351
|
Abstract
During mammalian preimplantation development, the fertilised egg gives rise to a group of pluripotent embryonic cells, the epiblast, and to the extraembryonic lineages that support the development of the foetus during subsequent phases of development. This preimplantation period not only accommodates the first cell fate decisions in a mammal's life but also the transition from a totipotent cell, the zygote, capable of producing any cell type in the animal, to cells with a restricted developmental potential. The cellular and molecular mechanisms governing the balance between developmental potential and lineage specification have intrigued developmental biologists for decades. The preimplantation mouse embryo offers an invaluable system to study cell differentiation as well as the emergence and maintenance of pluripotency in the embryo. Here we review the most recent findings on the mechanisms controlling these early cell fate decisions. The model that emerges from the current evidence indicates that cell differentiation in the preimplantation embryo depends on cellular interaction and intercellular communication. This strategy underlies the plasticity of the early mouse embryo and ensures the correct specification of the first mammalian cell lineages.
Collapse
Affiliation(s)
- Néstor Saiz
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
352
|
Frankenberg S, Shaw G, Freyer C, Pask AJ, Renfree MB. Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals. Development 2013; 140:965-75. [DOI: 10.1242/dev.091629] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Early cell lineage specification in eutherian mammals results in the formation of a pluripotent inner cell mass (ICM) and trophoblast. By contrast, marsupials have no ICM. Here, we present the first molecular analysis of mechanisms of early cell lineage specification in a marsupial, the tammar wallaby. There was no overt differential localisation of key lineage-specific transcription factors in cleavage and early unilaminar blastocyst stages. Pluriblast cells (equivalent to the ICM) became distinguishable from trophoblast cells by differential expression of POU5F1 and, to a greater extent, POU2, a paralogue of POU5F1. Unlike in the mouse, pluriblast-trophoblast differentiation coincided with a global nuclear-to-cytoplasmic transition of CDX2 localisation. Also unlike in the mouse, Hippo pathway factors YAP and WWTR1 showed mutually distinct localisation patterns that suggest non-redundant roles. NANOG and GATA6 were conserved as markers of epiblast and hypoblast, respectively, but some differences to the mouse were found in their mode of differentiation. Our results suggest that there is considerable evolutionary plasticity in the mechanisms regulating early lineage specification in mammals.
Collapse
Affiliation(s)
| | - Geoff Shaw
- Department of Zoology, University of Melbourne, 3010 Victoria, Australia
| | - Claudia Freyer
- Department of Zoology, University of Melbourne, 3010 Victoria, Australia
| | - Andrew J. Pask
- Department of Zoology, University of Melbourne, 3010 Victoria, Australia
| | - Marilyn B. Renfree
- Department of Zoology, University of Melbourne, 3010 Victoria, Australia
| |
Collapse
|
353
|
Schrode N, Xenopoulos P, Piliszek A, Frankenberg S, Plusa B, Hadjantonakis AK. Anatomy of a blastocyst: cell behaviors driving cell fate choice and morphogenesis in the early mouse embryo. Genesis 2013; 51:219-33. [PMID: 23349011 DOI: 10.1002/dvg.22368] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/10/2013] [Accepted: 01/13/2013] [Indexed: 01/06/2023]
Abstract
The preimplantation period of mouse early embryonic development is devoted to the specification of two extraembryonic tissues and their spatial segregation from the pluripotent epiblast. During this period two cell fate decisions are made while cells gradually lose their totipotency. The first fate decision involves the segregation of the extraembryonic trophectoderm (TE) lineage from the inner cell mass (ICM); the second occurs within the ICM and involves the segregation of the extraembryonic primitive endoderm (PrE) lineage from the pluripotent epiblast (EPI) lineage, which eventually gives rise to the embryo proper. Multiple determinants, such as differential cellular properties, signaling cues and the activity of transcriptional regulators, influence lineage choice in the early embryo. Here, we provide an overview of our current understanding of the mechanisms governing these cell fate decisions ensuring proper lineage allocation and segregation, while at the same time providing the embryo with an inherent flexibility to adjust when perturbed.
Collapse
Affiliation(s)
- Nadine Schrode
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
354
|
Davies O, Lin CY, Radzisheuskaya A, Zhou X, Taube J, Blin G, Waterhouse A, Smith A, Lowell S. Tcf15 primes pluripotent cells for differentiation. Cell Rep 2013; 3:472-84. [PMID: 23395635 PMCID: PMC3607254 DOI: 10.1016/j.celrep.2013.01.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/04/2013] [Accepted: 01/15/2013] [Indexed: 02/02/2023] Open
Abstract
The events that prime pluripotent cells for differentiation are not well understood. Inhibitor of DNA binding/differentiation (Id) proteins, which are inhibitors of basic helix-loop-helix (bHLH) transcription factor activity, contribute to pluripotency by blocking sequential transitions toward differentiation. Using yeast-two-hybrid screens, we have identified Id-regulated transcription factors that are expressed in embryonic stem cells (ESCs). One of these, Tcf15, is also expressed in the embryonic day 4.5 embryo and is specifically associated with a novel subpopulation of primed ESCs. An Id-resistant form of Tcf15 rapidly downregulates Nanog and accelerates somatic lineage commitment. We propose that because Tcf15 can be held in an inactive state through Id activity, it may prime pluripotent cells for entry to somatic lineages upon downregulation of Id. We also find that Tcf15 expression is dependent on fibroblast growth factor (FGF) signaling, providing an explanation for how FGF can prime for differentiation without driving cells out of the pluripotent state.
Collapse
Affiliation(s)
- Owen R. Davies
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Chia-Yi Lin
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Aliaksandra Radzisheuskaya
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Xinzhi Zhou
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jessica Taube
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Anna Waterhouse
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrew J.H. Smith
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
355
|
Use of insulin to increase epiblast cell number: towards a new approach for improving ESC isolation from human embryos. BIOMED RESEARCH INTERNATIONAL 2013; 2013:150901. [PMID: 23509681 PMCID: PMC3583077 DOI: 10.1155/2013/150901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 01/07/2013] [Indexed: 11/17/2022]
Abstract
Human embryos donated for embryonic stem cell (ESC) derivation have often been cryopreserved for 5-10 years. As a consequence, many of these embryos have been cultured in media now known to affect embryo viability and the number of ESC progenitor epiblast cells. Historically, these conditions supported only low levels of blastocyst development necessitating their transfer or cryopreservation at the 4-8-cell stage. As such, these embryos are donated at the cleavage stage and require further culture to the blastocyst stage before hESC derivation can be attempted. These are generally of poor quality, and, consequently, the efficiency of hESC derivation is low. Recent work using a mouse model has shown that the culture of embryos from the cleavage stage with insulin to day 6 increases the blastocyst epiblast cell number, which in turn increases the number of pluripotent cells in outgrowths following plating, and results in an increased capacity to give rise to ESCs. These findings suggest that culture with insulin may provide a strategy to improve the efficiency with which hESCs are derived from embryos donated at the cleavage stage.
Collapse
|
356
|
Ozawa M, Yang QE, Ealy AD. The expression of fibroblast growth factor receptors during early bovine conceptus development and pharmacological analysis of their actions on trophoblast growth in vitro. Reproduction 2013; 145:191-201. [DOI: 10.1530/rep-12-0220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The overall aim of this work was to examine the expression profiles for fibroblast growth factor receptors (FGFRs) and describe their biological importance during bovine pre- and peri-implantation conceptus development. FGFR1 and FGFR2 mRNAs were detected at 1-, 2-, 8-cell, morula and blastocyst stages whereas FGFR3 and FGFR4 mRNAs were detected after the 8-cell stage but not earlier. The abundance of FGFR1, FGFR3, and FGFR4 mRNAs increased at the morula and blastocyst stages. Immunofluorescence microscopy detected FGFR2 and FGFR4 exclusively in trophoblast cells whereas FGFR1 and FGFR3 were detected in both trophoblast cells and inner cell mass in blastocysts. Neither transcripts for FGF10 nor its receptor (FGFR2b) were temporally related to interferon τ (IFNT) transcript profile during peri- and postimplantation bovine conceptus development. A series of studies used a chemical inhibitor of FGFR kinase function (PD173074) to examine FGFR activation requirements during bovine embryo development. Exposing embryos to the inhibitor (1 μM) beginning on day 5 post-fertilization did not alter the percentage of embryos that developed into blastocysts or blastocyst cell numbers. The inhibitor did not alter the abundance of CDX2 mRNA but decreased (P<0.05) the relative abundance of IFNT mRNA in blastocysts. Exposing blastocysts to the inhibitor from days 8 to 11 post-fertilization reduced (P<0.05) the percentage of blastocysts that formed outgrowths after transfer to Matrigel-coated plates. In conclusion, each FGFR was detected in bovine embryos, and FGFR activation is needed to maximize IFNT expression and permit outgrowth formation.
