401
|
Maier DL, Mani S, Donovan SL, Soppet D, Tessarollo L, McCasland JS, Meiri KF. Disrupted cortical map and absence of cortical barrels in growth-associated protein (GAP)-43 knockout mice. Proc Natl Acad Sci U S A 1999; 96:9397-402. [PMID: 10430954 PMCID: PMC17794 DOI: 10.1073/pnas.96.16.9397] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
There is strong evidence that growth-associated protein (GAP-43), a protein found only in the nervous system, regulates the response of neurons to axonal guidance signals. However, its role in complex spatial patterning in cerebral cortex has not been explored. We show that mice lacking GAP-43 expression (-/-) fail to establish the ordered whisker representation (barrel array) normally found in layer IV of rodent primary somatosensory cortex. Thalamocortical afferents to -/- cortex form irregular patches in layer IV within a poorly defined cortical field, which varies between hemispheres, rather than the stereotypic, whisker-specific, segregated map seen in normal animals. Furthermore, many thalamocortical afferents project abnormally to widely separated cortical targets. Taken together, our findings indicate a loss of identifiable whisker territories in the GAP-43 -/- mouse cortex. Here, we present a disrupted somatotopic map phenotype in cortex, in clear contrast to the blurring of boundaries within an ordered whisker map in other barrelless mutants. Our results indicate that GAP-43 expression is critical for the normal establishment of ordered topography in barrel cortex.
Collapse
Affiliation(s)
- D L Maier
- Department of Anatomy and Cell Biology, State University of New York Health Science Center, Syracuse, NY 13210, USA
| | | | | | | | | | | | | |
Collapse
|
402
|
Aarts LH, Verkade P, van Dalen JJ, van Rozen AJ, Gispen WH, Schrama LH, Schotman P. B-50/GAP-43 potentiates cytoskeletal reorganization in raft domains. Mol Cell Neurosci 1999; 14:85-97. [PMID: 10532807 DOI: 10.1006/mcne.1999.0775] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
B-50 (GAP-43) is a neural, membrane-associated protein that has been implicated in neurite outgrowth and guidance. Following stable transfection of Rat1 fibroblasts with B-50 cDNA we observed a dispersed distribution of B-50 immunoreactivity in flattened resting cells. In contrast, motile cells exhibited high concentrations of B-50 at the leading edge of ruffling membranes, coinciding with actin polymerization. Time-lapse studies on Rat1 fibroblasts transiently transfected with B-50/EGFP revealed that large vesicles originated from the ruffling membranes. These large vesicles (pinocytes) were found positive for Thy-1, a GPI-anchored protein, but negative for rab-5, an early endosome marker. In primary hippocampal neurons B-50 also colocalized completely with the raft marker Thy-1. Antibody-mediated cross-linking of Thy-1 in hippocampal neurons resulted in a redistribution of the intracellular protein B-50 to Thy-1-immunopositive membrane patches, whereas syntaxin was mainly excluded from the patches, showing that B-50 is associated with rafts. Academic Press.
Collapse
Affiliation(s)
- L H Aarts
- Rudolf Magnus Institute for Neurosciences, Department of Physiological Chemistry, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
403
|
Arber S, Han B, Mendelsohn M, Smith M, Jessell TM, Sockanathan S. Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 1999; 23:659-74. [PMID: 10482234 DOI: 10.1016/s0896-6273(01)80026-x] [Citation(s) in RCA: 480] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The homeobox gene Hb9, like its close relative MNR2, is expressed selectively by motor neurons (MNs) in the developing vertebrate CNS. In embryonic chick spinal cord, the ectopic expression of MNR2 or Hb9 is sufficient to trigger MN differentiation and to repress the differentiation of an adjacent population of V2 interneurons. Here, we provide genetic evidence that Hb9 has an essential role in MN differentiation. In mice lacking Hb9 function, MNs are generated on schedule and in normal numbers but transiently acquire molecular features of V2 interneurons. The aberrant specification of MN identity is associated with defects in the migration of MNs, the emergence of the subtype identities of MNs, and the projection of motor axons. These findings show that HB9 has an essential function in consolidating the identity of postmitotic MNs.
