351
|
Celá P, Buchtová M, Veselá I, Fu K, Bogardi JP, Song Y, Barlow A, Buxton P, Medalová J, Francis-West P, Richman JM. BMP signaling regulates the fate of chondro-osteoprogenitor cells in facial mesenchyme in a stage-specific manner. Dev Dyn 2016; 245:947-62. [PMID: 27264541 DOI: 10.1002/dvdy.24422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/12/2016] [Accepted: 05/27/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Lineage tracing has shown that most of the facial skeleton is derived from cranial neural crest cells. However, the local signals that influence postmigratory, neural crest-derived mesenchyme also play a major role in patterning the skeleton. Here, we study the role of BMP signaling in regulating the fate of chondro-osteoprogenitor cells in the face. RESULTS A single Noggin-soaked bead inserted into stage 15 chicken embryos induced an ectopic cartilage resembling the interorbital septum within the palate and other midline structures. In contrast, the same treatment in stage 20 embryos caused a loss of bones. The molecular basis for the stage-specific response to Noggin lay in the simultaneous up-regulation of SOX9 and downregulation of RUNX2 in the maxillary mesenchyme, increased cell adhesiveness as shown by N-cadherin induction around the beads and increased RA pathway gene expression. None of these changes were observed in stage 20 embryos. CONCLUSIONS These experiments demonstrate how slight changes in expression of growth factors such as BMPs could lead to gain or loss of cartilage in the upper jaw during vertebrate evolution. In addition, BMPs have at least two roles: one in patterning the skull and another in regulating the skeletogenic fates of neural crest-derived mesenchyme. Developmental Dynamics 245:947-962, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Petra Celá
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Marcela Buchtová
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic.,Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Iva Veselá
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic.,Department of Anatomy, Histology and Embryology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Kathy Fu
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jean-Philippe Bogardi
- King's College London, Department of Craniofacial Development and Stem Cell Biology, London, United Kingdom
| | - Yiping Song
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Amanda Barlow
- King's College London, Department of Craniofacial Development and Stem Cell Biology, London, United Kingdom
| | - Paul Buxton
- King's College London, Department of Craniofacial Development and Stem Cell Biology, London, United Kingdom
| | - Jirina Medalová
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Philippa Francis-West
- King's College London, Department of Craniofacial Development and Stem Cell Biology, London, United Kingdom
| | - Joy M Richman
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
352
|
Samsa WE, Zhou X, Zhou G. Signaling pathways regulating cartilage growth plate formation and activity. Semin Cell Dev Biol 2016; 62:3-15. [PMID: 27418125 DOI: 10.1016/j.semcdb.2016.07.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/17/2022]
Abstract
The growth plate is a highly specialized and dynamic cartilage structure that serves many essential functions in skeleton patterning, growth and endochondral ossification in developing vertebrates. Major signaling pathways initiated by classical morphogens and by other systemic and tissue-specific factors are intimately involved in key aspects of growth plate development. As a corollary of these essential functions, disturbances in these pathways due to mutations or environmental factors lead to severe skeleton disorders. Here, we review these pathways and the most recent progress made in understanding their roles in chondrocyte differentiation in growth plate development and activity. Furthermore, we discuss newly uncovered pathways involved in growth plate formation, including mTOR, the circadian clock, and the COP9 signalosome.
Collapse
Affiliation(s)
- William E Samsa
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Zhou
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guang Zhou
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
353
|
Joo A, Long R, Cheng Z, Alexander C, Chang W, Klein OD. Sprouty2 regulates endochondral bone formation by modulation of RTK and BMP signaling. Bone 2016; 88:170-179. [PMID: 27130872 PMCID: PMC4899137 DOI: 10.1016/j.bone.2016.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/21/2016] [Accepted: 04/24/2016] [Indexed: 01/16/2023]
Abstract
Skeletal development is regulated by the coordinated activity of signaling molecules that are both produced locally by cartilage and bone cells and also circulate systemically. During embryonic development and postnatal bone remodeling, receptor tyrosine kinase (RTK) superfamily members play critical roles in the proliferation, survival, and differentiation of chondrocytes, osteoblasts, osteoclasts, and other bone cells. Recently, several molecules that regulate RTK signaling have been identified, including the four members of the Sprouty (Spry) family (Spry1-4). We report that Spry2 plays an important role in regulation of endochondral bone formation. Mice in which the Spry2 gene has been deleted have defective chondrogenesis and endochondral bone formation, with a postnatal decrease in skeletal size and trabecular bone mass. In these constitutive Spry2 mutants, both chondrocytes and osteoblasts undergo increased cell proliferation and impaired terminal differentiation. Tissue-specific Spry2 deletion by either osteoblast- (Col1-Cre) or chondrocyte- (Col2-Cre) specific drivers led to decreased relative bone mass, demonstrating the critical role of Spry2 in both cell types. Molecular analyses of signaling pathways in Spry2(-/-) mice revealed an unexpected upregulation of BMP signaling and decrease in RTK signaling. These results identify Spry2 as a critical regulator of endochondral bone formation that modulates signaling in both osteoblast and chondrocyte lineages.
Collapse
Affiliation(s)
- Adriane Joo
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Roger Long
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Zhiqiang Cheng
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Courtney Alexander
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Wenhan Chang
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, United States; Endocrine Research Unit, Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Ophir D Klein
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, United States; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
354
|
Polycomb repressive complex 2 regulates skeletal growth by suppressing Wnt and TGF-β signalling. Nat Commun 2016; 7:12047. [PMID: 27329220 PMCID: PMC4917962 DOI: 10.1038/ncomms12047] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 05/24/2016] [Indexed: 01/06/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) controls maintenance and lineage determination of stem cells by suppressing genes that regulate cellular differentiation and tissue development. However, the role of PRC2 in lineage-committed somatic cells is mostly unknown. Here we show that Eed deficiency in chondrocytes causes severe kyphosis and a growth defect with decreased chondrocyte proliferation, accelerated hypertrophic differentiation and cell death with reduced Hif1a expression. Eed deficiency also causes induction of multiple signalling pathways in chondrocytes. Wnt signalling overactivation is responsible for the accelerated hypertrophic differentiation and kyphosis, whereas the overactivation of TGF-β signalling is responsible for the reduced proliferation and growth defect. Thus, our study demonstrates that PRC2 has an important regulatory role in lineage-committed tissue cells by suppressing overactivation of multiple signalling pathways. Eed is a polycomb repressive complex 2 component involved in stem cell lineage determination, but little is known about its role in lineage committed cells. Here the authors show that chondrocyte-specific Eed KO mice have skeletal growth defects related to induction of Wnt and TGF-β signalling.
