4351
|
Salt tolerance of nitrogen fixation in Medicago ciliaris is related to nodule sucrose metabolism performance rather than antioxidant system. Symbiosis 2010. [DOI: 10.1007/s13199-010-0073-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4352
|
Gill T, Sreenivasulu Y, Kumar S, Ahuja PS. Over-expression of superoxide dismutase exhibits lignification of vascular structures in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:757-760. [PMID: 20138686 DOI: 10.1016/j.jplph.2009.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 05/28/2023]
Abstract
The present study demonstrated that over-expression of copper-zinc superoxide dismutase (Cu/Zn-SOD), an important enzyme scavenging reactive oxygen species, improved vascular structures through lignification and imparted tolerance to salt stress (NaCl) in Arabidopsis thaliana (Arabidopsis; accession Col-0). Transgenic plants of Arabidopsis were developed by over-expressing cytosolic Cu/Zn-SOD from Potentilla atrosanguinea under CaMV35S promoter via Agrobacterium tumefaciens mediated transformation. Homozygous T(3) lines were analyzed for morphological, anatomical and molecular differences in response to salt stress. The transgenic plants showed higher germination and survival percentage, larger root length, larger rosette area and the higher number of leaves as compared to the wild type (WT) under NaCl stress. Anatomical studies of the inflorescence stem revealed significant thickening of inter-vesicular cambium in transgenics under NaCl stress as compared to the (i) WT and the transgenics raised in the absence of NaCl stress, as well as (ii) WT raised under NaCl stress. This thickening was possibly due to lignification as evidenced by the confocal microscopy. Also, the up-regulation of transcripts of critical genes of lignin biosynthesis, phenylalanine ammonia-lyase1 (PAL1) and peroxidase (PRXR9GE) in the transgenics supported lignification of vascular tissue under the above stated conditions. Results have been discussed on the possible implication of over-expression of PaSOD in lignification of vascular structure under NaCl stress in Arabidopsis.
Collapse
Affiliation(s)
- Tejpal Gill
- Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India
| | | | | | | |
Collapse
|
4353
|
Naz N, Hameed M, Sajid Aqeel Ahmad M, Ashraf M, Arshad M. Is soil salinity one of the major determinants of community structure under arid environments? COMMUNITY ECOL 2010. [DOI: 10.1556/comec.11.2010.1.12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4354
|
Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ, Lu CF, Zhou XY, Shen X, Zheng XJ, Zhang ZK, Song J, Hu ZM, Xu Y, Chen SL. H2O2 and cytosolic Ca2+ signals triggered by the PM H-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. PLANT, CELL & ENVIRONMENT 2010; 33:943-58. [PMID: 20082667 DOI: 10.1111/j.1365-3040.2010.02118.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Using confocal microscopy, X-ray microanalysis and the scanning ion-selective electrode technique, we investigated the signalling of H(2)O(2), cytosolic Ca(2+) ([Ca(2+)](cyt)) and the PM H(+)-coupled transport system in K(+)/Na(+) homeostasis control in NaCl-stressed calluses of Populus euphratica. An obvious Na(+)/H(+) antiport was seen in salinized cells; however, NaCl stress caused a net K(+) efflux, because of the salt-induced membrane depolarization. H(2)O(2) levels, regulated upwards by salinity, contributed to ionic homeostasis, because H(2)O(2) restrictions by DPI or DMTU caused enhanced K(+) efflux and decreased Na(+)/H(+) antiport activity. NaCl induced a net Ca(2+) influx and a subsequent rise of [Ca(2+)](cyt), which is involved in H(2)O(2)-mediated K(+)/Na(+) homeostasis in salinized P. euphratica cells. When callus cells were pretreated with inhibitors of the Na(+)/H(+) antiport system, the NaCl-induced elevation of H(2)O(2) and [Ca(2+)](cyt) was correspondingly restricted, leading to a greater K(+) efflux and a more pronounced reduction in Na(+)/H(+) antiport activity. Results suggest that the PM H(+)-coupled transport system mediates H(+) translocation and triggers the stress signalling of H(2)O(2) and Ca(2+), which results in a K(+)/Na(+) homeostasis via mediations of K(+) channels and the Na(+)/H(+) antiport system in the PM of NaCl-stressed cells. Accordingly, a salt stress signalling pathway of P. euphratica cells is proposed.
Collapse
Affiliation(s)
- Jian Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4355
|
Yao S, Lan H, Zhang F. Variation of seed heteromorphism in Chenopodium album and the effect of salinity stress on the descendants. ANNALS OF BOTANY 2010; 105:1015-25. [PMID: 20501882 PMCID: PMC2876003 DOI: 10.1093/aob/mcq060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 12/14/2009] [Accepted: 02/11/2010] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Chenopodium album is well-known as a serious weed and is a salt-tolerant species inhabiting semi-arid and light-saline environments in Xinjiang, China. It produces large amounts of heteromorphic (black and brown) seeds. The primary aims of the present study were to compare the germination characteristics of heteromorphic seeds, the diversity of plant growth and seed proliferation pattern of the resulting plants, and the correlation between NaCl stress and variation of seed heteromorphism. METHODS The phenotypic characters of heteromorphic seeds, e.g. seed morphology, seed mass and total seed protein were determined. The effects of dry storage at room temperature on dormancy behaviour, the germination response of seeds to salinity stress, and the effect of salinity on growth and seed proliferation with plants derived from different seed types were investigated. KEY RESULTS Black and brown seeds differed in seed morphology, mass, total seed protein, dormancy behaviour and salinity tolerance. Brown seeds were large, non-dormant and more salt tolerant, and could germinate rapidly to a high percentage in a wider range of environments; black seeds were salt-sensitive, and a large proportion of seeds were dormant. These characteristics varied between two populations. There was little difference in growth characteristics and seed output of plants produced from the two seed morphs except when plants were subjected to high salinity stress. Plants that suffered higher salinity stress produced more brown (salt-tolerant) seeds. CONCLUSIONS The two seed morphs of C. album exhibited distinct diversity in germination characteristics. There was a significant difference in plant development and seed proliferation pattern from the two types of seeds only when the parent plants were treated with high salinity. In addition, seed heteromorphism of C. album varied between the two populations, and such variation may be attributed, at least in part, to the salinity.
Collapse
|
4356
|
Conn S, Gilliham M. Comparative physiology of elemental distributions in plants. ANNALS OF BOTANY 2010; 105:1081-102. [PMID: 20410048 PMCID: PMC2887064 DOI: 10.1093/aob/mcq027] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/16/2009] [Accepted: 12/16/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants contain relatively few cell types, each contributing a specialized role in shaping plant function. With respect to plant nutrition, different cell types accumulate certain elements in varying amounts within their storage vacuole. The role and mechanisms underlying cell-specific distribution of elements in plants is poorly understood. SCOPE The phenomenon of cell-specific elemental accumulation has been briefly reviewed previously, but recent technological advances with the potential to probe mechanisms underlying elemental compartmentation have warranted an updated evaluation. We have taken this opportunity to catalogue many of the studies, and techniques used for, recording cell-specific compartmentation of particular elements. More importantly, we use three case-study elements (Ca, Cd and Na) to highlight the basis of such phenomena in terms of their physiological implications and underpinning mechanisms; we also link such distributions to the expression of known ion or solute transporters. CONCLUSIONS Element accumulation patterns are clearly defined by expression of key ion or solute transporters. Although the location of element accumulation is fairly robust, alterations in expression of certain solute transporters, through genetic modifications or by growth under stress, result in perturbations to these patterns. However, redundancy or induced pleiotropic expression effects may complicate attempts to characterize the pathways that lead to cell-specific elemental distribution. Accumulation of one element often has consequences on the accumulation of others, which seems to be driven largely to maintain vacuolar and cytoplasmic osmolarity and charge balance, and also serves as a detoxification mechanism. Altered cell-specific transcriptomics can be shown, in part, to explain some of this compensation.