Collapse
|
357
|
Kang M, Piliszek A, Artus J, Hadjantonakis AK. FGF4 is required for lineage restriction and salt-and-pepper distribution of primitive endoderm factors but not their initial expression in the mouse. Development 2012. [PMID: 23193166 DOI: 10.1242/dev.084996] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emergence of pluripotent epiblast (EPI) and primitive endoderm (PrE) lineages within the inner cell mass (ICM) of the mouse blastocyst involves initial co-expression of lineage-associated markers followed by mutual exclusion and salt-and-pepper distribution of lineage-biased cells. Precisely how EPI and PrE cell fate commitment occurs is not entirely clear; however, previous studies in mice have implicated FGF/ERK signaling in this process. Here, we investigated the phenotype resulting from zygotic and maternal/zygotic inactivation of Fgf4. Fgf4 heterozygous blastocysts exhibited increased numbers of NANOG-positive EPI cells and reduced numbers of GATA6-positive PrE cells, suggesting that FGF signaling is tightly regulated to ensure specification of the appropriate numbers of cells for each lineage. Although the size of the ICM was unaffected in Fgf4 null mutant embryos, it entirely lacked a PrE layer and exclusively comprised NANOG-expressing cells at the time of implantation. An initial period of widespread EPI and PrE marker co-expression was however established even in the absence of FGF4. Thus, Fgf4 mutant embryos initiated the PrE program but exhibited defects in its restriction phase, when lineage bias is acquired. Consistent with this, XEN cells could be derived from Fgf4 mutant embryos in which PrE had been restored and these cells appeared indistinguishable from wild-type cells. Sustained exogenous FGF failed to rescue the mutant phenotype. Instead, depending on concentration, we noted no effect or conversion of all ICM cells to GATA6-positive PrE. We propose that heterogeneities in the availability of FGF produce the salt-and-pepper distribution of lineage-biased cells.
Collapse
Affiliation(s)
- Minjung Kang
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | |
Collapse
|
358
|
Campbell JM, Lane M, Vassiliev I, Nottle MB. Epiblast cell number and primary embryonic stem cell colony generation are increased by culture of cleavage stage embryos in insulin. J Reprod Dev 2012; 59:131-8. [PMID: 23171593 PMCID: PMC3934205 DOI: 10.1262/jrd.2012-103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Human embryos for hESC derivation are often donated at the cleavage stage and of reduced
quality. Poor quality embryos have lower efficiency for hESC derivation. However, cleavage
stage mouse embryos develop into higher quality expanded blastocysts if they are cultured
with insulin, suggesting that this approach could be used to improve hESC derivation from
poor quality cleavage stage embryos. The present study used a mouse model to examine this
approach. In particular we examined the effect of insulin on the number of epiblast cells
in blastocysts on days 4, 5 and 6 using Oct4 and Nanog co-expression. Second we examined
the effect of insulin on the frequency with which outgrowths can be derived from these.
Finally, we tested whether prior culture in the presence of insulin results in blastocysts
with increased capacity to generate ESC colonies. Culture of cleavage stage embryos with
insulin increased the number of Oct4 and Nanog positive cells in blastocysts at all time
points examined. Prior culture with insulin had no effect on outgrowths generated from
blastocysts plated on days 4 or 5. However, insulin treatment of blastocysts plated on day
6 resulted in increased numbers of outgrowths with larger epiblasts compared with
controls. 13% of insulin treated day 6 blastocysts produced primary ESC colonies compared
with 6% of controls. In conclusion, treatment with insulin can improve epiblast cell
number in mice leading to an increase with which primary ESC colonies can be generated and
may improve hESC isolation from reduced quality embryos donated at the cleavage stage.
Collapse
Affiliation(s)
- Jared M Campbell
- School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | |
Collapse
|
359
|
Rodríguez A, Allegrucci C, Alberio R. Modulation of pluripotency in the porcine embryo and iPS cells. PLoS One 2012; 7:e49079. [PMID: 23145076 PMCID: PMC3493503 DOI: 10.1371/journal.pone.0049079] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/04/2012] [Indexed: 01/12/2023] Open
Abstract
The establishment of the pluripotent ICM during early mammalian development is characterized by the differential expression of the transcription factors NANOG and GATA4/6, indicative of the epiblast and hypoblast, respectively. Differences in the mechanisms regulating the segregation of these lineages have been reported in many species, however little is known about this process in the porcine embryo. The aim of this study was to investigate the signalling pathways participating in the formation of the porcine ICM, and to establish whether their modulation can be used to increase the developmental potential of pluripotent cells. We show that blocking MEK signalling enhances the proportion of NANOG expressing cells in the ICM, but does not prevent the segregation of GATA-4 cells. Interestingly, inhibition of FGF signalling does not alter the segregation of NANOG and GATA-4 cells, but affects the number of ICM cells. This indicates that FGF signalling participates in the formation of the founders of the ICM. Inhibition of MEK signalling combined with GSK3β inhibition and LIF supplementation was used to modulate pluripotency in porcine iPS (piPS) cells. We demonstrate that under these stringent culture conditions piPS cells acquire features of naive pluripotency, characterized by the expression of STELLA and REX1, and increased in vitro germline differentiation capacity. We propose that small molecule inhibitors can be used to increase the homogeneity of induced pluripotent stem cell cultures. These improved culture conditions will pave the way for the generation of germline competent stem cells in this species.
Collapse
Affiliation(s)
- Aida Rodríguez
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Cinzia Allegrucci
- School of Veterinary Medicine and Sciences, University of Nottingham, Loughborough, United Kingdom
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
360
|
Ozawa M, Sakatani M, Yao J, Shanker S, Yu F, Yamashita R, Wakabayashi S, Nakai K, Dobbs KB, Sudano MJ, Farmerie WG, Hansen PJ. Global gene expression of the inner cell mass and trophectoderm of the bovine blastocyst. BMC DEVELOPMENTAL BIOLOGY 2012; 12:33. [PMID: 23126590 PMCID: PMC3514149 DOI: 10.1186/1471-213x-12-33] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/30/2012] [Indexed: 01/08/2023]
Abstract
Background The first distinct differentiation event in mammals occurs at the blastocyst stage when totipotent blastomeres differentiate into either pluripotent inner cell mass (ICM) or multipotent trophectoderm (TE). Here we determined, for the first time, global gene expression patterns in the ICM and TE isolated from bovine blastocysts. The ICM and TE were isolated from blastocysts harvested at day 8 after insemination by magnetic activated cell sorting, and cDNA sequenced using the SOLiD 4.0 system. Results A total of 870 genes were differentially expressed between ICM and TE. Several genes characteristic of ICM (for example, NANOG, SOX2, and STAT3) and TE (ELF5, GATA3, and KRT18) in mouse and human showed similar patterns in bovine. Other genes, however, showed differences in expression between ICM and TE that deviates from the expected based on mouse and human. Conclusion Analysis of gene expression indicated that differentiation of blastomeres of the morula-stage embryo into the ICM and TE of the blastocyst is accompanied by differences between the two cell lineages in expression of genes controlling metabolic processes, endocytosis, hatching from the zona pellucida, paracrine and endocrine signaling with the mother, and genes supporting the changes in cellular architecture, stemness, and hematopoiesis necessary for development of the trophoblast.
Collapse
Affiliation(s)
- Manabu Ozawa
- Department of Animal Sciences and D,H, Barron Reproductive and Perinatal Biology Research Program, PO Box 110910, Gainesville, FL 32611-0910, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Stephenson RO, Rossant J, Tam PPL. Intercellular interactions, position, and polarity in establishing blastocyst cell lineages and embryonic axes. Cold Spring Harb Perspect Biol 2012; 4:4/11/a008235. [PMID: 23125013 DOI: 10.1101/cshperspect.a008235] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The formation of the three lineages of the mouse blastocyst provides a powerful model system to study interactions among cell behavior, cell signaling, and lineage development. Hippo signaling differences between the inner and outer cells of the early cleavage stages, combined with establishment of a stably polarized outer epithelium, lead to the establishment of the inner cell mass and the trophectoderm, whereas FGF signaling differences among the individual cells of the ICM lead to gradual separation and segregation of the epiblast and primitive endoderm lineages. Events in the late blastocyst lead to the formation of a special subset of cells from the primitive endoderm that are key sources for the signals that establish the subsequent body axis. The slow pace of mouse early development, the ability to culture embryos over this time period, the increasing availability of live cell imaging tools, and the ability to modify gene expression at will are providing increasing insights into the cell biology of early cell fate decisions.
