenium (Se), an essential trace element that functions in the regulation of the immune response by both bolstering the endogenous thioredoxin and glutathione antioxidant defence systems and by directly scavenging damaging oxidant species. This study evaluated the effect of dietary SeMet supplementation within a high fat diet fed apolipoprotein E deficient (ApoE−/-) mouse model of atherosclerosis. Dietary supplementation with SeMet (2 mg/kg) increased the tissue concentration of Se, and the expression and activity of glutathione peroxidase, compared to non-supplemented controls. Supplementation with SeMet significantly reduced atherosclerotic plaque formation in mouse aortae, resulted in a more stable lesion phenotype and improved vessel function. Concurrent with these results, SeMet supplementation decreased lesion accumulation of M1 inflammatory type macrophages, and decreased the extent of extracellular trap release from phorbol myristate acetate (PMA)-stimulated mouse bone marrow-derived cells. Importantly, these latter results were replicated within ex-vivo experiments on cultured neutrophils isolated from acute coronary syndrome patients, indicating the ability of SeMet to alter the acute inflammatory response within a clinically-relevant setting. Together, these data highlight the potential beneficial effect of SeMet supplementation as a therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Yunjia Zhang
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia
| | - Siân P Cartland
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia
| | - Rodney Henriquez
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia
| | - Sanjay Patel
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW, 2050, Australia
| | - Bente Gammelgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark
| | - Konstantina Flouda
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3, Copenhagen, DK-2200, Denmark
| | - Clare L Hawkins
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia; Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3, Copenhagen, DK-2200, Denmark
| | - Benjamin S Rayner
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
352
|
Mir Seyed Nazari P, Marosi C, Moik F, Riedl J, Özer Ö, Berghoff AS, Preusser M, Hainfellner JA, Pabinger I, Zlabinger GJ, Ay C. Low Systemic Levels of Chemokine C-C Motif Ligand 3 (CCL3) are Associated with a High Risk of Venous Thromboembolism in Patients with Glioma. Cancers (Basel) 2019; 11:cancers11122020. [PMID: 31847343 PMCID: PMC6966639 DOI: 10.3390/cancers11122020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
A tight interplay between inflammation and hemostasis has been described as a potential driver for developing venous thromboembolism (VTE). Here, we investigated the association of systemic cytokine levels and risk of VTE in patients with glioma. This analysis was conducted within the prospective, observational Vienna Cancer and Thrombosis Study. Patients with glioma were included at time of diagnosis or progression and were observed for a maximum of two years. Primary endpoint was objectively confirmed VTE. At study entry, a single blood draw was performed. A panel of nine cytokines was measured in serum samples with the xMAP technology developed by Luminex. Results: Overall, 76 glioma patients were included in this analysis, and 10 (13.2%) of them developed VTE during the follow-up. Chemokine C-C motif ligand 3 (CCL3) levels were inversely associated with risk of VTE (hazard ratio [HR] per double increase, 95% confidence interval [CI]: 0.385, 95% CI: 0.161–0.925, p = 0.033), while there was no association between the risk of VTE and serum levels of interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-10, IL-11, tumor necrosis factor (TNF)-α and vascular endothelial growth factor (VEGF), respectively. In conclusion, low serum levels of CCL3 were associated with an increased risk of VTE. CCL3 might serve as a potential biomarker to predict VTE risk in patients with glioma.
Collapse
Affiliation(s)
- Pegah Mir Seyed Nazari
- Division of Hematology and Hemostaseology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (P.M.S.N.); (F.M.); (J.R.); (Ö.Ö.); (I.P.)
| | - Christine Marosi
- Division of Oncology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (C.M.); (A.S.B.); (M.P.)
| | - Florian Moik
- Division of Hematology and Hemostaseology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (P.M.S.N.); (F.M.); (J.R.); (Ö.Ö.); (I.P.)
| | - Julia Riedl
- Division of Hematology and Hemostaseology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (P.M.S.N.); (F.M.); (J.R.); (Ö.Ö.); (I.P.)
| | - Öykü Özer
- Division of Hematology and Hemostaseology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (P.M.S.N.); (F.M.); (J.R.); (Ö.Ö.); (I.P.)
| | - Anna Sophie Berghoff
- Division of Oncology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (C.M.); (A.S.B.); (M.P.)
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (C.M.); (A.S.B.); (M.P.)
| | - Johannes A. Hainfellner
- Institute of Neurology and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ingrid Pabinger
- Division of Hematology and Hemostaseology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (P.M.S.N.); (F.M.); (J.R.); (Ö.Ö.); (I.P.)
| | - Gerhard J. Zlabinger
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Cihan Ay
- Division of Hematology and Hemostaseology, Department of Medicine I and Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria; (P.M.S.N.); (F.M.); (J.R.); (Ö.Ö.); (I.P.)
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Correspondence:
| |
Collapse
|
353
|
Feng Z, Tan Q, Chen Z. Letter: Surgical Performance Determines Functional Outcome Benefit in the Minimally Invasive Surgery Plus Recombinant Tissue Plasminogen Activator for Intracerebral Hemorrhage Evacuation (MISTIE) Procedure. Neurosurgery 2019; 86:E410. [DOI: 10.1093/neuros/nyz533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Zhou Feng
- Department of Rehabilitation Southwest Hospital Third Military Medical University (Army Medical University) Chongqing, China
| | - Qiang Tan
- Department of Neurosurgery Southwest Hospital Third Military Medical University (Army Medical University) Chongqing, China
| | - Zhi Chen
- Department of Neurosurgery Southwest Hospital Third Military Medical University (Army Medical University) Chongqing, China
| |
Collapse
|
354
|
Neutrophil extracellular traps and NETosis: a report of two autopsies and review of literature. Blood Coagul Fibrinolysis 2019; 31:92-96. [PMID: 31789662 DOI: 10.1097/mbc.0000000000000872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: Recent studies reveal that neutrophil extracellular traps (NETs) play a significant role in platelet entrapment and consequent activation of the coagulation cascade. Herein we present two autopsy cases of NETosis. The first case is a 76-year-old man, with metastatic squamous cell carcinoma of the lung who expired 5 days post admission. Autopsy revealed extensively necrotic poorly differentiated squamous cell carcinoma of the right lung. A 30-cm cylindrical thrombus was identified, extending from the left ventricle to the thoracic aorta, composed of numerous neutrophils enmeshed in abundant fibrin representing a NET. The second case is a 73-year-old man who suffered a cardiopulmonary arrest of unknown cause and expired 2 days post admission. Autopsy revealed a 5-cm mural thrombus with numerous neutrophils in the descending aorta consistent with NET, bilateral bronchopneumonia and infarcted bowel. These two autopsies highlight the pathogenic role of NET in causing thrombosis.
Collapse
|
355
|
Garabet L, Henriksson CE, Lozano ML, Ghanima W, Bussel J, Brodin E, Fernández-Pérez MP, Martínez C, González-Conejero R, Mowinckel MC, Sandset PM. Markers of endothelial cell activation and neutrophil extracellular traps are elevated in immune thrombocytopenia but are not enhanced by thrombopoietin receptor agonists. Thromb Res 2019; 185:119-124. [PMID: 31805421 DOI: 10.1016/j.thromres.2019.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/20/2019] [Accepted: 11/28/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Patients with immune thrombocytopenia (ITP) are at increased risk of thrombosis, which seems to be further enhanced by treatment with thrombopoietin-receptor-agonists (TPO-RAs). The underlying mechanisms of thrombosis in ITP are not fully understood. Endothelial cell activation and neutrophil extracellular traps (NETs) play important roles in thrombosis, however, their roles in ITP itself, or in TPO-RA-treatment, have not yet been fully explored. We aimed to investigate whether endothelial cell activation and NETs are involved in the hypercoagulable state of ITP, and whether TPO-RA-treatment enhances endothelial cell activation and NET formation. MATERIAL AND METHODS We measured markers of endothelial cell activation including intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1) and thrombomodulin in 21 ITP patients, and E-selectin in 18 ITP patients. Markers of NET formation, citrullinated histone H3-DNA (H3Cit-DNA) and cell-free DNA (cfDNA), were measured in 15 ITP patients. All markers were measured before, and 2 and 6 weeks after initiation of TPO-RA-treatment in ITP patients, and in matched controls. RESULTS Higher levels of ICAM-1, thrombomodulin, and H3Cit-DNA were found in ITP patients, both before and after TPO-RA-treatment, compared with controls. No differences were found for VCAM-1, E-selectin or cfDNA. TPO-RA-treatment did not further increase markers of endothelial cell activation or NET formation. CONCLUSIONS This study showed that ITP patients have increased endothelial cell activation and NET formation, both of which may contribute to the intrinsic hypercoagulable state of ITP. TPO-RA-treatment, however, did not further increase endothelial cell activation or NET formation indicating that other drug-associated prothrombotic mechanisms are involved.
Collapse
Affiliation(s)
- Lamya Garabet
- Multidisciplinary Laboratory Medicine and Medical Biochemistry, Akershus University Hospital, Norway; Department of Research, Østfold Hospital Trust, Norway; Institute of Clinical Medicine, University of Oslo, Norway.
| | - Carola E Henriksson
- Institute of Clinical Medicine, University of Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Norway
| | - María Luisa Lozano
- Hospital JM Morales Meseguer, Centro Regional de Hemodonacion, IMIB-Arrixaca, Murcia, Spain; Grupo de investigación CB15/00055 del Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Waleed Ghanima
- Department of Research, Østfold Hospital Trust, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - James Bussel
- New York Presbyterian Hospital, Weill Cornell, United States
| | - Ellen Brodin
- Department of Haematology, Akershus University Hospital, Norway
| | | | - Constantino Martínez
- Hospital JM Morales Meseguer, Centro Regional de Hemodonacion, IMIB-Arrixaca, Murcia, Spain
| | | | - Marie-Christine Mowinckel
- Research Institute of Internal Medicine, Oslo University Hospital, Norway; Department of Haematology, Oslo University Hospital, Norway
| | - Per Morten Sandset
- Institute of Clinical Medicine, University of Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Norway; Department of Haematology, Oslo University Hospital, Norway
| |
Collapse
|
356
|
Liberale L, Holy EW, Akhmedov A, Bonetti NR, Nietlispach F, Matter CM, Mach F, Montecucco F, Beer JH, Paneni F, Ruschitzka F, Libby P, Lüscher TF, Camici GG. Interleukin-1β Mediates Arterial Thrombus Formation via NET-Associated Tissue Factor. J Clin Med 2019; 8:2072. [PMID: 31779200 PMCID: PMC6947515 DOI: 10.3390/jcm8122072] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 01/31/2023] Open
Abstract
CANTOS reported reduced secondary atherothrombotic events in patients with residual inflammatory risk treated with the inhibitory anti-IL-1β antibody, Canakinumab. Yet, mechanisms that underlie this benefit remain elusive. Recent work has implicated formation of neutrophil extracellular traps (NETosis) in arterial thrombosis. Hence, the present study explored the potential link between IL-1β, NETs, and tissue factor (TF)-the key trigger of the coagulation cascade-in atherothrombosis. To this end, ST-elevation myocardial infarction (STEMI) patients from the Swiss multicenter trial SPUM-ACS were retrospectively and randomly selected based on their CRP levels. In particular, 33 patients with STEMI and high C-reactive protein (CRP) levels (≥ 10 mg/L) and, 33 with STEMI and low CRP levels (≤ 4 mg/L) were investigated. High CRP patients displayed elevated circulating IL-1β, NETosis, and NET-associated TF plasma levels compared with low CRP ones. Additionally, analysis of patients stratified by circulating IL-1β levels yielded similar results. Moreover, NETosis and NET-associated TF plasma levels correlated positively in the whole population. In addition to the above, translational research experiments provided mechanistic confirmation for the clinical data identifying IL-1β as the initial trigger for the release of the pro-coagulant, NET-associated TF. In conclusion, blunted TF presentation by activated neutrophils undergoing NETosis may provide a mechanistic explanation to reduced secondary atherothrombotic events as observed in canakinumab-treated patients in CANTOS.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8952 Schlieren, Switzerland; (L.L.); (A.A.); (N.R.B.); (C.M.M.); (F.P.); (T.F.L.)
