351
|
Scarpari M, Reverberi M, Parroni A, Scala V, Fanelli C, Pietricola C, Zjalic S, Maresca V, Tafuri A, Ricciardi MR, Licchetta R, Mirabilii S, Sveronis A, Cescutti P, Rizzo R. Tramesan, a novel polysaccharide from Trametes versicolor. Structural characterization and biological effects. PLoS One 2017; 12:e0171412. [PMID: 28829786 PMCID: PMC5567496 DOI: 10.1371/journal.pone.0171412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 06/21/2017] [Indexed: 11/18/2022] Open
Abstract
Mushrooms represent a formidable source of bioactive compounds. Some of these may be considered as biological response modifiers; these include compounds with a specific biological function: antibiotics (e.g. plectasin), immune system stimulator (e,g, lentinan), antitumor agents (e.g. krestin, PSK) and hypolipidemic agents (e.g. lovastatin) inter alia. In this study, we focused on the Chinese medicinal mushroom "yun zhi", Trametes versicolor, traditionally used for (cit.) "replenish essence and qi (vital energy)". Previous studies indicated the potential activity of extracts from culture filtrate of asexual mycelia of T. versicolor in controlling the growth and secondary metabolism (e.g. mycotoxins) of plant pathogenic fungi. The quest of active principles produced by T. versicolor, allowed us characterising an exo-polysaccharide released in its culture filtrate and naming it Tramesan. Herein we evaluate the biological activity of Tramesan in different organisms: plants, mammals and plant pathogenic fungi. We suggest that the bioactivity of Tramesan relies mostly on its ability to act as pro antioxidant molecule regardless the biological system on which it was applied.
Collapse
Affiliation(s)
- Marzia Scarpari
- Sapienza University, Dept. of Environmental Biology, P.le Aldo Moro 5, Roma, Italy
| | - Massimo Reverberi
- Sapienza University, Dept. of Environmental Biology, P.le Aldo Moro 5, Roma, Italy
| | - Alessia Parroni
- Sapienza University, Dept. of Environmental Biology, P.le Aldo Moro 5, Roma, Italy
| | - Valeria Scala
- Research Unit for Plant Pathology, Council for Agricultural Research and Economics, Rome, Italy, Roma, Italy
| | - Corrado Fanelli
- Sapienza University, Dept. of Environmental Biology, P.le Aldo Moro 5, Roma, Italy
| | - Chiara Pietricola
- Sapienza University, Dept. of Environmental Biology, P.le Aldo Moro 5, Roma, Italy
| | - Slaven Zjalic
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, HR, Zadar
| | | | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, Hematology, "Sant'Andrea" University Hospital Sapienza, University of Rome Roma
| | - Maria R Ricciardi
- Department of Clinical and Molecular Medicine, Hematology, "Sant'Andrea" University Hospital Sapienza, University of Rome Roma
| | - Roberto Licchetta
- Department of Clinical and Molecular Medicine, Hematology, "Sant'Andrea" University Hospital Sapienza, University of Rome Roma
| | - Simone Mirabilii
- Department of Clinical and Molecular Medicine, Hematology, "Sant'Andrea" University Hospital Sapienza, University of Rome Roma
| | | | | | | |
Collapse
|
352
|
Chatterjee S, Sarma MK, Deb U, Steinhauser G, Walther C, Gupta DK. Mushrooms: from nutrition to mycoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19480-19493. [PMID: 28770504 DOI: 10.1007/s11356-017-9826-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Mushrooms are well known as important food items. The uses of mushrooms in the cuisine are manifolds and are being utilized for thousands of years in both Oriental and Occidental cultures. Medicinal properties of mushrooms show an immense potential as drugs for the treatment of various diseases as they are rich in a great variety of phytochemicals. In this review, we attempted to encompass the recent knowledge and scientific advancement about mushrooms and their utilization as food or curative properties, along with their natural ability to accumulate (heavy) metals/radionuclides, which leads to an important aspect of bioremediation. However, accumulation of heavy metals and radionuclides from natural or anthropogenic sources also involves potential nutritional hazards upon consumption. These hazards have been pointed out in this review incorporating a selection of the most recently published literature.
Collapse
Affiliation(s)
- Soumya Chatterjee
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, Assam, 784001, India
| | - Mukul K Sarma
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, Assam, 784001, India
| | - Utsab Deb
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, Assam, 784001, India
| | - Georg Steinhauser
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Clemens Walther
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Dharmendra K Gupta
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, 30419, Hannover, Germany.
| |
Collapse
|
353
|
Choromanska A, Kulbacka J, Harasym J, Oledzki R, Szewczyk A, Saczko J. High- and low-Molecular Weight oat Beta-Glucan Reveals Antitumor Activity in Human Epithelial Lung Cancer. Pathol Oncol Res 2017; 24:583-592. [PMID: 28756506 PMCID: PMC5972159 DOI: 10.1007/s12253-017-0278-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/12/2017] [Indexed: 11/14/2022]
Abstract
Beta-glucans are widely used in treatment, cosmetics, and the food industry. Glucans play a significant role in activation of the immune and antioxidant system and inhibiting tumor proliferation. In the current study the antitumor activities of new high and low molecular weight beta-glucan derived from oats were investigated in two human lung cancer cell line (A549, H69AR) and normal keratinocytes (HaCaT). The effect of high and low molecular weight beta-glucan from oat was evaluated by cellular viability assessment, lipid peroxidation and manganese superoxide dismutase evaluation and cytoskeleton visualisation. Additionally the level of red blood cells hemolysis was performed. Our results indicate strong anti-tumor properties of new beta-glucan from oat and at the same time no toxicity for normal cells.
Collapse
Affiliation(s)
- Anna Choromanska
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland.
| | - Julita Kulbacka
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland
| | - Joanna Harasym
- Department of Food Biotechnology, Wroclaw University of Economics, Komandorska 118-120, 53-345, Wroclaw, Poland
| | - Remigiusz Oledzki
- Department of Food Biotechnology, Wroclaw University of Economics, Komandorska 118-120, 53-345, Wroclaw, Poland
| | - Anna Szewczyk
- Department of General Zoology, Zoological Institute, University of Wroclaw, Sienkiewicza 21, 50-335, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland
| |
Collapse
|
354
|
Wu C, Wang X, Wang J, Zhang Z, Wang Z, Wang Y, Tang S. Tile-based self-assembly of a triple-helical polysaccharide into cell wall-like mesoporous nanocapsules. NANOSCALE 2017; 9:9938-9945. [PMID: 28681900 DOI: 10.1039/c7nr02801f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tile-based self-assembly is a robust system in the construction of three-dimensional DNA nanostructures but it has been rarely applied to other helical biopolymers. β-Glucan is an immunoactive natural polymer which exists in a triple helical conformation. Herein, we report that β-glucan, after modification using two types of short chain acyl groups, can self-assemble into tiles with inactivated sticky ends at the interface of two solvents. These tiles consist of a single layer of helices laterally aligned, and the sticky ends can be activated when a few acyl groups at the ends are removed; these tiles can further pack into mesoporous nanocapsules, in a similar process as the sticky DNA tiles pack into complex polyhedral nano-objects. These nanocapsules were found to have targeted effects to antigen presenting cells in a RAW264.7 cell model. Our study suggests that tile-based self-assembly can be a general strategy for helical biopolymers, and on fully exploiting this strategy, various new functional nanostructures will become accessible in the future.
Collapse
Affiliation(s)
- Chaoxi Wu
- Biomedical Engineering Institute, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | |
Collapse
|
355
|
da Silva de Souza AC, Correa VG, Goncalves GDA, Soares AA, Bracht A, Peralta RM. Agaricus blazei Bioactive Compounds and their Effects on Human Health: Benefits and Controversies. Curr Pharm Des 2017; 23:2807-2834. [DOI: 10.2174/1381612823666170119093719] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023]
Affiliation(s)
| | | | | | | | - Adelar Bracht
- Department of Biochemistry, State University of Maringá, Maringa, Brazil
| | - Rosane Marina Peralta
- Post- graduated Program of Biological Sciences, State University of Maringá; Post-graduated Program of Food Science, State University of Maringá; Department of Biochemistry, State University of Maringa, Maringa, Brazil
| |
Collapse
|
356
|
Respiratory Tract Infections and the Role of Biologically Active Polysaccharides in Their Management and Prevention. Nutrients 2017; 9:nu9070779. [PMID: 28726737 PMCID: PMC5537893 DOI: 10.3390/nu9070779] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022] Open
Abstract
Respiratory tract infections (RTIs) are the most common form of infections in every age category. Recurrent respiratory tract infections (RRTIs), a specific form of RTIs, represent a typical and common problem associated with early childhood, causing high indirect and direct costs on the healthcare system. They are usually the consequence of immature immunity in children and high exposure to various respiratory pathogens. Their rational management should aim at excluding other severe chronic diseases associated with increased morbidity (e.g., primary immunodeficiency syndromes, cystic fibrosis, and ciliary dyskinesia) and at supporting maturity of the mucosal immune system. However, RRTIs can also be observed in adults (e.g., during exhausting and stressful periods, chronic inflammatory diseases, secondary immunodeficiencies, or in elite athletes) and require greater attention. Biologically active polysaccharides (e.g., β-glucans) are one of the most studied natural immunomodulators with a pluripotent mode of action and biological activity. According to many studies, they possess immunomodulatory, anti-inflammatory, and anti-infectious activities and therefore could be suggested as an effective part of treating and preventing RTIs. Based on published studies, the application of β-glucans was proven as a possible therapeutic and preventive approach in managing and preventing recurrent respiratory tract infections in children (especially β-glucans from Pleurotus ostreatus), adults (mostly the studies with yeast-derived β-glucans), and in elite athletes (studies with β-glucans from Pleurotus ostreatus or yeast).