Collapse
|
355
|
Fang D, Gan H, Lee JH, Han J, Wang Z, Riester SM, Jin L, Chen J, Zhou H, Wang J, Zhang H, Yang N, Bradley EW, Ho TH, Rubin BP, Bridge JA, Thibodeau SN, Ordog T, Chen Y, van Wijnen AJ, Oliveira AM, Xu RM, Westendorf JJ, Zhang Z. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science 2016; 352:1344-8. [PMID: 27229140 PMCID: PMC5460624 DOI: 10.1126/science.aae0065] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 05/16/2016] [Indexed: 12/18/2022]
Abstract
More than 90% of chondroblastomas contain a heterozygous mutation replacing lysine-36 with methionine-36 (K36M) in the histone H3 variant H3.3. Here we show that H3K36 methylation is reduced globally in human chondroblastomas and in chondrocytes harboring the same genetic mutation, due to inhibition of at least two H3K36 methyltransferases, MMSET and SETD2, by the H3.3K36M mutant proteins. Genes with altered expression as well as H3K36 di- and trimethylation in H3.3K36M cells are enriched in cancer pathways. In addition, H3.3K36M chondrocytes exhibit several hallmarks of cancer cells, including increased ability to form colonies, resistance to apoptosis, and defects in differentiation. Thus, H3.3K36M proteins reprogram the H3K36 methylation landscape and contribute to tumorigenesis, in part through altering the expression of cancer-associated genes.
Collapse
Affiliation(s)
- Dong Fang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Haiyun Gan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Jeong-Heon Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. Epigenomics Program, Center of Individualized Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Jing Han
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Zhiquan Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Long Jin
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Jianji Chen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Hui Zhou
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Jinglong Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 5 Datun Road, Beijing 100101, China. University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Honglian Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Na Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 5 Datun Road, Beijing 100101, China
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Thai H Ho
- Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea B., Scottsdale, AZ 85259, USA
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute and Department of Cancer Biology, Cleveland Clinic and Lerner Research Institute, L2 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Julia A Bridge
- Departments of Pathology and Microbiology, Pediatrics, and Orthopaedic Surgery and Rehabilitation
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Tamas Ordog
- Epigenomics Program, Center of Individualized Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. Department of Physiology and Biomedical Engineering, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. Interdisciplinary Health Science Initiative, 1110 Micro and Nanotechnology Laboratory, M/C 249, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Andre J van Wijnen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. Department of Orthopedic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Andre M Oliveira
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 5 Datun Road, Beijing 100101, China. University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jennifer J Westendorf
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. Department of Orthopedic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. Epigenomics Program, Center of Individualized Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
356
|
Raygorodskaya M, Gabet Y, Shochat C, Kobyliansky E, Torchinsky A, Karasik D. Intrauterine stress induces bone loss in adult offspring of C3H/HeJ mice having high bone mass phenotype but not C57BL/6J mice with low bone mass phenotype. Bone 2016; 87:114-9. [PMID: 27072519 DOI: 10.1016/j.bone.2016.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 01/22/2023]
Abstract
In this study we examined to what extent and how genetics may modify osteoporosis risk arising due to environmental stresses which act during the antenatal period of life and have the potential to induce bone loss in adulthood. C57Bl/6J (C57) and C3H/HeJ (C3H) mice were used as a model system. The mice were exposed to a single injection of 5-aza-2'-deoxycytidine (5-AZA) on day 10 of pregnancy and the structure and bone mineral density (BMD) of the femur and 3rd lumbar vertebra of 3- and 6-month-old male and female offspring were evaluated by micro-computed tomography (μCT). Besides, we also attempted to evaluate whether 5-AZA affects the expression of some osteogenic genes in the embryonic limb buds. The main observation of this study is that 5-AZA-induced loss of bone quality was registered in 6-mo-old C3H offspring but not in their C57 counterparts. We also observed that C57 and C3H embryos may differ in their response to 5-AZA-induced detrimental stimuli: whereas 5-AZA treated C3H embryos exhibited a decreased expression of Col1a1, C57 embryos exhibit a decreased expression of Sox9. Overall, our study, by thorough characterization of bone homeostasis in 3- and 6-month-old offspring of 5-AZA-exposed C57 and C3H mice, allows hypothesizing that the adaptive response to antenatal insults may be stronger in offspring inherently exhibiting a low bone mass phenotype than in offspring inherently exhibiting a high bone mass phenotype.
Collapse
Affiliation(s)
- M Raygorodskaya
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Y Gabet
- Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - C Shochat
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - E Kobyliansky
- Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - A Torchinsky
- Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - D Karasik
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel.
| |
Collapse
|
357
|
Karuppaiah K, Yu K, Lim J, Chen J, Smith C, Long F, Ornitz DM. FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth. Development 2016; 143:1811-22. [PMID: 27052727 DOI: 10.1242/dev.131722] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/18/2016] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factor (FGF) signaling is important for skeletal development; however, cell-specific functions, redundancy and feedback mechanisms regulating bone growth are poorly understood. FGF receptors 1 and 2 (Fgfr1 and Fgfr2) are both expressed in the osteoprogenitor lineage. Double conditional knockout mice, in which both receptors were inactivated using an osteoprogenitor-specific Cre driver, appeared normal at birth; however, these mice showed severe postnatal growth defects that include an ∼50% reduction in body weight and bone mass, and impaired longitudinal bone growth. Histological analysis showed reduced cortical and trabecular bone, suggesting cell-autonomous functions of FGF signaling during postnatal bone formation. Surprisingly, the double conditional knockout mice also showed growth plate defects and an arrest in chondrocyte proliferation. We provide genetic evidence of a non-cell-autonomous feedback pathway regulating Fgf9, Fgf18 and Pthlh expression, which led to increased expression and signaling of Fgfr3 in growth plate chondrocytes and suppression of chondrocyte proliferation. These observations show that FGF signaling in the osteoprogenitor lineage is obligately coupled to chondrocyte proliferation and the regulation of longitudinal bone growth.