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Erik W. Holy
- Department of Cardiology, University Hospital Zurich, 8091 Zurich, Switzerland; (E.W.H.); (F.N.); (F.R.)
| | - Alexander Akhmedov
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8952 Schlieren, Switzerland; (L.L.); (A.A.); (N.R.B.); (C.M.M.); (F.P.); (T.F.L.)
| | - Nicole R. Bonetti
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8952 Schlieren, Switzerland; (L.L.); (A.A.); (N.R.B.); (C.M.M.); (F.P.); (T.F.L.)
- Department of Internal Medicine, Cantonal Hospital of Baden, 5404 Baden, Switzerland
| | - Fabian Nietlispach
- Department of Cardiology, University Hospital Zurich, 8091 Zurich, Switzerland; (E.W.H.); (F.N.); (F.R.)
| | - Christian M. Matter
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8952 Schlieren, Switzerland; (L.L.); (A.A.); (N.R.B.); (C.M.M.); (F.P.); (T.F.L.)
- Department of Cardiology, University Hospital Zurich, 8091 Zurich, Switzerland; (E.W.H.); (F.N.); (F.R.)
| | - François Mach
- Department of Cardiology, Hopital Universitaire de Geneve, 1206 Geneve, Switzerland;
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 16132 Genoa, Italy
| | - Jürg H. Beer
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8952 Schlieren, Switzerland; (L.L.); (A.A.); (N.R.B.); (C.M.M.); (F.P.); (T.F.L.)
- Department of Internal Medicine, Cantonal Hospital of Baden, 5404 Baden, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8952 Schlieren, Switzerland; (L.L.); (A.A.); (N.R.B.); (C.M.M.); (F.P.); (T.F.L.)
- Department of Cardiology, University Hospital Zurich, 8091 Zurich, Switzerland; (E.W.H.); (F.N.); (F.R.)
- Department of Research and Education, University Hospital Zurich, 8001 Zurich, Switzerland
| | - Frank Ruschitzka
- Department of Cardiology, University Hospital Zurich, 8091 Zurich, Switzerland; (E.W.H.); (F.N.); (F.R.)
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, MA, USA;
| | - Thomas F. Lüscher
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8952 Schlieren, Switzerland; (L.L.); (A.A.); (N.R.B.); (C.M.M.); (F.P.); (T.F.L.)
- Royal Brompton and Harefield Hospitals and Imperial College, London SW3 6NP, UK
| | - Giovanni G. Camici
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, 8952 Schlieren, Switzerland; (L.L.); (A.A.); (N.R.B.); (C.M.M.); (F.P.); (T.F.L.)
- Department of Cardiology, University Hospital Zurich, 8091 Zurich, Switzerland; (E.W.H.); (F.N.); (F.R.)
- Department of Research and Education, University Hospital Zurich, 8001 Zurich, Switzerland
| |
Collapse
|
357
|
Wang C, Liu X, Han Z, Zhang X, Wang J, Wang K, Yang Z, Wei Z. Nanosilver induces the formation of neutrophil extracellular traps in mouse neutrophil granulocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109508. [PMID: 31408819 DOI: 10.1016/j.ecoenv.2019.109508] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
As a new type of antibacterial agent, nanosilver has attracted great attention in biomedical applications. However, the safety of nanosilver to humans and the environment has not been well elucidated. The objective of this study was to investigate the influence of nanosilver on novel effector mechanism of neutrophil extracellular traps (NETs), and its possible molecular mechanisms. In this study, nanosilver (10, 20 and 40 μg/mL) was incubated with neutrophils for 90 min. Then, nanosilver-induced the release of NETs was observed by laser confocal microscopy. Nanosilver-induced NETs release was also quantitatively detected by pico Green®. In addition, the role of NADPH oxidase, extracellular signal-regulated kinase (ERK) and p38 signaling pathways in nanosilver-induced NETs release were detected by the inhibitors and pico Green®. The results indicated that nanosilver significantly activated polymorphonuclear neutrophils (PMN) to release NETs, which was a DNA-based network structure modified with histones (H3) and neutrophil elastase (NE). The inhibitors of NADPH oxidase, ERK and p38 signaling pathways significantly inhibited the formation of nanosilver-induced NETs. Furthermore, nanosilver did not alter the extracellular lactate dehydrogenase (LDH) level of PMN cells. All these results showed that nanosilver significantly induced NETs release, and the potential molecular mechanisms were correlated with reactive oxygen species (ROS) production-dependent on NADPH oxidase, ERK and p38 signaling pathways, which might provide a new perspective on nanosilver-induced excess NETs release related to the host immune damage.
Collapse
Affiliation(s)
- Chaoqun Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China; Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Xiao Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Zhen Han
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Xu Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Jingjing Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Kai Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China.
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China.
| |
Collapse
|
358
|
Peña-Martínez C, Durán-Laforet V, García-Culebras A, Ostos F, Hernández-Jiménez M, Bravo-Ferrer I, Pérez-Ruiz A, Ballenilla F, Díaz-Guzmán J, Pradillo JM, Lizasoain I, Moro MA. Pharmacological Modulation of Neutrophil Extracellular Traps Reverses Thrombotic Stroke tPA (Tissue-Type Plasminogen Activator) Resistance. Stroke 2019; 50:3228-3237. [DOI: 10.1161/strokeaha.119.026848] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background and Purpose—
Recanalization of the occluded artery is a primary goal in stroke treatment. Unfortunately, endovascular treatment is not always available, and tPA (tissue-type plasminogen activator) therapy is limited by its narrow therapeutic window; importantly, the rate of early arterial recanalization after tPA administration is low, especially for platelet-rich thrombi. The mechanisms for this tPA resistance are not well known. Since neutrophil extracellular traps (NETs) have been implicated in this setting, our aim was to study whether NET pharmacological modulation can reverse tPA resistance and the role of TLR4 (Toll-like receptor 4), previously related to NET formation, in thrombosis.
Methods—
To this goal, we have used a mouse photothrombotic stroke model, which produces a fibrin-free thrombus composed primarily of aggregated platelets and thrombi obtained from human stroke patients.
Results—
Our results demonstrate that (1) administration of DNase-I, which promotes NETs lysis, but not of tPA, recanalizes the occluded vessel improving photothrombotic stroke outcome; (2) a preventive treatment with Cl-amidine, impeding NET formation, completely precludes thrombotic occlusion; (3) platelet TLR4 mediates NET formation after photothrombotic stroke; and (4) ex vivo fresh platelet-rich thrombi from ischemic stroke patients are effectively lysed by DNase-I.
Conclusions—
Hence, our data open new avenues for recanalization of platelet-rich thrombi after stroke, especially to overcome tPA resistance.
Collapse
Affiliation(s)
- Carolina Peña-Martínez
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| | - Violeta Durán-Laforet
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| | - Alicia García-Culebras
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| | - Fernando Ostos
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
- Servicio de Neurología (F.O., J.D.-G.), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Macarena Hernández-Jiménez
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| | - Isabel Bravo-Ferrer
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| | - Alberto Pérez-Ruiz
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| | - Federico Ballenilla
- Servicio de Radiología (F.B.), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jaime Díaz-Guzmán
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
- Servicio de Neurología (F.O., J.D.-G.), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jesús M. Pradillo
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| | - Ignacio Lizasoain
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| | - María A. Moro
- From the Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.M.P., I.L., M.A.M.)
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.P.-M., V.D.-L., A.G.-C., F.O., M.H.-J., I.B.-F., A.P.-R., J.D.-G., J.M.P., I.L., M.A.M.)
| |
Collapse
|
359
|
Algarni A, Greenman J, Madden LA. Procoagulant tumor microvesicles attach to endothelial cells on biochips under microfluidic flow. BIOMICROFLUIDICS 2019; 13:064124. [PMID: 31832122 PMCID: PMC6897561 DOI: 10.1063/1.5123462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/22/2019] [Indexed: 05/11/2023]
Abstract
Tumor patients are at a high risk of venous thromboembolism (VTE), and the mechanism by which this occurs may involve tumor-derived microvesicles (MVs). Previously, it has been shown that tumor MVs become attached to endothelial cells in static conditions. To investigate whether this process occurs under physiologically relevant flow rates, tumor MVs were perfused across a microfluidic device coated with growing human umbilical vein endothelial cells (HUVECs). Cell lines were screened for their ability to form tumor spheroids, and two cell lines, ES-2 and U87, were selected; spheroids formed were transferred to a microfluidic chip, and a second endothelial cell biochip was coated with HUVECs and the two chips were linked. Media flowed through the spheroid chip to the endothelial chip, and procoagulant activity (PCA) of the tumor media was determined by a one-stage prothrombin time assay. Tumor MVs were also quantified by flow cytometry before and after interaction with HUVECs. Confocal images showed that HUVECs acquired fluorescence from MV attachment. Labeled MVs were proportionally lost from MV rich media with time when flowed over HUVECs and were not observed on a control chip. The loss of MV was accompanied by a proportional reduction in PCA. Flow cytometry, confocal microscopy, and live flow imagery captured under pulsatile flow confirmed an association between tumor MVs and HUVECs. Tumor MVs attached to endothelial cells under physiological flow rates, which may be relevant to the VTE pathways in cancer patients.
Collapse
Affiliation(s)
| | | | - Leigh A. Madden
- Author to whom correspondence should be addressed:. Tel.: 441482466031
| |
Collapse
|
360
|
Denning NL, Aziz M, Gurien SD, Wang P. DAMPs and NETs in Sepsis. Front Immunol 2019; 10:2536. [PMID: 31736963 PMCID: PMC6831555 DOI: 10.3389/fimmu.2019.02536] [Citation(s) in RCA: 405] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a deadly inflammatory syndrome caused by an exaggerated immune response to infection. Much has been focused on host response to pathogens mediated through the interaction of pathogen-associated molecular patterns (PAMPs) and pattern recognition receptors (PRRs). PRRs are also activated by host nuclear, mitochondrial, and cytosolic proteins, known as damage-associated molecular patterns (DAMPs) that are released from cells during sepsis. Some well described members of the DAMP family are extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), histones, and adenosine triphosphate (ATP). DAMPs are released from the cell through inflammasome activation or passively following cell death. Similarly, neutrophil extracellular traps (NETs) are released from neutrophils during inflammation. NETs are webs of extracellular DNA decorated with histones, myeloperoxidase, and elastase. Although NETs contribute to pathogen clearance, excessive NET formation promotes inflammation and tissue damage in sepsis. Here, we review DAMPs and NETs and their crosstalk in sepsis with respect to their sources, activation, release, and function. A clear grasp of DAMPs, NETs and their interaction is crucial for the understanding of the pathophysiology of sepsis and for the development of novel sepsis therapeutics.