Collapse
Affiliation(s)
- Robert O Stephenson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
362
|
Zhang K, Dai X, Wallingford MC, Mager J. Depletion of Suds3 reveals an essential role in early lineage specification. Dev Biol 2012; 373:359-72. [PMID: 23123966 DOI: 10.1016/j.ydbio.2012.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/20/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
Preimplantation development culminates with the emergence of three distinct populations: the inner cell mass, primitive endoderm and trophectoderm. Here, we define the mechanisms underlying the requirement of Suds3 in pre/peri-implantation development. Suds3 knockdown blastocysts exhibit a failure of both trophectoderm proliferation as well as a conspicuous lack of primitive endoderm. Expression of essential lineage factors Nanog, Sox2, Cdx2, Eomes, Elf5 and Sox17 are severely reduced in the absence of Suds3. Importantly, we document deficient FGF4/ERK signaling and show that exogenous FGF4 rescues primitive endoderm formation and trophectoderm proliferation in Suds3 knockdown blastocysts. We also show that Hdac1 knockdown reduces Sox2/FGF4/ERK signaling in blastocysts. Collectively, these data define a role for Suds3 in activation of FGF4/ERK signaling and determine an essential molecular role of Suds3/Sin3/HDAC complexes in lineage specification in vivo.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, 455, 661 N. Pleasant Street, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
363
|
Morris SA, Guo Y, Zernicka-Goetz M. Developmental plasticity is bound by pluripotency and the Fgf and Wnt signaling pathways. Cell Rep 2012; 2:756-65. [PMID: 23041313 PMCID: PMC3607220 DOI: 10.1016/j.celrep.2012.08.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/15/2012] [Accepted: 08/27/2012] [Indexed: 01/05/2023] Open
Abstract
Plasticity is a well-known feature of mammalian development, and yet very little is known about its underlying mechanism. Here, we establish a model system to examine the extent and limitations of developmental plasticity in living mouse embryos. We show that halved embryos follow the same strict clock of developmental transitions as intact embryos, but their potential is not equal. We have determined that unless a minimum of four pluripotent cells is established before implantation, development will arrest. This failure can be rescued by modulating Fgf and Wnt signaling to enhance pluripotent cell number, allowing the generation of monozygotic twins, which is an otherwise rare phenomenon. Knowledge of the minimum pluripotent-cell number required for development to birth, as well as the different potentials of blastomeres, allowed us to establish a protocol for splitting an embryo into one part that develops to adulthood and another that provides embryonic stem cells for that individual.
Collapse
Affiliation(s)
- Samantha A Morris
- Wellcome Trust/Cancer Research Gurdon Institute, Cambridge CB2 1QN, UK
| | | | | |
Collapse
|
364
|
Chuykin I, Schulz H, Guan K, Bader M. Activation of the PTHRP/adenylate cyclase pathway promotes differentiation of rat XEN cells into parietal endoderm, whereas Wnt/β-catenin signaling promotes differentiation into visceral endoderm. J Cell Sci 2012; 126:128-38. [PMID: 23038778 DOI: 10.1242/jcs.110239] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During early mammalian development, primitive endoderm (PrE) is specified and segregated away from the pluripotent epiblast. At a later developmental stage, PrE forms motile parietal endoderm (PE) lying proximal to the trophectoderm, and visceral endoderm (VE) that contacts the developing epiblast and extraembryonic ectoderm. Mouse extraembryonic endoderm (XEN) cells were isolated and became widely used to study signals governing lineage specification. Rat XEN cell lines have also been derived, but were distinguished from mouse by expression of SSEA1 and Oct4. We showed here that rat XEN cells grown in the presence of a GSK3 inhibitor or overexpressing β-catenin exhibited enhanced formation of cell contacts and decreased motility. Rat XEN cells treated with BMP4 revealed similar morphological changes. Furthermore, we observed that rat XEN cells cultured with GSK3 inhibitor formed adhesion and tight junctions, and acquired bottom-top polarity, indicating the formation of VE cells. In contrast, forskolin, an activator of the cAMP pathway, induced the disruption of cell contacts in rat XEN cells. Treatment with forskolin induced PE formation and epithelial-mesenchymal transition (EMT) in rat XEN cells. Using microarray and real-time PCR assays, we found that VE versus PE formation of rat XEN cells was correlated with change in expression levels of VE or PE marker genes. Similar to forskolin, EMT was prompted upon treatment of rat XEN cells with recombinant parathyroid hormone related peptide (PTHRP), an activator of the cAMP pathway in vivo. Taken together, our data suggest that rat XEN cells are PrE-like cells. The activation of Wnt or BMP4 pathways in rat XEN cells leads to the acquisition of VE characteristics, whereas the activation of the PTHRP/cAMP pathway leads to EMT and the formation of PE.
Collapse
Affiliation(s)
- Ilya Chuykin
- Max-Delbrück Center for Molecular Medicine 13125, Berlin, Robert-Rossle Strasse 10, Germany.
| | | | | | | |
Collapse
|
365
|
Ozawa M, Sakatani M, Hankowski K, Terada N, Dobbs K, Hansen P. Importance of culture conditions during the morula-to-blastocyst period on capacity of inner cell-mass cells of bovine blastocysts for establishment of self-renewing pluripotent cells. Theriogenology 2012; 78:1243-51.e1-2. [DOI: 10.1016/j.theriogenology.2012.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 11/26/2022]
|
366
|
Computational multiscale modeling of embryo development. Curr Opin Genet Dev 2012; 22:613-8. [PMID: 22959149 DOI: 10.1016/j.gde.2012.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/06/2012] [Accepted: 08/10/2012] [Indexed: 12/17/2022]
Abstract
Recent advances in live imaging and genetics of mammalian development which integrate observations of biochemical activity, cell-cell signaling and mechanical interactions between cells pave the way for predictive mathematical multi-scale modeling. In early mammalian embryo development, two of the most critical events which lead to tissue patterning involve changes in gene expression as well as mechanical interactions between cells. We discuss the relevance of mathematical modeling of multi-cellular systems and in particular in simulating these patterns and describe some of the technical challenges one encounters. Many of these issues are not unique for the embryonic system but are shared by other multi-cellular modeling areas.
Collapse
|
367
|
Chen YH, Yu J. Ectopic expression of Fgf3 leads to aberrant lineage segregation in the mouse parthenote preimplantation embryos. Dev Dyn 2012; 241:1651-64. [PMID: 22930543 DOI: 10.1002/dvdy.23851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Parthenogenetic mammalian embryos were reported to die in utero no later than the 25-somite stage due to abnormal development of both embryonic and extraembryonic lineages. Interestingly, it has been shown that parthenogenetic ICM cells tend to differentiate more into primitive endoderm cells and less into epiblast and ES cells. Hence we are interested in studying the molecular mechanisms underlying lineage defects of parthenotes. RESULTS We found that parthenote inner cell masses (ICMs) contained decreased numbers of Sox2(+) /Nanog(+) epiblast cells but increased numbers of Gata4(+) primitive endoderm cells, indicating an unusual lineage segregation. We demonstrate for the first time that the increased Gata4 level in parthenotes may be explained by the strong up-regulation of Fgf3 and Fgfr2 phosphorylation. Inhibition of Fgfr2 activation by SU5402 in parthenotes restored normal Nanog and Gata4 levels without affecting Fgf3, indicating that Fgf3 is upstream of Fgfr2 activation. In parthenote trophectoderm, we detected normal Cdx2 but ectopic Gata4 expression and reduced Elf5 and Tbr2(Eomes) levels. CONCLUSIONS Taken together, our work provides for the first time the insight into the molecular mechanisms of the developmental defects of parthenogenetic embryos in both the trophectoderm and ICM.
Collapse
Affiliation(s)
- Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | | |
Collapse
|
368
|
Spatial restriction of bone morphogenetic protein signaling in mouse gastrula through the mVam2-dependent endocytic pathway. Dev Cell 2012; 22:1163-75. [PMID: 22698281 DOI: 10.1016/j.devcel.2012.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 01/27/2012] [Accepted: 05/10/2012] [Indexed: 11/20/2022]
Abstract
The embryonic body plan is established through positive and negative control of various signaling cascades. Late endosomes and lysosomes are thought to terminate signal transduction by compartmentalizing the signaling molecules; however, their roles in embryogenesis remain poorly understood. We showed here that the endocytic pathway participates in the developmental program by regulating the signaling activity. We modified the mouse Vam2 (mVam2) locus encoding a regulator of membrane trafficking. mVam2-deficient cells exhibited abnormally fragmented late endosomal compartments. The mutant cells could terminate signaling after the removal of the growth factors including TGF-β and EGF, except BMP-Smad1/Smad5 signaling. mVam2-deficient embryos exhibited ectopic activation of BMP signaling and disorganization of embryo patterning. We found that mVam2, which interacts with BMP type I receptor, is required for the spatiotemporal modulation of BMP signaling, via sequestration of the receptor complex in the late stages of the endocytic pathway.
Collapse
|
369
|
Abstract
Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell-cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species.