Collapse
|
357
|
Avni S, Ezove N, Hanani H, Yadid I, Karpovsky M, Hayby H, Gover O, Hadar Y, Schwartz B, Danay O. Olive Mill Waste Enhances α-Glucan Content in the Edible Mushroom Pleurotus eryngii. Int J Mol Sci 2017; 18:E1564. [PMID: 28718825 PMCID: PMC5536052 DOI: 10.3390/ijms18071564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 02/02/2023] Open
Abstract
Mushroom polysaccharides are edible polymers that have numerous reported biological functions; the most common effects are attributed to β-glucans. In recent years, it became apparent that the less abundant α-glucans also possess potent effects in various health conditions. Here we explore several Pleurotus species for their total, β and α-glucan content. Pleurotus eryngii was found to have the highest total glucan concentrations and the highest α-glucans proportion. We also found that the stalks (stipe) of the fruit body contained higher glucan content then the caps (pileus). Since mushrooms respond markedly to changes in environmental and growth conditions, we developed cultivation methods aiming to increase the levels of α and β-glucans. Using olive mill solid waste (OMSW) from three-phase olive mills in the cultivation substrate. We were able to enrich the levels mainly of α-glucans. Maximal total glucan concentrations were enhanced up to twice when the growth substrate contained 80% of OMSW compared to no OMSW. Taking together this study demonstrate that Pleurotus eryngii can serve as a potential rich source of glucans for nutritional and medicinal applications and that glucan content in mushroom fruiting bodies can be further enriched by applying OMSW into the cultivation substrate.
Collapse
Affiliation(s)
- Sharon Avni
- Edible Mushrooms Development, MIGAL, Kiryat Shmona 11016, Israel.
- Tel Hai College, Upper Galilee 12210, Israel.
| | - Nirit Ezove
- Edible Mushrooms Development, MIGAL, Kiryat Shmona 11016, Israel.
- Tel Hai College, Upper Galilee 12210, Israel.
| | - Hilla Hanani
- Edible Mushrooms Development, MIGAL, Kiryat Shmona 11016, Israel.
- Tel Hai College, Upper Galilee 12210, Israel.
| | - Itamar Yadid
- Edible Mushrooms Development, MIGAL, Kiryat Shmona 11016, Israel.
- Tel Hai College, Upper Galilee 12210, Israel.
| | - Michal Karpovsky
- Institute of Biochemistry, School of Nutritional Sciences, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Hilla Hayby
- Institute of Biochemistry, School of Nutritional Sciences, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Ofer Gover
- Institute of Biochemistry, School of Nutritional Sciences, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Betty Schwartz
- Institute of Biochemistry, School of Nutritional Sciences, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Ofer Danay
- Edible Mushrooms Development, MIGAL, Kiryat Shmona 11016, Israel.
- Tel Hai College, Upper Galilee 12210, Israel.
| |
Collapse
|
358
|
Fabrication of schizophyllan hydrogel via orthogonal thiol-ene photopolymerization. Carbohydr Polym 2017; 167:270-279. [DOI: 10.1016/j.carbpol.2017.03.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/28/2017] [Accepted: 03/12/2017] [Indexed: 11/19/2022]
|
359
|
Ashraf Khan A, Gani A, Masoodi F, Mushtaq U, Silotry Naik A. Structural, rheological, antioxidant, and functional properties of β–glucan extracted from edible mushrooms Agaricus bisporus, Pleurotus ostreatus and Coprinus attrimentarius. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.bcdf.2017.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
360
|
Nemoto T, Shibata Y, Inoue S, Igarashi A, Tokairin Y, Yamauchi K, Kimura T, Sato M, Sato K, Nakano H, Abe S, Nishiwaki M, Kobayashi M, Yang S, Minegishi Y, Furuyama K, Machida H, Kubota I. MafB silencing in macrophages does not influence the initiation and growth of lung cancer induced by urethane. EXCLI JOURNAL 2017; 16:914-920. [PMID: 28900373 PMCID: PMC5579402 DOI: 10.17179/excli2017-325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022]
Abstract
An increased number of tumor-associated macrophages (TAMs) that exhibit the M2 macrophage phenotype is related to poorer prognosis in cancer patients. MafB is a transcription factor regulating the differentiation of macrophages. However, involvement of MafB for the development of TAMs is unknown. This study was designed to investigate the role of MafB in a murine urethane-induced lung cancer model. Urethane was injected intraperitoneally into wild-type and dominant-negative MafB transgenic mice. Twenty-four weeks later, mice were sacrificed and their lungs removed for pathological analysis. The numbers and mean areas of lung cancer were evaluated. In addition, the numbers of Mac-3-positive macrophages were evaluated in each tumor. The numbers and mean areas of lung cancer induced by urethane administration were not significantly different between wild-type and dominant-negative MafB transgenic mice. The numbers of TAMs in lung cancer tissue were not significantly different between the two groups. MafB silencing using dominant-negative MafB did not influence the initiation and growth of lung cancer in mice exposed to urethane. These data suggest that MafB may not be related to the development of TAMs.
Collapse
Affiliation(s)
- Takako Nemoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Yoko Shibata
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Sumito Inoue
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Akira Igarashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Yoshikane Tokairin
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Keiko Yamauchi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tomomi Kimura
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Masamichi Sato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Kento Sato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroshi Nakano
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Shuichi Abe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Michiko Nishiwaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Maki Kobayashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Sujeong Yang
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Yukihiro Minegishi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Kodai Furuyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroyoshi Machida
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Isao Kubota
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
361
|
Maheshwari G, Sowrirajan S, Joseph B. Extraction and Isolation of β-Glucan from Grain Sources-A Review. J Food Sci 2017; 82:1535-1545. [DOI: 10.1111/1750-3841.13765] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/17/2017] [Accepted: 04/27/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Gunjan Maheshwari
- Dept. of Research; Hindustan Inst. of Technology and Science; Padur Chennai 603103 India
| | - Sumathi Sowrirajan
- Dept. of Chemistry; Hindustan Inst. of Technology and Science; Padur Chennai 603103 India
| | - Baby Joseph
- Dept. of Research; Hindustan Inst. of Technology and Science; Padur Chennai 603103 India
| |
Collapse
|
362
|
Rand TG, Chang CT, McMullin DR, Miller JD. Inflammation-associated gene expression in RAW 264.7 macrophages induced by toxins from fungi common on damp building materials. Toxicol In Vitro 2017; 43:16-20. [PMID: 28535995 DOI: 10.1016/j.tiv.2017.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/13/2017] [Accepted: 05/20/2017] [Indexed: 11/17/2022]
Abstract
Most fungi that grow on damp building materials produce low molecular weight compounds, some of which are known to be toxic. In this study, we tested the hypothesis that exposure to some metabolites of fungi common on damp building materials would result in time-, dose-, and compound-specific responses in the production of various chemokines by RAW 264.7 cells. Cell cultures were exposed to a 10-7M or 10-8M metabolite dose for 2, 4, 8 or 24h. Metabolite concentrations used were based on those that might be expected in alveolar macrophages due to inhalation exposure from living or working in a damp building. Compared to controls, exposure provoked significant time-, dose- and compound-specific responses manifest as differentially elevated secretion of three of nine cytokines tested in culture supernatant of treated cells. The greatest number of cytokines produced in response to the metabolites tested were in andrastin A-treated cells (GM-CSF, TGFβ1, Tnf-α) followed by koninginin A (TGFβ1 and Tnf-α) and phomenone (GM-CSF, TGFβ1). Chaetoglobosin A, chaetomugilin D and walleminone exposures each resulted in significant time-specific production of Tnf-α only. This investigation adds to a body of evidence supporting the role of low molecular weight compounds from damp building materials as pathogen associated molecular patterns (PAMPs). Along with fungal glucan and chitin, these compounds contribute to the non-allergy based respiratory outcomes for people living and working in damp buildings.
Collapse
Affiliation(s)
- Thomas G Rand
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada
| | - Carolyn T Chang
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada
| | - David R McMullin
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - J David Miller
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
363
|
Affiliation(s)
- K.F. Cutting
- Clinical research consultant; Hertfordshire, Tissue Viability Specialist; First Community Health and Care, Surrey
| |
Collapse
|
364
|
Liu J, Willför S, Mihranyan A. On importance of impurities, potential leachables and extractables in algal nanocellulose for biomedical use. Carbohydr Polym 2017; 172:11-19. [PMID: 28606516 DOI: 10.1016/j.carbpol.2017.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 01/08/2023]
Abstract
Nanocellulose-based biomaterials for biomedical and pharmaceutical applications have been extensively explored. However, studies on different levels of impurities in the nanocellulose and their potential risks are lacking. This article is the most comprehensive to date survey of the importance and characterization of possible leachables and extractables in nanocellulose for biomedical use. In particular, the (1,3)-β-d-glucan interference in endotoxin detection in algal nanocellulose was addressed. Potential lipophilic and hydrophilic leachables, toxic heavy metals, and microbial contaminants are also monitored. As a model system, nanocellulose from Cladophora sp. algae is investigated. The leachable (1,3)-β-d-glucan and endotoxin, which possess strong immunogenic potential, from the cellulose were minimized to clinically insignificant levels of 4.7μg/g and 2.5EU/g, respectively. The levels of various impurities in the Cladophora cellulose are acceptable for future biomedical applications. The presented approach could be considered as a guideline for other types of nanocellulose.