Collapse
Affiliation(s)
- Naomi-Liza Denning
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
| | - Steven D Gurien
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
361
|
Shrestha B, Ito T, Kakuuchi M, Totoki T, Nagasato T, Yamamoto M, Maruyama I. Recombinant Thrombomodulin Suppresses Histone-Induced Neutrophil Extracellular Trap Formation. Front Immunol 2019; 10:2535. [PMID: 31736962 PMCID: PMC6828967 DOI: 10.3389/fimmu.2019.02535] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022] Open
Abstract
Histones, the major protein components of chromatin, are released into the extracellular space during sepsis, trauma, and ischemia-reperfusion injury, and subsequently mediate organ failure. Extracellular histones can promote endothelial damage and platelet aggregation, which can be suppressed by administration of recombinant thrombomodulin (rTM). The present study aimed to clarify whether histones can activate neutrophils to induce NET formation and whether rTM can prevent histone-induced NET formation. NET formation was analyzed in vitro by stimulating human neutrophils with histones in the absence or presence of rTM. NET formation was further analyzed in vivo by intravenous infusion of histones into rats with or without rTM. Histones induced NET release in a dose-dependent manner in vitro and NET release was induced as early as 1 h after stimulation. Histone-induced NET release was independent of NADPH oxidase. rTM suppressed histone-induced NET release in vitro as well as in vivo. The suppression might be mediated by rTM binding to histones, as suggested by analysis using a quartz crystal microbalance system. The present findings suggest that histones can activate neutrophils to form NETs and that rTM can inhibit histone-induced NET formation.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Medicinal Chemistry, Rogel Cancer Center, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Takashi Ito
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Midori Kakuuchi
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takaaki Totoki
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomoka Nagasato
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mika Yamamoto
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
362
|
Andreeva–Gateva PA, Mihaleva ID, Dimova II. Type 2 diabetes mellitus and cardiovascular risk; what the pharmacotherapy can change through the epigenetics. Postgrad Med 2019; 132:109-125. [DOI: 10.1080/00325481.2019.1681215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pavlina A. Andreeva–Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
- Department of Pharmacology, Medical Faculty, Sofia University “St Kliment Ohridski”, Sofia, Bulgaria
| | - Ivelina D. Mihaleva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Ivanka I. Dimova
- Department of Medical Genetics, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
363
|
Knackstedt SL, Georgiadou A, Apel F, Abu-Abed U, Moxon CA, Cunnington AJ, Raupach B, Cunningham D, Langhorne J, Krüger R, Barrera V, Harding SP, Berg A, Patel S, Otterdal K, Mordmüller B, Schwarzer E, Brinkmann V, Zychlinsky A, Amulic B. Neutrophil extracellular traps drive inflammatory pathogenesis in malaria. Sci Immunol 2019; 4:eaaw0336. [PMID: 31628160 PMCID: PMC6892640 DOI: 10.1126/sciimmunol.aaw0336] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/04/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Neutrophils are essential innate immune cells that extrude chromatin in the form of neutrophil extracellular traps (NETs) when they die. This form of cell death has potent immunostimulatory activity. We show that heme-induced NETs are essential for malaria pathogenesis. Using patient samples and a mouse model, we define two mechanisms of NET-mediated inflammation of the vasculature: activation of emergency granulopoiesis via granulocyte colony-stimulating factor production and induction of the endothelial cytoadhesion receptor intercellular adhesion molecule-1. Soluble NET components facilitate parasite sequestration and mediate tissue destruction. We demonstrate that neutrophils have a key role in malaria immunopathology and propose inhibition of NETs as a treatment strategy in vascular infections.
Collapse
Affiliation(s)
- Sebastian Lorenz Knackstedt
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Falko Apel
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulrike Abu-Abed
- Max Planck Institute for Infection Biology, Microscopy Core Facility, Charitéplatz 1, 10117 Berlin, Germany
| | - Christopher A Moxon
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | | | - Bärbel Raupach
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Jean Langhorne
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Renate Krüger
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Pneumology, Immunology and Intensive Care, Berlin, Germany
| | - Valentina Barrera
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Simon P Harding
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Aase Berg
- Stavanger University Hospital, Stavanger, Norway
| | - Sam Patel
- Maputo Central Hospital, Maputo, Mozambique
| | - Kari Otterdal
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Universität Tübingen, Institut für Tropenmedizin, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy
| | - Volker Brinkmann
- Max Planck Institute for Infection Biology, Microscopy Core Facility, Charitéplatz 1, 10117 Berlin, Germany
| | - Arturo Zychlinsky
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Borko Amulic
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.
- University of Bristol, School of Cellular and Molecular Medicine, Bristol BS8 1TD, UK
| |
Collapse
|
364
|
Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, Donnan GA. Ischaemic stroke. Nat Rev Dis Primers 2019; 5:70. [PMID: 31601801 DOI: 10.1038/s41572-019-0118-8] [Citation(s) in RCA: 1009] [Impact Index Per Article: 168.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Stroke is the second highest cause of death globally and a leading cause of disability, with an increasing incidence in developing countries. Ischaemic stroke caused by arterial occlusion is responsible for the majority of strokes. Management focuses on rapid reperfusion with intravenous thrombolysis and endovascular thrombectomy, which both reduce disability but are time-critical. Accordingly, improving the system of care to reduce treatment delays is key to maximizing the benefits of reperfusion therapies. Intravenous thrombolysis reduces disability when administered within 4.5 h of the onset of stroke. Thrombolysis also benefits selected patients with evidence from perfusion imaging of salvageable brain tissue for up to 9 h and in patients who awake with stroke symptoms. Endovascular thrombectomy reduces disability in a broad group of patients with large vessel occlusion when performed within 6 h of stroke onset and in patients selected by perfusion imaging up to 24 h following stroke onset. Secondary prevention of ischaemic stroke shares many common elements with cardiovascular risk management in other fields, including blood pressure control, cholesterol management and antithrombotic medications. Other preventative interventions are tailored to the mechanism of stroke, such as anticoagulation for atrial fibrillation and carotid endarterectomy for severe symptomatic carotid artery stenosis.
Collapse
Affiliation(s)
- Bruce C V Campbell
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia. .,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| | - Deidre A De Silva
- Department of Neurology, Singapore General Hospital campus, National Neuroscience Institute, Singapore, Singapore
| | - Malcolm R Macleod
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Shelagh B Coutts
- Departments of Clinical Neurosciences, Radiology and Community Health Sciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Lee H Schwamm
- Department of Neurology and Comprehensive Stroke Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephen M Davis
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey A Donnan
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
365
|
Affiliation(s)
- Anna M Planas
- From the Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Spain; and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
366
|
Meegan JE, Bastarache JA. NET Gain for Sepsis Research: A New Approach to Assess Neutrophil Function in Patients. Am J Respir Crit Care Med 2019; 200:798-799. [PMID: 31185179 PMCID: PMC6812453 DOI: 10.1164/rccm.201905-1074ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jamie E Meegan
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashville, Tennessee
| | - Julie A Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine Department of Pathology, Microbiology, and Immunologyand.,Department of Cell and Developmental BiologyVanderbilt University Medical CenterNashville, Tennessee
| |
Collapse
|
367
|
Hally KE, Bird GK, La Flamme AC, Harding SA, Larsen PD. Platelets modulate multiple markers of neutrophil function in response to in vitro Toll-like receptor stimulation. PLoS One 2019; 14:e0223444. [PMID: 31581214 PMCID: PMC6776355 DOI: 10.1371/journal.pone.0223444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION In addition to their role in facilitating leukocyte-mediated inflammation, platelets can dampen leukocyte pro-inflammatory responses in some contexts. Consequently, platelets are increasingly appreciated as regulators of inflammation. Together, platelets and neutrophils play a role in inflammation through Toll-like receptor (TLR) expression, although we do not fully understand how platelets shape neutrophil responses to TLR stimulation. Here, we aimed to determine the extent to which platelets can modulate neutrophil function in response to in vitro stimulation with TLR4, TLR2/1, and TLR2/6 agonists. METHODS Neutrophils from 10 healthy individuals were cultured alone or with autologous platelets. Neutrophils ± platelets were left unstimulated or were stimulated with 1 or 100 ng/mL lipopolysaccharide (LPS; a TLR4 agonist), Pam3CSK4 (a TLR2/1 agonist) and fibroblast-stimulating lipopeptide (FSL)-1 (a TLR2/6 agonist). Neutrophil activation and phagocytic activity were assessed by flow cytometry, and elastase and interleukin-8 secretion were assessed by ELISA. RESULTS The addition of platelets attenuated neutrophil CD66b and CD11b expression in response to various doses of Pam3CSK4 and FSL-1. Furthermore, platelet co-culture was associated with higher CD62L expression (indicating reduced CD62L shedding) in response to these TLR agonists. Platelets also reduced elastase secretion in unstimulated cultures and in response to low-dose TLR stimulation. Conversely, platelet co-culture increased neutrophil phagocytosis in unstimulated cultures and in response to low-dose Pam3CSK4 and FSL-1. Platelets also increased IL-8 secretion in response to low-dose LPS. CONCLUSION Platelets are complex immunomodulators that can attenuate some, and simultaneously augment other, neutrophil functions. This modulation can occur both in the absence and presence of TLR stimulation.
Collapse
Affiliation(s)
- Kathryn E. Hally
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Wellington Cardiovascular Research Group, Wellington, New Zealand
- * E-mail:
| | - Georgina K. Bird
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Wellington Cardiovascular Research Group, Wellington, New Zealand
| | - Anne C. La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Wellington Cardiovascular Research Group, Wellington, New Zealand
| | - Scott A. Harding
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Wellington Cardiovascular Research Group, Wellington, New Zealand
- Department of Cardiology, Wellington Hospital, Wellington, New Zealand
| | - Peter D. Larsen
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Wellington Cardiovascular Research Group, Wellington, New Zealand
| |
Collapse
|
368
|
Networks that stop the flow: A fresh look at fibrin and neutrophil extracellular traps. Thromb Res 2019; 182:1-11. [DOI: 10.1016/j.thromres.2019.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
|
369
|
Movafaghi S, Wang W, Bark DL, Dasi LP, Popat KC, Kota AK. Hemocompatibility of Super-Repellent surfaces: Current and Future. MATERIALS HORIZONS 2019; 6:1596-1610. [PMID: 31903188 PMCID: PMC6941870 DOI: 10.1039/c9mh00051h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Virtually all blood-contacting medical implants and devices initiate immunological events in the form of thrombosis and inflammation. Typically, patients receiving such implants are also given large doses of anticoagulants, which pose a high risk and a high cost to the patient. Thus, the design and development of surfaces with improved hemocompatibility and reduced dependence on anticoagulation treatments is paramount for the success of blood-contacting medical implants and devices. In the past decade, the hemocompatibility of super-repellent surfaces (i.e., surfaces that are extremely repellent to liquids) has been extensively investigated because such surfaces greatly reduce the blood-material contact area, which in turn reduces the area available for protein adsorption and blood cell or platelet adhesion, thereby offering the potential for improved hemocompatibility. In this review, we critically examine the progress made in characterizing the hemocompatibility of super-repellent surfaces, identify the unresolved challenges and highlight the opportunities for future research on developing medical implants and devices with super-repellent surfaces.
Collapse
Affiliation(s)
- Sanli Movafaghi
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Wei Wang
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - David L Bark
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Lakshmi P Dasi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ketul C Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Arun K Kota
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
370
|
Barrett TJ, Distel E, Murphy AJ, Hu J, Garshick MS, Ogando Y, Liu J, Vaisar T, Heinecke JW, Berger JS, Goldberg IJ, Fisher EA. Apolipoprotein AI) Promotes Atherosclerosis Regression in Diabetic Mice by Suppressing Myelopoiesis and Plaque Inflammation. Circulation 2019; 140:1170-1184. [PMID: 31567014 PMCID: PMC6777860 DOI: 10.1161/circulationaha.119.039476] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Despite robust cholesterol lowering, cardiovascular disease risk remains increased in patients with diabetes mellitus. Consistent with this, diabetes mellitus impairs atherosclerosis regression after cholesterol lowering in humans and mice. In mice, this is attributed in part to hyperglycemia-induced monocytosis, which increases monocyte entry into plaques despite cholesterol lowering. In addition, diabetes mellitus skews plaque macrophages toward an atherogenic inflammatory M1 phenotype instead of toward the atherosclerosis-resolving M2 state typical with cholesterol lowering. Functional high-density lipoprotein (HDL), typically low in patients with diabetes mellitus, reduces monocyte precursor proliferation in murine bone marrow and has anti-inflammatory effects on human and murine macrophages. Our study aimed to test whether raising functional HDL levels in diabetic mice prevents monocytosis, reduces the quantity and inflammation of plaque macrophages, and enhances atherosclerosis regression after cholesterol lowering. METHODS Aortic arches containing plaques developed in Ldlr-/- mice were transplanted into either wild-type, diabetic wild-type, or diabetic mice transgenic for human apolipoprotein AI, which have elevated functional HDL. Recipient mice all had low levels of low-density lipoprotein cholesterol to promote plaque regression. After 2 weeks, plaques in recipient mouse aortic grafts were examined. RESULTS Diabetic wild-type mice had impaired atherosclerosis regression, which was normalized by raising HDL levels. This benefit was linked to suppressed hyperglycemia-driven myelopoiesis, monocytosis, and neutrophilia. Increased HDL improved cholesterol efflux from bone marrow progenitors, suppressing their proliferation and monocyte and neutrophil production capacity. In addition to reducing circulating monocytes available for recruitment into plaques, in the diabetic milieu, HDL suppressed the general recruitability of monocytes to inflammatory sites and promoted plaque macrophage polarization to the M2, atherosclerosis-resolving state. There was also a decrease in plaque neutrophil extracellular traps, which are atherogenic and increased by diabetes mellitus. CONCLUSIONS Raising apolipoprotein AI and functional levels of HDL promotes multiple favorable changes in the production of monocytes and neutrophils and in the inflammatory environment of atherosclerotic plaques of diabetic mice after cholesterol lowering and may represent a novel approach to reduce cardiovascular disease risk in people with diabetes mellitus.