Collapse
Affiliation(s)
- Efrat Oron
- Yale Stem Cell Center, Department of Genetics, Yale University, New Haven, CT, USA.
| | | |
Collapse
|
370
|
Van der Jeught M, O'Leary T, Ghimire S, Lierman S, Duggal G, Versieren K, Deforce D, Chuva de Sousa Lopes S, Heindryckx B, De Sutter P. The combination of inhibitors of FGF/MEK/Erk and GSK3β signaling increases the number of OCT3/4- and NANOG-positive cells in the human inner cell mass, but does not improve stem cell derivation. Stem Cells Dev 2012; 22:296-306. [PMID: 22784186 DOI: 10.1089/scd.2012.0256] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In embryonic stem cell culture, small molecules can be used to alter key signaling pathways to promote self-renewal and inhibit differentiation. In mice, small-molecule inhibition of both the FGF/MEK/Erk and the GSK3β pathways during preimplantation development suppresses hypoblast formation, and this results in more pluripotent cells of the inner cell mass (ICM). In this study, we evaluated the effects of different small-molecule inhibitors of the FGF/MEK/Erk and GSK3β pathway on embryo preimplantation development, early lineage segregation, and subsequent embryonic stem cell derivation in the humans. We did not observe any effect on blastocyst formation, but small-molecule inhibition did affect the number of OCT3/4- and NANOG-positive cells in the human ICM. We found that combined inhibition of the FGF/MEK/Erk and GSK3β pathways by PD0325901 and CHIR99021, respectively, resulted in ICMs containing significantly more OCT3/4-positive cells. Inhibition of FGF/MEK/Erk alone as well as in combination with inhibition of GSK3β significantly increased the number of NANOG-positive cells in blastocysts possessing good-quality ICMs. Secondly, we verified the influence of this increased pluripotency after 2i culture on the efficiency of stem cell derivation. Similar human embryonic stem cell (hESC) derivation rates were observed after 2i compared to control conditions, resulting in 2 control hESC lines and 1 hESC line from an embryo cultured in 2i conditions. In conclusion, we demonstrated that FGF/MEK/Erk and GSK3β signaling increases the number of OCT3/4- and NANOG-positive cells in the human ICM, but does not improve stem cell derivation.
Collapse
Affiliation(s)
- Margot Van der Jeught
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Sudheer S, Bhushan R, Fauler B, Lehrach H, Adjaye J. FGF inhibition directs BMP4-mediated differentiation of human embryonic stem cells to syncytiotrophoblast. Stem Cells Dev 2012; 21:2987-3000. [PMID: 22724507 DOI: 10.1089/scd.2012.0099] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling is known to support differentiation of human embryonic stem cells (hESCs) into mesoderm and extraembryonic lineages, whereas other signaling pathways can largely influence this lineage specification. Here, we set out to reinvestigate the influence of ACTIVIN/NODAL and fibroblast growth factor (FGF) pathways on the lineage choices made by hESCs during BMP4-driven differentiation. We show that BMP activation, coupled with inhibition of both ACTIVIN/NODAL and FGF signaling, induces differentiation of hESCs, specifically to βhCG hormone-secreting multinucleated syncytiotrophoblast and does not support induction of embryonic and extraembryonic lineages, extravillous trophoblast, and primitive endoderm. It has been previously reported that FGF2 can switch BMP4-induced hESC differentiation outcome to mesendoderm. Here, we show that FGF inhibition alone, or in combination with either ACTIVIN/NODAL inhibition or BMP activation, supports hESC differentiation to hCG-secreting syncytiotrophoblast. We show that the inhibition of the FGF pathway acts as a key in directing BMP4-mediated hESC differentiation to syncytiotrophoblast.
Collapse
Affiliation(s)
- Smita Sudheer
- Department of Vertebrate Genomics, Molecular Embryology and Aging Group, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | | | |
Collapse
|
372
|
Artus J, Hadjantonakis AK. Troika of the mouse blastocyst: lineage segregation and stem cells. Curr Stem Cell Res Ther 2012; 7:78-91. [PMID: 22023624 DOI: 10.2174/157488812798483403] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/05/2011] [Accepted: 09/24/2011] [Indexed: 12/23/2022]
Abstract
The initial period of mammalian embryonic development is primarily devoted to cell commitment to the pluripotent lineage, as well as to the formation of extraembryonic tissues essential for embryo survival in utero. This phase of development is also characterized by extensive morphological transitions. Cells within the preimplantation embryo exhibit extraordinary cell plasticity and adaptation in response to experimental manipulation, highlighting the use of a regulative developmental strategy rather than a predetermined one resulting from the non-uniform distribution of maternal information in the cytoplasm. Consequently, early mammalian development represents a useful model to study how the three primary cell lineages; the epiblast, primitive endoderm (also referred to as the hypoblast) and trophoblast, emerge from a totipotent single cell, the zygote. In this review, we will discuss how the isolation and genetic manipulation of murine stem cells representing each of these three lineages has contributed to our understanding of the molecular basis of early developmental events.
Collapse
Affiliation(s)
- Jerome Artus
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
373
|
Abstract
Specific cells within the early mammalian embryo have the capacity to generate all somatic lineages plus the germline. This property of pluripotency is confined to the epiblast, a transient tissue that persists for only a few days. In vitro, however, pluripotency can be maintained indefinitely through derivation of stem cell lines. Pluripotent stem cells established from the newly formed epiblast are known as embryonic stem cells (ESCs), whereas those generated from later stages are called postimplantation epiblast stem cells (EpiSCs). These different classes of pluripotent stem cell have distinct culture requirements and gene expression programs, likely reflecting the dynamic development of the epiblast in the embryo. In this chapter we review current understanding of how the epiblast forms and relate this to the properties of derivative stem cells. We discuss whether ESCs and EpiSCs are true counterparts of different phases of epiblast development or are culture-generated phenomena. We also consider the proposition that early epiblast cells and ESCs may represent a naïve ground state without any prespecification of lineage choice, whereas later epiblasts and EpiSCs may be primed in favor of particular fates.
Collapse
Affiliation(s)
- Jennifer Nichols
- Wellcome Trust Centre for Stem Cell Research, Stem Cell Institute University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | | |
Collapse
|
374
|
Cho LTY, Wamaitha SE, Tsai IJ, Artus J, Sherwood RI, Pedersen RA, Hadjantonakis AK, Niakan KK. Conversion from mouse embryonic to extra-embryonic endoderm stem cells reveals distinct differentiation capacities of pluripotent stem cell states. Development 2012; 139:2866-77. [PMID: 22791892 DOI: 10.1242/dev.078519] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The inner cell mass of the mouse pre-implantation blastocyst comprises epiblast progenitor and primitive endoderm cells of which cognate embryonic (mESCs) or extra-embryonic (XEN) stem cell lines can be derived. Importantly, each stem cell type retains the defining properties and lineage restriction of their in vivo tissue of origin. Recently, we demonstrated that XEN-like cells arise within mESC cultures. This raises the possibility that mESCs can generate self-renewing XEN cells without the requirement for gene manipulation. We have developed a novel approach to convert mESCs to XEN cells (cXEN) using growth factors. We confirm that the downregulation of the pluripotency transcription factor Nanog and the expression of primitive endoderm-associated genes Gata6, Gata4, Sox17 and Pdgfra are necessary for cXEN cell derivation. This approach highlights an important function for Fgf4 in cXEN cell derivation. Paracrine FGF signalling compensates for the loss of endogenous Fgf4, which is necessary to exit mESC self-renewal, but not for XEN cell maintenance. Our cXEN protocol also reveals that distinct pluripotent stem cells respond uniquely to differentiation promoting signals. cXEN cells can be derived from mESCs cultured with Erk and Gsk3 inhibitors (2i), and LIF, similar to conventional mESCs. However, we find that epiblast stem cells (EpiSCs) derived from the post-implantation embryo are refractory to cXEN cell establishment, consistent with the hypothesis that EpiSCs represent a pluripotent state distinct from mESCs. In all, these findings suggest that the potential of mESCs includes the capacity to give rise to both extra-embryonic and embryonic lineages.
Collapse
Affiliation(s)
- Lily T Y Cho
- The Anne McLaren Laboratory for Regenerative Medicine, Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
375
|
Lavial F, Bessonnard S, Ohnishi Y, Tsumura A, Chandrashekran A, Fenwick MA, Tomaz RA, Hosokawa H, Nakayama T, Chambers I, Hiiragi T, Chazaud C, Azuara V. Bmi1 facilitates primitive endoderm formation by stabilizing Gata6 during early mouse development. Genes Dev 2012; 26:1445-58. [PMID: 22713603 DOI: 10.1101/gad.188193.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The transcription factors Nanog and Gata6 are critical to specify the epiblast versus primitive endoderm (PrE) lineages. However, little is known about the mechanisms that regulate the protein stability and activity of these factors in the developing embryo. Here we uncover an early developmental function for the Polycomb group member Bmi1 in supporting PrE lineage formation through Gata6 protein stabilization. We show that Bmi1 is enriched in the extraembryonic (endoderm [XEN] and trophectodermal stem [TS]) compartment and repressed by Nanog in pluripotent embryonic stem (ES) cells. In vivo, Bmi1 overlaps with the nascent Gata6 and Nanog protein from the eight-cell stage onward before it preferentially cosegregates with Gata6 in PrE progenitors. Mechanistically, we demonstrate that Bmi1 interacts with Gata6 in a Ring finger-dependent manner to confer protection against Gata6 ubiquitination and proteasomal degradation. A direct role for Bmi1 in cell fate allocation is established by loss-of-function experiments in chimeric embryoid bodies. We thus propose a novel regulatory pathway by which Bmi1 action on Gata6 stability could alter the balance between Gata6 and Nanog protein levels to introduce a bias toward a PrE identity in a cell-autonomous manner.