Collapse
Affiliation(s)
- Jun Liu
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Box 534, Uppsala University, 75121 Uppsala, Sweden; Johan Gadolin Process Chemistry Centre, c/o Laboratory of Wood and Paper Chemistry, Åbo Akademi University, Porthansgatan 3-5, FI-20500, Turku/Åbo, Finland.
| | - Stefan Willför
- Johan Gadolin Process Chemistry Centre, c/o Laboratory of Wood and Paper Chemistry, Åbo Akademi University, Porthansgatan 3-5, FI-20500, Turku/Åbo, Finland
| | - Albert Mihranyan
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Box 534, Uppsala University, 75121 Uppsala, Sweden.
| |
Collapse
|
365
|
Singh Y, Pawar VK, Meher JG, Raval K, Kumar A, Shrivastava R, Bhadauria S, Chourasia MK. Targeting tumor associated macrophages (TAMs) via nanocarriers. J Control Release 2017; 254:92-106. [DOI: 10.1016/j.jconrel.2017.03.395] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
|
366
|
Javmen A, Nemeikaitė-Čėnienė A, Grigiškis S, Lysovienė J, Jonauskienė I, Šiaurys A, Mauricas M. The effect of Saccharomyces cerevisiae β-glucan on proliferation, phagocytosis and cytokine production of murine macrophages and dendritic cells. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
367
|
Kang DR, Yoon GY, Cho J, Lee SJ, Lee SJ, Park HJ, Kang TH, Han HD, Park WS, Yoon YK, Park YM, Jung ID. Neoagarooligosaccharides prevent septic shock by modulating A20-and cyclooxygenase-2-mediated interleukin-10 secretion in a septic-shock mouse model. Biochem Biophys Res Commun 2017; 486:998-1004. [PMID: 28363868 DOI: 10.1016/j.bbrc.2017.03.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Analysis of the signaling mechanism triggered by endotoxin-mediated toll-like receptor-4 activation using immune cell systems or rodent models may help identify potential agents for the prevention of Gram-negative bacteria infection. β-agarase cleaves the β-1,4-linkages of agar to produce neoagarooligosaccharides (NAOs), which have various physiological functions. The aim of this study was to investigate the efficacy of NAOs in preventing experimental sepsis caused by the administration of endotoxin or Gram-negative bacteria. Organ damage and neutrophil infiltration in an endotoxemia and septic-shock mouse model were suppressed by NAOs. Pro-inflammatory cytokine level was decreased, but IL-10 level was increased by NAO-treatment. Further induction by NAOs in the presence of endotoxin was associated with a significant induction of A20 and cyclooxygenase (COX)-2 expressions. Our data suggest that NAOs have a beneficial preventive effect in septic shock correlated with the enhancement of IL-10 via the induction of A20 and COX-2.
Collapse
Affiliation(s)
- Da Rae Kang
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Gun Young Yoon
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Joon Cho
- Department of Neurosurgery, Konkuk University Hospital, Seoul 05030, South Korea
| | - Seung Jun Lee
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Su Jin Lee
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Hee Jo Park
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Tae Heung Kang
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Hee Dong Han
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | - Young Kyung Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University, College of Medicine, Anam-dong, Sungbuk-Gu, Seoul 136-705, South Korea
| | - Yeong-Min Park
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea.
| | - In Duk Jung
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea.
| |
Collapse
|
368
|
Kalitnik AA, Karetin YA, Kravchenko AO, Khasina EI, Yermak IM. Influence of carrageenan on cytokine production and cellular activity of mouse peritoneal macrophages and its effect on experimental endotoxemia. J Biomed Mater Res A 2017; 105:1549-1557. [PMID: 28130856 DOI: 10.1002/jbm.a.36015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/11/2016] [Accepted: 01/23/2017] [Indexed: 11/06/2022]
Abstract
The in vivo effect of κ/β-carrageenan isolated from the red alga Tichocarpus crinitus on cytokine synthesis and cellular activity of murine peritoneal macrophages and also the protective effect of polysaccharides in LPS-induced endotoxemia in mice was studied. It was established that κ/β-carrageenan given orally at a dose of 100 mg/kg stimulates the induction of anti-inflammatory cytokines (IL-10) in mouse blood cells by more than 2.5-fold compared with control, with no effect on pro-inflammatory cytokine (TNF-α) production. Pretreating mice with carrageenan once a day before injecting LPS increased the levels of IL-10 by 2.5-fold and reduced TNF-α production by 2-fold compared with control. So, κ/β-carrageenan alone and in combination with LPS enhanced the cellular activity and mobility of peritoneal macrophages by increasing cell adhesion and migration compared with control. LPS activated cells intensively, sometimes resulting in their destruction by necrosis; carrageenan pretreatment reduced the excessive inflammatory cell activation caused by LPS. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1549-1557, 2017.
Collapse
Affiliation(s)
- A A Kalitnik
- School of Biomedicine, School of Natural Sciences Far Eastern Federal University, 8 Sukhanova Street, Vladivostok, 690950
| | - Y A Karetin
- School of Biomedicine, School of Natural Sciences Far Eastern Federal University, 8 Sukhanova Street, Vladivostok, 690950.,A. V. Zhirmunsky Institute of Marine Biology, FEB RAS, 17 Palchevskogo street, Vladivostok, 690022
| | - A O Kravchenko
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, 100-let Vladivostoku Prospect, Vladivostok, 690022
| | - E I Khasina
- A. V. Zhirmunsky Institute of Marine Biology, FEB RAS, 17 Palchevskogo street, Vladivostok, 690022
| | - I M Yermak
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, 100-let Vladivostoku Prospect, Vladivostok, 690022
| |
Collapse
|
369
|
Kumari B, DAS P, Kumari R. Accelerated processing of solitary and clustered abasic site DNA damage lesions by APE1 in the presence of aqueous extract of Ganoderma lucidum. J Biosci 2017; 41:265-75. [PMID: 27240987 DOI: 10.1007/s12038-016-9614-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stimulatory effect of the aqueous extract of G. lucidum, a basidiomycetes class fungus in the APE1-enzyme-mediated processing of solitary and bistranded clustered abasic sites DNA damages is presented. Abasic sites are considered the most common type of DNA damage lesions. Our study shows enhanced activity of APE1 in the processing of abasic sites in the presence of the polysaccharides fraction of G. lucidum. Remarkable increase in the amount of single-strand breaks (SSBs) and double-strand breaks (DSBs) from solitary and bistranded clustered abasic sites respectively with APE1 in the presence of the extract was found. This trend is maintained when abasic sites in DNA oligomers are exposed to fibroblast cell extracts in the presence of the extract. While DNA conformational alteration is negligible, APE1 enzyme shows characteristic changes in the alpha helix and beta strand ratio after incubation with G. lucidum extract. The enhanced reactivity of APE1 at the molecular level in the presence of G. lucidium is attributed to this effect. This study potentially amplifies the scope of the use of G. lucidum, which was earlier shown to have only reactive oxygen species (ROS) scavenging properties with regards to DNA damage inhibition.
Collapse
|
370
|
Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol 2017; 10:58. [PMID: 28241846 PMCID: PMC5329931 DOI: 10.1186/s13045-017-0430-2] [Citation(s) in RCA: 633] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023] Open
Abstract
The fact that various immune cells, including macrophages, can be found in tumor tissues has long been known. With the introduction of concept that macrophages differentiate into a classically or alternatively activated phenotype, the role of tumor-associated macrophages (TAMs) is now beginning to be elucidated. TAMs act as "protumoral macrophages," contributing to disease progression. TAMs can promote initiation and metastasis of tumor cells, inhibit antitumor immune responses mediated by T cells, and stimulate tumor angiogenesis and subsequently tumor progression. As the relationship between TAMs and malignant tumors becomes clearer, TAMs are beginning to be seen as potential biomarkers for diagnosis and prognosis of cancers, as well as therapeutic targets in these cases. In this review, we will discuss the origin, polarization, and role of TAMs in human malignant tumors, as well as how TAMs can be used as diagnostic and prognostic biomarkers and therapeutic targets of cancer in clinics.
Collapse
Affiliation(s)
- Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China.
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China.
- School of Life Science, Zhengzhou University, No.100 Kexue Road, Zhengzhou, 450001, Henan Province, China.
| |
Collapse
|
371
|
Characterization of Polysaccharides with Antioxidant and Hepatoprotective Activities from the Edible Mushroom Oudemansiella radicata. Molecules 2017; 22:molecules22020234. [PMID: 28165422 PMCID: PMC6155583 DOI: 10.3390/molecules22020234] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/22/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
The preliminary structure, in vitro antioxidant and in vivo hepatoprotective activities of water-soluble polysaccharides (ORWP) and alkali-soluble polysaccharides (ORAP), prepared from the mushroom Oudemansiella radicata, were investigated. Both ORWP and ORAP were heteropolysaccharides with mannose, glucose and galactose being the main monosaccharide components. Regarding the antioxidant activities, ORWP and ORAP showed effective 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, hydrogen peroxide scavenging activity and lipid peroxidation inhibitory effects, as well as moderate reducing power and Fe2+ chelating activity. For the hepatoprotective activity, administration of ORWP and ORAP prevented the increase in serum alanine aminotransferase and aspartate aminotransferase activities in a carbon tetrachloride-induced acute liver damage model, suppressed hepatic malondialdehyde formation and stimulated the activities of hepatic superoxide dismutase and glutathione peroxidase. Thus, we speculate that ORWP and ORAP may protect the liver from CCl₄-induced hepatic damage via antioxidant mechanisms.
Collapse
|
372
|
Tabeie F, Tabatabaei SM, Mahmoud-Pashazadeh A, Assadi M. Radioprotective Effect of Beta D-Glucan and Vitamin E on Gamma Irradiated Mouse. J Clin Diagn Res 2017; 11:TC08-TC11. [PMID: 28384957 DOI: 10.7860/jcdr/2017/19367.9437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 10/14/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION It is shown that beta-D-glucan is an immunologic system booster with radioprotectory effects. Radioprotectors are chemical components that can alleviate biological damage produced by ionizing radiation. AIM This study was designed to investigate the synergistic radioprotectory effects of beta-D-glucan and vitamin E on irradiated mice with 60Co source. MATERIALS AND METHODS A total of 240 female mice were arranged in four, equal population groups of control group (C), treated group with beta D-glucan (G), treated group with vitamin E (E), and treated group with both beta D-glucan and vitamin E (G+E). Each group was divided into three equal population groups of D6, D7 and D8 exposed to 60Co radiation with prescribed total body dose of 6, 7 and 8 Gray (Gy), respectively. After the exposure, the number of survived animals was counted by time, then Lethal Dose50/30 (LD50/30), Lethal Dose50/60 (LD50/60) and Dose Reduction Factor (DRF) were calculated in all groups and corresponding groups. RESULTS Based on the results of current study, treatment of the animals with vitamin E did not change values of LD50/30 and LD50/60, in comparison to control group. LD50/30 and LD50/60 of treated groups with beta D-glucan and beta D-glucan + vitamin E showed significant difference with those of control group (p<0.01). The DRF values in groups E, G and G + E, were calculated respectively as 1, 1.25 and 1.375 based on LD50/30, and respectively as 1, 1.17 and 1.33 based on LD50/60. While values of DRF in groups G and G + E showed significant difference in comparison to that of control group (p<0.01), but the difference between DRF of groups G and G + E was not significant (p=0.395). CONCLUSION The findings of study obviously showed that, presence of beta D-glucan in the body of mice, during exposure to ionizing radiation, leads to DRF of higher than one, proving the radioprotectory effect of this agent. Also, we demonstrated that, while vitamin E had no radioprotectory effect on irradiated mice, beta D-glucan in combination with vitamin E increased resistance of mice against ionizing radiation.