Collapse
Affiliation(s)
- Simon Conn
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Matthew Gilliham
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
4357
|
de Vos AC, Broekman R, Groot MP, Rozema J. Ecophysiological response of Crambe maritima to airborne and soil-borne salinity. ANNALS OF BOTANY 2010; 105:925-37. [PMID: 20354071 PMCID: PMC2876014 DOI: 10.1093/aob/mcq072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS There is a need to evaluate the salt tolerance of plant species that can be cultivated as crops under saline conditions. Crambe maritima is a coastal plant, usually occurring on the driftline, with potential use as a vegetable crop. The aim of this experiment was to determine the growth response of Crambe maritima to various levels of airborne and soil-borne salinity and the ecophysiological mechanisms underlying these responses. METHODS In the greenhouse, plants were exposed to salt spray (400 mM NaCl) as well as to various levels of root-zone salinity (RZS) of 0, 50, 100, 200 and 300 mM NaCl during 40 d. The salt tolerance of Crambe maritima was assessed by the relative growth rate (RGR) and its components. To study possible salinity effects on the tissue and cellular level, the leaf succulence, tissue Na(+) concentrations, Na(+) : K(+) ratio, net K(+)/Na(+) selectivity, N, P, K(+), Ca(2+), Mg(2+), proline, soluble sugar concentrations, osmotic potential, total phenolics and antioxidant capacity were measured. KEY RESULTS Salt spray did not affect the RGR of Crambe maritima. However, leaf thickness and leaf succulence increased with salt spray. Root zone salinities up to 100 mM NaCl did not affect growth. However, at 200 mM NaCl RZS the RGR was reduced by 41 % compared with the control and by 56 % at 300 mM NaCl RZS. The reduced RGR with increasing RZS was largely due to the reduced specific leaf area, which was caused by increased leaf succulence as well as by increased leaf dry matter content. No changes in unit leaf rate were observed but increased RZS resulted in increased Na(+) and proline concentrations, reduced K(+), Ca(2+) and Mg(2+) concentrations, lower osmotic potential and increased antioxidant capacity. Proline concentrations of the leaves correlated strongly (r = 0.95) with RZS concentrations and not with plant growth. CONCLUSIONS Based on its growth response, Crambe maritima can be classified as a salt spray tolerant plant that is sensitive to root zone salinities exceeding 100 mM NaCl.
Collapse
Affiliation(s)
- Arjen C de Vos
- Institute of Ecological Science, Department of Systems Ecology, VU University Amsterdam, De Boelelaan 1085, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
4358
|
White PJ, Brown PH. Plant nutrition for sustainable development and global health. ANNALS OF BOTANY 2010; 105:1073-80. [PMID: 20430785 PMCID: PMC2887071 DOI: 10.1093/aob/mcq085] [Citation(s) in RCA: 417] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/19/2010] [Accepted: 03/24/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants require at least 14 mineral elements for their nutrition. These include the macronutrients nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and sulphur (S) and the micronutrients chlorine (Cl), boron (B), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), nickel (Ni) and molybdenum (Mo). These are generally obtained from the soil. Crop production is often limited by low phytoavailability of essential mineral elements and/or the presence of excessive concentrations of potentially toxic mineral elements, such as sodium (Na), Cl, B, Fe, Mn and aluminium (Al), in the soil solution. SCOPE This article provides the context for a Special Issue of the Annals of Botany on 'Plant Nutrition for Sustainable Development and Global Health'. It provides an introduction to plant mineral nutrition and explains how mineral elements are taken up by roots and distributed within plants. It introduces the concept of the ionome (the elemental composition of a subcellular structure, cell, tissue or organism), and observes that the activities of key transport proteins determine species-specific, tissue and cellular ionomes. It then describes how current research is addressing the problems of mineral toxicities in agricultural soils to provide food security and the optimization of fertilizer applications for economic and environmental sustainability. It concludes with a perspective on how agriculture can produce edible crops that contribute sufficient mineral elements for adequate animal and human nutrition.
Collapse
Affiliation(s)
- P J White
- Scottish Crop Research Institute, Invergowrie, Dundee DD25DA, UK.
| | | |
Collapse
|
4359
|
Wee CW, Dinneny JR. Tools for high-spatial and temporal-resolution analysis of environmental responses in plants. Biotechnol Lett 2010; 32:1361-71. [PMID: 20502944 DOI: 10.1007/s10529-010-0307-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 05/10/2010] [Indexed: 01/09/2023]
Abstract
Understanding how plants cope with environmental change requires a spatiotemporal perspective. In this review, we highlight recent work which has led to the development and use of novel tools for the high spatial and temporal-resolution analysis of the plant-environment interaction. FACS-based transcriptome and immunoprecipitation-based translatome data sets have provided an important foundation for the analysis of the transcriptional and translational control of environmental responses in each tissue layer of the plant. Complementary approaches, based on a proteomic toolkit, have provided insight into the biological response of Arabidopsis to NaCl and the relationship between transcript and protein levels. The development and adaptation of biosensors and ion-specific dyes provides the capacity to visualize changes in the transport and accumulation of metabolites and small molecules such as sugars, Na(+) and Ca(2+) at the cellular level. Finally, live-imaging approaches coupled with automated image-analysis algorithms are revealing new levels of dynamism and plasticity in the response to light and gravity. Together, these tools will provide a more comprehensive understanding of environmental responses in plants, which will aide in the development of new crop varieties for sustainable agriculture.
Collapse
Affiliation(s)
- Choon W Wee
- Temasek Lifesciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Republic of Singapore
| | | |
Collapse
|
4360
|
Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 2010; 123:1468-79. [PMID: 20375061 DOI: 10.1242/jcs.064352] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Reactive oxygen species (ROS) are central to plant stress response, signalling, development and a multitude of other processes. In this study, the plasma-membrane hydroxyl radical (HR)-activated K(+) channel responsible for K(+) efflux from root cells during stress accompanied by ROS generation is characterised. The channel showed 16-pS unitary conductance and was sensitive to Ca(2+), tetraethylammonium, Ba(2+), Cs(+) and free-radical scavengers. The channel was not found in the gork1-1 mutant, which lacks a major plasma-membrane outwardly rectifying K(+) channel. In intact Arabidopsis roots, both HRs and stress induced a dramatic K(+) efflux that was much smaller in gork1-1 plants. Tests with electron paramagnetic resonance spectroscopy showed that NaCl can stimulate HR generation in roots and this might lead to K(+)-channel activation. In animals, activation of K(+)-efflux channels by HRs can trigger programmed cell death (PCD). PCD symptoms in Arabidopsis roots developed much more slowly in gork1-1 and wild-type plants treated with K(+)-channel blockers or HR scavengers. Therefore, similar to animal counterparts, plant HR-activated K(+) channels are also involved in PCD. Overall, this study provides new insight into the regulation of plant cation transport by ROS and demonstrates possible physiological properties of plant HR-activated K(+) channels.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Biological Sciences, University of Essex, Colchester, Essex CO4 5AP, UK.
| | | | | | | | | | | | | | | |
Collapse
|
4361
|
Faiyue B, Vijayalakshmi C, Nawaz S, Nagato Y, Taketa S, Ichii M, Al-Azzawi MJ, Flowers TJ. Studies on sodium bypass flow in lateral rootless mutants lrt1 and lrt2, and crown rootless mutant crl1 of rice (Oryza sativa L.). PLANT, CELL & ENVIRONMENT 2010; 33:687-701. [PMID: 19930131 DOI: 10.1111/j.1365-3040.2009.02077.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An apoplastic pathway, the so-called bypass flow, is important for Na+ uptake in rice (Oryza sativa L.) under saline conditions; however, the precise site of entry is not yet known. We report the results of our test of the hypothesis that bypass flow of Na+ in rice occurs at the site where lateral roots emerge from the main roots. We investigated Na+ uptake and bypass flow in lateral rootless mutants (lrt1, lrt2), a crown rootless mutant (crl1), their wild types (Oochikara, Nipponbare and Taichung 65, respectively) and in seedlings of rice cv. IR36. The results showed that shoot Na+ concentration in lrt1, lrt2 and crl1 was lower (by 20-23%) than that of their wild types. In contrast, the bypass flow quantified using trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS) was significantly increased in the mutants, from an average of 1.1% in the wild types to 3.2% in the mutants. Similarly, bypass flow in shoots of IR36 where the number of lateral and crown roots had been reduced through physical and hormonal manipulations was dramatically increased (from 5.6 to 12.5%) as compared to the controls. The results suggest that the path of bypass flow in rice is not at the sites of lateral root emergence.
Collapse
Affiliation(s)
- Bualuang Faiyue
- Department of Biology and Environmental Science, School of Life Sciences, University of Sussex, Brighton BN19QG, UK.
| | | | | | | | | | | | | | | |
Collapse
|
4362
|
Cosentino C, Fischer-Schliebs E, Bertl A, Thiel G, Homann U. Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystallinum. THE NEW PHYTOLOGIST 2010; 186:669-80. [PMID: 20298477 DOI: 10.1111/j.1469-8137.2010.03208.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Salinity tolerance in plants involves controlled Na(+) transport at the site of Na(+) accumulation and intracellular Na(+) compartmentation. The focus of this study was the identification and analysis of the expression of Na(+)/H(+) antiporters in response to NaCl stress in one particular plant, the facultative halophyte Mesembryanthemum crystallinum Na(+)/H(+) antiporters of M. crystallinum were cloned by RACE-PCR from total mRNA of leaf mesophyll cells. Functional complementation of Saccharomyces cerevisiae and Escherichia coli mutants was performed. The kinetics of changes in the expression of antiporters were quantified by real-time PCR in leaves and roots. Five Na(+)/H(+) antiporters (McSOS1, McNhaD, McNHX1, McNHX2 and McNHX3) were cloned, representing the entire set of these transporters in M. crystallinum. The functionality of McSOS1, McHX1 and McNhaD was demonstrated in complementation experiments. Quantitative analysis revealed a temporal correlation between salt accumulation and expression levels of genes in leaves, but not in roots, which was most pronounced for McNhaD. Results suggest a physiological role of McSOS1, McNhaD and McNHX1 in Na(+) compartmentation during plant adaptation to high salinity. The study also provides evidence for salt-induced expression and function of the Na(+)/H(+) antiporter McNhaD in chloroplasts and demonstrates that the chloroplast is one of the compartments involved in the response of cells to salt stress.