Collapse
Affiliation(s)
- Fabrice Lavial
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College, London W12 0NN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Versieren K, Van der Jeught M, O'Leary T, Duggal G, Gerris J, Chuva de Sousa Lopes S, Heindryckx B, De Sutter P. Effect of small molecule supplements during in vitro culture of mouse zygotes and parthenogenetic embryos on hypoblast formation and stem cell derivation. Stem Cell Rev Rep 2012; 8:1088-97. [PMID: 22628112 DOI: 10.1007/s12015-012-9382-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Small molecule inhibitors are organic components that modulate signalling pathways and have the ability to change the differentiation state of cells. They have been used to increase the efficiency of induced pluripotent stem cell generation and to support stem cell derivation and culture. In this study, we aimed to evaluate the effects of small molecules on the development of mouse zygotes and parthenogenetic embryos. METHODS AND RESULTS Three inhibitors (SC-1, PD0325901 and BIO) were added to the culture medium from the 2-cell stage onwards. We have observed that addition of an inhibitor of the fibroblast growth factor (FGF) pathway (SC-1 or PD0325901) compromises the segregation of hypoblast from the inner cell mass (ICM). Given no difference was observed in size of the ICM, but more epiblast cells were found in these embryos, we can conclude that this is caused by redirection of all ICM cells to the epiblast. We also determined the consequences of reduced hypoblast and increased epiblast formation on stem cell derivation efficiency. No significant difference was found between derivation rates from treated embryos as compared to controls. However, only under 2i + ROCKi conditions, stem cells could be derived with an efficiency of more than 90%. Addition of BIO, an activator of the WNT pathway, did not have any effects on hypoblast development or stem cell derivation. CONCLUSION We have demonstrated that FGF signalling is crucial for hypoblast generation and small molecules can be efficiently used to inhibit this process both in zygotes and parthenogenetic embryos.
Collapse
Affiliation(s)
- K Versieren
- Department of Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
377
|
Xu C, Fan ZP, Müller P, Fogley R, DiBiase A, Trompouki E, Unternaehrer J, Xiong F, Torregroza I, Evans T, Megason SG, Daley GQ, Schier AF, Young RA, Zon LI. Nanog-like regulates endoderm formation through the Mxtx2-Nodal pathway. Dev Cell 2012; 22:625-38. [PMID: 22421047 DOI: 10.1016/j.devcel.2012.01.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 09/19/2011] [Accepted: 01/11/2012] [Indexed: 12/15/2022]
Abstract
In mammalian embryonic stem cells, the acquisition of pluripotency is dependent on Nanog, but the in vivo analysis of Nanog has been hampered by its requirement for early mouse development. In an effort to examine the role of Nanog in vivo, we identified a zebrafish Nanog ortholog and found that its knockdown impaired endoderm formation. Genome-wide transcription analysis revealed that nanog-like morphants fail to develop the extraembryonic yolk syncytial layer (YSL), which produces Nodal, required for endoderm induction. We examined the genes that were regulated by Nanog-like and identified the homeobox gene mxtx2, which is both necessary and sufficient for YSL induction. Chromatin immunoprecipitation assays and genetic studies indicated that Nanog-like directly activates mxtx2, which, in turn, specifies the YSL lineage by directly activating YSL genes. Our study identifies a Nanog-like-Mxtx2-Nodal pathway and establishes a role for Nanog-like in regulating the formation of the extraembryonic tissue required for endoderm induction.
Collapse
Affiliation(s)
- Cong Xu
- Howard Hughes Medical Institute, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
378
|
Acloque H, Ocaña OH, Nieto MA. Mutual exclusion of transcription factors and cell behaviour in the definition of vertebrate embryonic territories. Curr Opin Genet Dev 2012; 22:308-14. [PMID: 22560468 DOI: 10.1016/j.gde.2012.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/07/2012] [Accepted: 03/18/2012] [Indexed: 12/27/2022]
Abstract
Early embryonic territories are transient entities under permanent remodelling to form newly derived cell populations that will eventually give rise to the adult tissues and organs. A vast effort has been devoted to identifying the determinants and mechanisms that define embryonic territories. Indeed, studies in the vertebrate embryo from the morula stage to the segregation of the main embryonic layers-ectoderm, mesoderm and endoderm-have highlighted the importance of the mutual exclusion/repression between pairs of transcription factors, in coordination with the control exerted over cell division, adhesion and motility.
Collapse
Affiliation(s)
- Hervé Acloque
- Instituto de Neurociencias CSIC-UMH, Avda Ramón y Cajal s/n, San Juan de Alicante, 03550, Spain; UMR 444, INRA-ENVT, Génétique Cellulaire, Toulouse, France
| | | | | |
Collapse
|
379
|
Buchholz VR, Gräf P, Busch DH. The origin of diversity: studying the evolution of multi-faceted CD8+ T cell responses. Cell Mol Life Sci 2012; 69:1585-95. [PMID: 22476589 PMCID: PMC11114764 DOI: 10.1007/s00018-012-0967-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 02/07/2023]
Abstract
During the past two decades of research in T cell biology, an increasing number of distinct T cell subsets arising during the transition from naïve to antigen-experienced T cells have been identified. Recently, it has been appreciated that, in different experimental settings, distinct T cell subsets can be generated in parallel within the same immune response. While signals driving a single "lineage" path of T cell differentiation are becoming increasingly clear, it remains largely enigmatic how the phenotypic and functional diversification creating a multi-faceted T cell response is achieved. Here, we review current literature indicating that diversification is a stable trait of CD8(+) T cell responses. We showcase novel technologies providing deeper insights into the process of diversification among the descendants of individual T cells, and introduce two models that emphasize either intrinsic noise or extrinsic signals as driving forces behind the diversification of single cell-derived T cell progeny populations in vivo.
Collapse
Affiliation(s)
- Veit R. Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich (TUM), Trogerstr. 30, 81675 Munich, Germany
| | - Patricia Gräf
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich (TUM), Trogerstr. 30, 81675 Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich (TUM), Trogerstr. 30, 81675 Munich, Germany
- Clinical Cooperation Groups “Antigen-specific Immunotherapy” and “Immune-Monitoring”, Helmholtz Center Munich (Neuherberg), TUM, Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technical University Munich (TUM), Munich, Germany
- DZIF – National Centre for Infection Research, Munich, Germany
| |
Collapse
|
380
|
Wennekamp S, Hiiragi T. Stochastic processes in the development of pluripotency in vivo. Biotechnol J 2012; 7:737-44. [PMID: 22539446 DOI: 10.1002/biot.201100357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/28/2012] [Accepted: 03/06/2012] [Indexed: 11/10/2022]
Abstract
The divergence of the pluripotent inner cell mass and extraembryonic trophectoderm from an apparently homogenous population of cells is a decisive event in mammalian preimplantation development. While three models have been proposed to explain early cellular differentiation in the mouse embryo, the initial cue generating asymmetry within the embryo remains elusive. Recently, unexpected heterogeneity in the expression of crucial transcription factors within the blastocyst has raised the intriguing possibility that a stochastic component is involved in lineage divergence. Unraveling the molecular dynamics and developmental function of the observed heterogeneity awaits further investigations at the single-cell level using quantitative live-imaging with appropriate reporter lines. The possible involvement of dynamic heterogeneity in the establishment, maintenance and resolution of pluripotency makes this topic highly relevant not only to developmental biology, but also to stem cell research and regenerative medicine. In this review, we discuss the possible involvement of stochastic processes in lineage divergence and the establishment of pluripotency in vivo, based on recent data from mouse embryology and stem cell research.