Collapse
Affiliation(s)
- Tessa J. Barrett
- Department of Medicine, Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | - Emilie Distel
- Department of Medicine, Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | - Andrew J. Murphy
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC 3004, Australia
| | - Jiyuan Hu
- Division of Biostatistics, Department of Population Health, New York University School of Medicine, New York, NY 10016, USA
| | - Michael S. Garshick
- Department of Medicine, Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | - Yoscar Ogando
- Department of Medicine, Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | - Jianhua Liu
- Department of Surgery, Mount Sinai School of Medicine, New York, NY, USA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle
| | - Jay W. Heinecke
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle
| | - Jeffrey S. Berger
- Department of Medicine, Divisions of Cardiology and Hematology, Department of Surgery, Division of Vascular Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Ira J. Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY 10016, USA
| | - Edward A. Fisher
- Department of Medicine, Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
- Department of Microbiology and Immunology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
371
|
Mauracher LM, Buchtele N, Schörgenhofer C, Weiser C, Herkner H, Merrelaar A, Spiel AO, Hell L, Ay C, Pabinger I, Jilma B, Schwameis M. Increased Citrullinated Histone H3 Levels in the Early Post-Resuscitative Period Are Associated with Poor Neurologic Function in Cardiac Arrest Survivors-A Prospective Observational Study. J Clin Med 2019; 8:jcm8101568. [PMID: 31581493 PMCID: PMC6832426 DOI: 10.3390/jcm8101568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/29/2022] Open
Abstract
The exact contribution of neutrophils to post-resuscitative brain damage is unknown. We aimed to investigate whether neutrophil extracellular trap (NET) formation in the early phase after return of spontaneous circulation (ROSC) may be associated with poor 30 day neurologic function in cardiac arrest survivors. This study prospectively included adult (≥18 years) out-of-hospital cardiac arrest (OHCA) survivors with cardiac origin, who were subjected to targeted temperature management. Plasma levels of specific (citrullinated histone H3, H3Cit) and putative (cell-free DNA (cfDNA) and nucleosomes) biomarkers of NET formation were assessed at 0 and 12 h after admission. The primary outcome was neurologic function on day 30 after admission, which was assessed using the five-point cerebral performance category (CPC) score, classifying patients into good (CPC 1–2) or poor (CPC 3–5) neurologic function. The main variable of interest was the effect of H3Cit level quintiles at 12 h on 30 day neurologic function, assessed by logistic regression. The first quintile was used as a baseline reference. Results are given as crude odds ratio (OR) with 95% confidence interval (95% CI). Sixty-two patients (79% male, median age: 57 years) were enrolled. The odds of poor neurologic function increased linearly, with 0 h levels of cfNDA (crude OR 1.8, 95% CI: 1.2–2.7, p = 0.007) and nucleosomes (crude OR 1.7, 95% CI: 1.0–2.2, p = 0.049), as well as with 12 h levels of cfDNA (crude OR 1.6, 95% CI: 1.1–2.4, p = 0.024), nucleosomes (crude OR 1.7, 95% CI: 1.1–2.5, p = 0.020), and H3Cit (crude OR 1.6, 95% CI: 1.1–2.3, p = 0.029). Patients in the fourth (7.9, 95% CI: 1.1–56, p = 0.039) and fifth (9.0, 95% CI: 1.3–63, p = 0.027) H3Cit quintile had significantly higher odds of poor 30 day neurologic function compared to patients in the first quintile. Increased plasma levels of H3Cit, 12 h after admission, are associated with poor 30 day neurologic function in adult OHCA survivors, which may suggest a contribution of NET formation to post-resuscitative brain damage and therefore provide a therapeutic target in the future.
Collapse
Affiliation(s)
- Lisa-Marie Mauracher
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
| | - Nina Buchtele
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | | | - Christoph Weiser
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria.
| | - Harald Herkner
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria.
| | - Anne Merrelaar
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria.
| | - Alexander O Spiel
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria.
| | - Lena Hell
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
| | - Cihan Ay
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia.
| | - Ingrid Pabinger
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Michael Schwameis
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
372
|
Komorowicz E, Balázs N, Tanka-Salamon A, Varga Z, Szabó L, Bóta A, Longstaff C, Kolev K. Biorelevant polyanions stabilize fibrin against mechanical and proteolytic decomposition: Effects of polymer size and electric charge. J Mech Behav Biomed Mater 2019; 102:103459. [PMID: 31604180 DOI: 10.1016/j.jmbbm.2019.103459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 01/03/2023]
Abstract
The release of neutrophil extracellular traps (NETs) containing DNA and histones is an essential mechanism in the neutrophil-mediated innate immunity. In thrombi the polyanionic DNA confers mechanical and lytic resistance to fibrin and heparins interfere with the effects of NET components. Heparins are polyanions used not only as therapeutic agents, but they are also released by mast cells at entry sites of pathogens. Platelets and microorganisms release a different type of polyanions (polyphosphates) of various size (in the range 60-1000 phosphate monomers). With the current study we aimed to evaluate if the stability of fibrin is influenced by the type of polyanion, its molecular size or relative electric charge. Fibrin structure was approached with scanning electron microscopy (SEM) and pressure-driven permeation. An oscillation rheometer was used to investigate viscoelastic properties. Kinetic turbidimetric assays for the generation and dissolution of composite fibrin clots containing unfractionated heparin (UFH), and its partially or fully desulfated derivatives, as well as low molecular-weight heparin (LMWH), pentasaccharide (S5), and polyphosphates composed of 45 (P45), 100 (P100) or 700 (P700) monomers at average. The smaller polyanions P45, P100, LMWH, and S5 accelerated, whereas P700 and UFH retarded clot formation. All polyanions altered the fibrin structure: SEM and clot permeation showed thicker fibers with smaller (LMWH, S5, P700) or larger (UFH, P100) pores. All polyanions stabilized the clots mechanically, but the smaller P45, P100 and LMWH decreased the deformability of fibrin, whereas the large UFH and P700 increased the maximal bearable deformation of clots. Despite the size-dependent structural changes, all heparins caused a 10-15% prolongation of lysis-times with plasmin, and UFH-effects depended on sulfation patterns. The 20-35% prolongation of lysis-times caused by all polyphosphates was a kringle-dependent phenomenon, and was dampened in the presence of 6-aminohexanoate blocking the lysine-binding sites of plasmin. In summary, we found that polyanions of different chemical structure stabilize fibrin clots via size-dependent modulation of fibrin structure and kringle-dependent inhibition of plasmin-mediated fibrinolysis.
Collapse
Affiliation(s)
- Erzsébet Komorowicz
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Nóra Balázs
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Anna Tanka-Salamon
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Zoltán Varga
- Department of Biological Nanochemsitry, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Szabó
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Attila Bóta
- Department of Biological Nanochemsitry, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Colin Longstaff
- Biotherapeutics, Haemostasis Section, National Institute for Biological Standards and Control, South Mimms, Potters Bar, UK
| | - Krasimir Kolev
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
373
|
Heterogeneity in neutrophil responses to immune complexes. Blood Adv 2019; 3:2778-2789. [PMID: 31554616 DOI: 10.1182/bloodadvances.2019000235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/13/2019] [Indexed: 11/20/2022] Open
Abstract
Immune complexes (ICs) can trigger inflammation and thrombosis, in part, by activating neutrophils. Much attention has focused on the serologic characteristics of ICs and Fc receptors associated with cellular activation, but few studies have examined host susceptibility to neutrophil activation by ICs. Here, we use a novel whole blood system to investigate the ability of ICs to cause neutrophil activation and degranulation. Using monoclonal anti-platelet factor 4/heparin (PF4/heparin), anti-protamine/heparin antibodies, patient-derived anti-PF4/heparin antibodies, and heat-aggregated immunoglobulin G as model ICs, we demonstrate that heparin-containing ICs cause robust, heparin-dependent neutrophil activation and degranulation which is mediated by both FcγRIIa and complement. Longitudinal testing over a 1-year period shows that an individual's neutrophil response to ICs represents a fixed phenotype resulting in high, intermediate, or low reactivity. Examination of individuals at the extremes of reactivity (high vs low) shows that phenotypic variation resides in the cellular compartment and is correlated with host white blood cell count and absolute neutrophil count, but not age, sex, race, polymorphisms in neutrophil Fcγ receptors, or CR1, CR3, and Fcγ receptor expression on neutrophils. Together, these studies demonstrate that susceptibility to neutrophil activation by ICs is intrinsic to the host and is likely genetic in origin. These findings may be relevant to the heterogeneous clinical outcomes seen in patients with heparin-induced thrombocytopenia and other IC-mediated disorders and could potentially identify patients at high risk for thrombotic and inflammatory complications.
Collapse
|
374
|
Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M, Chappell RJ, Silver AJ, Adams D, Castellano CA, Schneider RK, Padera RF, DeAngelo DJ, Wadleigh M, Steensma DP, Galinsky I, Stone RM, Genovese G, McCarroll SA, Iliadou B, Hultman C, Neuberg D, Mullally A, Wagner DD, Ebert BL. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med 2019; 10:10/436/eaan8292. [PMID: 29643232 DOI: 10.1126/scitranslmed.aan8292] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 01/09/2018] [Accepted: 03/23/2018] [Indexed: 12/13/2022]
Abstract
Thrombosis is a major cause of morbidity and mortality in Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), clonal disorders of hematopoiesis characterized by activated Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling. Neutrophil extracellular trap (NET) formation, a component of innate immunity, has been linked to thrombosis. We demonstrate that neutrophils from patients with MPNs are primed for NET formation, an effect blunted by pharmacological inhibition of JAK signaling. Mice with conditional knock-in of Jak2V617F, the most common molecular driver of MPN, have an increased propensity for NET formation and thrombosis. Inhibition of JAK-STAT signaling with the clinically available JAK2 inhibitor ruxolitinib abrogated NET formation and reduced thrombosis in a deep vein stenosis murine model. We further show that expression of PAD4, a protein required for NET formation, is increased in JAK2V617F-expressing neutrophils and that PAD4 is required for Jak2V617F-driven NET formation and thrombosis in vivo. Finally, in a population study of more than 10,000 individuals without a known myeloid disorder, JAK2V617F-positive clonal hematopoiesis was associated with an increased incidence of thrombosis. In aggregate, our results link JAK2V617F expression to NET formation and thrombosis and suggest that JAK2 inhibition may reduce thrombosis in MPNs through cell-intrinsic effects on neutrophil function.
Collapse
Affiliation(s)
- Ofir Wolach
- Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA.,Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah-Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 49100, Israel
| | - Rob S Sellar
- Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, UK.,Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Kimberly Martinod
- Program in Cellular and Molecular Medicine and Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Deya Cherpokova
- Program in Cellular and Molecular Medicine and Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Marie McConkey
- Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ryan J Chappell
- Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alexander J Silver
- Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Dylan Adams
- Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Rebekka K Schneider
- Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Hematology, Cancer Institute, Erasmus Medical Center, Rotterdam 2040, Netherlands
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Martha Wadleigh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - David P Steensma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Ilene Galinsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Giulio Genovese
- Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven A McCarroll
- Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Bozenna Iliadou
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm SE-171 76, Sweden
| | - Christina Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm SE-171 76, Sweden
| | - Donna Neuberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Ann Mullally
- Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA.,Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine and Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin L Ebert
- Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA. .,Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
375
|
Teixeira C, Fernandes CM, Leiguez E, Chudzinski-Tavassi AM. Inflammation Induced by Platelet-Activating Viperid Snake Venoms: Perspectives on Thromboinflammation. Front Immunol 2019; 10:2082. [PMID: 31572356 PMCID: PMC6737392 DOI: 10.3389/fimmu.2019.02082] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023] Open
Abstract
Envenomation by viperid snakes is characterized by systemic thrombotic syndrome and prominent local inflammation. To date, the mechanisms underlying inflammation and blood coagulation induced by Viperidae venoms have been viewed as distinct processes. However, studies on the mechanisms involved in these processes have revealed several factors and signaling molecules that simultaneously act in both the innate immune and hemostatic systems, suggesting an overlap between both systems during viper envenomation. Moreover, distinct classes of venom toxins involved in these effects have also been identified. However, the interplay between inflammation and hemostatic alterations, referred as to thromboinflammation, has never been addressed in the investigation of viper envenomation. Considering that platelets are important targets of viper snake venoms and are critical for the process of thromboinflammation, in this review, we summarize the inflammatory effects and mechanisms induced by viper snake venoms, particularly from the Bothrops genus, which strongly activate platelet functions and highlight selected venom components (metalloproteases and C-type lectins) that both stimulate platelet functions and exhibit pro-inflammatory activities, thus providing insights into the possible role(s) of thromboinflammation in viper envenomation.