Collapse
Affiliation(s)
- Kannan Karuppaiah
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Kai Yu
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA Division of Craniofacial Medicine, Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Joohyun Lim
- Departments of Orthopaedic Surgery and Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jianquan Chen
- Departments of Orthopaedic Surgery and Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Craig Smith
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Fanxin Long
- Departments of Orthopaedic Surgery and Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
358
|
Yan B, Zhang Z, Jin D, Cai C, Jia C, Liu W, Wang T, Li S, Zhang H, Huang B, Lai P, Wang H, Liu A, Zeng C, Cai D, Jiang Y, Bai X. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat Commun 2016; 7:11151. [PMID: 27039827 PMCID: PMC4822018 DOI: 10.1038/ncomms11151] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/24/2016] [Indexed: 12/20/2022] Open
Abstract
Precise coordination of cell growth, proliferation and differentiation is essential for the development of multicellular organisms. Here, we report that although the mechanistic target of rapamycin complex 1 (mTORC1) activity is required for chondrocyte growth and proliferation, its inactivation is essential for chondrocyte differentiation. Hyperactivation of mTORC1 via TSC1 gene deletion in chondrocytes causes uncoupling of the normal proliferation and differentiation programme within the growth plate, resulting in uncontrolled cell proliferation, and blockage of differentiation and chondrodysplasia in mice. Rapamycin promotes chondrocyte differentiation and restores these defects in mutant mice. Mechanistically, mTORC1 downstream kinase S6K1 interacts with and phosphorylates Gli2, and releases Gli2 from SuFu binding, resulting in nuclear translocation of Gli2 and transcription of parathyroid hormone-related peptide (PTHrP), a key regulator of bone development. Our findings demonstrate that dynamically controlled mTORC1 activity is crucial to coordinate chondrocyte proliferation and differentiation partially through regulating Gli2/PTHrP during endochondral bone development.
Collapse
Affiliation(s)
- Bo Yan
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Zhongmin Zhang
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Dadi Jin
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Chen Cai
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chunhong Jia
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wen Liu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting Wang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shengfa Li
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Haiyan Zhang
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Bin Huang
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Pinglin Lai
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hua Wang
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Anling Liu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chun Zeng
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Daozhang Cai
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Xiaochun Bai
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
359
|
Takegami Y, Ohkawara B, Ito M, Masuda A, Nakashima H, Ishiguro N, Ohno K. R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/β-catenin signaling in endochondral ossification. Biochem Biophys Res Commun 2016; 473:255-264. [DOI: 10.1016/j.bbrc.2016.03.089] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/18/2016] [Indexed: 12/21/2022]
|
360
|
Eckalbar WL, Schlebusch SA, Mason MK, Gill Z, Parker AV, Booker BM, Nishizaki S, Muswamba-Nday C, Terhune E, Nevonen KA, Makki N, Friedrich T, VanderMeer JE, Pollard KS, Carbone L, Wall JD, Illing N, Ahituv N. Transcriptomic and epigenomic characterization of the developing bat wing. Nat Genet 2016; 48:528-36. [PMID: 27019111 PMCID: PMC4848140 DOI: 10.1038/ng.3537] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022]
Abstract
Bats are the only mammals capable of powered flight, but little is known about the genetic determinants that shape their wings. Here we generated a genome for Miniopterus natalensis and performed RNA-seq and ChIP-seq (H3K27ac and H3K27me3) analyses on its developing forelimb and hindlimb autopods at sequential embryonic stages to decipher the molecular events that underlie bat wing development. Over 7,000 genes and several long noncoding RNAs, including Tbx5-as1 and Hottip, were differentially expressed between forelimb and hindlimb, and across different stages. ChIP-seq analysis identified thousands of regions that are differentially modified in forelimb and hindlimb. Comparative genomics found 2,796 bat-accelerated regions within H3K27ac peaks, several of which cluster near limb-associated genes. Pathway analyses highlighted multiple ribosomal proteins and known limb patterning signaling pathways as differentially regulated and implicated increased forelimb mesenchymal condensation in differential growth. In combination, our work outlines multiple genetic components that likely contribute to bat wing formation, providing insights into this morphological innovation.
Collapse
Affiliation(s)
- Walter L Eckalbar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | - Stephen A Schlebusch
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Mandy K Mason
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Zoe Gill
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Ash V Parker
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Betty M Booker
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | - Sierra Nishizaki
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | | | - Elizabeth Terhune
- Oregon National Primate Research Center, Division of Neuroscience, Primate Genetics Section, Beaverton, Oregon, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Kimberly A Nevonen
- Oregon National Primate Research Center, Division of Neuroscience, Primate Genetics Section, Beaverton, Oregon, USA
| | - Nadja Makki
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | - Tara Friedrich
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA.,Gladstone Institutes, San Francisco, California, USA
| | - Julia E VanderMeer
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | - Katherine S Pollard
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA.,Gladstone Institutes, San Francisco, California, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Lucia Carbone
- Oregon National Primate Research Center, Division of Neuroscience, Primate Genetics Section, Beaverton, Oregon, USA.,Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, USA
| | - Jeff D Wall
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Nicola Illing
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
361
|
Botelho JF, Smith-Paredes D, Soto-Acuña S, O'Connor J, Palma V, Vargas AO. Molecular development of fibular reduction in birds and its evolution from dinosaurs. Evolution 2016; 70:543-54. [PMID: 26888088 PMCID: PMC5069580 DOI: 10.1111/evo.12882] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 01/02/2016] [Accepted: 01/27/2016] [Indexed: 01/05/2023]
Abstract
Birds have a distally reduced, splinter‐like fibula that is shorter than the tibia. In embryonic development, both skeletal elements start out with similar lengths. We examined molecular markers of cartilage differentiation in chicken embryos. We found that the distal end of the fibula expresses Indian hedgehog (IHH), undergoing terminal cartilage differentiation, and almost no Parathyroid‐related protein (PTHrP), which is required to develop a proliferative growth plate (epiphysis). Reduction of the distal fibula may be influenced earlier by its close contact with the nearby fibulare, which strongly expresses PTHrP. The epiphysis‐like fibulare however then separates from the fibula, which fails to maintain a distal growth plate, and fibular reduction ensues. Experimental downregulation of IHH signaling at a postmorphogenetic stage led to a tibia and fibula of equal length: The fibula is longer than in controls and fused to the fibulare, whereas the tibia is shorter and bent. We propose that the presence of a distal fibular epiphysis may constrain greater growth in the tibia. Accordingly, many Mesozoic birds show a fibula that has lost its distal epiphysis, but remains almost as long as the tibia, suggesting that loss of the fibulare preceded and allowed subsequent evolution of great fibulo–tibial disparity.