Collapse
Affiliation(s)
- Faraj Tabeie
- Associate Professor, Physiotherapy Research Center, School of Rehabilitation, Shahid Beheshti University of Medical Sciences , Tehran, Islamic Republic of Iran
| | - Seyed Mehdi Tabatabaei
- Assistant Professor, Physiotherapy Research Center, School of Rehabilitation, Shahid Beheshti University of Medical Sciences , Tehran, Islamic Republic of Iran
| | - Ali Mahmoud-Pashazadeh
- Instructor, Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences , Bushehr, Iran
| | - Majid Assadi
- Professor, Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences , Bushehr, Iran
| |
Collapse
|
373
|
Lee YJ, Paik DJ, Kwon DY, Yang HJ, Park Y. Agrobacterium sp.-derived β-1,3-glucan enhances natural killer cell activity in healthy adults: a randomized, double-blind, placebo-controlled, parallel-group study. Nutr Res Pract 2017; 11:43-50. [PMID: 28194264 PMCID: PMC5300946 DOI: 10.4162/nrp.2017.11.1.43] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/07/2016] [Accepted: 11/22/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND/OBJECTIVES The present study investigated the hypothesis that a highly pure linear β-1,3-glucan produced by Agrobacterium sp. R259 enhances human natural killer (NK) cell activity and suppresses pro-inflammatory cytokines. SUBJECTS/METHODS In an eight-week, double-blind, randomized, placebo-controlled clinical trial, 83 healthy adults with white blood cell counts of 4,000-8,000 cells/µL were participated and randomly assigned to take two capsules per day containing either 350 mg β-1,3-glucan or placebo. Six participants withdrew their study consent or were excluded due to NK cell activity levels outside the normal range. NK cell activity and serum levels of immunoglobulin G (IgG) and cytokines, such as interferon (IFN)-γ, interleukin (IL)-2, IL-4, IL-6, IL-10, IL-12 and tumor necrosis factor (TNF)-α were measured. RESULTS NK cell activity and the serum levels of IL-10 were significantly higher from baseline to week 8 in the β-glucan group compared with the placebo group (P = 0.048, P = 0.029). Consumption of β-1,3-glucan also significantly increased NK cell activity compared with placebo after adjusting for smoking and stress status (P = 0.009). In particular, the effect of β-1,3-glucan on NK cell activity was greater in participants with severe stress than in those experiencing mild stress. However, the administration β-1,3-glucan did not significantly modulate the levels of IFN-γ, IL-2, IL-4, IL-6, IL-12, TNF-α and IgG compared with the placebo. CONCLUSION The results showed that supplementation with bacterial β-1,3-glucan significantly increased NK cell activity without causing any adverse effects. Additionally, the beneficial effect of β-1,3-glucan on NK cell activity was greater in participants experiencing severe stress.
Collapse
Affiliation(s)
- Yeon Joo Lee
- Department of Food and Nutrition, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Korea
| | - Doo-Jin Paik
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Dae Young Kwon
- Devision of Strategic Food Research, Korea Food Research Institute, Seongnam-si, Gyeonggi 13539, Korea
| | - Hye Jeong Yang
- Devision of Strategic Food Research, Korea Food Research Institute, Seongnam-si, Gyeonggi 13539, Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
374
|
El-Hussein A, Lam SSK, Raker J, Chen WR, Hamblin MR. N-dihydrogalactochitosan as a potent immune activator for dendritic cells. J Biomed Mater Res A 2017; 105:963-972. [PMID: 28028922 DOI: 10.1002/jbm.a.35991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022]
Abstract
Immunotherapy has become one of the fastest growing areas of cancer research. A promising in situ autologous cancer vaccine (inCVAX) uses a novel immune activator, N-dihydrogalactochitosan (GC), that possesses the ability to stimulate dendritic cells (DC). inCVAX is a combination treatment procedure involving treatment of the tumor with a thermal near-infrared laser to liberate whole cell tumor antigens, followed by injection of GC (a glucosamine polymer with galactose attached to the amino groups) into the treated tumor thereby inducing a systemic antitumor immune response. Regression of both the treated tumor and distant untreated metastases has been observed in both nonclinical and clinical settings following inCVAX. We studied the stimulatory action of GC on relatively immature DCs (DC2.4 cell line) in vitro. GC at 1 mg/mL was a potent stimulator for DC with limited toxicity, giving increased expression of major histocompatibility complex class 2, CD80, and CD11c. Confocal imaging also revealed qualitatively increased uptake of antigen (Texas red-labeled ovalbumin) by DCs after the introduction of GC. To visualize cellular uptake, GC was conjugated with FITC-fluorophore revealing its cellular internalization after 8 hours. In some cases GC was more effective than the toxic TLR4 agonist, lipopolysaccharide. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 963-972, 2017.
Collapse
Affiliation(s)
- Ahmed El-Hussein
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115.,The National Institute of Laser Enhanced Science, Cairo University, Cairo, Egypt
| | - Samuel S K Lam
- Immunophotonics, Inc, 4320 Forest Park Ave, Suite #303, St. Louis, Missouri 63108
| | - Joseph Raker
- Immunophotonics, Inc, 4320 Forest Park Ave, Suite #303, St. Louis, Missouri 63108
| | - Wei R Chen
- University of Central Oklahoma, 100 N University Dr, Edmond, Oklahoma 73034
| | - Michael R Hamblin
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
375
|
Weishaupt MW, Hahm HS, Geissner A, Seeberger PH. Automated glycan assembly of branched β-(1,3)-glucans to identify antibody epitopes. Chem Commun (Camb) 2017; 53:3591-3594. [DOI: 10.1039/c7cc00520b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report the iterative automated glycan assembly (AGA) and glycan array characterization of conjugation-ready linear and branched β-(1,3)-glucans, a heterogeneous class of carbohydrates with immunomodulatory and anti-tumor effects.
Collapse
Affiliation(s)
- M. W. Weishaupt
- Department of Biomolecular Systems
- Max Planck Institute of Colloids and Interfaces
- 14476 Potsdam-Golm
- Germany
- Department of Chemistry and Biochemistry
| | - H. S. Hahm
- Department of Biomolecular Systems
- Max Planck Institute of Colloids and Interfaces
- 14476 Potsdam-Golm
- Germany
- Department of Chemistry and Biochemistry
| | - A. Geissner
- Department of Biomolecular Systems
- Max Planck Institute of Colloids and Interfaces
- 14476 Potsdam-Golm
- Germany
- Department of Chemistry and Biochemistry
| | - P. H. Seeberger
- Department of Biomolecular Systems
- Max Planck Institute of Colloids and Interfaces
- 14476 Potsdam-Golm
- Germany
- Department of Chemistry and Biochemistry
| |
Collapse
|
376
|
Anani W, Shurin MR. Targeting Myeloid-Derived Suppressor Cells in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:105-128. [PMID: 29275468 DOI: 10.1007/978-3-319-67577-0_8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myeloid derived suppressor cells (MDSC) represent only a minor fraction of circulating blood cells but play an important role in tumor formation and progression. They are a heterogeneous group of cells that influence the tumor microenvironment by depletion of amino acids, oxidative stress, decreased trafficking of antitumor effector cells, and increased regulatory T and regulatory dendritic cell responses. Investigational treatment strategies targeting MDSCs have attempted to inhibit MDSC development and expansion (stem cell factor blockade, modulate of cell signaling, and target MDSC migration and recruitment), inhibit MDSC function (nitric oxide inhibition and reactive oxygen and nitrogen species inhibition), differentiate MDSCs into more mature cells (Vitamins A and D, all-trans retinoic acid, interleukin-2, toll-like receptor 9 inhibitors, taxanes, beta-glucan particles, tumor-derived exosome inhibition, and very small size proteoliposomes), and destroy MDSCs (cytotoxic agents, ephrin A2 degradation, anti-interleukin 13, and histamine blockers). To date, there are no Food and Drug Administration approved therapies selectively targeting MDSCs, but such therapies are likely to be implemented in the future, due to the key role of MDSCs in antitumor immunity.
Collapse
Affiliation(s)
- Waseem Anani
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
377
|
Zheng X, Lu F, Xu X, Zhang L. Extended chain conformation of β-glucan and its effect on antitumor activity. J Mater Chem B 2017. [DOI: 10.1039/c7tb01324h] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extended chain conformation of β-glucan visualized by AFM, and its molecular weight- and chain conformation-dependent antitumor activity.
Collapse
Affiliation(s)
- Xing Zheng
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Fengzhi Lu
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Xiaojuan Xu
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Lina Zhang
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
378
|
Liu Q, Duan B, Xu X, Zhang L. Progress in rigid polysaccharide-based nanocomposites with therapeutic functions. J Mater Chem B 2017; 5:5690-5713. [DOI: 10.1039/c7tb01065f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanocomposites engineered by incorporating versatile nanoparticles into different bioactive β-glucan matrices display effective therapeutic functions.