Collapse
Affiliation(s)
- Catarina Teixeira
- Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Cristina Maria Fernandes
- Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Elbio Leiguez
- Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil.,Laboratory of Molecular Biology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
376
|
Okugawa Y, Toiyama Y, Yamamoto A, Omura Y, Kusunoki K, Yin C, Ide S, Kitajima T, Koike Y, Fujikawa H, Yasuda H, Okita Y, Hiro J, Yoshiyama S, Ohi M, Araki T, Kusunoki M. Modified neutrophil-platelet score as a promising marker for stratified surgical and oncological outcomes of patients with gastric cancer. Surg Today 2019; 50:223-231. [PMID: 31485750 DOI: 10.1007/s00595-019-01873-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Gastric cancer (GC) is a common malignancy, especially in East Asian countries. There is emerging evidence that circulating neutrophil and platelet levels correlate with cancer progression. We evaluated the short- and long-term outcomes of GC patients systemically, to compare the original neutrophil-platelet score (NPS) and our modified NPS (mNPS). METHODS We analyzed the original pre-operative NPS and the mNPS of 621 GC patients. RESULTS Racial differences between the United Kingdom and East Asian countries accounted for compelling deviation in classification using the original NPS, which could not reliably stratify the prognoses of Japanese GC patients. We developed the mNPS using appropriate cutoff levels for pre-operative neutrophils and platelets, and demonstrated that the pre-operative mNPS was significantly correlated with all of the well-established clinicopathological factors for disease development, including advanced T stage, venous and lymphatic vessel invasion, lymph node/peritoneal /distant metastasis, and tumor-node-metastasis stage. The pre-operative mNPS could stratify prognostication for both overall survival (OS) and disease-free survival (DFS): a high pre-operative mNPS was an independent prognostic factor for the OS and DFS of GC patients and also an independent predictor of post-operative surgical site infection after gastrectomy. CONCLUSION Calculating the mNPS could help clinicians to stratify the surgical and oncological risks of patients with GC.
Collapse
Affiliation(s)
- Yoshinaga Okugawa
- Division of Reparative Medicine, Institute of Life Sciences, Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Yuji Toiyama
- Division of Reparative Medicine, Institute of Life Sciences, Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Akira Yamamoto
- Division of Reparative Medicine, Institute of Life Sciences, Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yusuke Omura
- Division of Reparative Medicine, Institute of Life Sciences, Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kurando Kusunoki
- Division of Reparative Medicine, Institute of Life Sciences, Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Chengzeng Yin
- Division of Reparative Medicine, Institute of Life Sciences, Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shozo Ide
- Division of Reparative Medicine, Institute of Life Sciences, Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takahito Kitajima
- Division of Reparative Medicine, Institute of Life Sciences, Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yuki Koike
- Division of Reparative Medicine, Institute of Life Sciences, Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hiroyuki Fujikawa
- Division of Reparative Medicine, Institute of Life Sciences, Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hiromi Yasuda
- Division of Reparative Medicine, Institute of Life Sciences, Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshiki Okita
- Division of Reparative Medicine, Institute of Life Sciences, Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Junichiro Hiro
- Division of Reparative Medicine, Institute of Life Sciences, Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shigeyuki Yoshiyama
- Division of Reparative Medicine, Institute of Life Sciences, Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masaki Ohi
- Division of Reparative Medicine, Institute of Life Sciences, Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Toshimitsu Araki
- Division of Reparative Medicine, Institute of Life Sciences, Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masato Kusunoki
- Division of Reparative Medicine, Institute of Life Sciences, Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
377
|
Targeting neutrophil extracellular traps enhanced tPA fibrinolysis for experimental intracerebral hemorrhage. Transl Res 2019; 211:139-146. [PMID: 31103467 DOI: 10.1016/j.trsl.2019.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 01/06/2023]
Abstract
The minimally invasive surgery plus fibrinolysis has been identified as a promising treatment for spontaneous intracerebral hemorrhage (ICH). However, the fibrinolytic efficacy is not satisfactory. Neutrophil extracellular traps (NETs) have been demonstrated to impair fibrinolysis in sepsis and acute ischemic stroke. Therefore, we decided to explore the presence and potential effect of NETs in ICH fibrinolysis. Intracerebral hemorrhage was induced by autologous arterial blood injection into the basal ganglia in rats. First, at 0.5 hour, 1 hour, and 1.5 hours after blood injection, the brains were collected for NETs detection by immune-staining. Second, ICH rats were given intrahematoma fibrinolysis: rats were randomized to receive the equal amount of saline, DNAse 1, tissue-plasminogen activator (tPA), and tPA + DNAse 1 at 1 hour after hematoma placement. On day 3, animals were sacrificed for terminal deoxynucleotidyl transferase-mediated dUTP Nick-end labeling staining following MRI and behavioral tests. Third, on day 3 after ICH, the hematoma within brain were collected for ex vivo fibrinolysis assay to further evaluate the effect of NETs in ICH fibrinolysis. Co-staining of DAPI, H3, and MPO confirmed the presence of NETs in ICH. Disintegration of NETs using DNAse 1 enhanced tPA-induced hematoma fibrinolysis, relieved brain swelling, reduced cell death, and improved the functional outcome in ICH rats. Therefore, we concluded that NETs impaired the efficacy of tPA for ICH fibrinolysis in rats. Targeting NETs may be a new alternative to improve the fibrinolytic therapy following ICH.
Collapse
|
378
|
Berezin A. Neutrophil extracellular traps: The core player in vascular complications of diabetes mellitus. Diabetes Metab Syndr 2019; 13:3017-3023. [PMID: 30030160 DOI: 10.1016/j.dsx.2018.07.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/15/2018] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus (DM) is the most important metabolic disease with major threat for public health and increased risk of premature death. The prevalence of DM steadily rises in developing and developed countries achieving the epidemic level. Manifestation and progression of DM corresponds to developing vasculopathies, such as retinopathy, micro- and macro angiopathies, which negatively influence on clinical outcomes and quality-of-life. Although there are remarkable differences in the prevalence of vasculopathy in various types of DM, hyperglycemia and lipotoxicity are discussed as a major factors contributing to vascular complications partly through inducing neutrophil extracellular trap (NET). The NET or NETosis is unique form of cell death, which is an important core component of innate immune system. The review is dedicated the role of NET as a link between endothelium, inflammation and thrombosis that is crucial for development of DM-induced vasculopathy. It has suggested that NET formation could be not just a target for the DM care, but also a biomarker for stratification of DM patients at higher risk of vascular complications.
Collapse
Affiliation(s)
- Alexander Berezin
- Internal Medicine Department, State Medical University for Zaporozhye, 26, Mayakovsky Av., Zaporozhye, 69035, Ukraine.
| |
Collapse
|
379
|
Le Joncour A, Martos R, Loyau S, Lelay N, Dossier A, Cazes A, Fouret P, Domont F, Papo T, Jandrot-Perrus M, Bouton MC, Cacoub P, Ajzenberg N, Saadoun D, Boulaftali Y. Critical role of neutrophil extracellular traps (NETs) in patients with Behcet's disease. Ann Rheum Dis 2019; 78:1274-1282. [PMID: 31147357 DOI: 10.1136/annrheumdis-2018-214335] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Behçet's disease (BD) is a chronic systemic vasculitis. Thrombosis is a frequent and life-threatening complication. The pathogenesis of BD is poorly understood and evidence supporting a role for primed neutrophils in BD-associated thrombotic risk is scant. To respond to inflammatory insults, neutrophils release web-like structures, known as neutrophil extracellular traps (NETs), which are prothrombotic. We evaluated the role of NETs and markers of NETs in BD. METHODS Blood samples were collected from patients with BD, according to the International Study Group Criteria for Behçet's disease, and healthy donors (HD). NET components, including cell-free DNA (CfDNA) and neutrophil enzymes myeloperoxidase (MPO), were assessed in serum or in purified neutrophils from patients with BD and HD. RESULTS Patients with active BD had elevated serum cfDNA levels and MPO-DNA complexes compared with patients with inactive BD and to HD. In addition, levels of cfDNA and MPO-DNA complexes were significantly higher in patients with BD with vascular involvement compared with those without vascular symptoms. Purified neutrophils from patients with BD exhibited spontaneous NETosis compared with HD. Thrombin generation in BD plasma was significantly increased and positively correlated with the levels of MPO-DNA complexes and cfDNA. Importantly, DNAse treatment significantly decreased thrombin generation in BD plasma but not in HD plasma. In addition, biopsy materials obtained from patients with BD showed NETs production in areas of vasculitic inflammation and thrombosis. CONCLUSIONS Our data show that NETs and markers of NETS levels are elevated in patients with BD and contribute to the procoagulant state. Targeting NETs may represent a potential therapeutic target for the reduction or prevention of BD-associated thrombotic risk.
Collapse
Affiliation(s)
- Alexandre Le Joncour
- Department of Internal Medicine and Clinical Immunology, Groupe Hospitalier Pitié-Salpêtrière-APHP, Paris, France
- INSERM UMR_S 959, Immunologie-Immunopathologie-Immunotherapie, i3, Sorbonne Université, Paris, France
| | | | | | | | - Antoine Dossier
- Department of Internal Medicine, Université Paris Diderot, Sorbonne Paris, Hôpital Bichat- APHP, Paris, Île-de-France, France
| | - Aurelie Cazes
- Department of Internal Medicine, Université Paris Diderot, Sorbonne Paris, Hôpital Bichat- APHP, Paris, Île-de-France, France
| | - Pierre Fouret
- Department of Anatomopathology, Hôpital de la Pitié-Salpêtrière-APHP, Paris, France
| | - Fanny Domont
- Department of Internal Medicine and Clinical Immunology, Groupe Hospitalier Pitié-Salpêtrière-APHP, Paris, France
| | - Thomas Papo
- Department of Internal Medicine, Université Paris Diderot, Sorbonne Paris, Hôpital Bichat- APHP, Paris, Île-de-France, France
| | | | | | - Patrice Cacoub
- Department of Internal Medicine and Clinical Immunology, Groupe Hospitalier Pitié-Salpêtrière-APHP, Paris, France
- INSERM UMR_S 959, Immunologie-Immunopathologie-Immunotherapie, i3, Sorbonne Université, Paris, France
| | - Nadine Ajzenberg
- LVTS, INSERM 1148, Paris, France
- Department of Hematology, Université Paris Diderot, Sorbonne Paris, Hôpital Bichat- APHP, Paris, France
| | - David Saadoun
- Department of Internal Medicine and Clinical Immunology, Groupe Hospitalier Pitié-Salpêtrière-APHP, Paris, France
- INSERM UMR_S 959, Immunologie-Immunopathologie-Immunotherapie, i3, Sorbonne Université, Paris, France
| | | |
Collapse
|
380
|
Yao XL, Liu H, Li P, Chen WP, Guan SX, Chen Y, Wu YN, Lin BQ. Aqueous Extract of Whitmania Pigra Whitman Alleviates Thrombus Burden Via Sirtuin 1/NF-κB Pathway. J Surg Res 2019; 245:441-452. [PMID: 31445496 DOI: 10.1016/j.jss.2019.07.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Whitmania pigra Whitman (W pigra), a traditional Chinese medicine, has functions of breaking stagnant and eliminating blood stasis. The aim of this study was to investigate the underlying mechanism of W pigra against deep vein thrombosis (DVT). METHODS A rat model of DVT induced by inferior vena cava stenosis was successfully established. Rats were administered vehicle (saline solution, p.o.), three doses of W pigra aqueous extract (34.7, 104.2, or 312.5 mg crude W pigra/kg, p.o.), heparin (200 U/kg, i.v.), or clopidogrel (25 mg/kg, p.o.) once daily for 2 d. Thrombus weight and histopathological changes were examined. Blood samples were collected to determine blood cell counts, blood viscosity, blood coagulation, blood fibrinolysis, serum levels of interleukin-1β, and tumor necrosis factor-α. Protein expressions of Sirtuin1 (SIRT1), acetylated p65 (Ace-p65), and phosphorylated p65 (p-p65) were determined by Western blot. Furthermore, SIRT1-specific inhibitor EX527 was applied to confirm the role of SIRT1 in the antithrombotic effect of W pigra. RESULTS W pigra significantly decreased thrombus weight. W pigra had no effects on blood cell counts, whole blood viscosity, blood coagulation, blood fibrinolysis. However, it reduced tissue factor protein expression in the vein wall and thrombus. Moreover, it sharply increased SIRT1 protein expression and decreased leukocytes recruitment in the thrombus and vein wall, serum levels of interleukin-1β and tumor necrosis factor-α, and protein expressions of Ace-p65 and p-p65. Furthermore, the antithrombotic effect of W pigra was significantly abolished by EX527. CONCLUSIONS Aqueous extract of W pigra effectively reduced DVT burden by inhibiting inflammation via SIRT1/nuclear factor-kappa B signaling pathway.