Collapse
Affiliation(s)
- João Francisco Botelho
- Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias de la Universidad de Chile, Santiago, Chile.
| | - Daniel Smith-Paredes
- Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias de la Universidad de Chile, Santiago, Chile
| | - Sergio Soto-Acuña
- Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias de la Universidad de Chile, Santiago, Chile.,Área de Paleontología, Museo Nacional de Historia Natural, Santiago, Chile
| | - Jingmai O'Connor
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Science, Beijing, China
| | - Verónica Palma
- FONDAP Center for Genomic Regulation, Departamento de Biología, Facultad de Ciencias de la Universidad de Chile, Santiago, Chile
| | - Alexander O Vargas
- Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias de la Universidad de Chile, Santiago, Chile.
| |
Collapse
|
362
|
Cong Q, Jia H, Biswas S, Li P, Qiu S, Deng Q, Guo X, Ma G, Ling Chau JF, Wang Y, Zhang ZL, Jiang X, Liu H, Li B. p38α MAPK Regulates Lineage Commitment and OPG Synthesis of Bone Marrow Stromal Cells to Prevent Bone Loss under Physiological and Pathological Conditions. Stem Cell Reports 2016; 6:566-578. [PMID: 26947973 PMCID: PMC4834033 DOI: 10.1016/j.stemcr.2016.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 01/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are capable of differentiating into osteoblasts, chondrocytes, and adipocytes. Skewed differentiation of BM-MSCs contributes to the pathogenesis of osteoporosis. Yet how BM-MSC lineage commitment is regulated remains unclear. We show that ablation of p38α in Prx1+ BM-MSCs produced osteoporotic phenotypes, growth plate defects, and increased bone marrow fat, secondary to biased BM-MSC differentiation from osteoblast/chondrocyte to adipocyte and increased osteoclastogenesis and bone resorption. p38α regulates BM-MSC osteogenic commitment through TAK1-NF-κB signaling and osteoclastogenesis through osteoprotegerin (OPG) production by BM-MSCs. Estrogen activates p38α to maintain OPG expression in BM-MSCs to preserve the bone. Ablation of p38α in BM-MSCs positive for Dermo1, a later BM-MSC marker, only affected osteogenic differentiation. Thus, p38α mitogen-activated protein kinase (MAPK) in Prx1+ BM-MSCs acts to preserve the bone by promoting osteogenic lineage commitment and sustaining OPG production. This study thus unravels previously unidentified roles for p38α MAPK in skeletal development and bone remodeling. p38α deletion in Prx1+ BM-MSCs led to osteoporosis and cartilage anomaly p38α controls proliferation and tri-lineage differentiation of Prx1+ BM-MSCs p38α regulates osteoclastogenesis through OPG production by BM-MSCs The BM-MSC p38-OPG axis participates in estrogen deficiency-induced osteoporosis
Collapse
Affiliation(s)
- Qian Cong
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Jia
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Soma Biswas
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shoutao Qiu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Deng
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xizhi Guo
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gang Ma
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Yibin Wang
- Division of Molecular Medicine, Departments of Anesthesiology, Medicine and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Zhen-Lin Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University affiliated the Sixth People's Hospital, Shanghai 200233, China
| | - Xinquan Jiang
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| | - Huijuan Liu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Baojie Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
363
|
Patent highlights October–November 2015. Pharm Pat Anal 2016. [DOI: 10.4155/ppa.15.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical R&D.
Collapse
|
364
|
Wang JR, Wang CJ, Xu CY, Wu XK, Hong D, Shi W, Gong Y, Chen HX, Long F, Wu XM. Signaling Cascades Governing Cdc42-Mediated Chondrogenic Differentiation and Mensenchymal Condensation. Genetics 2016; 202:1055-69. [PMID: 26739452 PMCID: PMC4787953 DOI: 10.1534/genetics.115.180109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/30/2015] [Indexed: 12/30/2022] Open
Abstract
Endochondral ossification consists of successive steps of chondrocyte differentiation, including mesenchymal condensation, differentiation of chondrocytes, and hypertrophy followed by mineralization and ossification. Loss-of-function studies have revealed that abnormal growth plate cartilage of the Cdc42 mutant contributes to the defects in endochondral bone formation. Here, we have investigated the roles of Cdc42 in osteogenesis and signaling cascades governing Cdc42-mediated chondrogenic differentiation. Though deletion of Cdc42 in limb mesenchymal progenitors led to severe defects in endochondral ossification, either ablation of Cdc42 in limb preosteoblasts or knockdown of Cdc42 in vitro had no obvious effects on bone formation and osteoblast differentiation. However, in Cdc42 mutant limb buds, loss of Cdc42 in mesenchymal progenitors led to marked inactivation of p38 and Smad1/5, and in micromass cultures, Cdc42 lay on the upstream of p38 to activate Smad1/5 in bone morphogenetic protein-2-induced mesenchymal condensation. Finally, Cdc42 also lay on the upstream of protein kinase B to transactivate Sox9 and subsequently induced the expression of chondrocyte differential marker in transforming growth factor-β1-induced chondrogenesis. Taken together, by using biochemical and genetic approaches, we have demonstrated that Cdc42 is involved not in osteogenesis but in chondrogenesis in which the BMP2/Cdc42/Pak/p38/Smad signaling module promotes mesenchymal condensation and the TGF-β/Cdc42/Pak/Akt/Sox9 signaling module facilitates chondrogenic differentiation.