Collapse
Affiliation(s)
- Qingye Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
- College of Chemical and Environmental Engineering
| | - Bingchao Duan
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
379
|
da Cunha MA, Albornoz S, Queiroz Santos V, Sánchez W, Barbosa-Dekker A, Dekker R. Structure and Biological Functions of d -Glucans and Their Applications. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63930-1.00009-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
380
|
Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res 2017; 179:223-244. [PMID: 27832936 DOI: 10.1016/j.trsl.2016.10.002] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 02/07/2023]
Abstract
The microbial population residing within the human gut represents one of the most densely populated microbial niche in the human body with growing evidence showing it playing a key role in the regulation of behavior and brain function. The bidirectional communication between the gut microbiota and the brain, the microbiota-gut-brain axis, occurs through various pathways including the vagus nerve, the immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and the behavior that are often associated with neuropsychiatric conditions. Therefore, research targeting the modulation of this gut microbiota as a novel therapy for the treatment of various neuropsychiatric conditions is gaining interest. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth, and environment. However, it is diet composition and nutritional status that has repeatedly been shown to be one of the most critical modifiable factors regulating the gut microbiota at different time points across the lifespan and under various health conditions. Thus the microbiota is poised to play a key role in nutritional interventions for maintaining brain health.
Collapse
Affiliation(s)
- Kiran V Sandhu
- APC Microbiome institute, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome institute, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome institute, University College Cork, Cork, Ireland; Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy, Co, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome institute, University College Cork, Cork, Ireland; Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
381
|
Zheng X, Zhou F, Xu X, Zhang L. Uptake of intraperitoneally administrated triple helical β-glucan for antitumor activity in murine tumor models. J Mater Chem B 2017; 5:9337-9345. [DOI: 10.1039/c7tb02649h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Triple helical β-glucan (THG) was captured by macrophages and degraded into small fragments to activate neutrophils, leading to apoptosis of tumor cells.
Collapse
Affiliation(s)
- Xing Zheng
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Fuling Zhou
- Department of Hematology
- Zhongnan Hospital
- Wuhan University
- Wuhan 430072
- China
| | - Xiaojuan Xu
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Lina Zhang
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
382
|
Sutter S, Thevenieau F, Bourdillon A, De Coninck J. Immunomodulatory Properties of Filamentous Fungi Cultivated through Solid-State Fermentation on Rapeseed Meal. Appl Biochem Biotechnol 2016; 182:910-924. [PMID: 27987189 DOI: 10.1007/s12010-016-2370-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022]
Abstract
Water extracts from solid-state fermentation (SSF) on rapeseed meal using filamentous fungi exhibit interesting immunomodulatory activities in vitro. Immunomodulation was determined by the capacity of the compounds to activate blood neutrophils and to influence cytokine production in human peripheral blood mononuclear cells (PBMC) and mouse bone marrow-derived macrophages (BMDM). Among the strains tested, Aspergillus sojae mycelium and SSF extracts were the most promising in terms of enhancing the immune response. The filamentous fungus was also successfully cultivated in a pre-pilot bioreactor with forced aeration. The results indicated that the extracts not only activated blood neutrophils but also significantly modulated IL-1β cytokine levels with lipopolysaccharide (LPS)-stimulated PBMC and BMDM without any cytotoxicity in immune cells. IL-1β was down-regulated in a dose-dependent manner in the presence of A. sojae crude mycelium and SSF extract with PBMC, which indicated that there was an anti-inflammatory activity, whereas IL-1β secretion was up-regulated in the presence of stimulated BMDM with the highest concentration that was tested (100 μg/mL). The non-fermented rapeseed had no effect at the same concentration. SSF culture, as a natural product, may be a good source for the development of functional feed with an immunostimulating effect or could potentially be used in medicinal applications.
Collapse
Affiliation(s)
- Stéphanie Sutter
- Welience, Plateforme de Prédéveloppement en Biotechnologies, site INRA, 17 rue de Sully, 21000, Dijon, France.
- University Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France.
| | - France Thevenieau
- Groupe Avril-Direction Innovation, 11 Rue de Monceau, 75378, Paris, Cedex 08, France
| | - Anne Bourdillon
- Groupe Avril-Direction Innovation, 11 Rue de Monceau, 75378, Paris, Cedex 08, France
| | - Joëlle De Coninck
- Welience, Plateforme de Prédéveloppement en Biotechnologies, site INRA, 17 rue de Sully, 21000, Dijon, France
- University Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| |
Collapse
|
383
|
Alonso EN, Ferronato MJ, Gandini NA, Fermento ME, Obiol DJ, López Romero A, Arévalo J, Villegas ME, Facchinetti MM, Curino AC. Antitumoral Effects of D-Fraction from Grifola Frondosa (Maitake) Mushroom in Breast Cancer. Nutr Cancer 2016; 69:29-43. [PMID: 27892708 DOI: 10.1080/01635581.2017.1247891] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
D-Fraction is protein-bound β-1,6 and β-1,3 glucans (proteoglucan) extracted from the edible and medicinal mushroom Grifola frondosa (Maitake). The antitumoral effect of D-Fraction has long been exclusively attributed to their immunostimulatory capacity. However, in recent years increasing evidence showed that D-Fraction directly affects the viability of canine and human tumor cells, independent of the immune system. Previously, we have reported that D-Fraction modulates the expression of genes associated with cell proliferation, cell death, migration, invasion, and metastasis in MCF7 human breast cancer cells. Therefore, the purpose of the current study is to investigate if this modulation of gene expression by Maitake D-Fraction really modulates tumor progression. In the present work, we demonstrate for the first time that Maitake D-Fraction is able to act directly on mammary tumor cells, modulating different cellular processes involved in the development and progression of cancer. We demonstrate that D-Fraction decreases cell viability, increases cell adhesion, and reduces the migration and invasion of mammary tumor cells, generating a less aggressive cell behavior. In concordance with these results, we also demonstrate that D-Fraction decreases tumor burden and the number of lung metastases in a murine model of breast cancer.
Collapse
Affiliation(s)
- Eliana Noelia Alonso
- a Laboratorio de Biología del Cáncer , Instituto de Investigaciones Bioquímicas Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) -CONICET , Bahía Blanca , Argentina
| | - María Julia Ferronato
- a Laboratorio de Biología del Cáncer , Instituto de Investigaciones Bioquímicas Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) -CONICET , Bahía Blanca , Argentina
| | - Norberto Ariel Gandini
- a Laboratorio de Biología del Cáncer , Instituto de Investigaciones Bioquímicas Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) -CONICET , Bahía Blanca , Argentina
| | - María Eugenia Fermento
- a Laboratorio de Biología del Cáncer , Instituto de Investigaciones Bioquímicas Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) -CONICET , Bahía Blanca , Argentina
| | - Diego Javier Obiol
- a Laboratorio de Biología del Cáncer , Instituto de Investigaciones Bioquímicas Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) -CONICET , Bahía Blanca , Argentina
| | | | - Julián Arévalo
- c Servicio de Patología del Hospital Interzonal General de Agudos Dr. José Penna , Bahía Blanca , Argentina
| | - María Emilia Villegas
- a Laboratorio de Biología del Cáncer , Instituto de Investigaciones Bioquímicas Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) -CONICET , Bahía Blanca , Argentina
| | - María Marta Facchinetti
- a Laboratorio de Biología del Cáncer , Instituto de Investigaciones Bioquímicas Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) -CONICET , Bahía Blanca , Argentina
| | - Alejandro Carlos Curino
- a Laboratorio de Biología del Cáncer , Instituto de Investigaciones Bioquímicas Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) -CONICET , Bahía Blanca , Argentina
| |
Collapse
|
384
|
Wilbers RHP, Westerhof LB, van de Velde J, Smant G, van Raaij DR, Sonnenberg ASM, Bakker J, Schots A. Physical Interaction of T Cells with Dendritic Cells Is Not Required for the Immunomodulatory Effects of the Edible Mushroom Agaricus subrufescens. Front Immunol 2016; 7:519. [PMID: 27920777 PMCID: PMC5118454 DOI: 10.3389/fimmu.2016.00519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/08/2016] [Indexed: 11/13/2022] Open
Abstract
Mushrooms are well known for their immunomodulating capacities. However, little is known about how mushroom-stimulated dendritic cells (DCs) affect T cells. Therefore, we investigated the effect of mushroom compounds derived from seven edible mushroom species on DCs, their fate in DCs, and the effect of the mushroom-stimulated DCs on T cells. Each mushroom species stimulated DCs in a different manner as was revealed from the DC’s cytokine response. Assessing DC maturation revealed that only one mushroom species, Agaricus subrufescens, induced complete DC maturation. The other six mushroom species upregulated MHC-II and CD86 expression, but did not significantly affect the expression of CD40 and CD11c. Nevertheless, mushroom compounds of all investigated mushroom species are endocytosed by DCs. Endocytosis is most likely mediated by C-type lectin receptors (CLRs) because CLR binding is Ca2+ dependent, and EGTA reduces TNF-α secretion with more than 90%. Laminarin partly inhibited TNF-α secretion indicating that the CLR dectin-1, among other CLRs, is involved in binding mushroom compounds. Stimulated DCs were shown to stimulate T cells; however, physical contact of DCs and T cells is not required. Because CLRs seem to play a prominent role in DC stimulation, mushrooms may function as a carbohydrate containing adjuvant to be used in conjunction with anti-fungal vaccines.