Collapse
Affiliation(s)
- S Arber
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
404
|
Bavetta S, Hamlyn PJ, Burnstock G, Lieberman AR, Anderson PN. The effects of FK506 on dorsal column axons following spinal cord injury in adult rats: neuroprotection and local regeneration. Exp Neurol 1999; 158:382-93. [PMID: 10415144 DOI: 10.1006/exnr.1999.7119] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is considerable evidence that immunophilin ligands can promote the regeneration of axons in peripheral nerves and act as neuroprotective agents in the CNS. We have examined the effects of FK506 and GPI 1046 on the responses to partial transection of ascending spinal dorsal column axons at T9, in some cases combined with crush of one sciatic nerve. FK506 (0.5 or 2.0 mg/kg) and GPI 1046 (10 or 40 mg/kg) was administered subcutaneously immediately after surgery and five times a week thereafter. Some animals received methylprednisolone (MP) (two subcutaneous doses of 30 mg/kg) in addition to, or instead of, FK506. After survival times of 1-12 weeks, dorsal column axons were labeled transganglionically with cholera toxin B-HRP. There was massive axonal sprouting at the lesion sites in animals with sciatic nerve injury and immunophilin ligand treatment. In FK506-treated animals a few severed sensory axons regenerated for up to 10 mm rostral to the lesion. Of greater significance, 30% of 71 FK506-treated animals had spared axons in the dorsal column, extending to the nucleus gracilis, versus 8% of 50 control animals (P < 0.05), showing that FK506 reduces the likelihood of axonal destruction due to secondary injury. A combination of FK506 and MP afforded greater protection than MP alone (P < 0.05), but axonal survival was not affected by sciatic nerve crush, dose of FK506, or survival time after injury. GPI 1046 (n = 11) did not promote axonal survival. Thus FK506 protects axons from secondary injury following spinal cord trauma, and in this experimental model, its neuroprotective effect is greater than that of MP.
Collapse
Affiliation(s)
- S Bavetta
- Department of Anatomy and Developmental Biology, University College London, London, WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
405
|
Kawamata T, Ren J, Cha JH, Finklestein SP. Intracisternal antisense oligonucleotide to growth associated protein-43 blocks the recovery-promoting effects of basic fibroblast growth factor after focal stroke. Exp Neurol 1999; 158:89-96. [PMID: 10448420 DOI: 10.1006/exnr.1999.7101] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Focal infarction (stroke) of the lateral cerebral cortex of rats (including the sensorimotor cortex) produces deficits in sensorimotor function of the contralateral limbs that recover partially over time. In previous studies, we found that the intracisternal injection of basic fibroblast growth factor (bFGF), a potent neurotrophic growth factor, starting at 1 day after stroke, significantly enhanced recovery of sensorimotor function of the contralateral forelimb and hindlimb. Moreover, immunoreactivity (IR) for growth-associated protein-43 (GAP-43), a molecular marker of new axonal growth, was increased in the intact contralateral sensorimotor cortex following bFGF treatment. In the current study, we found that the intracisternal administration of antisense, but not missense, oligonucleotide to GAP-43 blocked the recovery-enhancing effects of bFGF and blocked the increase in GAP-43 IR in the contralateral cortex. These results suggest that upregulation of GAP-43 expression and consequent enhanced axonal sprouting in intact uninjured parts of the brain are likely mechanisms for the recovery-promoting effects of bFGF.
Collapse
Affiliation(s)
- T Kawamata
- CNS Growth Factor Research Laboratory, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | |
Collapse
|
406
|
Harding DI, Greensmith L, Mason M, Anderson PN, Vrbová G. Overexpression of GAP-43 induces prolonged sprouting and causes death of adult motoneurons. Eur J Neurosci 1999; 11:2237-42. [PMID: 10383612 DOI: 10.1046/j.1460-9568.1999.00640.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In neurodegenerative diseases, neurons undergo prolonged periods of sprouting. Whether this sprouting compromises these neurons is unknown. Here, we examined the effect of axotomy on adult motoneurons undergoing prolonged sprouting in transgenic mice that overexpress GAP-43 (growth-associated protein). Sciatic nerve injury in these adult mice results in motoneuron death, but has no effect in non-transgenic mice. Thus, continued growth of motor axons renders adult motoneurons susceptible to nerve injury and compromises their long-term survival. The progressive nature of neurodegenerative diseases may therefore be caused by prolonged sprouting.