Collapse
Affiliation(s)
- Jirong R Wang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Chaojun J Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Chengyun Y Xu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiaokai K Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Dun Hong
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wei Shi
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Gong
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Haixiao X Chen
- Department of Orthopedics, Taizhou Hospital, Linhai 317000, China
| | - Fanxin Long
- Departments of Orthopaedic Surgery, Medicine and Developmental Biology, Washington University, St. Louis, Missouri 63110
| | - Ximei M Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China Departments of Orthopaedic Surgery, Medicine and Developmental Biology, Washington University, St. Louis, Missouri 63110
| |
Collapse
|
365
|
Bacchetta J, Salusky IB. Combining exercise and growth hormone therapy: how can we translate from animal models to chronic kidney disease children? Nephrol Dial Transplant 2016; 31:1191-4. [PMID: 26908776 DOI: 10.1093/ndt/gfv461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 11/12/2022] Open
Affiliation(s)
- Justine Bacchetta
- Centre de Référence des Maladies Rénales Rares, Service de Néphrologie Rhumatologie Dermatologie Pédiatriques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 Boulevard Pinel, 69677 Bron Cedex, France INSERM 1033, Lyon, France Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
| | - Isidro B Salusky
- David Geffen School of Medicine at UCLA, Division of Pediatric Nephrology, Los Angeles, CA, USA
| |
Collapse
|
366
|
Abstract
The SOXC group of transcription factors, composed of SOX4, SOX11, and SOX12, has evolved to fulfill key functions in cell fate determination. Expressed in many types of progenitor/stem cells, including skeletal progenitors, SOXC proteins potentiate pathways critical for cell survival and differentiation. As skeletogenesis unfolds, SOXC proteins ensure cartilage primordia delineation by amplifying canonical WNT signaling and antagonizing the chondrogenic action of SOX9 in perichondrium and presumptive articular joint cells. They then ensure skeletal elongation by inducing growth plate formation via enabling non-canonical WNT signaling. Human studies have associated SOX4 with bone mineral density and fracture risk in osteoporotic patients, and SOX11 with Coffin-Siris, a syndrome that includes skeletal dysmorphism. Meanwhile, in vitro and mouse studies have suggested important cell-autonomous roles for SOXC proteins in osteoblastogenesis. We here review current knowledge and gaps in understanding of SOXC protein functions, with an emphasis on the skeleton and possible links to osteoporosis.
Collapse
Affiliation(s)
- Véronique Lefebvre
- Department of Cellular & Molecular Medicine, Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Pallavi Bhattaram
- Department of Cellular & Molecular Medicine, Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| |
Collapse
|
367
|
Hasegawa S, Kitoh H, Ohkawara B, Mishima K, Matsushita M, Masuda A, Ishiguro N, Ohno K. Tranilast stimulates endochondral ossification by upregulating SOX9 and RUNX2 promoters. Biochem Biophys Res Commun 2016; 470:356-361. [DOI: 10.1016/j.bbrc.2016.01.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/08/2016] [Indexed: 12/14/2022]
|
368
|
Developmental basis of phenotypic integration in two Lake Malawi cichlids. EvoDevo 2016; 7:3. [PMID: 26798449 PMCID: PMC4721197 DOI: 10.1186/s13227-016-0040-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/06/2016] [Indexed: 02/05/2023] Open
Abstract
Background Cichlid fishes from the Rift Lakes of East Africa have undergone the most spectacular adaptive radiations in vertebrate history. Eco-morphological adaptations in lakes Victoria, Malawi and Tanganyika have resulted in a vast array of skull shapes and sizes, yet primary axes of morphological variation are conserved in all three radiations, prominently including the size of the preorbital region of the skull. This conserved pattern suggests that development may constrain the trajectories of cichlid head morphological evolution. Results Here, we (1) present a comparative analysis of adult head morphology in two sand-dweller cichlids from Lake Malawi with preorbital size differences representative of the main axis of variation among the three lakes and (2) analyze the ontogeny of shape and size differences by focusing on known developmental modules throughout the head. We find that (1) developmental differences between the two species correlate with known developmental modules; (2) differences in embryonic cartilage development result in phenotypically integrated changes among all bones derived from a single cartilage, while differences in dermal bone development tend to influence isolated regions within a bone; and lastly (3) species-specific morphologies appear in the embryo as subtle differences, which become progressively amplified throughout ontogeny. We propose that this amplification takes place at skeletal growth zones, the locations and shapes of which are patterned during embryogenesis. Conclusions This study is the most anatomically comprehensive analysis of the developmental differences underlying cichlid skull evolution in the Rift Lakes of East Africa. The scale of our analysis reveals previously unnoticed correlations between developmental modules and patterns of phenotypic integration. We propose that the primary axes of morphological variation among East African cichlid adaptive radiations are constrained by the hierarchical modularity of the teleost head skeleton.
Collapse
|
369
|
Hopkins A, Mirzayans F, Berry F. Foxc1 Expression in Early Osteogenic Differentiation Is Regulated by BMP4-SMAD Activity. J Cell Biochem 2016; 117:1707-17. [DOI: 10.1002/jcb.25464] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/11/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Alexander Hopkins
- Department of Surgery; University of Alberta; Edmonton Alberta Canada
| | - Freda Mirzayans
- Department of Medical Genetics; University of Alberta; Edmonton Alberta Canada
| | - Fred Berry
- Department of Surgery; University of Alberta; Edmonton Alberta Canada
- Department of Medical Genetics; University of Alberta; Edmonton Alberta Canada
| |
Collapse
|
370
|
Early development of the vertebral column. Semin Cell Dev Biol 2016; 49:83-91. [DOI: 10.1016/j.semcdb.2015.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022]
|
371
|
Abstract
Five syndromes share predominantly hyperplastic glands with a primary excess of hormones: neonatal severe primary hyperparathyroidism, from homozygous mutated CASR, begins severely in utero; congenital non-autoimmune thyrotoxicosis, from mutated TSHR, varies from severe with fetal onset to mild with adult onset; familial male-limited precocious puberty, from mutated LHR, expresses testosterone oversecretion in young boys; hereditary ovarian hyperstimulation syndrome, from mutated FSHR, expresses symptomatic systemic vascular permeabilities during pregnancy; and familial hyperaldosteronism type IIIA, from mutated KCNJ5, presents in young children with hypertension and hypokalemia. The grouping of these five syndromes highlights predominant hyperplasia as a stable tissue endpoint and as their tissue stage for all of the hormone excess. Comparisons were made among this and two other groups of syndromes, forming a continuum of gland staging: predominant oversecretions express little or no hyperplasia; predominant hyperplasias express little or no neoplasia; and predominant neoplasias express nodules, adenomas, or cancers. Hyperplasias may progress (5 of 5) to neoplastic stages while predominant oversecretions rarely do (1 of 6; frequencies differ P<0.02). Hyperplasias do not show tumor multiplicity (0 of 5) unlike neoplasias that do (13 of 19; P<0.02). Hyperplasias express mutation of a plasma membrane-bound sensor (5 of 5), while neoplasias rarely do (3 of 14; P<0.002). In conclusion, the multiple distinguishing themes within the hyperplasias establish a robust pathophysiology. It has the shared and novel feature of mutant sensors in the plasma membrane, suggesting that these are major contributors to hyperplasia.