Collapse
Affiliation(s)
- Ruud H P Wilbers
- Plant Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| | - Lotte B Westerhof
- Plant Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| | - Jan van de Velde
- Plant Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| | - Geert Smant
- Plant Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| | - Debbie R van Raaij
- Plant Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| | - Anton S M Sonnenberg
- Plant Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| | - Jaap Bakker
- Plant Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| | - Arjen Schots
- Plant Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| |
Collapse
|
385
|
Mo L, Chen Y, Li W, Guo S, Wang X, An H, Zhan Y. Anti-tumor effects of (1→3)-β-d-glucan from Saccharomyces cerevisiae in S180 tumor-bearing mice. Int J Biol Macromol 2016; 95:385-392. [PMID: 27838421 DOI: 10.1016/j.ijbiomac.2016.10.106] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 01/15/2023]
Abstract
(1→3)-β-d-Glucan from Saccharomyces cerevisiae is a typical polysaccharide with various biological effects and is considered a candidate for the prevention and treatment of cancer in vitro. Research into the function of (1→3)-β-d-glucan in tumor-bearing animals in vivo, however, is limited. Here, we investigated the effects of (1→3)-β-d-glucan from S. cerevisiae on S180 tumor-bearing mice and on the immunity of the tumor-bearing host. The molecular mechanisms underlying the observed effects were investigated. (1→3)-β-d-Glucan was shown to exert anti-tumor effects without toxicity in normal mouse cells. The volume and weight of S180 tumors decreased dramatically following treatment with (1→3)-β-d-glucan, and treatment with the polysaccharide was furthermore shown to increase the tumor inhibition rate in a dose-dependent manner. Spleen index, T lymphocyte subsets (CD4 and CD8), as well as interleukins (IL)-2, (IL-2, IL-6), and tumor necrosis factor-α were assayed to detect the immunoregulatory and anti-tumor effects after (1→3)-β-d-glucan intragastrical administration. (1→3)-β-d-Glucan was shown to significantly potentiate the mouse immune responses by, among other effects, decreasing the ratio of CD4 to CD8. The expression levels of IL-2, IL-6, and TNF-α were also significantly increased by (1→3)-β-d-glucan. These results suggest that (1→3)-β-d-glucan enhances the host's immune function during the tumor inhibition process. S180 tumor cells treated with (1→3)-β-d-glucan also exhibited significant apoptotic characteristics. (1→3)-β-d-glucan increased the ratio of Bax to Bcl-2 at the translation level by up-regulating Bax expression and down-regulating Bcl-2 expression, resulting in the initiation of cell apoptosis in S180 tumor-bearing mice. Taken together, these results indicate that the anti-tumor effects exerted by (1→3)-β-d-glucan may be attributed to the polysaccharide's immunostimulating properties and apoptosis-inducing features. Further investigation into these properties and their associated mechanisms will contribute to the development of potent polysaccharide-based anti-tumor agents.
Collapse
Affiliation(s)
- Li Mo
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuai Guo
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Xuzhao Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China.
| | - Yong Zhan
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
386
|
Barton C, Vigor K, Scott R, Jones P, Lentfer H, Bax HJ, Josephs DH, Karagiannis SN, Spicer JF. Beta-glucan contamination of pharmaceutical products: How much should we accept? Cancer Immunol Immunother 2016; 65:1289-1301. [PMID: 27473075 PMCID: PMC5069311 DOI: 10.1007/s00262-016-1875-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023]
Abstract
Beta-glucans are large polysaccharides produced by a range of prokaryotic and eukaryotic organisms. They have potential immunostimulatory properties and have been used with therapeutic intent as anti-microbial and anti-tumour agents. A range of other potentially beneficial effects have been described, and oral forms of beta-glucans are widely available over-the-counter and online. Parenteral formulations are popular in parts of Asia and are the subject of ongoing trials, worldwide. Beta-glucans are also potential contaminants of pharmaceutical products, and high levels have been described in some blood products. However, little is known about the clinical effects of such contamination, considerable uncertainty exists over the level at which immunostimulation may occur, and there are no guidelines available on acceptable levels. We encountered beta-glucan contamination of one of our products, and we suspect that others may encounter similar issues since the origin of beta-glucan contamination includes commonly used filters and solutions applied in the manufacture of biotherapeutic agents. It is likely that regulators will increasingly enquire about beta-glucan levels in pharmaceutical products, especially those with an immunomodulatory mechanism of action. Here, we review the literature on beta-glucans in pharmaceutical products and propose an acceptable level for therapeutic agents for parenteral use.
Collapse
Affiliation(s)
- Claire Barton
- Cancer Research UK Centre for Drug Development, Cancer Research UK, Angel Building, 407 St John Street, London, EC1V 4AD, UK.
| | - Kim Vigor
- Biotherapeutics Development Unit, Cancer Research UK, South Mimms, Hertfordshire, EN6 3LD, UK
| | - Robert Scott
- Biotherapeutics Development Unit, Cancer Research UK, South Mimms, Hertfordshire, EN6 3LD, UK
| | - Paul Jones
- Cancer Research UK Centre for Drug Development, Cancer Research UK, Angel Building, 407 St John Street, London, EC1V 4AD, UK
| | - Heike Lentfer
- Biotherapeutics Development Unit, Cancer Research UK, South Mimms, Hertfordshire, EN6 3LD, UK
| | - Heather J Bax
- Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, St. John's Institute of Dermatology, King's College London, 9th Floor, Guy's Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals, King's College London, 9th Floor, Guy's Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- Division of Cancer Studies, Department of Research Oncology, Faculty of Life Sciences and Medicine, King's College London, 3rd Floor Bermondsey Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Debra H Josephs
- Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, St. John's Institute of Dermatology, King's College London, 9th Floor, Guy's Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals, King's College London, 9th Floor, Guy's Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- Division of Cancer Studies, Department of Research Oncology, Faculty of Life Sciences and Medicine, King's College London, 3rd Floor Bermondsey Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Sophia N Karagiannis
- Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, St. John's Institute of Dermatology, King's College London, 9th Floor, Guy's Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals, King's College London, 9th Floor, Guy's Tower Wing, Guy's Hospital, London, SE1 9RT, UK
| | - James F Spicer
- Division of Cancer Studies, Department of Research Oncology, Faculty of Life Sciences and Medicine, King's College London, 3rd Floor Bermondsey Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| |
Collapse
|
387
|
Vigor K, Emerson J, Scott R, Cheek J, Barton C, Bax HJ, Josephs DH, Karagiannis SN, Spicer JF, Lentfer H. Development of downstream processing to minimize beta-glucan impurities in GMP-manufactured therapeutic antibodies. Biotechnol Prog 2016; 32:1494-1502. [PMID: 27604040 DOI: 10.1002/btpr.2359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/27/2016] [Indexed: 12/20/2022]
Abstract
The presence of impurities or contaminants in biological products such as monoclonal antibodies (mAb) could affect efficacy or cause adverse reactions in patients. ICH guidelines (Q6A and Q6B) are in place to regulate the level of impurities within clinical drug products. An impurity less often reported and, therefore, lacking regulatory guideline is beta-glucan. Beta-glucans are polysaccharides of d-glucose monomers linked by (1-3) beta-glycosidic bonds, and are produced by prokaryotic and eukaryotic organisms, including plants. They may enter manufacturing processes via raw materials such as cellulose-based membrane filters or sucrose. Here we report the detection of beta-glucan contamination of a monoclonal IgE antibody (MOv18), manufactured in our facility for a first-in-human, first-in-class clinical trial in patients with cancer. Since beta-glucans have potential immunostimulatory properties and can cause symptomatic infusion reactions, it was of paramount importance to identify the source of beta-glucans in our product and to reduce the levels to clinically insignificant concentrations. We identified beta-glucans in sucrose within the formulation buffer and within the housing storage buffer of the virus removal filter. We also detected low level beta-glucan contamination in two of four commercially available antibodies used in oncology. Both formulation buffers contained sucrose. We managed to reduce levels of beta-glucan in our product 10-fold, by screening all sucrose raw material, filtering the sucrose by Posidyne® membrane filtration, and by incorporating extra wash steps when preparing the virus removal filter. The beta-glucan levels now lie within a range that is unlikely to cause clinically significant immunological effects. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1494-1502, 2016.
Collapse
Affiliation(s)
- Kim Vigor
- Biotherapeutics Development Unit, Cancer Research UK, South Mimms, Hertfordshire, EN6 3LD, U.K
| | - John Emerson
- Biotherapeutics Development Unit, Cancer Research UK, South Mimms, Hertfordshire, EN6 3LD, U.K
| | - Robert Scott
- Biotherapeutics Development Unit, Cancer Research UK, South Mimms, Hertfordshire, EN6 3LD, U.K
| | - Julia Cheek
- Biotherapeutics Development Unit, Cancer Research UK, South Mimms, Hertfordshire, EN6 3LD, U.K
| | - Claire Barton
- Cancer Research UK Centre for Drug Development, Cancer Research UK, London, EC1V 4AD, U.K
| | - Heather J Bax
- Div. of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, SE1 9RT, U.K
- NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals, King's College London, Guy's Hospital, London, SE1 9RT, U.K
| | - Debra H Josephs
- Div. of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, SE1 9RT, U.K
- NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals, King's College London, Guy's Hospital, London, SE1 9RT, U.K
| | - Sophia N Karagiannis
- Div. of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, SE1 9RT, U.K
- NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals, King's College London, Guy's Hospital, London, SE1 9RT, U.K
| | - James F Spicer
- Div. of Cancer Studies, Dept. of Research Oncology, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, U.K
| | - Heike Lentfer
- Biotherapeutics Development Unit, Cancer Research UK, South Mimms, Hertfordshire, EN6 3LD, U.K
| |
Collapse
|
388
|
Stier H, Bischoff SC. Influence of Saccharomyces boulardii CNCM I-745on the gut-associated immune system. Clin Exp Gastroenterol 2016; 9:269-279. [PMID: 27695355 PMCID: PMC5027949 DOI: 10.2147/ceg.s111003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The probiotic Saccharomyces boulardii CNCM I-745 (also known as Saccharomyces cerevisiae HANSEN CBS 5926; in the following S. boulardii) has proven its effectiveness in preventive and therapeutic treatment of many gastrointestinal diseases, especially diseases associated with acute diarrhea. In particular, antibiotic-associated diarrhea, Clostridium difficile-associated diarrhea, traveller’s diarrhea, as well as acute diarrhea due to common viral and bacterial infections in children and adults. Aim The aim of this review is to summarize the experimental studies elucidating the molecular and immunological mechanisms by which these clinically proven effects are archived, with an emphasis on the gut-associated immune system. The main focus is laid on anti-inflammatory and immune-modulatory action of S. boulardii involved in bacterial or enterotoxin-mediated diarrhea and inflammation. An attempt is made to differentiate between the effects associated with cellular versus soluble factors and between prophylactic and therapeutic effects. Methods A literature search was performed in PubMed/PubMed Central for the effects of S. boulardii on the gut-associated immune system (focus acute diarrhea). Results and conclusion S. boulardii exhibits its positive effect by the direct effects on pathogens or their toxins as well as by influencing the host’s infection-induced signaling cascades and its innate and adaptive immune system. The combination of these mechanisms results in a reduction of the pathogens’ ability for adhesion or colonization and an attenuation of the overreacting inflammatory immune response. Thereby, the integrity of the intestinal epithelial cell layer is preserved or restored, and the diarrheic leakage of fluids into the intestinal lumen is attenuated.