Collapse
|
381
|
Campbell JM, Nottle MB, Vassiliev I, Mitchell M, Lane M. Insulin increases epiblast cell number of in vitro cultured mouse embryos via the PI3K/GSK3/p53 pathway. Stem Cells Dev 2012; 21:2430-41. [PMID: 22339667 DOI: 10.1089/scd.2011.0598] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
High-quality embryos give rise to embryonic stem cells (ESCs) at greater efficiencies than poor-quality embryos. However, most embryos available for human ESC derivation are of a reduced quality as a result of culture in relatively simple media up to 10 years earlier, before cryopreservation, or before compaction. In the present study, we used a mouse model to determine whether a culture with insulin from the 8-cell stage could increase the number of ESC progenitor epiblast cells in blastocysts, as well as endeavor to determine the molecular mechanism of the insulin's effect. Culture in media containing 1.7 ρM insulin increased epiblast cell number (determined by Oct4 and Nanog co-expression), and proportion in day 6 blastocysts. The inhibition of phosphoinositide 3 kinase (PI3K) (via LY294002), an early second messenger of the insulin receptor, blocked this effect. The inhibition of glycogen synthase kinase 3 (GSK3) or p53, 2 s messengers inactivated by insulin signaling (via CT99021 or pifithrin-α, respectively), increased epiblast cell numbers. When active, GSK3 and p53 block the transcription of Nanog, which is important for maintaining pluripotency. A simultaneous inhibition of GSK3 and p53 had no synergistic effects on epiblast cell number. The induced activation of GSK3 and p53, via the inhibition of proteins responsible for their inactivation (PKA via H-89 and SIRT-1 via nicotinamide, respectively), blocked the insulin's effect on the epiblast.From our findings, we conclude that insulin increases epiblast cell number via the activation of PI3K, which ultimately inactivates GSK3 and p53. Furthermore, we suggest that the inclusion of insulin in culture media could be used as a strategy for increasing the efficiency with which the ESC lines can be derived from cultured embryos.
Collapse
Affiliation(s)
- Jared M Campbell
- Centre for Stem Cell Research, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia.
| | | | | | | | | |
Collapse
|
382
|
Analysis of SSEA1+ vs. SSEA1− fractions of bulk-cultured XENP cell lines. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6113-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
383
|
Halley JD, Smith-Miles K, Winkler DA, Kalkan T, Huang S, Smith A. Self-organizing circuitry and emergent computation in mouse embryonic stem cells. Stem Cell Res 2012; 8:324-33. [PMID: 22169460 DOI: 10.1016/j.scr.2011.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/13/2011] [Accepted: 11/02/2011] [Indexed: 01/28/2023] Open
Abstract
Pluripotency is a cellular state of multiple options. Here, we highlight the potential for self-organization to contribute to stem cell fate computation. A new way of considering regulatory circuitry is presented that describes the expression of each transcription factor (TF) as a branching process that propagates through time, interacting and competing with others. In a single cell, the interactions between multiple branching processes generate a collective process called 'critical-like self-organization'. We explain how this phenomenon provides a valid description of whole genome regulatory circuit dynamics. The hypothesis of exploratory stem cell decision-making proposes that critical-like self-organization (also called rapid self-organized criticality) provides the backbone for cell fate computation in regulative embryos and pluripotent stem cells. Unspecific amplification of TF expression is predicted to initiate this self-organizing circuitry, where cascades of gene expression propagate and may interact either synergistically or antagonistically. The emergent and highly dynamic circuitry is affected by various sources of selection pressure, such as the expression of TFs with disproportionate influence over other genes, and extrinsic biological and physical stimuli that differentially modulate particular gene expression cascades. Extrinsic conditions continuously trigger waves of transcription that ripple throughout regulatory networks on multiple spatiotemporal scales, providing the context within which circuitry self-organizes. In this framework, a distinction between instructive and selective mechanisms of fate determination is misleading because it is the 'interference pattern', rather than any single instructing or selecting factor, that is ultimately responsible for computing and directing cell fate. Using this framework, we consider whether the idea of a naïve ground state of pluripotency and that of a fluctuating transcriptome are compatible, and whether a ground state like that captured in vitro could exist in vivo.
Collapse
Affiliation(s)
- J D Halley
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | | | | | | | | | | |
Collapse
|
384
|
Chen Q, Zhou Y, Zhao X, Zhang M. Effect of dual-specificity protein phosphatase 5 on pluripotency maintenance and differentiation of mouse embryonic stem cells. J Cell Biochem 2012; 112:3185-93. [PMID: 21732408 DOI: 10.1002/jcb.23244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The MAPK/Erk signaling pathway is considered as a key regulator of the pluripotency and differentiation of embryonic stem (ES) cells, while dual-specificity protein phosphatases (DUSPs) are negative regulators of MAPK. Although DUSPs are potential embryogenesis regulators, their functions in the regulation of ES cell differentiation have not been demonstrated. The present study revealed that Dusp5 was expressed in mouse ES (mES) cells and that its expression was correlated with the undifferentiated state of these cells. Exogenous Dusp5 expression enhanced mES cell clonogenicity and suppressed mES cell differentiation by maintaining Nanog expression via the inhibition of the Erk pathway. Following Dusp5 knockdown, Nanog and Oct4 expression was significantly attenuated and the Erk signaling pathway was activated. Additionally, EBs derived from Dusp5 knockdown mES cells (KDEBs) exhibited a weak adherence capability, very little outgrowth, and a reduction in the number of epithelial-like cells. The expression of Gata6 (an endodermal marker) and Flk1 and Twist1 (mesodermal markers) was inhibited in KDEBs, which indicated that Dusp5 influenced the differentiation of these germ layers during EB development. Collectively, this study suggested that Dusp5 plays an important role in the maintenance of pluripotency in mES cells, and that Dusp5 may be required for EB development.
Collapse
Affiliation(s)
- Qi Chen
- Institute of Cell Biology and Genetics, College of Life Sciences, Zhejiang University, 388 Yuhangtang Road, Hangzhou, Zhejiang Province, China
| | | | | | | |
Collapse
|
385
|
Frankenberg S, Gerbe F, Bessonnard S, Belville C, Pouchin P, Bardot O, Chazaud C. Primitive endoderm differentiates via a three-step mechanism involving Nanog and RTK signaling. Dev Cell 2012; 21:1005-13. [PMID: 22172669 DOI: 10.1016/j.devcel.2011.10.019] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 07/20/2011] [Accepted: 10/26/2011] [Indexed: 12/13/2022]
Abstract
During preimplantation mouse development, the inner cell mass (ICM) differentiates into two cell lineages--the epiblast and the primitive endoderm (PrE)--whose precursors are identifiable by reciprocal expression of Nanog and Gata6, respectively. PrE formation depends on Nanog by a non-cell-autonomous mechanism. To decipher early cell- and non-cell-autonomous effects, we performed a mosaic knockdown of Nanog and found that this is sufficient to induce a PrE fate cell autonomously. Strikingly, in Nanog null embryos, Gata6 expression is maintained, showing that initiation of the PrE program is Nanog independent. Treatment of Nanog null embryos with pharmacological inhibitors revealed that RTK dependency of Gata6 expression is initially direct but later indirect via Nanog repression. Moreover, we found that subsequent expression of Sox17 and Gata4--later markers of the PrE--depends on the presence of Fgf4 produced by Nanog-expressing cells. Thus, our results reveal three distinct phases in the PrE differentiation program.
Collapse
Affiliation(s)
- Stephen Frankenberg
- GReD; INSERM U931; CNRS UMR6247; Clermont University, 28 Place Dunant, 63001 Clermont-Ferrand, France
| | | | | | | | | | | | | |
Collapse
|
386
|
Kuijk EW, van Tol LTA, Van de Velde H, Wubbolts R, Welling M, Geijsen N, Roelen BAJ. The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos. Development 2012; 139:871-82. [PMID: 22278923 DOI: 10.1242/dev.071688] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
At the blastocyst stage of mammalian pre-implantation development, three distinct cell lineages have formed: trophectoderm, hypoblast (primitive endoderm) and epiblast. The inability to derive embryonic stem (ES) cell lines in a variety of species suggests divergence between species in the cell signaling pathways involved in early lineage specification. In mouse, segregation of the primitive endoderm lineage from the pluripotent epiblast lineage depends on FGF/MAP kinase signaling, but it is unknown whether this is conserved between species. Here we examined segregation of the hypoblast and epiblast lineages in bovine and human embryos through modulation of FGF/MAP kinase signaling pathways in cultured embryos. Bovine embryos stimulated with FGF4 and heparin form inner cell masses (ICMs) composed entirely of hypoblast cells and no epiblast cells. Inhibition of MEK in bovine embryos results in ICMs with increased epiblast precursors and decreased hypoblast precursors. The hypoblast precursor population was not fully ablated upon MEK inhibition, indicating that other factors are involved in hypoblast differentiation. Surprisingly, inhibition of FGF signaling upstream of MEK had no effects on epiblast and hypoblast precursor numbers in bovine development, suggesting that GATA6 expression is not dependent on FGF signaling. By contrast, in human embryos, inhibition of MEK did not significantly alter epiblast or hypoblast precursor numbers despite the ability of the MEK inhibitor to potently inhibit ERK phosphorylation in human ES cells. These findings demonstrate intrinsic differences in early mammalian development in the role of the FGF/MAP kinase signaling pathways in governing hypoblast versus epiblast lineage choices.