Collapse
Affiliation(s)
- Stephen J Marx
- Genetics and Endocrinology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Room 9C-103, Bethesda, Maryland 20892, USA
| |
Collapse
|
372
|
Le LTT, Swingler TE, Crowe N, Vincent TL, Barter MJ, Donell ST, Delany AM, Dalmay T, Young DA, Clark IM. The microRNA-29 family in cartilage homeostasis and osteoarthritis. J Mol Med (Berl) 2015; 94:583-96. [PMID: 26687115 PMCID: PMC4856728 DOI: 10.1007/s00109-015-1374-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/30/2015] [Indexed: 12/21/2022]
Abstract
Abstract MicroRNAs have been shown to function in cartilage development and homeostasis, as well as in progression of osteoarthritis. The objective of the current study was to identify microRNAs involved in the onset or early progression of osteoarthritis and characterise their function in chondrocytes. MicroRNA expression in mouse knee joints post-DMM surgery was measured over 7 days. Expression of miR-29b-3p was increased at day 1 and regulated in the opposite direction to its potential targets. In a mouse model of cartilage injury and in end-stage human OA cartilage, the miR-29 family was also regulated. SOX9 repressed expression of miR-29a-3p and miR-29b-3p via the 29a/b1 promoter. TGFβ1 decreased expression of miR-29a, b, and c (3p) in primary chondrocytes, whilst IL-1β increased (but LPS decreased) their expression. The miR-29 family negatively regulated Smad, NFκB, and canonical WNT signalling pathways. Expression profiles revealed regulation of new WNT-related genes. Amongst these, FZD3, FZD5, DVL3, FRAT2, and CK2A2 were validated as direct targets of the miR-29 family. These data identify the miR-29 family as microRNAs acting across development and progression of OA. They are regulated by factors which are important in OA and impact on relevant signalling pathways. Key messages Expression of the miR-29 family is regulated in cartilage during osteoarthritis. SOX9 represses expression of the miR-29 family in chondrocytes. The miR-29 family is regulated by TGF-β1 and IL-1 in chondrocytes. The miR-29 family negatively regulates Smad, NFκB, and canonical Wnt signalling. Several Wnt-related genes are direct targets of the miR-29 family.
Electronic supplementary material The online version of this article (doi:10.1007/s00109-015-1374-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linh T T Le
- Biomedical Research Centre, School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Tracey E Swingler
- Biomedical Research Centre, School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Natalie Crowe
- Biomedical Research Centre, School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Tonia L Vincent
- Department of Cell Signalling, Kennedy Institute of Rheumatology, University of Oxford, Oxfordshire, UK
| | - Matthew J Barter
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Simon T Donell
- Institute of Orthopaedics, Norfolk and Norwich University Hospital, Norfolk, UK
| | - Anne M Delany
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Tamas Dalmay
- Biomedical Research Centre, School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - David A Young
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ian M Clark
- Biomedical Research Centre, School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
| |
Collapse
|
373
|
The tumor suppressor BTG1 is expressed in the developing digits and regulates skeletogenic differentiation of limb mesodermal progenitors in high density cultures. Cell Tissue Res 2015; 364:299-308. [PMID: 26662056 DOI: 10.1007/s00441-015-2331-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/11/2015] [Indexed: 01/07/2023]
Abstract
In the developing limb, differentiation of skeletal progenitors towards distinct connective tissues of the digits is correlated with the establishment of well-defined domains of Btg1 gene expression. Zones of high expression of Btg1 include the earliest digit blastemas, the condensing mesoderm at the tip of the growing digits, the peritendinous mesenchyme, and the chondrocytes around the developing interphalangeal joints. Gain- and loss-of function experiments in micromass cultures of skeletal progenitors reveal a negative influence of Btg1 in cartilage differentiation accompanied by up-regulation of Ccn1, Scleraxis and PTHrP. Previous studies have assigned a role to these factors in the aggregation of progenitors in the digit tips (Ccn1), in the differentiation of tendon blastemas (Scleraxis) and repressing hypertrophic cartilage differentiation (PTHrP). Overexpression of Btg1 up-regulates the expression of retinoic acid and thyroid hormone receptors, but, different from other systems, the influence of BTG1 in connective tissue differentiation appears to be independent of retinoic acid and thyroid hormone signaling.
Collapse
|
374
|
Abstract
The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for "catch-up growth" to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| |
Collapse
|
375
|
Green JD, Tollemar V, Dougherty M, Yan Z, Yin L, Ye J, Collier Z, Mohammed MK, Haydon RC, Luu HH, Kang R, Lee MJ, Ho SH, He TC, Shi LL, Athiviraham A. Multifaceted signaling regulators of chondrogenesis: Implications in cartilage regeneration and tissue engineering. Genes Dis 2015; 2:307-327. [PMID: 26835506 PMCID: PMC4730920 DOI: 10.1016/j.gendis.2015.09.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/16/2015] [Indexed: 01/08/2023] Open
Abstract
Defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity and avascular nature. Current surgical treatment options do not ensure consistent regeneration of hyaline cartilage in favor of fibrous tissue. Here, we review the current understanding of the most important biological regulators of chondrogenesis and their interactions, to provide insight into potential applications for cartilage tissue engineering. These include various signaling pathways, including: fibroblast growth factors (FGFs), transforming growth factor β (TGF-β)/bone morphogenic proteins (BMPs), Wnt/β-catenin, Hedgehog, Notch, hypoxia, and angiogenic signaling pathways. Transcriptional and epigenetic regulation of chondrogenesis will also be discussed. Advances in our understanding of these signaling pathways have led to promising advances in cartilage regeneration and tissue engineering.
Collapse
Affiliation(s)
- Jordan D. Green
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Viktor Tollemar
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mark Dougherty
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhengjian Yan
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liangjun Yin
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jixing Ye
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Zachary Collier
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Maryam K. Mohammed
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Kang
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
376
|
Abstract
Bone is increasingly viewed as an endocrine organ with key biological functions. The skeleton produces hormones and cytokines, such as FGF23 and osteocalcin, which regulate an extensive list of homoeostatic functions. Some of these functions include glucose metabolism, male fertility, blood cell production and calcium/phosphate metabolism. Many of the genes regulating these functions are specific to bone cells. Some of these genes can be wrongly expressed by other malfunctioning cells, driving the generation of disease. The miRNAs are a class of non-coding RNA molecules that are powerful regulators of gene expression by suppressing and fine-tuning target mRNAs. Expression of one such miRNA, miR-140, is ubiquitous in chondrocyte cells during embryonic bone development. Activity in cells found in the adult breast, colon and lung tissue can silence genes required for tumour suppression. The realization that the same miRNA can be both normal and detrimental, depending on the cell, tissue and time point, provides a captivating twist to the study of whole-organism functional genomics. With the recent interest in miRNAs in bone biology and RNA-based therapeutics on the horizon, we present a review on the role of miR-140 in the molecular events that govern bone formation in the embryo. Cellular pathways involving miR-140 may be reactivated or inhibited when treating skeletal injury or disorder in adulthood. These pathways may also provide a novel model system when studying cancer biology of other cells and tissues.