Collapse
Affiliation(s)
- Cristian Cosentino
- Institut für Botanik, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | | | | | | | | |
Collapse
|
4363
|
Jha D, Shirley N, Tester M, Roy SJ. Variation in salinity tolerance and shoot sodium accumulation in Arabidopsis ecotypes linked to differences in the natural expression levels of transporters involved in sodium transport. PLANT, CELL & ENVIRONMENT 2010; 33:793-804. [PMID: 20040066 DOI: 10.1111/j.1365-3040.2009.02105.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Salinity tolerance can be attributed to three different mechanisms: Na+ exclusion from the shoot, Na+ tissue tolerance and osmotic tolerance. Although several key ion channels and transporters involved in these processes are known, the variation in expression profiles and the effects of these proteins on Na+ transport in different accessions of the same species are unknown. Here, expression profiles of the genes AtHKT1;1, AtSOS1, AtNHX1 and AtAVP1 are determined in four ecotypes of Arabidopsis thaliana. Not only are these genes differentially regulated between ecotypes, the expression levels of the genes can be linked to the concentration of Na+ in the plant. An inverse relationship was found between AtSOS1 expression in the root and total plant Na+ accumulation, supporting a role for AtSOS1 in Na+ efflux from the plant. Similarly, ecotypes with high expression levels of AtHKT1;1 in the root had lower shoot Na+ concentrations, due to the hypothesized role of AtHKT1;1 in retrieval of Na+ from the transpiration stream. The inverse relationship between shoot Na+ concentration and salinity tolerance typical of most cereal crop plants was not demonstrated, but a positive relationship was found between salt tolerance and levels of AtAVP1 expression, which may be related to tissue tolerance.
Collapse
Affiliation(s)
- D Jha
- The Australian Centre for Plant Functional Genomics and the University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | | | | | | |
Collapse
|
4364
|
Sun W, Xu X, Zhu H, Liu A, Liu L, Li J, Hua X. Comparative Transcriptomic Profiling of a Salt-Tolerant Wild Tomato Species and a Salt-Sensitive Tomato Cultivar. ACTA ACUST UNITED AC 2010; 51:997-1006. [DOI: 10.1093/pcp/pcq056] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4365
|
Sunkar R. MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 2010; 21:805-11. [PMID: 20398781 DOI: 10.1016/j.semcdb.2010.04.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/01/2010] [Accepted: 04/01/2010] [Indexed: 01/20/2023]
Abstract
Being sessile organisms, plants often have to face challenges posed by environmental stresses. To minimize the cellular damage caused by stress, plants have evolved highly complex but well-coordinated adaptive responses operating at the transcriptional, post-transcriptional, translational and post-translational levels. A thorough understanding of regulation at all levels will provide better tools to improve plant's performance under stress. Dramatic changes in the levels of several hundreds or even thousands of mRNAs/proteins were evident under stress as revealed by high-throughput microarray and proteome analyses and such changes were thought to be dependent on transcriptional (induction or suppression of genes) or post-translational regulation (protein stability and degradation). However, recently discovered 21-24 nt small RNAs (microRNAs [miRNAs] and small-interfering RNAs [siRNAs]), which regulate gene expression at the post-transcriptional level, are also modulated during stress and possibly contribute to the stress-induced changes in profiles of mRNAs or proteins. This review highlights our understanding of the role of small RNAs in plant stress responses.
Collapse
Affiliation(s)
- Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
4366
|
Ben Ahmed C, Ben Rouina B, Sensoy S, Boukhriss M, Ben Abdullah F. Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4216-22. [PMID: 20210359 DOI: 10.1021/jf9041479] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The ability of exogenous compatible solutes, such as proline, to counteract salt inhibitory effects in olive plants ( Olea europaea L. cv. Chemlali) was investigated. Two-year-old olive trees were subjected to different saline water irrigation levels supplied or not with exogenous proline. Leaf water relations (relative water content, water potential), photosynthetic activity, and leaf chlorophyll content decreased under either saline water level. The proline supplement mitigated the reduction of growth and photosynthetic activity under salt stress, and the mitigating effect of proline was different among treatments. The increment rate of leaf relative water content (RWC) in the presence of 25 and 50 mM proline was 4.45 and 6.67%, respectively, in comparison to values recorded in SS1-treated plants (plants irrigated with water containing 100 mM NaCl). In SS2 (200 mM NaCl) plus proline-treated plants, this increase was 1.14 times for 25 mM proline and 1.19 times for 50 mM proline higher than those recorded in severe salt stress treatment (SS2). In response to salt stress, Chemlali olive plants seem to activate a complex antioxidative defense system that was displayed via the increase of activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) and the decrease of polyphenol oxidase (PPO) under either salt stress treatment. The exogenous application of proline improved the antioxidative enzyme activities of salt-stressed olive plants. Indeed, in young or old leaf tissues, the highest levels of these antioxidant enzymes activities were recorded in (SS2 + P2)-treated plants (plants irrigated with water containing 200 mM NaCl plus 50 mM proline). In young leaves, this increase was 2.11, 2.96, and 2.76 times, respectively, for SOD, APX, and CAT enzyme activities in comparison to their respective activities in control plants (nonstressed plants irrigated with fresh water). In old leaves, this increase was 2, 2.41, and 2.48 times, respectively, for the various enzymes. If compared to high water salinity-treated plants (SS2), this increase was 1.1, 1.3, and 1.4 times in young leaves, respectively, for SOD, APX, and CAT activities. From these results, the proline supplements seem to improve olive salt tolerance by amelioration of some antioxidative enzyme activities, photosynthetic activity, and, so, plant growth and the preservation of a suitable plant water status under salinity conditions. More to the point, the decrease of soluble sugars contents in proline treated-plants revealed the important osmoprotectant effect played by the added proline in such a way that limited the need of salt-stressed plants for soluble sugars synthesis.
Collapse
Affiliation(s)
- Chedlia Ben Ahmed
- Department of Life Sciences, Faculty of Sciences of Sfax, Sfax, Tunisia.
| | | | | | | | | |
Collapse
|
4367
|
Leprince AS, Savouré A. [Lipid signaling pathways in plants and their roles in response to water constraints]. Biol Aujourdhui 2010; 204:11-19. [PMID: 20950571 DOI: 10.1051/jbio/2009045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plants are sessile organisms that have developed the capacity to detect slight variations of their environment. They are able to perceive these environmental signals and to transduce them by signaling pathways in order to trigger adaptative responses. Lipid signaling elements play a central role in these pathways in plants. A key element is phosphatidic acid (PA), which can be produced by two pathways. In the first one, phospholipids are hydrolysed by phospholipase D (PLD) to release PA. In the second one, PA is produced through the activity of phospholipase C (PLC) to produce diacylglycerol (DAG) which is then phosphorylated by DAG kinase (DAGK). The amount of PA in the cell is regulated by PA kinase, which phosphorylates PA to produce diacylglycerolpyrophosphate (DGPP), considered as a second messenger as well. PLCs play a dual role in cell signaling by regulating the amount of intracellular Ca(2+), another essential second messenger. Phosphoinositides, such as PI3P, PI4P and PI(4,5)P(2), are substrates of PLCs and PLDs and are considered as second messengers also. In this review, we present recent data regarding the specific features of these lipid signaling pathways in plant compared with other eukaryotes.