Collapse
Affiliation(s)
- Xiao-Lan Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-Pei Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Xia Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Na Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bao-Qin Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
381
|
Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, Tokgözoğlu L, Lewis EF. Atherosclerosis. Nat Rev Dis Primers 2019; 5:56. [PMID: 31420554 DOI: 10.1038/s41572-019-0106-z] [Citation(s) in RCA: 1821] [Impact Index Per Article: 303.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
Abstract
Atherosclerosis, the formation of fibrofatty lesions in the artery wall, causes much morbidity and mortality worldwide, including most myocardial infarctions and many strokes, as well as disabling peripheral artery disease. Development of atherosclerotic lesions probably requires low-density lipoprotein, a particle that carries cholesterol through the blood. Other risk factors for atherosclerosis and its thrombotic complications include hypertension, cigarette smoking and diabetes mellitus. Increasing evidence also points to a role of the immune system, as emerging risk factors include inflammation and clonal haematopoiesis. Studies of the cell and molecular biology of atherogenesis have provided considerable insight into the mechanisms that link all these risk factors to atheroma development and the clinical manifestations of this disease. An array of diagnostic techniques, both invasive (such as selective coronary arteriography) and noninvasive (such as blood biomarkers, stress testing, CT and nuclear scanning), permit assessment of cardiovascular disease risk and targeting of therapies. An expanding armamentarium of therapies that can modify risk factors and confer clinical benefit is available; however, we face considerable challenge in providing equitable access to these treatments and in maximizing adherence. Yet, the clinical application of the fruits of research has advanced preventive strategies, enhanced clinical outcomes in affected individuals, and improved their quality of life. Rapidly accelerating knowledge and continued research promise to provide further progress in combating this common chronic disease.
Collapse
Affiliation(s)
- Peter Libby
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Lina Badimon
- Centre d'Investigació Cardiovascular CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Göran K Hansson
- Center for Molecular Medicine, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - John Deanfield
- Institute of Cardiovascular Sciences, University College London, London, UK
| | - Márcio Sommer Bittencourt
- Center for Clinical and Epidemiological Research, University Hospital, University of São Paulo, São Paulo, Brazil.,Faculdade Israelita de Ciencias da Saude Albert Einstein, São Paulo, Brazil.,DASA, São Paulo, Brazil
| | | | - Eldrin F Lewis
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
382
|
Evans CE. Hypoxia and HIF activation as a possible link between sepsis and thrombosis. Thromb J 2019; 17:16. [PMID: 31423111 PMCID: PMC6693167 DOI: 10.1186/s12959-019-0205-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023] Open
Abstract
Risk factors for thrombosis include hypoxia and sepsis, but the mechanisms that control sepsis-induced thrombus formation are incompletely understood. A recent article published in Thrombosis Journal: (i) reviews the role of endothelial cells in the pathogenesis of sepsis-associated microthrombosis; (ii) describes a novel ‘two-path unifying theory’ of hemostatic discorders; and (iii) refers to hypoxia as a consequence of microthrombus formation in sepsis patients. The current article adds to this review by describing how sepsis and thrombus formation could be linked through hypoxia and activation of hypoxia-inducible transcription factors (HIFs). In other words, hypoxia and HIF activation may be a cause as well as a consequence of thrombosis in sepsis patients. While microthrombosis reduces microvascular blood flow causing local hypoxia and tissue ischemia, sepsis-induced increases in HIF1 activation could conversely increase the expression of coagulant factors and integrins that promote thrombus formation, and stimulate the formation of pro-thrombotic neutrophil extracellular traps. A better understanding of the role of cell-specific HIFs in thrombus formation could lead to the development of novel prophylactic therapies for individuals at risk of thrombosis.
Collapse
Affiliation(s)
- Colin E Evans
- 1Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL USA.,2Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| |
Collapse
|
383
|
Gorbet M, Sperling C, Maitz MF, Siedlecki CA, Werner C, Sefton MV. The blood compatibility challenge. Part 3: Material associated activation of blood cascades and cells. Acta Biomater 2019; 94:25-32. [PMID: 31226478 DOI: 10.1016/j.actbio.2019.06.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/03/2019] [Accepted: 06/13/2019] [Indexed: 01/09/2023]
Abstract
Following protein adsorption/activation which is the first step after the contact of material surfaces and whole blood (part 2), fibrinogen is converted to fibrin and platelets become activated and assembled in the form of a thrombus. This thrombus formation is the key feature that needs to be minimized in the creation of materials with low thrombogenicity. Further aspects of blood compatibility that are important on their own are complement and leukocyte activation which are also important drivers of thrombus formation. Hence this review summarizes the state of knowledge on all of these cascades and cells and their interactions. For each cascade or cell type, the chapter distinguishes statements which are in widespread agreement from statements where there is less of a consensus. STATEMENT OF SIGNIFICANCE: This paper is part 3 of a series of 4 reviews discussing the problem of biomaterial associated thrombogenicity. The objective was to highlight features of broad agreement and provide commentary on those aspects of the problem that were subject to dispute. We hope that future investigators will update these reviews as new scholarship resolves the uncertainties of today.
Collapse
Affiliation(s)
- Maud Gorbet
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Manfred F Maitz
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Christopher A Siedlecki
- Departments of Surgery and Bioengineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Carsten Werner
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Michael V Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
384
|
Abstract
Neutrophils play a central role in innate immune defense. Advances in neutrophil biology have brought to light the capacity of neutrophils to release their decondensed chromatin and form large extracellular DNA networks called neutrophil extracellular traps (NETs). NETs are produced in response to many infectious and noninfectious stimuli and, together with fibrin, block the invasion of pathogens. However, their formation in inflamed blood vessels produces a scaffold that supports thrombosis, generates neo-antigens favoring autoimmunity, and aggravates damage in ischemia/reperfusion injury. NET formation can also be induced by cancer and promotes tumor progression. Formation of NETs within organs can be immediately detrimental, such as in lung alveoli, where they affect respiration, or they can be harmful over longer periods of time. For example, NETs initiate excessive deposition of collagen, resulting in fibrosis, thus likely contributing to heart failure. Here, we summarize the latest knowledge on NET generation and discuss how excessive NET formation mediates propagation of thrombosis and inflammation and, thereby, contributes to various diseases. There are many ways in which NET formation could be averted or NETs neutralized to prevent their detrimental consequences, and we will provide an overview of these possibilities.
Collapse
Affiliation(s)
- Nicoletta Sorvillo
- From the Program in Cellular and Molecular Medicine (N.S., D.C., D.D.W.), Boston Children's Hospital, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA (N.S., D.C., D.D.W.)
| | - Deya Cherpokova
- From the Program in Cellular and Molecular Medicine (N.S., D.C., D.D.W.), Boston Children's Hospital, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA (N.S., D.C., D.D.W.)
| | - Kimberly Martinod
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Belgium (K.M.)
| | - Denisa D Wagner
- From the Program in Cellular and Molecular Medicine (N.S., D.C., D.D.W.), Boston Children's Hospital, MA
- Division of Hematology/Oncology (D.D.W.), Boston Children's Hospital, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA (N.S., D.C., D.D.W.)
| |
Collapse
|
385
|
Goggs R, Jeffery U, LeVine DN, Li RHL. Neutrophil-Extracellular Traps, Cell-Free DNA, and Immunothrombosis in Companion Animals: A Review. Vet Pathol 2019; 57:6-23. [PMID: 31342866 DOI: 10.1177/0300985819861721] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunothrombosis is a potentially beneficial physiological process that aids innate immunity and host defense against pathogen invasion. However, this process can also be damaging when it occurs to excess or in critical blood vessels. Formation of extracellular traps by leukocytes, particularly neutrophils, is central to our understanding of immunothrombosis. In addition to degranulation and phagocytosis, extracellular traps are the third mechanism by which neutrophils combat potential pathogens. These traps consist of extracellular DNA decorated with bactericidal cellular proteins, including elastase, myeloperoxidase, and cathepsins. Neutrophils can release these structures as part of a controlled cell-death process or via a process termed vital NETosis that enables the cells to extrude DNA but remain viable. There is accumulating evidence that NETosis occurs in companion animals, including dogs, horses, and cats, and that it actively contributes to pathogenesis. Numerous studies have been published detailing various methods for identification and quantification of extracellular trap formation, including cell-free DNA, measurements of histones and proteins such as high-mobility group box-1, and techniques involving microscopy and flow cytometry. Here, we outline the present understanding of these phenomena and the mechanisms of extracellular trap formation. We critically review the data regarding measurement of NETosis in companion animals, summarize the existing literature on NETosis in veterinary species, and speculate on what therapeutic options these insights might present to clinicians in the future.
Collapse
Affiliation(s)
- Robert Goggs
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Unity Jeffery
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Dana N LeVine
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Ronald H L Li
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
386
|
New mechanisms in vein thrombosis: Immunothrombosis. Med Clin (Barc) 2019; 153:78-81. [PMID: 30803800 DOI: 10.1016/j.medcli.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/13/2022]
|
387
|
Abstract
In this issue of Blood, Yago et al1 describe the mechanism by which neutrophils adhere to activated endothelium and enhance murine venous thrombosis through formation of neutrophil extracellular traps (NETs).
Collapse
|
388
|
Grilz E, Mauracher L, Posch F, Königsbrügge O, Zöchbauer‐Müller S, Marosi C, Lang I, Pabinger I, Ay C. Citrullinated histone H3, a biomarker for neutrophil extracellular trap formation, predicts the risk of mortality in patients with cancer. Br J Haematol 2019; 186:311-320. [PMID: 30968400 PMCID: PMC6618331 DOI: 10.1111/bjh.15906] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/19/2019] [Indexed: 12/15/2022]
Abstract
Prior studies indicate that neutrophil extracellular traps (NETs) are associated with arterial thromboembolism (ATE) and mortality. We investigated the association between NET formation biomarkers (citrullinated histone H3 [H3Cit], cell-free DNA [cfDNA], and nucleosomes) and the risk of ATE and all-cause mortality in patients with cancer. In this prospective cohort study, H3Cit, cfDNA and nucleosome levels were determined at study inclusion, and patients with newly diagnosed cancer or progressive disease after remission were followed for 2 years for ATE and death. Nine-hundred and fifty-seven patients were included. The subdistribution hazard ratios for ATE of H3Cit, cfDNA and nucleosomes were 1·0 per 100 ng/ml increase (95% confidence interval [95% CI]: 0·7-1·4, P = 0·949), 1·0 per 100 ng/ml (0·9-1·2, P = 0·494) increase and 1·1 per 1-unit increase (1·0-1·2, P = 0·233), respectively. Three-hundred and seventy-eight (39·5%) patients died. The hazard ratio (HR) for mortality of H3Cit and cfDNA per 100 ng/ml increase was 1·1 (1·0-1·1, P < 0·001) and 1·1 (1·0-1·1, P < 0·001), respectively. The HR for mortality of nucleosome levels per 1-unit increase was 1·0 (1·0-1·1, P = 0·233). H3Cit, cfDNA and nucleosome levels were not associated with the risk of ATE in patients with cancer. Elevated H3Cit and cfDNA levels were associated with higher mortality in patients with cancer.