Collapse
|
377
|
Brizola E, McCarthy E, Shapiro JR. Bulbous epiphysis and popcorn calcification as related to growth plate differentiation in osteogenesis imperfecta. ACTA ACUST UNITED AC 2015; 12:202-6. [PMID: 26604951 DOI: 10.11138/ccmbm/2015.12.2.202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Osteogenesis Imperfecta (OI) is an heritable systemic disorder of connective tissue due to different sequence variants in genes affecting both the synthesis of type I collagen and osteoblast function. Dominant and recessive inheritance is recognized. Approximately 90% of the OI cases are due to mutations in COL1A1/A2 genes. We clinically and radiologically describes an adult male with type III osteogenesis imperfecta who presents a rare bone dysplasia termed bulbous epiphyseal deformity in association with popcorn calcifications. Popcorn calcifications may occur with bulbous epiphyseal deformity or independently. METHODS Molecular analysis was performed for COL1A1, COL1A2, LEPRE1 and WNT1 genes. RESULTS An uncommon COL1A1 mutation was identified. Clinical and radiological exams confirmed a distinctive bulbous epiphyseal deformity with popcorn calcifications in distal femurs. We have identified four additional OI patients reported in current literature, whose X-rays show bulbous epiphyseal deformity related to mutations in CR-TAP, LEPRE1 and WNT1 genes. CONCLUSION The mutation identified here had been previously described twice in OI patients and no previous correlation with bulbous epiphyseal deformity was described. The occurrence of this bone dysplasia focuses attention on alterations in normal growth plate differentiation and the subsequent effect on endochondral bone formation in OI.
Collapse
Affiliation(s)
- Evelise Brizola
- Bone and Osteogenesis Imperfecta Department, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Postgraduate Program in Child and Adolescent Health, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Edward McCarthy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jay Robert Shapiro
- Bone and Osteogenesis Imperfecta Department, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
378
|
Xiong Z, Jiang R, Li X, Liu Y, Guo F. Different Roles of GRP78 on Cell Proliferation and Apoptosis in Cartilage Development. Int J Mol Sci 2015; 16:21153-76. [PMID: 26370957 PMCID: PMC4613247 DOI: 10.3390/ijms160921153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/16/2022] Open
Abstract
Eukaryotic cells possess several mechanisms to adapt to endoplasmic reticulum (ER) stress and thereby survive. ER stress activates a set of signaling pathways collectively termed as the unfolded protein response (UPR). We previously reported that Bone morphogenetic protein 2 (BMP2) mediates mild ER stress and activates UPR signal molecules in chondrogenesis. The mammalian UPR protects the cell against the stress of misfolded proteins in the endoplasmic reticulum. Failure to adapt to ER stress causes the UPR to trigger apoptosis. Glucose regulated protein 78 (GRP78), as an important molecular chaperone in UPR signaling pathways, is responsible for binding to misfolded or unfolded protein during ER stress. However the influence on GRP78 in BMP2-induced chondrocyte differentiation has not yet been elucidated and the molecular mechanism underlyng these processes remain unexplored. Herein we demonstrate that overexpression of GRP78 enhanced cell proliferation in chondrocyte development with G1 phase advance, S phase increasing and G2-M phase transition. Furthermore, overexpression of GRP78 inhibited ER stress-mediated apoptosis and then reduced apoptosis in chondrogenesis induced by BMP2, as assayed by cleaved caspase3, caspase12, C/EBP homologous protein (CHOP/DDIT3/GADD153), p-JNK (phosphorylated c-Jun N-terminal kinase) expression during the course of chondrocyte differentiation by Western blot. In addition, flow cytometry (FCM) assay, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL) assay and immune-histochemistry analysis also proved this result in vitro and in vivo. It was demonstrated that GRP78 knockdown via siRNA activated the ER stress-specific caspase cascade in developing chondrocyte tissue. Collectively, these findings reveal a novel critical role of GRP78 in regulating ER stress-mediated apoptosis in cartilage development and the molecular mechanisms involved.
Collapse
Affiliation(s)
- Zhangyuan Xiong
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China.
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Xiangzhu Li
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China.
| | - Yanna Liu
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China.
| | - Fengjin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
379
|
Affiliation(s)
- P Purcell
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - P A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
380
|
Stern T, Aviram R, Rot C, Galili T, Sharir A, Kalish Achrai N, Keller Y, Shahar R, Zelzer E. Isometric Scaling in Developing Long Bones Is Achieved by an Optimal Epiphyseal Growth Balance. PLoS Biol 2015; 13:e1002212. [PMID: 26241802 PMCID: PMC4524611 DOI: 10.1371/journal.pbio.1002212] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 06/26/2015] [Indexed: 11/19/2022] Open
Abstract
One of the major challenges that developing organs face is scaling, that is, the adjustment of physical proportions during the massive increase in size. Although organ scaling is fundamental for development and function, little is known about the mechanisms that regulate it. Bone superstructures are projections that typically serve for tendon and ligament insertion or articulation and, therefore, their position along the bone is crucial for musculoskeletal functionality. As bones are rigid structures that elongate only from their ends, it is unclear how superstructure positions are regulated during growth to end up in the right locations. Here, we document the process of longitudinal scaling in developing mouse long bones and uncover the mechanism that regulates it. To that end, we performed a computational analysis of hundreds of three-dimensional micro-CT images, using a newly developed method for recovering the morphogenetic sequence of developing bones. Strikingly, analysis revealed that the relative position of all superstructures along the bone is highly preserved during more than a 5-fold increase in length, indicating isometric scaling. It has been suggested that during development, bone superstructures are continuously reconstructed and relocated along the shaft, a process known as drift. Surprisingly, our results showed that most superstructures did not drift at all. Instead, we identified a novel mechanism for bone scaling, whereby each bone exhibits a specific and unique balance between proximal and distal growth rates, which accurately maintains the relative position of its superstructures. Moreover, we show mathematically that this mechanism minimizes the cumulative drift of all superstructures, thereby optimizing the scaling process. Our study reveals a general mechanism for the scaling of developing bones. More broadly, these findings suggest an evolutionary mechanism that facilitates variability in bone morphology by controlling the activity of individual epiphyseal plates. A novel computational approach for studying bone morphogenesis reveals that the longitudinal proportions of developing long bones are accurately maintained throughout elongation by the balance between proximal and distal growth rates. One of the major challenges that developing organs face is scaling, that is, the adjustment of physical proportions during the massive increase in size. Bone superstructures are projections that typically serve for tendon and ligament insertion or articulation. Therefore, superstructure position along the bone is crucial for musculoskeletal functionality. As bones are rigid structures that elongate only from their ends, it is unclear how superstructure positions are regulated during growth to end up in the right locations. Here, by analyzing a massive database of micro-CT images of developing mouse long bones, we show that all superstructures maintain their relative positions throughout development. It has been suggested that during development, superstructures are continuously reconstructed and relocated along the shaft, a process known as drift. However, our analysis reveals that most superstructures did not drift at all, implying the involvement of another mechanism. Indeed, we identify a novel mechanism for bone scaling, whereby each bone exhibits a specific and unique balance between the growth rates from its two ends, which accurately maintains the relative position of its superstructures. Moreover, we show mathematically that this mechanism minimizes the cumulative drift of all superstructures, thereby optimizing the scaling process.