Collapse
Affiliation(s)
- Anne-Sophie Leprince
- Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, UR5 UPMC, EAC7180 CNRS, Université Pierre et Marie Curie P6, 4 place Jussieu, case 156, Paris Cedex 05, France.
| | | |
Collapse
|
4368
|
Frary A, Göl D, Keleş D, Ökmen B, Pınar H, Şığva HÖ, Yemenicioğlu A, Doğanlar S. Salt tolerance in Solanum pennellii: antioxidant response and related QTL. BMC PLANT BIOLOGY 2010; 10:58. [PMID: 20370910 PMCID: PMC2923532 DOI: 10.1186/1471-2229-10-58] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 04/06/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND Excessive soil salinity is an important problem for agriculture, however, salt tolerance is a complex trait that is not easily bred into plants. Exposure of cultivated tomato to salt stress has been reported to result in increased antioxidant content and activity. Salt tolerance of the related wild species, Solanum pennellii, has also been associated with similar changes in antioxidants. In this work, S. lycopersicum M82, S. pennellii LA716 and a S. pennellii introgression line (IL) population were evaluated for growth and their levels of antioxidant activity (total water-soluble antioxidant activity), major antioxidant compounds (phenolic and flavonoid contents) and antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and peroxidase) under both control and salt stress (150 mM NaCl) conditions. These data were then used to identify quantitative trait loci (QTL) responsible for controlling the antioxidant parameters under both stress and nonstress conditions. RESULTS Under control conditions, cultivated tomato had higher levels of all antioxidants (except superoxide dismutase) than S. pennellii. However, under salt stress, the wild species showed greater induction of all antioxidants except peroxidase. The ILs showed diverse responses to salinity and proved very useful for the identification of QTL. Thus, 125 loci for antioxidant content under control and salt conditions were detected. Eleven of the total antioxidant activity and phenolic content QTL matched loci identified in an independent study using the same population, thereby reinforcing the validity of the loci. In addition, the growth responses of the ILs were evaluated to identify lines with favorable growth and antioxidant profiles. CONCLUSIONS Plants have a complex antioxidant response when placed under salt stress. Some loci control antioxidant content under all conditions while others are responsible for antioxidant content only under saline or nonsaline conditions. The localization of QTL for these traits and the identification of lines with specific antioxidant and growth responses may be useful for breeding potentially salt tolerant tomato cultivars having higher antioxidant levels under nonstress and salt stress conditions.
Collapse
Affiliation(s)
- Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Deniz Göl
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Davut Keleş
- Alata Horticultural Research Institute, Erdemli 33740, Mersin, Turkey
| | - Bilal Ökmen
- Biotechnology Program, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Hasan Pınar
- Alata Horticultural Research Institute, Erdemli 33740, Mersin, Turkey
| | - Hasan Ö Şığva
- Biotechnology Program, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Ahmet Yemenicioğlu
- Department of Food Engineering, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| |
Collapse
|
4369
|
Pardo JM. Biotechnology of water and salinity stress tolerance. Curr Opin Biotechnol 2010; 21:185-96. [DOI: 10.1016/j.copbio.2010.02.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 12/20/2022]
|
4370
|
Sanchez DH, Szymanski J, Erban A, Udvardi MK, Kopka J. Mining for robust transcriptional and metabolic responses to long-term salt stress: a case study on the model legume Lotus japonicus. PLANT, CELL & ENVIRONMENT 2010; 33:468-480. [PMID: 19781009 DOI: 10.1111/j.1365-3040.2009.02047.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Translational genomics, the use of model species to generate knowledge about biological processes and the functions of genes, offers great promise to biotechnologists. Few studies have sought robust responses of model plants to environmental stresses, such as salinity, by altering the stress dosage or by repeating experiments in consecutive years and/or different seasons. We mined our published and unpublished data on legume salt acclimation for robust system features at the ionomic, transcriptomic and metabolomic levels. We analysed data from the model legume Lotus japonicus, obtained through six independent, long-term, non-lethal salt stress experiments which were carried out over two consecutive years. Best possible controlled greenhouse conditions were applied and two main questions asked: how reproducible are results obtained from physiologically meaningful salinity experiments, and what degree of bias may be expected if conclusions are drawn from less well-repeated sampling? A surprisingly large fraction of the transcriptional and metabolic responses to salt stress were not reproducible between experiments. A core set of robust changes was found that was shared between experiments. Many of these robust responses were qualitatively and quantitatively conserved between different accessions of the same species, indicating that the robust responses may be a sound starting point for translational genomics.
Collapse
Affiliation(s)
- Diego H Sanchez
- Max Planck Institute for Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
4371
|
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. PLANT, CELL & ENVIRONMENT 2010; 33:453-67. [PMID: 19712065 DOI: 10.1111/j.1365-3040.2009.02041.x] [Citation(s) in RCA: 1814] [Impact Index Per Article: 120.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Water deficit and salinity, especially under high light intensity or in combination with other stresses, disrupt photosynthesis and increase photorespiration, altering the normal homeostasis of cells and cause an increased production of reactive oxygen species (ROS). ROS play a dual role in the response of plants to abiotic stresses functioning as toxic by-products of stress metabolism, as well as important signal transduction molecules. In this review, we provide an overview of ROS homeostasis and signalling in response to drought and salt stresses and discuss the current understanding of ROS involvement in stress sensing, stress signalling and regulation of acclimation responses.
Collapse
Affiliation(s)
- Gad Miller
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 89557, USA
| | | | | | | |
Collapse
|
4372
|
Friesen ML, von Wettberg EJ. Adapting genomics to study the evolution and ecology of agricultural systems. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:119-125. [PMID: 20022289 DOI: 10.1016/j.pbi.2009.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 05/28/2023]
Abstract
In the face of global change, agriculture increasingly requires germplasm with high yields on marginal lands. Identifying pathways that are adaptive under marginal conditions is increasingly possible with advances at the intersection of evolutionary ecology, population genetics, and functional genomics. Trait-based (reverse ecology) approaches have connected flowering time in Arabidopsis thaliana to single alleles with environment-specific effects. Similarly, genetic dissection of rice flooding tolerance enabled the production of near-isogenic lines exhibiting tolerance and high yields. An alternative gene-forward (forward ecology) approach identified candidate genes for local adaptation of Arabidopsis lyrata to heavy-metal rich soils. A global perspective on plant adaptation and trait correlations provides a foundation for breeding tolerant crops and suggests populations adapted to marginal habitats be conservation priorities.
Collapse
Affiliation(s)
- Maren L Friesen
- University of Southern California, Department of Molecular and Computation Biology, Los Angeles, CA 90089, USA
| | | |
Collapse
|
4373
|
Hauser F, Horie T. A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K(+)/Na(+) ratio in leaves during salinity stress. PLANT, CELL & ENVIRONMENT 2010; 33:552-65. [PMID: 19895406 DOI: 10.1111/j.1365-3040.2009.02056.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Increasing soil salinity is a serious threat to agricultural productions worldwide in the 21st century. Several essential Na(+) transporters such as AtNHX1 and AtSOS1 function in Na(+) tolerance under salinity stress in plants. Recently, evidence for a new primary salt tolerance mechanism has been reported, which is mediated by a class of HKT transporters both in dicots such as Arabidopsis and monocot crops such as rice and wheat. Here we present a review on vital physiological functions of HKT transporters including AtHKT1;1 and OsHKT1;5 in preventing shoot Na(+) over-accumulation by mediating Na(+) exclusion from xylem vessels in the presence of a large amount of Na(+) thereby protecting leaves from salinity stress. Findings of the HKT2 transporter sub-family are also updated in this review. Subjects regarding function and regulation of HKT transporters, which need to be elucidated in future research, are discussed.
Collapse
Affiliation(s)
- Felix Hauser
- Center for Molecular Genetics, University of California, San Diego, La Jolla, 92093-0116, USA
| | | |
Collapse
|
4374
|
Abogadallah GM. Antioxidative defense under salt stress. PLANT SIGNALING & BEHAVIOR 2010; 5:369-74. [PMID: 20118663 PMCID: PMC2958586 DOI: 10.4161/psb.5.4.10873] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 12/07/2009] [Indexed: 05/18/2023]
Abstract
Salt tolerance is a complex trait involving the coordinated action of many gene families that perform a variety of functions such as control of water loss through stomata, ion sequestration, metabolic adjustment, osmotic adjustment and antioxidative defense. In spite of the large number of publications on the role of antioxidative defense under salt stress, the relative importance of this process to overall plant salt tolerance is still a matter of controversy. In this article, the generation and scavenging of reactive oxygen species (ROS) under normal and salt stress conditions in relation to the type of photosynthesis is discussed. The CO(2) concentrating mechanism in C4 and CAM plants is expected to contribute to decreasing ROS generation. However, the available data supports this hypothesis in CAM but not in C4 plants. We discuss the specific roles of enzymatic and non enzymatic antioxidants in relation to the oxidative load in the context of whole plant salt tolerance. The possible preventive antioxidative mechanisms are also discussed.
Collapse
Affiliation(s)
- Gaber M Abogadallah
- Department of Botany, Faculty of Science at New Damietta, New Damietta, Egypt.
| |
Collapse
|
4375
|
Mudgal V, Madaan N, Mudgal A. Biochemical Mechanisms of Salt Tolerance in Plants: A Review. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ijb.2010.136.143] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4376
|
Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science 2010; 327:818-22. [PMID: 20150489 DOI: 10.1126/science.1183700] [Citation(s) in RCA: 895] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To feed the several billion people living on this planet, the production of high-quality food must increase with reduced inputs, but this accomplishment will be particularly challenging in the face of global environmental change. Plant breeders need to focus on traits with the greatest potential to increase yield. Hence, new technologies must be developed to accelerate breeding through improving genotyping and phenotyping methods and by increasing the available genetic diversity in breeding germplasm. The most gain will come from delivering these technologies in developing countries, but the technologies will have to be economically accessible and readily disseminated. Crop improvement through breeding brings immense value relative to investment and offers an effective approach to improving food security.