Collapse
Affiliation(s)
- Ella Grilz
- Clinical Division of Haematology and HaemostaseologyDepartment of Medicine IMedical University of ViennaViennaAustria
| | - Lisa‐Marie Mauracher
- Clinical Division of Haematology and HaemostaseologyDepartment of Medicine IMedical University of ViennaViennaAustria
| | - Florian Posch
- Division of OncologyDepartment of MedicineMedical University of GrazGrazAustria
| | - Oliver Königsbrügge
- Clinical Division of Haematology and HaemostaseologyDepartment of Medicine IMedical University of ViennaViennaAustria
| | - Sabine Zöchbauer‐Müller
- Clinical Division of OncologyDepartment of Medicine IMedical University of ViennaViennaAustria
| | - Christine Marosi
- Clinical Division of OncologyDepartment of Medicine IMedical University of ViennaViennaAustria
| | - Irene Lang
- Clinical Division of CardiologyDepartment of Medicine IIMedical University of ViennaViennaAustria
| | - Ingrid Pabinger
- Clinical Division of Haematology and HaemostaseologyDepartment of Medicine IMedical University of ViennaViennaAustria
| | - Cihan Ay
- Clinical Division of Haematology and HaemostaseologyDepartment of Medicine IMedical University of ViennaViennaAustria
| |
Collapse
|
389
|
Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis. Circ Res 2019; 122:337-351. [PMID: 29348254 DOI: 10.1161/circresaha.117.310795] [Citation(s) in RCA: 646] [Impact Index Per Article: 107.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Platelets, non-nucleated blood components first described over 130 years ago, are recognized as the primary cell regulating hemostasis and thrombosis. The vascular importance of platelets has been attributed to their essential role in thrombosis, mediating myocardial infarction, stroke, and venous thromboembolism. Increasing knowledge on the platelets' role in the vasculature has led to many advances in understanding not only how platelets interact with the vessel wall but also how they convey changes in the environment to other circulating cells. In addition to their well-described hemostatic function, platelets are active participants in the immune response to microbial organisms and foreign substances. Although incompletely understood, the immune role of platelets is a delicate balance between its pathogenic response and its regulation of thrombotic and hemostatic functions. Platelets mediate complex vascular homeostasis via specific receptors and granule release, RNA transfer, and mitochondrial secretion that subsequently regulates hemostasis and thrombosis, infection, and innate and adaptive immunity.
Collapse
Affiliation(s)
- Milka Koupenova
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester.
| | - Lauren Clancy
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Heather A Corkrey
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Jane E Freedman
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester
| |
Collapse
|
390
|
Zhang Y, Wang C, Yu M, Zhao X, Du J, Li Y, Jing H, Dong Z, Kou J, Bi Y, Novakovic VA, Zhou J, Shi J. Neutrophil extracellular traps induced by activated platelets contribute to procoagulant activity in patients with colorectal cancer. Thromb Res 2019; 180:87-97. [PMID: 31271975 DOI: 10.1016/j.thromres.2019.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022]
Abstract
Patients with colorectal cancer (CRC) are at increased risk of venous thrombosis, but the precise mechanisms of thrombogenesis in CRC remain largely unknown. We aimed to identify the novel role of neutrophil extracellular traps (NETs) in the induction of procoagulant activity (PCA) in CRC, and to evaluate its interactions with platelets and endothelial cells (ECs). In this study, we first showed that the levels of NETs in the peripheral blood of CRC patients were increased in parallel with cancer progression and reached significance in stage II patients compared to healthy subjects. In addition, neutrophils from CRC patients were more prone to produce NETs, resulting in shortened coagulation time, significantly increased thrombin-antithrombin (TAT) complexes and fibrin fibrils compared to healthy controls. Furthermore, platelets from CRC patients stimulated healthy neutrophils to extrude NETs, which could be inhibited by the depletion of HMGB1. Conversely, NETs from CRC patients could also induce the exposure of PS on platelets, leading to markedly enhanced PCA. Importantly, ECs were also converted to a procoagulant phenotype when exposed to NETs from CRC patients. The PCA of NETs-activated platelets or ECs could be inhibited either by the cleavage of NETs with DNase1 or the blockage of histone with activated protein C (APC). Our results reveal the complex interactions between neutrophils, platelets and ECs and their potential role in the hypercoagulable state in CRC. We propose that NETs may provide new therapeutic targets to combat the thrombotic consequences of CRC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Hematology of the First Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province, China
| | - Chunxu Wang
- Department of Hematology of the First Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province, China
| | - Muxin Yu
- Department of Hematology of the First Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province, China
| | - Xinyi Zhao
- Department of Cardiology of the Second Hospital, Harbin Medical University, 148 Baojian Street, Nangang District, Harbin, Heilongjiang Province, China
| | - Jingwen Du
- Department of Hematology of the First Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province, China
| | - Yueyue Li
- Department of Hematology of the First Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province, China
| | - Haijiao Jing
- Department of Hematology of the First Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province, China
| | - Zengxiang Dong
- Department of Cardiology of the First Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province, China
| | - Junjie Kou
- Department of Cardiology of the Second Hospital, Harbin Medical University, 148 Baojian Street, Nangang District, Harbin, Heilongjiang Province, China
| | - Yayan Bi
- Department of Cardiology of the First Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province, China
| | - Valerie A Novakovic
- Departments of Research and Surgery, VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, 1400 VFW Parkway, West Roxbury, Boston, MA, USA
| | - Jin Zhou
- Department of Hematology of the First Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province, China.
| | - Jialan Shi
- Department of Hematology of the First Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province, China; Departments of Research and Surgery, VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, 1400 VFW Parkway, West Roxbury, Boston, MA, USA.
| |
Collapse
|
391
|
Kornilov A, Kennedy PD, Aldrovandi M, Watson AJA, Hinz C, Harless B, Colombo J, Maxey KM, Tyrrell VJ, Simon M, Aggarwal VK, Boeglin WE, Brash AR, Murphy RC, O'Donnell VB. Revising the structure of a new eicosanoid from human platelets to 8,9-11,12-diepoxy-13-hydroxyeicosadienoic acid. J Biol Chem 2019; 294:9225-9238. [PMID: 31061099 PMCID: PMC6556573 DOI: 10.1074/jbc.ra119.008915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/03/2019] [Indexed: 11/07/2022] Open
Abstract
Eicosanoids are critical mediators of fever, pain, and inflammation generated by immune and tissue cells. We recently described a new bioactive eicosanoid generated by cyclooxygenase-1 (COX-1) turnover during platelet activation that can stimulate human neutrophil integrin expression. On the basis of mass spectrometry (MS/MS and MS3), stable isotope labeling, and GC-MS analysis, we previously proposed a structure of 8-hydroxy-9,11-dioxolane eicosatetraenoic acid (DXA3). Here, we achieved enzymatic synthesis and 1H NMR characterization of this compound with results in conflict with the previously proposed structural assignment. Accordingly, by using LC-MS, we screened autoxidation reactions of 11-hydroperoxy-eicosatetraenoic acid (11-HpETE) and thereby identified a candidate sharing the precise reverse-phase chromatographic and MS characteristics of the platelet product. We optimized these methods to increase yield, allowing full structural analysis by 1H NMR. The revised assignment is presented here as 8,9–11,12-diepoxy-13-hydroxyeicosadienoic acid, abbreviated to 8,9–11,12-DiEp-13-HEDE or DiEpHEDE, substituted for the previous name DXA3. We found that in platelets, the lipid likely forms via dioxolane ring opening with rearrangement to the diepoxy moieties followed by oxygen insertion at C13. We present its enzymatic biosynthetic pathway and MS/MS fragmentation pattern and, using the synthetic compound, demonstrate that it has bioactivity. For the platelet lipid, we estimate 16 isomers based on our current knowledge (and four isomers for the synthetic lipid). Determining the exact isomeric structure of the platelet lipid remains to be undertaken.
Collapse
Affiliation(s)
| | | | - Maceler Aldrovandi
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Andrew J A Watson
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Christine Hinz
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | | | | | | | - Victoria J Tyrrell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | | | | | - William E Boeglin
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, and
| | - Alan R Brash
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, and
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado, Aurora, Colorado 80045
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom,
| |
Collapse
|
392
|
Disseminated intravascular coagulation – what can we do? Hemasphere 2019; 3:HEMASPHERE-2019-0014. [PMID: 35309773 PMCID: PMC8925671 DOI: 10.1097/hs9.0000000000000232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/18/2019] [Accepted: 03/23/2019] [Indexed: 12/02/2022] Open
|
393
|
Mai N, Miller-Rhodes K, Knowlden S, Halterman MW. The post-cardiac arrest syndrome: A case for lung-brain coupling and opportunities for neuroprotection. J Cereb Blood Flow Metab 2019; 39:939-958. [PMID: 30866740 PMCID: PMC6547189 DOI: 10.1177/0271678x19835552] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic inflammation and multi-organ failure represent hallmarks of the post-cardiac arrest syndrome (PCAS) and predict severe neurological injury and often fatal outcomes. Current interventions for cardiac arrest focus on the reversal of precipitating cardiac pathologies and the implementation of supportive measures with the goal of limiting damage to at-risk tissue. Despite the widespread use of targeted temperature management, there remain no proven approaches to manage reperfusion injury in the period following the return of spontaneous circulation. Recent evidence has implicated the lung as a moderator of systemic inflammation following remote somatic injury in part through effects on innate immune priming. In this review, we explore concepts related to lung-dependent innate immune priming and its potential role in PCAS. Specifically, we propose and investigate the conceptual model of lung-brain coupling drawing from the broader literature connecting tissue damage and acute lung injury with cerebral reperfusion injury. Subsequently, we consider the role that interventions designed to short-circuit lung-dependent immune priming might play in improving patient outcomes following cardiac arrest and possibly other acute neurological injuries.
Collapse
Affiliation(s)
- Nguyen Mai
- 1 Department of Neuroscience, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| | - Kathleen Miller-Rhodes
- 1 Department of Neuroscience, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| | - Sara Knowlden
- 2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,3 Department of Neurology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| | - Marc W Halterman
- 1 Department of Neuroscience, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,3 Department of Neurology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| |
Collapse
|
394
|
McFadyen JD, Peter K. Novel Antithrombotic Drugs on the Horizon: The Ultimate Promise to Prevent Clotting While Avoiding Bleeding. Circ Res 2019; 121:1133-1135. [PMID: 29074533 DOI: 10.1161/circresaha.117.312012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- James D McFadyen
- From the Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, Australia (J.D.M., K.P.); and Department of Medicine (J.D.M., K.P.), Department of Immunology (K.P.), Department of Clinical Haematology, Alfred Hospital (J.D.M.), and Heart Centre, Alfred Hospital (K.P.), Monash University, Melbourne, Australia
| | - Karlheinz Peter
- From the Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, Australia (J.D.M., K.P.); and Department of Medicine (J.D.M., K.P.), Department of Immunology (K.P.), Department of Clinical Haematology, Alfred Hospital (J.D.M.), and Heart Centre, Alfred Hospital (K.P.), Monash University, Melbourne, Australia.
| |
Collapse
|
395
|
Weisenburger-Lile D, Dong Y, Yger M, Weisenburger G, Polara GF, Chaigneau T, Ochoa RZ, Marro B, Lapergue B, Alamowitch S, Elbim C. Harmful neutrophil subsets in patients with ischemic stroke: Association with disease severity. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e571. [PMID: 31355307 PMCID: PMC6624098 DOI: 10.1212/nxi.0000000000000571] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Abstract
Objective To better understand the functional state of circulating neutrophils in patients with ischemic stroke (IS) for planning future clinical trials. Methods We analyzed by flow cytometry activation state of circulating neutrophils and the distribution of neutrophil peripheral subsets in 41 patients with acute IS less than 6 hours before admission and compared them with 22 age-matched healthy controls. Results Our results demonstrated continuous basal hyperactivation of circulating neutrophils during acute IS, characterized by lower l-selectin expression and higher CD11b expression at the cell surface, increased ROS production by neutrophils, and greater circulating levels of neutrophil elastase. Neutrophil hyperactivation was associated with deregulation of the equilibrium between apoptotic and necrotic. Patients also had higher percentages than controls of the overactive senescent (CXCR4bright/CD62Ldim) neutrophil subset and increased percentage of neutrophils with a reverse transendothelial migration (CD54highCXCR1low) phenotype. Importantly, neutrophil alterations were associated with the clinical severity of the stroke, evaluated by its NIH Stroke Scale score. Conclusion Altogether, our results indicate that during acute IS, the inflammatory properties of circulating neutrophils rise, associated with the expansion of harmful neutrophil subsets. These changes in neutrophil homeostasis, associated with disease severity, may play an instrumental role by contributing to systemic inflammation and to the blood-brain barrier breakdown. Our findings highlight new potential therapeutic approaches of stroke by rebalancing the ratio of senescent to immunosuppressive neutrophils or decreasing reverse neutrophil transmigration or both.