Collapse
Affiliation(s)
- D I Harding
- Department of Anatomy, University College London, UK
| | | | | | | | | |
Collapse
|
407
|
Klein RL, McNamara RK, King MA, Lenox RH, Muzyczka N, Meyer EM. Generation of aberrant sprouting in the adult rat brain by GAP-43 somatic gene transfer. Brain Res 1999; 832:136-44. [PMID: 10375659 DOI: 10.1016/s0006-8993(99)01482-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The expression of GAP-43 was modulated genetically in the adult rat nigrostriatal or septohippocampal pathway using recombinant adeno-associated virus (rAAV) vectors incorporating the neuron specific enolase (NSE) promoter and either a rat GAP-43 cDNA or the corresponding antisense sequence. Bicistronic expression of green fluorescent protein (GFP) enabled us to evaluate transduced neurons selectively. Single injections of rAAV into the substantia nigra pars compacta (SNc) transduced both dopaminergic and non-dopaminergic neurons stably for the 3-month duration of the study. Transduction with the GAP-43 vector in this region: (1) increased GAP-43 mRNA levels 2-fold compared to controls; (2) led to GAP-43 immunoreactivity in neuronal perikarya, axons, and dendrites that was not observed otherwise; and (3) resulted in GAP-43/ GFP-positive axons that were traced to the striatum where they formed clusters of aberrant nets. The GAP-43 antisense vector, in contrast, decreased neuropil GAP-43 immunoreactivity compared to controls in the SNc. In septum, injections of the GAP-43 expressing vector also caused aberrant clusters of GAP-43 labelled fibers in terminal fields, i.e., fornix and hippocampus, that were not observed in control tissues. It therefore appears that rAAV vectors provide a novel approach for modulating intraneuronal GAP-43 expression in the adult brain.
Collapse
Affiliation(s)
- R L Klein
- Department of Pharmacology and Therapeutics, University of Florida, Campus Box 100267 JHMHC, Gainesville, FL 32610-0267, USA
| | | | | | | | | | | |
Collapse
|
408
|
Naffah-Mazzacoratti MG, Funke MG, Sanabria ER, Cavalheiro EA. Growth-associated phosphoprotein expression is increased in the supragranular regions of the dentate gyrus following pilocarpine-induced seizures in rats. Neuroscience 1999; 91:485-92. [PMID: 10366005 DOI: 10.1016/s0306-4522(98)00631-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuroplasticity has been investigated considering the neuronal growth-associated phosphoprotein as a marker of neuronal adaptive capabilities. In the present work, studying the hippocampal reorganization observed in the epilepsy model induced by pilocarpine, we carried out quantitative western blotting associated with immunohistochemistry to determine the distribution of growth-associated phosphoprotein in the hippocampus of rats in acute, silent and chronic periods of this epilepsy model. The fibers and punctate elements from the inner molecular layer of the dentate gyrus were strongly immunostained in animals killed 5 h after status epilepticus, compared with the same region in control animals. Rats presenting partial seizures showed no alterations in the immunostaining pattern compared with saline-treated animals. The hippocampal dentate gyrus of animals during the seizure-free period and presenting spontaneous recurrent seizures was also characterized by strong growth-associated phosphoprotein immunostaining of fibers and punctate elements in the inner molecular layer, contrasting with the control group. As determined by western blotting analysis, growth-associated phosphoprotein levels increased following status epilepticus and remained elevated at the later time-points, both during the silent period and during the period of chronic recurring seizures. Pilocarpine-treated animals, which did not develop status epilepticus, showed no change in growth-associated phosphoprotein levels, indicating that status epilepticus is important to induce growth-associated phosphoprotein overexpression. The measurement of this overexpression could represent one of the early signals of hippocampal reorganization due to status epilepticus-induced damage.