Collapse
Affiliation(s)
- Mark Tester
- Australian Centre for Plant Functional Genomics, University of Adelaide, South Australia SA 5064, Australia.
| | | |
Collapse
|
4377
|
Popko J, Hänsch R, Mendel RR, Polle A, Teichmann T. The role of abscisic acid and auxin in the response of poplar to abiotic stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:242-58. [PMID: 20398232 DOI: 10.1111/j.1438-8677.2009.00305.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The plant hormones auxin and abscisic acid may at first sight appear to be a conflicting pair of plant regulators. Abscisic acid content increases during stress and protects plant water status. The content of free auxin in the developing xylem of poplar declines during stress, while auxin conjugates increase. This indicates that specific down-regulation of a signal transduction chain is important in plant adaptation to stress. Diminished auxin content may be a factor that adapts growth and wood development of poplar during adverse environmental conditions. To allow integration of environmental signals, abscisic acid and auxin must interact. Data are accumulating that abscisic acid-auxin cross-talk exists in plants. However, knowledge of the role of plant hormones in the response of trees to stress is scarce. Our data show that differences in the localisation of ABA synthesis exist between the annual, herbaceous plant Arabidopsis and the perennial woody species, poplar.
Collapse
Affiliation(s)
- J Popko
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
4378
|
Shabala S, Shabala S, Cuin TA, Pang J, Percey W, Chen Z, Conn S, Eing C, Wegner LH. Xylem ionic relations and salinity tolerance in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:839-53. [PMID: 20015063 DOI: 10.1111/j.1365-313x.2009.04110.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Control of ion loading into the xylem has been repeatedly named as a crucial factor determining plant salt tolerance. In this study we further investigate this issue by applying a range of biophysical [the microelectrode ion flux measurement (MIFE) technique for non-invasive ion flux measurements, the patch clamp technique, membrane potential measurements] and physiological (xylem sap and tissue nutrient analysis, photosynthetic characteristics, stomatal conductance) techniques to barley varieties contrasting in their salt tolerance. We report that restricting Na(+) loading into the xylem is not essential for conferring salinity tolerance in barley, with tolerant varieties showing xylem Na(+) concentrations at least as high as those of sensitive ones. At the same time, tolerant genotypes are capable of maintaining higher xylem K(+)/Na(+) ratios and efficiently sequester the accumulated Na(+) in leaves. The former is achieved by more efficient loading of K(+) into the xylem. We argue that the observed increases in xylem K(+) and Na(+) concentrations in tolerant genotypes are required for efficient osmotic adjustment, needed to support leaf expansion growth. We also provide evidence that K(+)-permeable voltage-sensitive channels are involved in xylem loading and operate in a feedback manner to maintain a constant K(+)/Na(+) ratio in the xylem sap.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Tas 7001, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
4379
|
Abstract
The genus Populus has a wide distribution in different climatic zones. Besides its economic and ecological relevance, Populus also serves as a model for elucidating physiological and molecular mechanisms of stress tolerance in tree species. In this review, adaptation strategies of poplars to excess soil salinity are addressed at different scales, from the cellular to the whole-plant level. Striking differences in salt tolerance exist among different poplar species and ecotypes, with Populus euphratica being outstanding in this respect. Key mechanisms identified in this species to mediate salt tolerance are compartmentalisation of Cl(-) in the vacuoles of the root cortex cells, diminished xylem loading of NaCl, activation of Na(+) extrusion into the soil solution under stress, together with simultaneously avoiding excessive K(+) loss by regulation of depolarisation-activated cation channels. This leads to improved maintenance of the K(+)/Na(+) balance, a crucial precondition for survival under salt stress. Leaf cells of this species are able to compartmentalise Na(+) preferentially in the apoplast, whereas in susceptible poplar species, as well as in crop plants, vacuolar Na(+) deposition precedes apoplastic transport. ABA, Ca(2+)and ROS are involved in stress sensing, with higher or faster activation of defences in tolerant than in susceptible poplar species. P. euphratica develops leaf succulence after prolonged salt exposure as a plastic morphological adaptation that leads to salt dilution. Transgenic approaches to improve salt tolerance by transformation of candidate genes have had limited success, since salt tolerance is a multigenic trait. In future attempts towards increased salt resistance, barriers between different poplar sections must be overcome and application of novel biotechnological tools, such as gene stacking, are recommended.
Collapse
Affiliation(s)
- S Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | | |
Collapse
|
4380
|
Munis MFH, Tu L, Deng F, Tan J, Xu L, Xu S, Long L, Zhang X. A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco. Biochem Biophys Res Commun 2010; 393:38-44. [PMID: 20097164 DOI: 10.1016/j.bbrc.2010.01.069] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 01/16/2010] [Indexed: 11/28/2022]
Abstract
For the first time, a sea-island cotton (Gossypium barbadense L.) thaumatin-like protein gene (GbTLP1) with a potential role in secondary cell wall development has been overexpressed in tobacco to elucidate its function. The presence of the transgene was verified by Southern blotting and higher expression levels of GbTLP1 in transgenic tobacco plants were revealed by reverse-transcription and quantitative real-time polymerase chain reaction analyses. Transgenic plants with constitutively higher expression of the GbTLP1 showed enhanced resistance against different stress agents, particularly, its performance against Verticillium dahliae was exceptional. Transgenic tobacco plants also exhibited considerable resistance against Fusarium oxysporum and some abiotic stresses including salinity and drought. In this experiment, transgenic plants without GbTLP1 expression were also used as controls, which behaved similar to non-transgenic control plants. Overexpression of GbTLP1 had no significant deleterious effect on plant growth except that flowering was delayed for 3-5 weeks. The apparent pleiotropic effect of this novel gene has given us insight to the plant defense mechanism.
Collapse
Affiliation(s)
- M Farooq Hussain Munis
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | | | | | | | | | | | | | | |
Collapse
|
4381
|
Renault H, Roussel V, El Amrani A, Arzel M, Renault D, Bouchereau A, Deleu C. The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC PLANT BIOLOGY 2010; 10:20. [PMID: 20122158 PMCID: PMC2825238 DOI: 10.1186/1471-2229-10-20] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 02/01/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND GABA (gamma-aminobutyric acid) is a non protein amino acid that has been reported to accumulate in a number of plant species when subjected to high salinity and many other environmental constraints. However, no experimental data are to date available on the molecular function of GABA and the involvement of its metabolism in salt stress tolerance in higher plants. Here, we investigated the regulation of GABA metabolism in Arabidopsis thaliana at the metabolite, enzymatic activity and gene transcription levels upon NaCl stress. RESULTS We identified the GABA transaminase (GABA-T), the first step of GABA catabolism, as the most responsive to NaCl. We further performed a functional analysis of the corresponding gene POP2 and demonstrated that the previously isolated loss-of-function pop2-1 mutant was oversensitive to ionic stress but not to osmotic stress suggesting a specific role in salt tolerance. NaCl oversensitivity was not associated with overaccumulation of Na+ and Cl- but mutant showed a slight decrease in K+. To bring insights into POP2 function, a promoter-reporter gene strategy was used and showed that POP2 was mainly expressed in roots under control conditions and was induced in primary root apex and aerial parts of plants in response to NaCl. Additionally, GC-MS- and UPLC-based metabolite profiling revealed major changes in roots of pop2-1 mutant upon NaCl stress including accumulation of amino acids and decrease in carbohydrates content. CONCLUSIONS GABA metabolism was overall up-regulated in response to NaCl in Arabidopsis. Particularly, GABA-T was found to play a pivotal function and impairment of this step was responsible for a decrease in salt tolerance indicating that GABA catabolism was a determinant of Arabidopsis salt tolerance. GABA-T would act in salt responses in linking N and C metabolisms in roots.