Collapse
Affiliation(s)
- Ewart W Kuijk
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
387
|
Elatmani H, Dormoy-Raclet V, Dubus P, Dautry F, Chazaud C, Jacquemin-Sablon H. The RNA-binding protein Unr prevents mouse embryonic stem cells differentiation toward the primitive endoderm lineage. Stem Cells 2012; 29:1504-16. [PMID: 21954113 DOI: 10.1002/stem.712] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The maintenance of embryonic stem cells (ESCs) pluripotency depends on key transcription factors, chromatin remodeling proteins, and microRNAs. The roles of RNA-binding proteins are however poorly understood. We report that the cytoplasmic RNA-binding protein Unr prevents the differentiation of ESCs into primitive endoderm (PrE). We show that unr knockout (unr(-/-) ) ESCs spontaneously differentiate into PrE, and that Unr re-expression in unr(-/-) ESCs reverses this phenotype. Nevertheless, unr(-/-) ESCs retain pluripotency, producing differentiated teratomas, and the differentiated unr(-/-) ESCs coexpress the PrE inducer Gata6 and the pluripotency factors Oct4, Nanog, and Sox2. Interestingly, in the differentiated unr(-/-) ESCs, Nanog and Sox2 exhibit a dual nuclear and cytoplasmic localization. This situation, that has never been reported, likely reflects an early differentiation state toward PrE. Finally, we show that Unr destabilizes Gata6 mRNAs and we propose that the post-transcriptional repression of Gata6 expression by Unr contributes to the stabilization of the ESCs pluripotent state.
Collapse
Affiliation(s)
- Habiba Elatmani
- Physiopathologie du Cancer du Foie, Université de Bordeaux, Physiopathologie du cancer du foie, U1053, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
388
|
Roode M, Blair K, Snell P, Elder K, Marchant S, Smith A, Nichols J. Human hypoblast formation is not dependent on FGF signalling. Dev Biol 2012; 361:358-63. [PMID: 22079695 PMCID: PMC3368271 DOI: 10.1016/j.ydbio.2011.10.030] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/24/2011] [Accepted: 10/26/2011] [Indexed: 01/08/2023]
Abstract
Mouse embryos segregate three different lineages during preimplantation development: trophoblast, epiblast and hypoblast. These differentiation processes are associated with restricted expression of key transcription factors (Cdx2, Oct4, Nanog and Gata6). The mechanisms of segregation have been extensively studied in the mouse, but are not as well characterised in other species. In the human embryo, hypoblast differentiation has not previously been characterised. Here we demonstrate co-exclusive immunolocalisation of Nanog and Gata4 in human blastocysts, implying segregation of epiblast and hypoblast, as in rodent embryos. However, the formation of hypoblast in the human is apparently not dependent upon FGF signalling, in contrast to rodent embryos. Nonetheless, the persistence of Nanog-positive cells in embryos following treatment with FGF inhibitors is suggestive of a transient naïve pluripotent population in the human blastocyst, which may be similar to rodent epiblast and ES cells but is not sustained during conventional human ES cell derivation protocols.
Collapse
Affiliation(s)
- Mila Roode
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Kathryn Blair
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Philip Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Sally Marchant
- Centre for Reproductive Medicine, Barts and The London, West Smithfield, London EC1A 7BE, UK
| | - Austin Smith
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
389
|
Paca A, Séguin CA, Clements M, Ryczko M, Rossant J, Rodriguez TA, Kunath T. BMP signaling induces visceral endoderm differentiation of XEN cells and parietal endoderm. Dev Biol 2012; 361:90-102. [DOI: 10.1016/j.ydbio.2011.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 09/18/2011] [Accepted: 10/08/2011] [Indexed: 12/22/2022]
|
390
|
Abstract
Early development of the mouse comprises a sequence of cell fate decisions in which cells are guided along a pathway of restricted potential and increasing specialisation. The first choice faced by cells of the embryo is whether to become trophectoderm (TE) or inner cell mass (ICM); TE is an extra-embryonic tissue which will form the embryonic portion of the placenta, whilst ICM gives rise to cells responsible for generating the foetus. In the second cell fate decision, the ICM is further refined into pluripotent cells forming the future body of the embryo, epiblast (EPI) and extra-embryonic primitive endoderm (PE), a tissue essential for patterning the embryo and establishing the developmental circulation. Understanding this early lineage segregation is critical for informing attempts to capture pluripotency and direct cell fate in vitro. Unlike the predictability of nonmammalian cell fate, development of the mouse embryo retains the flexibility to adapt to changing circumstances during development. Here we describe these first cell fate decisions, how they can be biased whilst maintaining flexibility and, finally, some of the molecular circuitry underlying early fate choice.
Collapse
Affiliation(s)
- Samantha A Morris
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
391
|
Przybyla L, Voldman J. Probing embryonic stem cell autocrine and paracrine signaling using microfluidics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2012; 5:293-315. [PMID: 22524217 PMCID: PMC4030416 DOI: 10.1146/annurev-anchem-062011-143122] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although stem cell fate is traditionally manipulated by exogenously altering the cells' extracellular signaling environment, the endogenous autocrine and paracrine signals produced by the cells also contribute to their two essential processes: self-renewal and differentiation. Autocrine and/or paracrine signals are fundamental to both embryonic stem cell self-renewal and early embryonic development, but the nature and contributions of these signals are often difficult to fully define using conventional methods. Microfluidic techniques have been used to explore the effects of cell-secreted signals by controlling cell organization or by providing precise control over the spatial and temporal cellular microenvironment. Here we review how such techniques have begun to be adapted for use with embryonic stem cells, and we illustrate how many remaining questions in embryonic stem cell biology could be addressed using microfluidic technologies.
Collapse
Affiliation(s)
- Laralynne Przybyla
- Dept. of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA, 02139
| | - Joel Voldman
- Dept. Of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA, 02139
| |
Collapse
|
392
|
Marikawa Y, Alarcon VB. Creation of trophectoderm, the first epithelium, in mouse preimplantation development. Results Probl Cell Differ 2012; 55:165-84. [PMID: 22918806 DOI: 10.1007/978-3-642-30406-4_9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trophectoderm (TE) is the first cell type that emerges during development and plays pivotal roles in the viviparous mode of reproduction in placental mammals. TE adopts typical epithelium morphology to surround a fluid-filled cavity, whose expansion is critical for hatching and efficient interaction with the uterine endometrium for implantation. TE also differentiates into trophoblast cells to construct the placenta. This chapter is an overview of the cellular and molecular mechanisms that control the critical aspects of TE formation, namely, the formation of the blastocyst cavity, the expression of key transcription factors, and the roles of cell polarity in the specification of the TE lineage. Current gaps in our knowledge and challenging issues are also discussed that should be addressed in future investigations in order to further advance our understanding of the mechanisms of TE formation.
Collapse
Affiliation(s)
- Yusuke Marikawa
- University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA.
| | | |
Collapse
|
393
|
Xenopoulos P, Kang M, Hadjantonakis AK. Cell lineage allocation within the inner cell mass of the mouse blastocyst. Results Probl Cell Differ 2012; 55:185-202. [PMID: 22918807 DOI: 10.1007/978-3-642-30406-4_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
At the time of implantation, the early mouse embryo consists of three distinct cell lineages: the epiblast (EPI), primitive endoderm (PrE), and trophectoderm (TE). Here we will focus on the EPI and PrE cell lineages, which arise within the inner cell mass (ICM) of the blastocyst. Though still poorly understood, our current understanding of the mechanisms underlying this lineage allocation will be discussed. It was originally thought that lineage choice was strictly controlled by the position of a cell within the ICM. However, it is now believed that the EPI and PrE lineages are defined both by their position and by the expression of lineage-specific transcription factors. Interestingly, these lineage-specific transcription factors are initially co-expressed in early ICM cells, suggesting an initial multi-lineage priming state. Thereafter, lineage-specific transcription factors display a mutually exclusive salt-and-pepper distribution that reflects cell specification of the EPI or PrE fates. Later on, lineage segregation and likely commitment are completed with the sequestration of PrE cells to the surface of the ICM, which lies at the blastocyst cavity roof. We discuss recent advances that have focused on elucidating how the salt-and-pepper pattern is established and then resolved within the ICM, leading to the correct apposition of cell lineages in preparation for implantation.
Collapse
|
394
|
Takaoka K, Hamada H. Cell fate decisions and axis determination in the early mouse embryo. Development 2012; 139:3-14. [DOI: 10.1242/dev.060095] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mouse embryo generates multiple cell lineages, as well as its future body axes in the early phase of its development. The early cell fate decisions lead to the generation of three lineages in the pre-implantation embryo: the epiblast, the primitive endoderm and the trophectoderm. Shortly after implantation, the anterior-posterior axis is firmly established. Recent studies have provided a better understanding of how the earliest cell fate decisions are regulated in the pre-implantation embryo, and how and when the body axes are established in the pregastrulation embryo. In this review, we address the timing of the first cell fate decisions and of the establishment of embryonic polarity, and we ask how far back one can trace their origins.