Collapse
Affiliation(s)
| | - Stephan C Bischoff
- Department of Clinical Nutrition, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
389
|
Dobruchowska JM, Jonsson JO, Fridjonsson OH, Aevarsson A, Kristjansson JK, Altenbuchner J, Watzlawick H, Gerwig GJ, Dijkhuizen L, Kamerling JP, Hreggvidsson GO. Modification of linear (β1→3)-linked gluco-oligosaccharides with a novel recombinant β-glucosyltransferase (trans-β-glucosidase) enzyme from Bradyrhizobium diazoefficiens. Glycobiology 2016; 26:1157-1170. [PMID: 27550196 DOI: 10.1093/glycob/cww074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 11/13/2022] Open
Abstract
Recently, we have shown that glycoside hydrolases enzymes of family GH17 from proteobacteria (genera Pseudomonas, Azotobacter) catalyze elongation transfer reactions with laminari-oligosaccharides generating (β1→3) linkages preferably and to a lesser extent (β1→6) or (β1→4) linkages. In the present study, the cloning and characterization of the gene encoding the structurally very similar GH17 domain of the NdvB enzyme from Bradyrhizobium diazoefficiens, designated Glt20, as well as its catalytic properties are described. The Glt20 enzyme was strikingly different from the previously investigated bacterial GH17 enzymes, both regarding substrate specificity and product formation. The Azotobacter and Pseudomonas enzymes cleaved the donor laminari-oligosaccharide substrates three or four moieties from the non-reducing end, generating linear oligosaccharides. In contrast, the Glt20 enzyme cleaved donor laminari-oligosaccharide substrates two glucose moieties from the reducing end, releasing laminaribiose and transferring the remainder to laminari-oligosaccharide acceptor substrates creating only (β1→3)(β1→6) branching points. This enables Glt20 to transfer larger oligosaccharide chains than the other type of bacterial enzymes previously described, and helps explain the biologically significant formation of cyclic β-glucans in B. diazoefficiens.
Collapse
Affiliation(s)
- Justyna M Dobruchowska
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | | | | | | | - Josef Altenbuchner
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Hildegard Watzlawick
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Gerrit J Gerwig
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.,NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Johannis P Kamerling
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.,NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Gudmundur O Hreggvidsson
- Matís, Vínlandsleid 12, 113 Reykjavík, Iceland .,Department of Biology, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland
| |
Collapse
|
390
|
Kim H, Lee H, Shin KS. Intestinal immunostimulatory activity of neutral polysaccharide isolated from traditionally fermented Korean brown rice vinegar. Biosci Biotechnol Biochem 2016; 80:2383-2390. [PMID: 27684966 DOI: 10.1080/09168451.2016.1217149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this study, diverse intestinal immunostimulatory activities were demonstrated for polysaccharides (KBV-CP) isolated from Korean brown rice vinegar. Monosaccharide composition analysis indicated that KBV-CP was composed mainly of neutral sugar units, primarily glucose and mannose. In vitro, KBV-CP significantly augmented the productions of immunoglobulin A (IgA) and IgA-related cytokines such as interleukin-6 (IL-6) and transforming growth factor-β (TGF-β) in a dose-dependent manner. Furthermore, results of an in vitro co-culture system of intestinal Caco-2 cells and RAW 264.7 macrophage cells suggested that KBV-CP is not only cytotoxic to Caco-2 cells but also capable of being transported across the small intestinal barrier. Oral administration of KBV-CP every other day for 20 days induced the IgA production by Peyer's patch cells as well as in intestinal fluid and fecal extract. In addition, the production of IgA-related cytokines such as TGF-β and IL-6, and granulocyte macrophage colony-stimulating factor was triggered.
Collapse
Affiliation(s)
- Hoon Kim
- a Department of Food Science and Biotechnology , Kyonggi University , Suwon , Republic of Korea.,b Department of Integrated Biomedical and Life Science , Korea University , Seoul , Republic of Korea
| | - Ho Lee
- a Department of Food Science and Biotechnology , Kyonggi University , Suwon , Republic of Korea
| | - Kwang-Soon Shin
- a Department of Food Science and Biotechnology , Kyonggi University , Suwon , Republic of Korea
| |
Collapse
|
391
|
Mosikanon K, Arthan D, Kettawan A, Tungtrongchitr R, Prangthip P. Yeast β–Glucan Modulates Inflammation and Waist Circumference in Overweight and Obese Subjects. J Diet Suppl 2016; 14:173-185. [DOI: 10.1080/19390211.2016.1207005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
392
|
Temizoz B, Kuroda E, Ishii KJ. Vaccine adjuvants as potential cancer immunotherapeutics. Int Immunol 2016; 28:329-38. [PMID: 27006304 PMCID: PMC4922024 DOI: 10.1093/intimm/dxw015] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/14/2016] [Indexed: 12/11/2022] Open
Abstract
Accumulated evidence obtained from various clinical trials and animal studies suggested that cancer vaccines need better adjuvants than those that are currently licensed, which include the most commonly used alum and incomplete Freund's adjuvant, because of either a lack of potent anti-tumor immunity or the induction of undesired immunity. Several clinical trials using immunostimulatory adjuvants, particularly agonistic as well as non-agonistic ligands for TLRs, C-type lectin receptors, retinoic acid-inducible gene I-like receptors and stimulator of interferon genes, have revealed their therapeutic potential not only as vaccine adjuvants but also as anti-tumor agents. Recently, combinations of such immunostimulatory or immunomodulatory adjuvants have shown superior efficacy over their singular use, suggesting that seeking optimal combinations of the currently available or well-characterized adjuvants may provide a better chance for the development of novel adjuvants for cancer immunotherapy.
Collapse
Affiliation(s)
- Burcu Temizoz
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi, Saito, Ibaraki-City, Osaka 567-0085, Japan
| | - Etsushi Kuroda
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi, Saito, Ibaraki-City, Osaka 567-0085, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi, Saito, Ibaraki-City, Osaka 567-0085, Japan
| |
Collapse
|
393
|
Russo R, Barsanti L, Evangelista V, Frassanito AM, Longo V, Pucci L, Penno G, Gualtieri P. Euglena gracilis paramylon activates human lymphocytes by upregulating pro-inflammatory factors. Food Sci Nutr 2016; 5:205-214. [PMID: 28265355 PMCID: PMC5332256 DOI: 10.1002/fsn3.383] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to verify the activation details and products of human lymphomonocytes, stimulated by different β-glucans, that is Euglena paramylon, MacroGard®, and lipopolysaccharide. We investigated the gene expression of inflammation-related cytokines and mediators, transactivation of relevant transcription factors, and phagocytosis role in cell-glucan interactions, by means of RT-PCR, immunocytochemistry, and colorimetric assay. Our results show that sonicated and alkalized paramylon upregulates pro-inflammatory factors (NO, TNF-α, IL-6, and COX-2) in lymphomonocytes. A clear demonstration of this upregulation is the increased transactivation of NF-kB visualized by immunofluorescence microscopy. Phagocytosis assay showed that internalization is not a mandatory step for signaling cascade to be triggered, since immune activity is not present in the lymphomonocytes that have internalized paramylon granules and particulate MacroGard®. Moreover, the response of Euglena β-glucan-activated lymphomonocytes is much greater than that induced by commercially used β-glucans such as MacroGard®. Our in vitro results indicate that linear fibrous Euglena β-glucan, obtained by sonication and alkaline treatment can act as safe and effective coadjutant of the innate immune system response.
Collapse
Affiliation(s)
- Rossella Russo
- Istituto di Biologia e Biotecnologia Agraria, CNRPisaItaly
| | | | | | | | - Vincenzo Longo
- Istituto di Biologia e Biotecnologia Agraria, CNRPisaItaly
| | - Laura Pucci
- Istituto di Biologia e Biotecnologia Agraria, CNRPisaItaly
| | - Giuseppe Penno
- Dipartimento di Medicina Clinica e SperimentaleSezione Malattie MetabolicheUniversità di PisaPisaItaly
| | | |
Collapse
|
394
|
Ergosterol purified from medicinal mushroom Amauroderma rude inhibits cancer growth in vitro and in vivo by up-regulating multiple tumor suppressors. Oncotarget 2016; 6:17832-46. [PMID: 26098777 PMCID: PMC4627349 DOI: 10.18632/oncotarget.4026] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
We have previously screened thirteen medicinal mushrooms for their potential anti-cancer activities in eleven different cell lines and found that the extract of Amauroderma rude exerted the highest capacity in inducing cancer cell death. The current study aimed to purify molecules mediating the anti-cancer cell activity. The extract of Amauroderma rude was subject to fractionation, silica gel chromatography, and HPLC. We purified a compound and identified it as ergosterol by EI-MS and NMR, which was expressed at the highest level in Amauroderma rude compared with other medicinal mushrooms tested. We found that ergosterol induced cancer cell death, which was time and concentration dependent. In the in vivo experiment, normal mice were injected with murine cancer cell line B16 that is very aggressive and caused mouse death severely. We found that treatment with ergosterol prolonged mouse survival. We found that ergosterol-mediated suppression of breast cancer cell viability occurred through apoptosis and that ergosterol up-regulated expression of the tumor suppressor Foxo3. In addition, the Foxo3 down-stream signaling molecules Fas, FasL, BimL, and BimS were up-regulated leading to apoptosis in human breast cancer cells MDA-MB-231. Our results suggest that ergosterol is the main anti-cancer ingredient in Amauroderma rude, which activated the apoptotic signal pathway. Ergosterol may serve as a potential lead for cancer therapy.