Collapse
Affiliation(s)
- Hugues Renault
- INRA - Agrocampus Ouest - Université de Rennes 1, UMR 118 Amélioration des Plantes et Biotechnologies Végétales, F-35653, Le Rheu cedex, France
- CNRS - Université de Rennes 1, UMR 6553 EcoBio, Campus de Beaulieu, F-35042 Rennes cedex, France
| | - Valérie Roussel
- INRA - Agrocampus Ouest - Université de Rennes 1, UMR 118 Amélioration des Plantes et Biotechnologies Végétales, F-35653, Le Rheu cedex, France
- UMR 7208 BOREA, Station de Biologie Marine, Muséum National d'Histoire Naturelle, Place de la Croix, F-29900 Concarneau, France
| | - Abdelhak El Amrani
- CNRS - Université de Rennes 1, UMR 6553 EcoBio, Campus de Beaulieu, F-35042 Rennes cedex, France
| | - Matthieu Arzel
- INRA - Agrocampus Ouest - Université de Rennes 1, UMR 118 Amélioration des Plantes et Biotechnologies Végétales, F-35653, Le Rheu cedex, France
| | - David Renault
- CNRS - Université de Rennes 1, UMR 6553 EcoBio, Campus de Beaulieu, F-35042 Rennes cedex, France
| | - Alain Bouchereau
- INRA - Agrocampus Ouest - Université de Rennes 1, UMR 118 Amélioration des Plantes et Biotechnologies Végétales, F-35653, Le Rheu cedex, France
| | - Carole Deleu
- INRA - Agrocampus Ouest - Université de Rennes 1, UMR 118 Amélioration des Plantes et Biotechnologies Végétales, F-35653, Le Rheu cedex, France
| |
Collapse
|
4382
|
Leidi EO, Barragán V, Rubio L, El-Hamdaoui A, Ruiz MT, Cubero B, Fernández JA, Bressan RA, Hasegawa PM, Quintero FJ, Pardo JM. The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:495-506. [PMID: 19912566 DOI: 10.1111/j.1365-313x.2009.04073.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
NHX-type antiporters in the tonoplast have been reported to increase the salt tolerance of various plants species, and are thought to mediate the compartmentation of Na(+) in vacuoles. However, all isoforms characterized so far catalyze both Na(+)/H(+) and K(+)/H(+) exchange. Here, we show that AtNHX1 has a critical involvement in the subcellular partitioning of K(+), which in turn affects plant K(+) nutrition and Na(+) tolerance. Transgenic tomato plants overexpressing AtNHX1 had larger K(+) vacuolar pools in all growth conditions tested, but no consistent enhancement of Na(+) accumulation was observed under salt stress. Plants overexpressing AtNHX1 have a greater capacity to retain intracellular K(+) and to withstand salt-shock. Under K(+)-limiting conditions, greater K(+) compartmentation in the vacuole occurred at the expense of the cytosolic K(+) pool, which was lower in transgenic plants. This caused the early activation of the high-affinity K(+) uptake system, enhanced K(+) uptake by roots, and increased the K(+) content in plant tissues and the xylem sap of transformed plants. Our results strongly suggest that NHX proteins are likely candidates for the H(+)-linked K(+) transport that is thought to facilitate active K(+) uptake at the tonoplast, and the partitioning of K(+) between vacuole and cytosol.
Collapse
Affiliation(s)
- Eduardo O Leidi
- Instituto de Recursos Naturales y Agrobiología (IRNASE), Consejo Superior de Investigaciones Científicas, Reina Mercedes, 10, Sevilla - 41012, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4383
|
Katori T, Ikeda A, Iuchi S, Kobayashi M, Shinozaki K, Maehashi K, Sakata Y, Tanaka S, Taji T. Dissecting the genetic control of natural variation in salt tolerance of Arabidopsis thaliana accessions. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1125-38. [PMID: 20080827 PMCID: PMC2826654 DOI: 10.1093/jxb/erp376] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Many accessions (ecotypes) of Arabidopsis have been collected. Although few differences exist among their nucleotide sequences, these subtle differences induce large genetic variation in phenotypic traits such as stress tolerance and flowering time. To understand the natural variability in salt tolerance, large-scale soil pot experiments were performed to evaluate salt tolerance among 350 Arabidopsis thaliana accessions. The evaluation revealed a wide variation in the salt tolerance among accessions. Several accessions, including Bu-5, Bur-0, Ll-1, Wl-0, and Zu-0, exhibited marked stress tolerance compared with a salt-sensitive experimental accession, Col-0. The salt-tolerant accessions were also evaluated by agar plate assays. The data obtained by the large-scale assay correlated well with the results of a salt acclimation (SA) assay, in which plants were transferred to high-salinity medium following placement on moderate-salinity medium for 7 d. Genetic analyses indicated that the salt tolerance without SA is a quantitative trait under polygenic control, whereas salt tolerance with SA is regulated by a single gene located on chromosome 5 that is common among the markedly salt-tolerant accessions. These results provide important information for understanding the mechanisms underlying natural variation of salt tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Taku Katori
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Akiro Ikeda
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Satoshi Iuchi
- RIKEN Bioresource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Masatomo Kobayashi
- RIKEN Bioresource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Kazuo Shinozaki
- RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kenji Maehashi
- Department of Fermentation Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Shigeo Tanaka
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
4384
|
Oh DH, Lee SY, Bressan RA, Yun DJ, Bohnert HJ. Intracellular consequences of SOS1 deficiency during salt stress. JOURNAL OF EXPERIMENTAL BOTANY 2010; 5:766-8. [PMID: 20054031 PMCID: PMC2826659 DOI: 10.1093/jxb/erp391] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 12/12/2009] [Accepted: 12/15/2009] [Indexed: 05/18/2023]
Abstract
A mutation of AtSOS1 (Salt Overly Sensitive 1), a plasma membrane Na(+)/H(+)-antiporter in Arabidopsis thaliana, leads to a salt-sensitive phenotype accompanied by the death of root cells under salt stress. Intracellular events and changes in gene expression were compared during a non-lethal salt stress between the wild type and a representative SOS1 mutant, atsos1-1, by confocal microscopy using ion-specific fluorophores and by quantitative RT-PCR. In addition to the higher accumulation of sodium ions, atsos1-1 showed inhibition of endocytosis, abnormalities in vacuolar shape and function, and changes in intracellular pH compared to the wild type in root tip cells under stress. Quantitative RT-PCR revealed a dramatically faster and higher induction of root-specific Ca(2+) transporters, including several CAXs and CNGCs, and the drastic down-regulation of genes involved in pH-homeostasis and membrane potential maintenance. Differential regulation of genes for functions in intracellular protein trafficking in atsos1-1 was also observed. The results suggested roles of the SOS1 protein, in addition to its function as a Na(+)/H(+) antiporter, whose disruption affected membrane traffic and vacuolar functions possibly by controlling pH homeostasis in root cells.
Collapse
Affiliation(s)
- Dong-Ha Oh
- Division of Applied Life Science (BK21 program) and Environmental BiotechnologyNational Core Research Center, Graduate School of Gyeongsang NationalUniversity, Jinju 660-701, Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 program) and Environmental BiotechnologyNational Core Research Center, Graduate School of Gyeongsang NationalUniversity, Jinju 660-701, Korea
| | - Ray A. Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, WestLafayette, IN 47907, USA
- WCU Program, Division of Applied Life Sciences, Gyeongsang National University, Jinju 660--701, Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21 program) and Environmental BiotechnologyNational Core Research Center, Graduate School of Gyeongsang NationalUniversity, Jinju 660-701, Korea
- WCU Program, Division of Applied Life Sciences, Gyeongsang National University, Jinju 660--701, Korea
| | - Hans J. Bohnert
- WCU Program, Division of Applied Life Sciences, Gyeongsang National University, Jinju 660--701, Korea
- Departments of Plant Biology and of Crop Sciences, University of Illinois at UrbanaChampaign, Urbana, IL 61801, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
4385
|
Shavrukov Y, Gupta NK, Miyazaki J, Baho MN, Chalmers KJ, Tester M, Langridge P, Collins NC. HvNax3—a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum). Funct Integr Genomics 2010; 10:277-91. [DOI: 10.1007/s10142-009-0153-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/03/2009] [Accepted: 12/13/2009] [Indexed: 01/17/2023]
|
4386
|
Khan N, Syeed S, Masood A, Nazar R, Iqbal N. Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2010. [DOI: 10.4081/pb.2010.e1] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Salicylic acid (SA), a naturally occurring plant hormone, is an important signal molecule known to have diverse effects on biotic and abiotic stress tolerance. Its growth-promoting effect on various plants has been shown, but the information on the response of mungbean, an important leguminous plant, to SA application under salt stress is limited. Mungbean (Vigna radiata L.) cultivar Pusa Vishal plants grown with 50 mM NaCl were sprayed with 0.1, 0.5, or 1.0 mM SA and basic physiological processes were studied to substantiate our understanding of their role in tolerance to salinity-induced oxidative stress and how much such processes are induced by SA application. Treatment of plants with 0.5 mM SA resulted in a maximum decrease in the content of Na+, Cl-, H2O2, and thiobarbituric acid reactive substances (TBARS), and electrolyte leakage under saline conditions compared to the control. In contrast, this treatment increased N, P, K, and Ca content, activity of antioxidant enzymes, glutathione content, photosynthesis, and yield maximally under nonsaline and saline conditions. The application of higher concentration of SA (1.0 mM) either proved inhibitory or was of no additional benefit. It was concluded that 0.5 mM SA alleviates salinity-inhibited photosynthesis and yield through a decrease in Na+, Cl-, H2O2, and TBARS content, and electrolyte leakage, and an increase in N, P, K, and Ca content, activity of antioxidant enzymes, and glutathione content.