Collapse
Affiliation(s)
- Katsuyoshi Takaoka
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- CREST, Japan Science and Technology Corporation (JST), 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- CREST, Japan Science and Technology Corporation (JST), 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
395
|
Xenopoulos P, Nowotschin S, Hadjantonakis AK. Live imaging fluorescent proteins in early mouse embryos. Methods Enzymol 2012; 506:361-89. [PMID: 22341233 DOI: 10.1016/b978-0-12-391856-7.00042-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mouse embryonic development comprises highly dynamic and coordinated events that drive key cell lineage specification and morphogenetic events. These processes involve cellular behaviors including proliferation, migration, apoptosis, and differentiation, each of which is regulated both spatially and temporally. Live imaging of developing embryos provides an essential tool to investigate these coordinated processes in three-dimensional space over time. For this purpose, the development and application of genetically encoded fluorescent protein (FP) reporters has accelerated over the past decade allowing for the high-resolution visualization of developmental progression. Ongoing efforts are aimed at generating improved reporters, where spectrally distinct as well as novel FPs whose optical properties can be photomodulated, are exploited for live imaging of mouse embryos. Moreover, subcellular tags in combination with using FPs allow for the visualization of multiple subcellular characteristics, such as cell position and cell morphology, in living embryos. Here, we review recent advances in the application of FPs for live imaging in the early mouse embryo, as well as some of the methods used for ex utero embryo development that facilitate on-stage time-lapse specimen visualization.
Collapse
|
396
|
Grabarek JB, Zyzyńska K, Saiz N, Piliszek A, Frankenberg S, Nichols J, Hadjantonakis AK, Plusa B. Differential plasticity of epiblast and primitive endoderm precursors within the ICM of the early mouse embryo. Development 2011; 139:129-39. [PMID: 22096072 DOI: 10.1242/dev.067702] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell differentiation during pre-implantation mammalian development involves the formation of two extra-embryonic lineages: trophoblast and primitive endoderm (PrE). A subset of cells within the inner cell mass (ICM) of the blastocyst does not respond to differentiation signals and forms the pluripotent epiblast, which gives rise to all of the tissues in the adult body. How this group of cells is set aside remains unknown. Recent studies documented distinct sequential phases of marker expression during the segregation of epiblast and PrE within the ICM. However, the connection between marker expression and lineage commitment remains unclear. Using a fluorescent reporter for PrE, we investigated the plasticity of epiblast and PrE precursors. Our observations reveal that loss of plasticity does not coincide directly with lineage restriction of epiblast and PrE markers, but rather with exclusion of the pluripotency marker Oct4 from the PrE. We note that individual ICM cells can contribute to all three lineages of the blastocyst until peri-implantation. However, epiblast precursors exhibit less plasticity than precursors of PrE, probably owing to differences in responsiveness to extracellular signalling. We therefore propose that the early embryo environment restricts the fate choice of epiblast but not PrE precursors, thus ensuring the formation and preservation of the pluripotent foetal lineage.
Collapse
Affiliation(s)
- Joanna B Grabarek
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | |
Collapse
|
397
|
Theunissen TW, Silva JCR. Switching on pluripotency: a perspective on the biological requirement of Nanog. Philos Trans R Soc Lond B Biol Sci 2011; 366:2222-9. [PMID: 21727127 DOI: 10.1098/rstb.2011.0003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pluripotency is a transient cellular state during early development which can be recreated in vitro by direct reprogramming. The molecular mechanisms driving entry into and exit from the pluripotent state are the subject of intense research interest. Here, we review the role of the homeodomain-containing transcription factor Nanog in mammalian embryology and induced pluripotency. Nanog was originally thought to be confined to the maintenance of pluripotency, but recent insights from genetic studies uncovered a new biological function. Embryonic stem cells deficient in Nanog alleles are more prone to differentiate but do not lose pluripotency per se. Instead, Nanog is transiently required for the specification of the naive pluripotent epiblast and development of primordial germ cells. Nanog is also essential to finalize somatic cell reprogramming during induction of pluripotency. We propose that this unique transcription factor acts as a molecular switch to turn on the naive pluripotent programme in mammalian cells. In this context, the capacity of Nanog to resist differentiation can be regarded as recapitulation of effects normally associated with the specification of pluripotency. Pertinent questions are how Nanog specifies naive pluripotency and whether this mechanism is evolutionarily conserved.
Collapse
Affiliation(s)
- Thorold W Theunissen
- Wellcome Trust Centre for Stem Cell Research and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | |
Collapse
|
398
|
Gill JG, Langer EM, Lindsley RC, Cai M, Murphy TL, Murphy KM. Snail promotes the cell-autonomous generation of Flk1(+) endothelial cells through the repression of the microRNA-200 family. Stem Cells Dev 2011; 21:167-76. [PMID: 21861700 DOI: 10.1089/scd.2011.0194] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Expression of the transcription factor Snail is required for normal vasculogenesis in the developing mouse embryo. In addition, tumors expressing Snail have been associated with a more malignant phenotype, with both increased invasive properties and angiogenesis. Although the relationship between Snail and vasculogenesis has been noted, no mechanistic analysis has been elucidated. Here, we show that in addition to inducing an epithelial mesenchymal transition, Snail promotes the cell-autonomous induction of Flk1(+) endothelial cells in an early subset of differentiating mouse embryonic stem (ES) cells. Cells that become Flk1+ in response to Snail have a transcriptional profile specific to Gata6+primitive endoderm, but not the early Nanog+epiblast. We further show that Snail's ability to promote Flk1(+) endothelium depends on fibroblast growth factor signaling as well as the repression of the microRNA-200 (miR-200) family, which directly targets the 3' UTRs of Flk1 and Ets1. Together, our results show that Snail is capable of inducing Flk1+ lineage commitment in a subset of differentiating ES cells through the down-regulation of the miR-200 family. We hypothesize that this mechanism of Snail-induced vasculogenesis may be conserved in both the early developing embryo and malignant cancers.
Collapse
Affiliation(s)
- Jennifer G Gill
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
399
|
Chattwood A, Thompson CRL. Non-genetic heterogeneity and cell fate choice in Dictyostelium discoideum. Dev Growth Differ 2011; 53:558-66. [PMID: 21585359 DOI: 10.1111/j.1440-169x.2011.01270.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
From microbes to metazoans, it is now clear that fluctuations in the abundance of mRNA transcripts and protein molecules enable genetically identical cells to oscillate between several distinct states (Kaern et al. 2005). Since this cell-cell variability does not derive from physical differences in the genetic code it is termed non-genetic heterogeneity. Non-genetic heterogeneity endows cell populations with useful capabilities they could never achieve if each cell were the same as its neighbors (Raj & van Oudenaarden 2008; Eldar & Elowitz 2010). One such example is seen during multicellular development and "salt and pepper" cell type differentiation. In this review, we will first examine the importance of non-genetic heterogeneity in initiating "salt and pepper" pattern formation during Dictyostelium discoideum development. Second, we will discuss the various ways in which non-genetic heterogeneity might be generated, as well as recent advances in understanding the molecular basis of heterogeneity in this system.
Collapse
Affiliation(s)
- Alex Chattwood
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
400
|
Yang QE, Fields SD, Zhang K, Ozawa M, Johnson SE, Ealy AD. Fibroblast growth factor 2 promotes primitive endoderm development in bovine blastocyst outgrowths. Biol Reprod 2011; 85:946-53. [PMID: 21778141 DOI: 10.1095/biolreprod.111.093203] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Primitive endoderm (PE) is the second extraembryonic tissue to form during embryogenesis in mammals. The PE develops from pluripotent cells of the blastocyst inner cell mass. Experimental results described herein provide evidence that FGF2 stimulates PE development during bovine blastocyst development in vitro. Bovine blastocysts were cultured individually on a feeder layer-free, Matrigel-coated surface in the presence or absence of FGF2. A majority of blastocysts cultures formed outgrowths (76.8%) and the rate of outgrowth formation was not affected by FGF2 supplementation. However, supplementation with FGF2 increased the incidence of PE outgrowths on Days 13 and 15 after in vitro fertilization. Presumptive PE cultures contained cells with a phenotype distinct from trophectoderm (TE). Cell identity was validated by expression of GATA4 and GATA6 mRNA and transferrin protein, all markers of the PE lineage. Expression of GATA4 occurred coincident with blastocyst expansion and hatching. These cells did not express IFNT and CDX2 (TE lineage markers). Profiles of FGF receptor (FGFR) isoforms were distinct between PE and TE cultures. Specifically, FGFR1b and FGFR1c were the predominant FGFR transcripts in PE whereas FGFR2b transcripts were abundant in TE. Supplementation with FGF2 increased the mitotic index of PE but not TE. Moreover, FGF signaling appears important for initiation of PE formation in blastocysts, presumably by lineage committal from NANOG-positive epiblast cells, because chemical disruption of FGFR kinase activity with PD173074 reduces GATA4 expression and increases NANOG expression. Collectively, these results indicate that FGF2 and potentially other FGFs specify PE formation and mediate PE proliferation during early pregnancy in cattle.
Collapse
Affiliation(s)
- Qi En Yang
- Department of Animal Sciences, University of Florida, Gainesville, Florida 32611-0910, USA
| | | | | | | | | | | |
Collapse
|