Collapse
Affiliation(s)
- Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (TS); (EZ)
| | - Rona Aviram
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Chagai Rot
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Galili
- Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel
| | - Amnon Sharir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noga Kalish Achrai
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yosi Keller
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Ron Shahar
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (TS); (EZ)
| |
Collapse
|
381
|
Abstract
Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Pierre J Marie
- UMR-1132, Institut National de la Santé et de la Recherche Médicale, Hopital Lariboisiere, 75475 Paris Cedex 10, France; Université Paris Diderot, Sorbonne Paris Cité, 75475 Paris Cedex 10, France
| |
Collapse
|
382
|
Liu CF, Lefebvre V. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Res 2015; 43:8183-203. [PMID: 26150426 PMCID: PMC4787819 DOI: 10.1093/nar/gkv688] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/24/2015] [Indexed: 12/21/2022] Open
Abstract
SOX9 is a transcriptional activator required for chondrogenesis, and SOX5 and SOX6 are closely related DNA-binding proteins that critically enhance its function. We use here genome-wide approaches to gain novel insights into the full spectrum of the target genes and modes of action of this chondrogenic trio. Using the RCS cell line as a faithful model for proliferating/early prehypertrophic growth plate chondrocytes, we uncover that SOX6 and SOX9 bind thousands of genomic sites, frequently and most efficiently near each other. SOX9 recognizes pairs of inverted SOX motifs, whereas SOX6 favors pairs of tandem SOX motifs. The SOX proteins primarily target enhancers. While binding to a small fraction of typical enhancers, they bind multiple sites on almost all super-enhancers (SEs) present in RCS cells. These SEs are predominantly linked to cartilage-specific genes. The SOX proteins effectively work together to activate these SEs and are required for in vivo expression of their associated genes. These genes encode key regulatory factors, including the SOX trio proteins, and all essential cartilage extracellular matrix components. Chst11, Fgfr3, Runx2 and Runx3 are among many other newly identified SOX trio targets. SOX9 and SOX5/SOX6 thus cooperate genome-wide, primarily through SEs, to implement the growth plate chondrocyte differentiation program.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Véronique Lefebvre
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
383
|
|
384
|
Recent Advances in Hydroxyapatite Scaffolds Containing Mesenchymal Stem Cells. Stem Cells Int 2015; 2015:305217. [PMID: 26106425 PMCID: PMC4464687 DOI: 10.1155/2015/305217] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/30/2015] [Indexed: 01/07/2023] Open
Abstract
Modern day tissue engineering and cellular therapies have gravitated toward using stem cells with scaffolds as a dynamic modality to aid in differentiation and tissue regeneration. Mesenchymal stem cells (MSCs) are one of the most studied stem cells used in combination with scaffolds. These cells differentiate along the osteogenic lineage when seeded on hydroxyapatite containing scaffolds and can be used as a therapeutic option to regenerate various tissues. In recent years, the combination of hydroxyapatite and natural or synthetic polymers has been studied extensively. Due to the interest in these scaffolds, this review will cover the wide range of hydroxyapatite containing scaffolds used with MSCs for in vitro and in vivo experiments. Further, in order to maintain a progressive scope of the field this review article will only focus on literature utilizing adult human derived MSCs (hMSCs) published in the last three years.
Collapse
|
385
|
Yao B, Wang Q, Liu CF, Bhattaram P, Li W, Mead TJ, Crish JF, Lefebvre V. The SOX9 upstream region prone to chromosomal aberrations causing campomelic dysplasia contains multiple cartilage enhancers. Nucleic Acids Res 2015; 43:5394-408. [PMID: 25940622 PMCID: PMC4477657 DOI: 10.1093/nar/gkv426] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/17/2015] [Indexed: 01/18/2023] Open
Abstract
Two decades after the discovery that heterozygous mutations within and around SOX9 cause campomelic dysplasia, a generalized skeleton malformation syndrome, it is well established that SOX9 is a master transcription factor in chondrocytes. In contrast, the mechanisms whereby translocations in the –350/–50-kb region 5′ of SOX9 cause severe disease and whereby SOX9 expression is specified in chondrocytes remain scarcely known. We here screen this upstream region and uncover multiple enhancers that activate Sox9-promoter transgenes in the SOX9 expression domain. Three of them are primarily active in chondrocytes. E250 (located at –250 kb) confines its activity to condensed prechondrocytes, E195 mainly targets proliferating chondrocytes, and E84 is potent in all differentiated chondrocytes. E84 and E195 synergize with E70, previously shown to be active in most Sox9-expressing somatic tissues, including cartilage. While SOX9 protein powerfully activates E70, it does not control E250. It requires its SOX5/SOX6 chondrogenic partners to robustly activate E195 and additional factors to activate E84. Altogether, these results indicate that SOX9 expression in chondrocytes relies on widely spread transcriptional modules whose synergistic and overlapping activities are driven by SOX9, SOX5/SOX6 and other factors. They help elucidate mechanisms underlying campomelic dysplasia and will likely help uncover other disease mechanisms.
Collapse
Affiliation(s)
- Baojin Yao
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Qiuqing Wang
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Chia-Feng Liu
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Pallavi Bhattaram
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Wei Li
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Timothy J Mead
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - James F Crish
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Véronique Lefebvre
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| |
Collapse
|