Collapse
|
4387
|
Cuin TA, Tian Y, Betts SA, Chalmandrier R, Shabala S. Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2010; 36:1110-1119. [PMID: 32688722 DOI: 10.1071/fp09051] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 09/10/2009] [Indexed: 06/11/2023]
Abstract
Wheat breeding for salinity tolerance has traditionally focussed on Na+ exclusion from the shoot, but its association with salinity tolerance remains tenuous. Accordingly, the physiological significance of shoot Na+ exclusion and maintenance of an optimal K+ : Na+ ratio was re-evaluated by studying NaCl-induced responses in 50 genotypes of bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum L. ssp. durum) treated with 150 mM NaCl. Overall, Na+ exclusion from the shoot correlated with salinity tolerance in both species and this exclusion was more efficient in bread compared with durum wheat. Interestingly, shoot sap K+ increased significantly in nearly all durum and bread wheat genotypes. Conversely, the total shoot K+ content declined. We argue that this increase in shoot sap K+ is needed to provide efficient osmotic adjustment under saline conditions. Durum wheat was able to completely adjust shoot sap osmolality using K+, Na+ and Cl-; it had intrinsically higher levels of these solutes. In bread wheat, organic osmolytes must contribute ~13% of the total shoot osmolality. In contrast to barley (Hordeum vulgare L.), NaCl-induced K+ efflux from seedling roots did not predict salinity tolerance in wheat, implying that shoot, not root K+ retention is important in this species.
Collapse
Affiliation(s)
- Tracey Ann Cuin
- School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Yu Tian
- Institute of Grassland Science, Department of Life Science, Northeast Normal University, ChangChun City, Jilin Province 130024, P.R. China
| | - Stewart A Betts
- School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Rémi Chalmandrier
- School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Sergey Shabala
- School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| |
Collapse
|
4388
|
Mittler R, Blumwald E. Genetic engineering for modern agriculture: challenges and perspectives. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:443-62. [PMID: 20192746 DOI: 10.1146/annurev-arplant-042809-112116] [Citation(s) in RCA: 468] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Abiotic stress conditions such as drought, heat, or salinity cause extensive losses to agricultural production worldwide. Progress in generating transgenic crops with enhanced tolerance to abiotic stresses has nevertheless been slow. The complex field environment with its heterogenic conditions, abiotic stress combinations, and global climatic changes are but a few of the challenges facing modern agriculture. A combination of approaches will likely be needed to significantly improve the abiotic stress tolerance of crops in the field. These will include mechanistic understanding and subsequent utilization of stress response and stress acclimation networks, with careful attention to field growth conditions, extensive testing in the laboratory, greenhouse, and the field; the use of innovative approaches that take into consideration the genetic background and physiology of different crops; the use of enzymes and proteins from other organisms; and the integration of QTL mapping and other genetic and breeding tools.
Collapse
Affiliation(s)
- Ron Mittler
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA.
| | | |
Collapse
|
4389
|
Approaches to identifying genes for salinity tolerance and the importance of timescale. Methods Mol Biol 2010; 639:25-38. [PMID: 20387038 DOI: 10.1007/978-1-60761-702-0_2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Soil salinity reduces the ability of plants to take up water, and this quickly causes reductions in the rate of cell expansion in growing tissues. The slower formation of photosynthetic leaf area in turn reduces the flow of assimilates to the meristematic and growing tissues of the plant. Later, salt may exert an additional effect on growth. If excessive amounts of Na(+) or Cl(-) enter the plant it may rise to toxic levels in the older transpiring leaves. This injury, added to an already reduced leaf area, will then further limit the flow of carbon compounds to meristems and growing zones in leaves. This chapter analyses the various plant responses over time, to provide a conceptual framework on which the different approaches to gene discovery can be based. Knowledge of the physiological processes that are important in the tolerance response, and the time frame in which they act, will enable further progress in understanding of the molecular regulation of salt tolerance.
Collapse
|
4390
|
Saraf M, Jha CK, Patel D. The Role of ACC Deaminase Producing PGPR in Sustainable Agriculture. PLANT GROWTH AND HEALTH PROMOTING BACTERIA 2010. [DOI: 10.1007/978-3-642-13612-2_16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4391
|
Amtmann A, Beilby MJ. The Role of Ion Channels in Plant Salt Tolerance. ION CHANNELS AND PLANT STRESS RESPONSES 2010. [DOI: 10.1007/978-3-642-10494-7_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4392
|
Abogadallah GM, Serag MM, Quick WP. Fine and coarse regulation of reactive oxygen species in the salt tolerant mutants of barnyard grass and their wild-type parents under salt stress. PHYSIOLOGIA PLANTARUM 2010; 138:60-73. [PMID: 20070844 DOI: 10.1111/j.1399-3054.2009.01297.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The growth of the wild-type and three salt tolerant mutants of barnyard grass (Echinochloa crusgalli L.) under salt stress was investigated in relation to oxidative stress and activities of the antioxidant enzymes superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), phenol peroxidase (POD: EC 1.11.1.7), glutathione reductase (GR: EC 1.8.1.7) and ascorbate peroxidase (APX: EC 1.11.1.1). The three mutants (fows B17, B19 and B21) grew significantly better than the wild-type under salt stress (200 mM NaCl) but some salt sensitive individuals were still detectable in the populations of the mutants though in smaller numbers compared with the wild-type. The salt sensitive plants had slower growth rates, higher rates of lipid peroxidation and higher levels of reactive oxygen species (ROS) in their leaves compared with the more tolerant plants from the same genotype. These sensitivity responses were maximized when the plants were grown under high light intensity suggesting that the chloroplast could be a main source of ROS under salt stress. However, the salt sensitivity did not correlate with reduced K(+)/Na(+) ratios or enhanced Na(+) uptake indicating that the sensitivity responses may be mainly because of accumulation of ROS rather than ion toxicity. SOD activities did not correlate to salt tolerance. Salt stress resulted in up to 10-fold increase in CAT activity in the sensitive plants but lower activities were found in the tolerant ones. In contrast, the activities of POD, APX and GR were down regulated in the sensitive plants compared with the tolerant ones. A correlation between plant growth, accumulation of ROS and differential modulation of antioxidant enzymes is discussed. We conclude that loss of activities of POD, APX and GR causes loss of fine regulation of ROS levels and hence the plants experience oxidative stress although they have high CAT activities.
Collapse
Affiliation(s)
- Gaber M Abogadallah
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| | | | | |
Collapse
|
4393
|
Feller IC, Lovelock CE, Berger U, McKee KL, Joye SB, Ball MC. Biocomplexity in mangrove ecosystems. ANNUAL REVIEW OF MARINE SCIENCE 2010; 2:395-417. [PMID: 21141670 DOI: 10.1146/annurev.marine.010908.163809] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical coasts. Despite repeated demonstration of their economic and societal value, more than 50% of the world's mangroves have been destroyed, 35% in the past two decades to aquaculture and coastal development, altered hydrology, sea-level rise, and nutrient overenrichment. Variations in the structure and function of mangrove ecosystems have generally been described solely on the basis of a hierarchical classification of the physical characteristics of the intertidal environment, including climate, geomorphology, topography, and hydrology. Here, we use the concept of emergent properties at multiple levels within a hierarchical framework to review how the interplay between specialized adaptations and extreme trait plasticity that characterizes mangroves and intertidal environments gives rise to the biocomplexity that distinguishes mangrove ecosystems. The traits that allow mangroves to tolerate variable salinity, flooding, and nutrient availability influence ecosystem processes and ultimately the services they provide. We conclude that an integrated research strategy using emergent properties in empirical and theoretical studies provides a holistic approach for understanding and managing mangrove ecosystems.