Collapse
|
395
|
Haider A, Inam W, Khan SA, Mahmood W, Abbas G. β-glucan attenuated scopolamine induced cognitive impairment via hippocampal acetylcholinesterase inhibition in rats. Brain Res 2016; 1644:141-8. [PMID: 27180103 DOI: 10.1016/j.brainres.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/08/2016] [Accepted: 05/09/2016] [Indexed: 11/18/2022]
Abstract
β-glucan (polysaccharide) rich diet has been reported to enhance cognition in humans but the mechanism remained elusive. Keeping this in mind, the present study was designed to investigate the interaction of β-glucan with central cholinergic system. Briefly, in-silico analysis revealed promising interactions of β-glucan with the catalytic residues of acetylcholinesterase (AChE) enzyme. In line with this outcome, the in vitro assay (Ellman's method) also exhibited inhibition of AChE by β-glucan (IC50=0.68±0.08μg/µl). Furthermore, the in vivo study (Morris water maze) showed significant dose dependent reversal of the amnesic effect of scopolamine (2mg/kg i.p.) by β-glucan treatment (5, 25, 50 and 100mg/kg, i.p.). Finally, the hippocampi of aforementioned treated animals also revealed dose dependent inhibition of AChE enzyme. Hence, it can be deduced that β-glucan possesses potential to enhance central cholinergic tone via inhibiting AChE enzyme. In conclusion, the present study provides mechanistic insight to the cognition enhancing potential of β-glucan. Keeping in mind its dietary use and abundance in nature, it can be considered as economic therapeutic option against cognitive ailments associated with decline in cholinergic neurotransmission.
Collapse
Affiliation(s)
- Ali Haider
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad 22060, KPK, Pakistan
| | - Wali Inam
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad 22060, KPK, Pakistan
| | - Shahab Ali Khan
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad 22060, KPK, Pakistan
| | - Wajahat Mahmood
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad 22060, KPK, Pakistan
| | - Ghulam Abbas
- Pharmacology Section, H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
396
|
Liu C, Chen J, Chen L, Huang X, Cheung PCK. Immunomodulatory Activity of Polysaccharide-Protein Complex from the Mushroom Sclerotia of Polyporus rhinocerus in Murine Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3206-3214. [PMID: 27054263 DOI: 10.1021/acs.jafc.6b00932] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel water-soluble polysaccharide-protein complex (PRW1) isolated from the sclerotia of an edible mushroom Polyporus rhinocerus which was purified by membrane ultrafiltration could significantly activate murine macrophages RAW264.7 in vitro. PRW1 had a molecular weight of less than 50 kDa and was found to be a highly branched heteropolysaccharide-protein complex composed of 45.7 ± 0.97% polysaccharide and 44.2 ± 0.41% protein. Based on the results of total acid hydrolysis, methylation analysis, and Fourier transform infrared spectroscopy, the carbohydrate moiety of PRW1 was found to be a β-d-mannoglucan with its backbone containing →1)-d-Glcp-(4→, →1)-d-Glcp-(6→, and →1)-d-Manp-(2→ residues (molar ratio of 5:4:6) and having terminal d-Glcp as side chain (degree of branching of 0.62). In vitro studies showed that PRW1 significantly induced NO production and enhanced the release of a variety of cytokines including G-CSF, GM-CSF, IL-6, IL12p40/70, MCP-1, MCP-5, MIP-1-α, MIP-2, RANTES, sTNFRI, and TNF-α. Mechanistically, PRW1 treatment triggered ERK phosphorylation to activate macrophages within 15 min and significantly increased the expression level of inducible NOS after 6 h. In summary, this study indicates that PRW1 derived from the sclerotia of P. rhinocerus is a potential immunomodulatory agent for cancer immunotherapy.
Collapse
Affiliation(s)
- Chaoran Liu
- Food and Nutritional Sciences, School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong SAR (HKSAR), China
| | - Jialun Chen
- Food and Nutritional Sciences, School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong SAR (HKSAR), China
| | - Lei Chen
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao 266101, China
| | - Xuesong Huang
- Department of Food Science and Engineering, Jinan University , Guangzhou 510632, China
| | - Peter C K Cheung
- Food and Nutritional Sciences, School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong SAR (HKSAR), China
| |
Collapse
|
397
|
Xu J, Liu D, Yin Q, Guo L. Tetrandrine suppresses β‑glucan‑induced macrophage activation via inhibiting NF‑κB, ERK and STAT3 signaling pathways. Mol Med Rep 2016; 13:5177-84. [PMID: 27121946 DOI: 10.3892/mmr.2016.5187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 04/05/2016] [Indexed: 11/05/2022] Open
Abstract
Macrophages are important in inflammation through the production of various proinflammatory mediators. β‑glucan is a polymer of glucose, which is produced by numerous different organisms, including fungi, and acts as a trigger for the induction of inflammatory responses. Tetrandrine (TET), a bis‑benzylisoquinoline alkaloid isolated from the Chinese herb Radix Stephania tetrandra, has been demonstrated to modulate inflammatory responses. In the present study, it was investigated whether TET affects the inflammatory reaction induced by β‑glucan in murine and human macrophages. It was demonstrated that β‑glucan induced the activation of nuclear factor (NF)‑κB and markedly increased the levels of tumor necrosis factor‑α (TNF‑α) and interleukin 1 β (IL‑1β) in macrophages. Treatment with TET resulted in downregulation of phosphorylated NF‑κB p65 and reduction of the production of TNF‑α and IL‑1β. In addition, the phosphorylation of ERK and STAT3 was decreased by TET in activated macrophages. Furthermore, it was demonstrated that the inhibitory effects of TET on β‑glucan‑induced macrophage activation was not due to its cytotoxic action. Conclusively, these results indicate that TET can decrease the inflammatory responses mediated by β‑glucan in macrophages. Thus, TET may serve as an effective tool for the treatment of β‑glucan‑associated inflammatory diseases.
Collapse
Affiliation(s)
- Jing Xu
- Department of Laboratory Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Dabiao Liu
- Department of Laboratory Medicine, The Affiliated Fourth People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Qing Yin
- Department of Laboratory Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Lanfang Guo
- Department of Laboratory Medicine, The Affiliated Fourth People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
398
|
Meng X, Liang H, Luo L. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr Res 2016; 424:30-41. [DOI: 10.1016/j.carres.2016.02.008] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 02/02/2023]
|
399
|
Kiron V, Kulkarni A, Dahle D, Vasanth G, Lokesh J, Elvebo O. Recognition of purified beta 1,3/1,6 glucan and molecular signalling in the intestine of Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 56:57-66. [PMID: 26615007 DOI: 10.1016/j.dci.2015.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 06/05/2023]
Abstract
Atlantic salmon was orally intubated with a highly purified β-glucan product (MacroGard(®)) to study the recognition of the molecule by the receptor genes, the regulation of the downstream signalling genes and global proteins, and the micromorphological changes in the intestine. The β-glucan receptor genes of Atlantic salmon, sclra, sclrb, sclrc and cr3, seem to recognize the molecule, and initiate the downstream ITAM-motif signalling, as evident from the significantly high mRNA levels of ksyk, mapkin2, il1b and mip2a levels. Among the altered proteins, the Apoa4 (involved in carbohydrate and lipid metabolism); Tagln, Actb (uptake of β-glucan); Psma2 (associated with substrate recognition); and Ckt (energy metabolism-related) were the overexpressed ones. The underexpressed proteins included the Uk114, Rpl9, Ctsb and Lgal that are connected to proliferation, LPS-stimulation, Il1b and lactose recognition, respectively. Furthermore, the mRNA levels of igt and the number of immune cells in the distal intestine were found to increase upon β-glucan uptake by the fish. This study provides some clues on the mechanisms by which the β-glucan evokes response in Atlantic salmon, particularly at the intestinal level.
Collapse
Affiliation(s)
- Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway.
| | - Amod Kulkarni
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway.
| | - Dalia Dahle
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway.
| | - Ghana Vasanth
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway.
| | - Jep Lokesh
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway.
| | - Odd Elvebo
- Biorigin Europe NV, Vosseschijnstraat 59, Haven 182, BE 2030 Antwerpen, Belgium.
| |
Collapse
|
400
|
Li C, You L, Fu X, Huang Q, Yu S, Liu RH. Structural characterization and immunomodulatory activity of a new heteropolysaccharide from Prunella vulgaris. Food Funct 2016; 6:1557-67. [PMID: 25825862 DOI: 10.1039/c4fo01039f] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new heteropolysaccharide, here called P1, was isolated from the fruit clusters of Prunella vulgaris using a hot water extraction method. Chemical and physical analyses indicated that P1 had a spherical conformation with an average molecular weight of 1750 kDa and consisted of arabinose (28.37%), xylose (54.67%), mannose (5.61%), glucose (5.46%), and galactose (5.89%). The main types of P1 linkages were proved to be (1→5)-linked α-L-Ara, (1→)-linked α-L-Ara, (1→3)-linked α-D-xyl, (1→3)-linked β-D-Gal, (1→3,6)-linked β-D-Gal, (1→3,6)-linked α-D-Man and (1→6)-linked α-D-Glc according to the periodate oxidation-Smith degradation and NMR analyses. P1 could significantly enhance the secretion of NO, TNF-α, and IL-6 in murine RAW 264.7 cells, involving the toll-like receptor 2 (TLR2), TLR4 and complement receptor 3 (CR3). Further studies showed that P1 exhibited stable immune activities in the pH range of 4.0-10.0 and below 121 °C. The results suggested that P1 could be used as a potent immunomodulatory agent in functional foods and pharmacological fields.
Collapse
Affiliation(s)
- Chao Li
- College of Light Industry and Food Science, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | | | | | | | | | | |
Collapse
|