Collapse
Affiliation(s)
- M G Naffah-Mazzacoratti
- Disciplina de Neurologia Experimental, Escola Paulista de Medicina/UNIFESP, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
409
|
Bernhardt RR. Cellular and molecular bases of axonal regeneration in the fish central nervous system. Exp Neurol 1999; 157:223-40. [PMID: 10364435 DOI: 10.1006/exnr.1999.7059] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- R R Bernhardt
- Neurobiology, Universitaet Hamburg, Martinistrasse 52, Hamburg, D-20246, Germany
| |
Collapse
|
410
|
Abstract
The rate at which mutant genes producing an epileptic phenotype in mice have been identified over the past few years has been astounding. Manipulating the genome of mice has led to identification of a diversity of genes whose absence or modification either causes epileptic seizures or, conversely, limits epileptogenesis. In addition, positional cloning of genes in which spontaneously arising mutations cause epilepsy in mice has led to the identification of genes encoding voltage- and ligand-gated ion channels. Finally, engineering a mutation that mimics a rare form of human epilepsy has led to a mouse line with a phenotype similar to that of the human disease. Taken together, these discoveries promise to shed light on the mechanisms underlying genetic control of neuronal excitability, suggest candidate genes underlying genetic forms of human epilepsy, and provide a valuable model with which to elucidate how the genotype produces the phenotype of a rare form of human epilepsy.
Collapse
Affiliation(s)
- R S Puranam
- Department of Medicine (Neurology), Box 3676, Duke University Medical Center, 401 Bryan Research Building, Research Drive, Durham, North Carolina, 27710, USA.
| | | |
Collapse
|
411
|
Cassam AK, Rogers KA, Weaver LC. Co-localization of substance P and dopamine beta-hydroxylase with growth-associated protein-43 is lost caudal to a spinal cord transection. Neuroscience 1999; 88:1275-88. [PMID: 10336136 DOI: 10.1016/s0306-4522(98)00262-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
After spinal cord injury, abnormal responses of spinal cord neurons to sensory input lead to conditions such as autonomic dysreflexia, urinary bladder dyssynergia, muscle spasticity and chronic pain syndromes. These responses suggest that the spinal cord undergoes marked reorganization after an injury. In previous studies, we demonstrated changes in individual patterns of immunoreactivity for growth-associated protein-43, dopamine beta-hydroxylase and substance P that suggest growth and/or changes in expression of neurotransmitter enzymes and peptides in the cord caudal to a transection injury. In the present study we determined whether (i) growth-associated protein-43 and dopamine beta-hydroxylase or substance P were co-expressed in the same neurons prior to cord injury, and (ii) these patterns of expression changed after injury. A change in co-localization patterns caudal to an injury would suggest diversity in responses of different populations of spinal neurons. We used double-labelling immunocytochemistry to determine whether either dopamine beta-hydroxylase or substance P was co-localized with growth-associated protein-43 in control rats and in rats one, two or six weeks after spinal cord transection. We focused on the intermediate gray matter, especially the sympathetic intermediolateral cell column. In control rats, fibres travelling in a stereotyped ladder-like pattern in the thoracic gray matter contained growth-associated protein-43 co-localized with dopamine beta-hydroxylase or substance P. In spinal rats, such co-localization was also observed in spinal cord segments rostral to the cord transection. In contrast, caudal to the transection, substance P and growth-associated protein-43 were found in separate reticular networks. Immunoreactivity for dopamine beta-hydroxylase disappeared in fibres during this time, but was clearly present in somata. Immunoreactivity for growth-associated protein-43 was also found in somata, but never co-localized with that for dopamine beta-hydroxylase. These observations demonstrated co-localization of growth-associated protein-43 with dopamine beta-hydroxylase and substance P in descending spinal cord pathways. Caudal to a cord transection, this co-localization was no longer found, although each substance was present either in an abundant neural network or in somata. One population of spinal neurons responded to cord injury by expressing the growth-associated protein, whereas two others changed in the intensity of their expression of neurotransmitter peptides or enzymes or in the abundance of fibres expressing them. Thus, three populations of spinal neurons had distinct responses to cord injury, two of them increasing their potential input to spinal sensory, sympathetic or motor neurons. Such responses would enhance transmission through spinal pathways after cord injury.