Collapse
Affiliation(s)
- I C Feller
- Smithsonian Environmental Research Center, Smithsonian Institution, Edgewater, Maryland 21037, USA.
| | | | | | | | | | | |
Collapse
|
4394
|
Maia JM, Voigt EL, Macêdo CEC, Ferreira-Silva SL, Silveira JAG. Salt-induced changes in antioxidative enzyme activities in root tissues do not account for the differential salt tolerance of two cowpea cultivars. ACTA ACUST UNITED AC 2010. [DOI: 10.1590/s1677-04202010000200005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The salt stress effect in root growth and antioxidative response were investigated in two cowpea cultivars which differ in salt tolerance in terms of plant growth and leaf oxidative response. Four-day-old seedlings (establishment stage) were exposed to 100 mM NaCl for two days. The roots of the two cultivars presented distinct response in terms of salt-induced changes in elongation and dry weight. Root dry weight was only decreased in Pérola (sensitive) cultivar while root elongation was mainly hampered in Pitiúba (tolerant). Root relative water content remained unchanged under salinity, but root Na+ content achieved toxic levels as revealed by the K+/Na+ ratio in both cultivars. Then, root growth inhibition might be due to ionic toxicity rather than by salt-induced water deficit. Although electrolyte leakage markedly increased mainly in the Pérola genotype, lipid peroxidation decreased similarly in both salt-stressed cultivars. APX and SOD activities were reduced by salinity in both cultivars reaching similar values despite the decrease in Pitiúba had been higher compared to respective controls. CAT decreased significantly in Pitiúba but did not change in Pérola, while POX increased in both cultivars. The salt-induced decrease in the CAT activity of Pitiúba root is, at principle, incompatible to allow a more effective oxidative protection. Our results support the idea that the activities of SOD, APX, CAT and POX and lipid peroxidation in cowpea seedling roots were not associated with differential salt tolerance as previously characterized in terms of growth rate and oxidative response in plant leaves.
Collapse
|
4395
|
Kchalilova LA, Matveeva NP, Kurkova EB, Myasoedov NA, Balnokin YV. Chloride ions are transported to the shoot of the salt-accumulating halophyte Suaeda altissima (L.) Pall. along the epidermal and cortical apoplast of the root. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2010; 430:45-47. [PMID: 20380179 DOI: 10.1134/s0012496610010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- L A Kchalilova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, Moscow, 127276 Russia
| | | | | | | | | |
Collapse
|
4396
|
Li S, Xu C, Yang Y, Xia G. Functional analysis of TaDi19A, a salt-responsive gene in wheat. PLANT, CELL & ENVIRONMENT 2010; 33:117-29. [PMID: 19895399 DOI: 10.1111/j.1365-3040.2009.02063.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A salinity stress upregulated expressed sequence tag (EST) was selected from a suppression subtractive hybridization cDNA library, constructed from the salinity-tolerant wheat cultivar Shanrong No. 3. Sequence analysis showed that the corresponding gene (named TaDi19A) belonged to the Di19 family. TaDi19A was constitutively expressed in both the root and leaf of wheat seedlings grown under non-stressed conditions, but was substantially up-regulated by the imposition of stress (salinity, osmotic stress and cold), or the supply of stress-related hormones [abscisic acid (ABA) and ethylene]. The heterologous over-expression of TaDi19A in Arabidopsis thaliana increased the plants' sensitivity to salinity stress, ABA and mannitol during the germination stage. Root elongation in these transgenic lines showed a reduced tolerance to salinity stress and a reduced sensitivity to ethophon. The expression of the ABA signal pathway genes ABI1, RAB18, ERD15 and ABF3, and SOS2 (SOS pathway) was altered in the transgenic lines. TaDi19A plays a role in the plant's response to abiotic stress, and some possible mechanisms of its action are proposed.
Collapse
Affiliation(s)
- Shuo Li
- School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong, China
| | | | | | | |
Collapse
|
4397
|
Abstract
The control of Na(+) and Cl(-) uptake from soils, and the partitioning of these ions within plants, is an essential component of salinity tolerance. Genetic variation in the ability of roots to exclude Na(+) and Cl(-) from the transpiration stream flowing to the shoot has been associated with salinity tolerance in many species. The maintenance of a high uptake of K(+) is also essential, so measurements of Na(+), K(+) or Cl(-) are frequently used to screen for genetic variation in salinity tolerance. As these ions are not bound covalently to compounds in cells, they can be readily extracted with dilute acid. Na(+) and K(+) can be measured in a dilute nitric acid extract using a flame photometer, by atomic absorption spectrometry or by inductively coupled plasma (ICP)-atomic emission spectrometry. Cl(-) can be measured in the same acid extract with a chloridometer or colorimetrically using a spectrophotometer.
Collapse
|
4398
|
Xia G. Progress of chromosome engineering mediated by asymmetric somatic hybridization. J Genet Genomics 2009; 36:547-56. [PMID: 19782956 DOI: 10.1016/s1673-8527(08)60146-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 06/02/2009] [Accepted: 07/15/2009] [Indexed: 11/27/2022]
Abstract
Plant somatic hybridization has progressed steadily over the past 35 years. Many hybrid plants have been generated from fusion combinations of different phylogenetic species, some of which have been utilized in crop breeding programs. Among them, asymmetric hybrid, which usually contains a fraction of alien genome, has received more attention because of its importance in crop improvement. However, few studies have dealt with the heredity of the genome of somatic hybrid for a long time, which has limited the progress of this approach. Over recent ten years, along with the development of an effective cytogenetical tool "in situ hybridization (ISH)", asymmetric fusion of common wheat (Triticum aestivum L.) with different grasses or cereals has been greatly developed. Genetics, genomes, functional genes and agricultural traits of wheat asymmetric hybrids have been subject to systematic investigations using gene cloning, genomic in situ hybridization (GISH) and molecular makers. The future goal is to fully elucidate the functional relationships among improved agronomic traits, the genes and underlying molecular mechanisms, and the genome dynamics of somatic introgression lines. This will accelerate the development of elite germplasms via somatic hybridization and the application of these materials in the molecular improvement of crop plants.
Collapse
Affiliation(s)
- Guangmin Xia
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Education Ministry, School of Life Sciences, Shandong University, Jinan 250100, China.
| |
Collapse
|
4399
|
Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:795-804. [PMID: 19682288 DOI: 10.1111/j.1365-313x.2009.04000.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydrogen peroxide (H(2)O(2)) and nitric oxide (*NO) are key reactive species in signal transduction pathways leading to activation of plant defense against biotic or abiotic stress. Here, we investigated the effect of pre-treating citrus plants (Citrus aurantium L.) with either of these two molecules on plant acclimation to salinity and show that both pre-treatments strongly reduced the detrimental phenotypical and physiological effects accompanying this stress. A proteomic analysis disclosed 85 leaf proteins that underwent significant quantitative variations in plants directly exposed to salt stress. A large part of these changes was not observed with salt-stressed plants pre-treated with either H(2)O(2) or sodium nitroprusside (SNP; a *NO-releasing chemical). We also identified several proteins undergoing changes either in their oxidation (carbonylation; 40 proteins) and/or S-nitrosylation (49 proteins) status in response to salinity stress. Both H(2)O(2) and SNP pre-treatments before salinity stress alleviated salinity-induced protein carbonylation and shifted the accumulation levels of leaf S-nitrosylated proteins to those of unstressed control plants. Altogether, the results indicate an overlap between H(2)O(2)- and *NO-signaling pathways in acclimation to salinity and suggest that the oxidation and S-nitrosylation patterns of leaf proteins are specific molecular signatures of citrus plant vigour under stressful conditions.
Collapse
Affiliation(s)
- Georgia Tanou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | | | | | | | | | | | | | | |
Collapse
|
4400
|
Smith CA, Melino VJ, Sweetman C, Soole KL. Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2009; 137:459-72. [PMID: 19941623 DOI: 10.1111/j.1399-3054.2009.01305.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The growth and development of plants can be limited by environmental stresses such as salinity. It has been suggested that the non-phosphorylating alternative respiratory pathway in plants, mediated by the NAD(P)H dehydrogenase [NAD(P)H DH] and alternative oxidase (AOX), is important during environmental stresses. The involvement of this alternative pathway in a stress response may be linked to its capacity to uncouple carbon metabolism from adenylate control and/or the minimization of the formation of destructive reactive oxygen species (ROS). Salinity stress is a widespread, adverse environmental stress, which leads to an ionic imbalance, hyperosmotic stress and oxidative stress, the latter being the result of ROS formation. In this study, we show that salinity stress of Arabidopsis thaliana plants resulted in the formation of ROS, increased levels of Na+ in both the shoot and the root and an increase in transcription of Ataox1a, Atndb2 and Atndb4 genes, indicating the formation of an abridged non-phosphorylating electron transport chain in response to salinity stress. Furthermore, plants constitutively over-expressing Ataox1a, with increased AOX capacity, showed lower ROS formation, 30-40% improved growth rates and lower shoot Na+ content compared with controls, when grown under salinity stress conditions. Thus, more active AOX in roots and shoots can improve the salt tolerance of Arabidopsis as defined by its ability to grow more effectively in the presence of NaCl, and maintain lower shoot Na+ content. AOX does have an important role in stress adaptation in plants, and these results provide some validation of the hypothesis that AOX can play a critical role in cell re-programming under salinity stress.
Collapse
Affiliation(s)
- Chevaun Anne Smith
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia, Australia
| | | | | | | |
Collapse
|