Collapse
Affiliation(s)
- David Weisenburger-Lile
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Yuan Dong
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Marion Yger
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Gaëlle Weisenburger
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Giulia Frasca Polara
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Thomas Chaigneau
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Riccardo Zapata Ochoa
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Beatrice Marro
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Bertrand Lapergue
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Sonia Alamowitch
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| | - Carole Elbim
- Sorbonne Universités (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UPMC Univ Paris 06, UMRS 938, CdR Saint-Antoine, Hôpital Saint-Antoine; INSERM (D.W.-L., Y.D., T.C., R.Z.O., S.A., C.E.), UMRS 938, CdR Saint- Antoine, Team "Immune System, Neuroinflammation and Neurodegenerative Diseases," Hôpital St-Antoine; Service de Neurologie et d'Urgences Neurovasculaires (D.W.-L., M.Y., S.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; Division of Pneumology (G.W.), Foch Hospital, F-92150, Suresnes; Division of Neurology (G.F.P.), Stroke Center, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Division of Radiology (B.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine; and Division of Neurology (B.L.), Stroke Center, Foch Hospital, F-92150, Suresnes
| |
Collapse
|
396
|
Noro F, Gianfagna F, Gialluisi A, De Curtis A, Di Castelnuovo A, Napoleone E, Cerletti C, Donati MB, de Gaetano G, Hoylaerts MF, Iacoviello L, Izzi B. ZBTB12 DNA methylation is associated with coagulation- and inflammation-related blood cell parameters: findings from the Moli-family cohort. Clin Epigenetics 2019; 11:74. [PMID: 31077224 PMCID: PMC6511189 DOI: 10.1186/s13148-019-0665-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background Zinc finger and BTB domain-containing protein 12 (ZBTB12) is a predicted transcription factor with potential role in hematopoietic development. Recent evidence linked low methylation level of ZBTB12 exon1 to myocardial infarction (MI) risk. However, the role of ZBTB12 in the pathogenesis of MI and cardiovascular disease in general is not yet clarified. We investigated the relation between ZBTB12 methylation and several blood parameters related to cardio-cerebrovascular risk in an Italian family-based cohort. Results ZBTB12 methylation was analyzed on white blood cells from the Moli-family cohort using the Sequenom EpiTYPER MassARRAY (Agena). A total of 13 CpG Sequenom units were analyzed in the small CpG island located in the only translated ZBTB12 exon. Principal component analysis (PCA) was performed to identify groups of CpG units with similar methylation estimates. Linear mixed effect regressions showed a positive association between methylation of ZBTB12 Factor 2 (including CpG units 8, 9–10, 16, 21) and TNF-ɑ stimulated procoagulant activity, a measure of procoagulant and inflammatory potential of blood cells. In addition, we also found a negative association between methylation of ZBTB12 Factor 1 (mainly characterized by CpG units 1, 3–4, 5, 11, and 26) and white blood cell and granulocyte counts. An in silico prediction analysis identified granulopoiesis- and hematopoiesis-specific transcription factors to potentially bind DNA sequences encompassing CpG1, CpG3–4, and CpG11. Conclusions ZBTB12 hypomethylation is linked to shorter TNF-ɑ stimulated whole blood coagulation time and increased WBC and granulocyte counts, further elucidating the possible link between ZBTB12 methylation and cardiovascular disease risk. Electronic supplementary material The online version of this article (10.1186/s13148-019-0665-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabrizia Noro
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, IS, Italy
| | - Francesco Gianfagna
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.,Mediterranea Cardiocentro, Naples, Italy
| | | | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, IS, Italy
| | | | | | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, IS, Italy
| | | | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, IS, Italy
| | - Marc F Hoylaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, IS, Italy. .,Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, IS, Italy
| | | |
Collapse
|
397
|
Csernok E. The Diagnostic and Clinical Utility of Autoantibodies in Systemic Vasculitis. Antibodies (Basel) 2019; 8:antib8020031. [PMID: 31544837 PMCID: PMC6640716 DOI: 10.3390/antib8020031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022] Open
Abstract
Considerable progress has been made in understanding the role of autoantibodies in systemic vasculitides (SV), and consequently testing for anti-neutrophil cytoplasmic antibodies (ANCA), anti-glomerular basement membrane antibodies (anti-GBM), and anti-C1q antibodies is helpful and necessary in the diagnosis, prognosis, and monitoring of small-vessel vasculitis. ANCA-directed proteinase 3 (PR3-) or myeloperoxidase (MPO-) are sensitive and specific serologic markers for ANCA-associated vasculitides (AAV), anti-GBM antibodies are highly specific for the patients with anti-GBM antibody disease (formerly Goodpasture’s syndrome), and autoantibodies to C1q are characteristic of hypocomlementemic urticarial vasculitis syndrome (HUVS; anti-C1q vasculitis). The results of a current EUVAS study have led to changes in the established strategy for the ANCA testing in small-vessel vasculitis. The revised 2017 international consensus recommendations for ANCA detection support the primary use PR3- and MPO-ANCA immunoassays without the categorical need for additional indirect immunofluorescence (IIF). Interestingly, the presence of PR3- and MPO-ANCA have led to the differentiation of distinct disease phenotype of AAV: PR3-ANCA-associated vasculitis (PR3-AAV), MPO-ANCA-associated vasculitis (MPO-AAV), and ANCA-negative vasculitis. Further studies on the role of these autoantibodies are required to better categorize and manage appropriately the patients with small-vessel vasculitis and to develop more targeted therapy.
Collapse
Affiliation(s)
- Elena Csernok
- Department of Internal Medicine, Rheumatology and Immunology, Vasculitis-Center Tübingen-Kirchheim, Medius Klinik Kirchheim, University of Tübingen, 73230 Kirchheim-Teck, Germany.
| |
Collapse
|
398
|
Ali RA, Gandhi AA, Meng H, Yalavarthi S, Vreede AP, Estes SK, Palmer OR, Bockenstedt PL, Pinsky DJ, Greve JM, Diaz JA, Kanthi Y, Knight JS. Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome. Nat Commun 2019; 10:1916. [PMID: 31015489 PMCID: PMC6478874 DOI: 10.1038/s41467-019-09801-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Potentiation of neutrophil extracellular trap (NET) release is one mechanism by which antiphospholipid antibodies (aPL Abs) effect thrombotic events in patients with antiphospholipid syndrome (APS). Surface adenosine receptors trigger cyclic AMP (cAMP) formation in neutrophils, and this mechanism has been proposed to regulate NETosis in some contexts. Here we report that selective agonism of the adenosine A2A receptor (CGS21680) suppresses aPL Ab-mediated NETosis in protein kinase A-dependent fashion. CGS21680 also reduces thrombosis in the inferior vena cavae of both control mice and mice administered aPL Abs. The antithrombotic medication dipyridamole is known to potentiate adenosine signaling by increasing extracellular concentrations of adenosine and interfering with the breakdown of cAMP. Like CGS21680, dipyridamole suppresses aPL Ab-mediated NETosis via the adenosine A2A receptor and mitigates venous thrombosis in mice. In summary, these data suggest an anti-inflammatory therapeutic paradigm in APS, which may extend to thrombotic disease in the general population. Antiphospholipid syndrome is characterised by increased neutrophil extracellular trap formation (NETosis) and, consequently, increased thrombotic events. Here Ali et al. show that treatment with adenosine receptor agonists suppresses NETosis and venous thrombosis in mouse models of antiphospholipid syndrome.
Collapse
Affiliation(s)
- Ramadan A Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alex A Gandhi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - He Meng
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew P Vreede
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shanea K Estes
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Olivia R Palmer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Paula L Bockenstedt
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - David J Pinsky
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.,Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joan M Greve
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jose A Diaz
- Department of Vascular Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yogendra Kanthi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Division of Cardiology, Ann Arbor Veterans Administration Healthcare System, Ann Arbor, MI, 48109, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
399
|
Lerche CJ, Christophersen LJ, Goetze JP, Nielsen PR, Thomsen K, Enevold C, Høiby N, Jensen PØ, Bundgaard H, Moser C. Adjunctive dabigatran therapy improves outcome of experimental left-sided Staphylococcus aureus endocarditis. PLoS One 2019; 14:e0215333. [PMID: 31002679 PMCID: PMC6474597 DOI: 10.1371/journal.pone.0215333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background Staphylococcus aureus is the most frequent and fatal cause of left-sided infective endocarditis (IE). New treatment strategies are needed to improve the outcome. S. aureus coagulase promotes clot and fibrin formation. We hypothesized that dabigatran, could reduce valve vegetations and inflammation in S. aureus IE. Methods We used a rat model of severe aortic valve S. aureus IE. All infected animals were randomized to receive adjunctive dabigatran (10 mg/kg b.i.d., n = 12) or saline (controls, n = 11) in combination with gentamicin. Valve vegetation size, bacterial load, cytokine, cell integrins expression and peripheral platelets and neutrophils were assessed 3 days post-infection. Results Adjunctive dabigatran treatment significantly reduced valve vegetation size compared to controls (p< 0.0001). A significant reduction of the bacterial load in aortic valves was seen in dabigatran group compared to controls (p = 0.02), as well as expression of key pro-inflammatory markers keratinocyte-derived chemokine, IL-6, ICAM-1, TIMP-1, L-selectin (p< 0.04). Moreover, the dabigatran group had a 2.5-fold increase of circulating platelets compared to controls and a higher expression of functional and activated platelets (CD62p+) unbound to neutrophils. Conclusion Adjunctive dabigatran reduced the vegetation size, bacterial load, and inflammation in experimental S. aureus IE.
Collapse
Affiliation(s)
- Christian J. Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Immunology and Microbiology, University of Copenhagen, Denmark
- * E-mail:
| | - Lars J. Christophersen
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jens Peter Goetze
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Pia R. Nielsen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Christian Enevold
- Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Peter Ø. Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Immunology and Microbiology, University of Copenhagen, Denmark
- Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Immunology and Microbiology, University of Copenhagen, Denmark
| |
Collapse
|
400
|
Abstract
Human deoxyribonuclease I (DNase I) is an endonuclease that catalyzes the hydrolysis of extracellular DNA and is just one of the numerous types of nucleases found in nature. The enzymatic mechanism for a single turnover is reasonably well understood based on biochemical and structural studies that are consistent with divalent metal ion dependent nonspecific nicking of a phosphodiester bond in one of the strands of double stranded DNA. Recombinant human DNase I (rhDNase I, rhDNase, Pulmozyme®, dornase alfa) has been expressed in mammalian cell culture in Chinese hamster ovary cells and developed clinically where it is aerosolized into the airways for treatment of pulmonary disease in patients with cystic fibrosis (CF). rhDNase I hydrolyzes the DNA in purulent sputum of CF patients and reduces sputum viscoelasticity. Reduction of high molecular weight DNA into smaller fragments by treatment with aerosolized rhDNase I has been proposed as the mechanism to reduce the mucus viscosity and improve mucus clearability from obstructed airways in patients. The improved clearance of the purulent mucus enhances pulmonary function and reduces recurrent exacerbations of respiratory symptoms. rhDNase I was approved for clinical use in 1993 and has been widely used as a safe and effective therapy for CF patients. The use of rhDNase I has also been investigated in other diseases where exogenous DNA has been implicated in the disease pathology.
Collapse
|