Collapse
Affiliation(s)
- A K Cassam
- The John P. Robarts Research Institute and The Department of Physiology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
412
|
Neumann S, Woolf CJ. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 1999; 23:83-91. [PMID: 10402195 DOI: 10.1016/s0896-6273(00)80755-2] [Citation(s) in RCA: 511] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Regeneration is abortive following adult mammalian CNS injury. We have investigated whether increasing the intrinsic growth state of primary sensory neurons by a conditioning peripheral nerve lesion increases regrowth of their central axons. After dorsal column lesions, all fibers stop at the injury site. Animals with a peripheral axotomy concomitant with the central lesion show axonal growth into the lesion but not into the spinal cord above the lesion. A preconditioning lesion 1 or 2 weeks prior to the dorsal column injury results in growth into the spinal cord above the lesion. In vitro, the growth capacity of DRG neurite is also increased following preconditioning lesions. The intrinsic growth state of injured neurons is, therefore, a key determinant for central regeneration.
Collapse
Affiliation(s)
- S Neumann
- Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown 02129, USA
| | | |
Collapse
|
413
|
Hannila SS, Kawaja MD. Nerve growth factor-induced growth of sympathetic axons into the optic tract of mature mice is enhanced by an absence of p75NTR expression. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(199904)39:1<51::aid-neu5>3.0.co;2-t] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
414
|
Aarts LH, Schotman P, Verhaagen J, Schrama LH, Gispen WH. The role of the neural growth associated protein B-50/GAP-43 in morphogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 446:85-106. [PMID: 10079839 DOI: 10.1007/978-1-4615-4869-0_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- L H Aarts
- Rudolf Magnus Institute for Neurosciences, Laboratory of Physiological Chemistry, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
415
|
Huang KP, Huang FL, Chen HC. Hypoxia/ischemia induces dephosphorylation of rat brain neuromodulin/GAP-43 in vivo. J Neurochem 1999; 72:1294-306. [PMID: 10037503 DOI: 10.1046/j.1471-4159.1999.0721294.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The in vivo state of phosphorylation and the modification of two Cys residues of neuromodulin/ GAP-43 (Nm) were analyzed by electrospray ionization-mass spectrometry (ES-MS). The protein was purified from rat brain with homogenization buffer containing 1% Nonidet P-40, protease inhibitors, protein phosphatase inhibitors, and sulfhydryl reagent, 4-vinylpyridine. Nm was purified by HPLC and ion-exchange chromatography, and the various fractions were identified by ES-MS as unphosphorylated and mono-, di-, tri-, and tetraphosphorylated species. All of these Nm species contained 2 mol of added 4-vinylpyridine per mol of Nm, suggesting that the two Cys residues are in the reduced form in the brain. In vivo, the majority of Nm is in the phosphorylated form (approximately 80%), of which the levels of the mono- and diphospho forms are higher than those of the tri- and tetraphospho species. Four in vivo phosphorylation sites, Ser41, Thr95, Ser142, and Thr172, were identified by amino acid sequencing and tandem ES-MS of the peptides derived from Lys-C endoproteinase digestion. Among these sites, only Ser41 is a known target of PKC, whereas the kinases responsible for the phosphorylation of the other three novel sites are unknown. Hypoxia/ischemia caused a preferential dephosphorylation of Ser41 and Thr172, whereas Thr95 is the least susceptible to dephosphorylation.
Collapse
Affiliation(s)
- K P Huang
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | |
Collapse
|
416
|
Neurite outgrowth stimulated by neural cell adhesion molecules requires growth-associated protein-43 (GAP-43) function and is associated with GAP-43 phosphorylation in growth cones. J Neurosci 1999. [PMID: 9852580 DOI: 10.1523/jneurosci.18-24-10429.1998] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanisms whereby cell adhesion molecules (CAMs) promote axonal growth and synaptic plasticity are poorly understood. Here we show that the neurite outgrowth stimulated by NCAM-mediated fibroblast growth factor (FGF) receptor activation in cerebellar granule cells is associated with increased GAP-43 phosphorylation on serine-41. In contrast, neither NCAM nor FGF was able to stimulate neurite outgrowth in similar neurons from mice in which the GAP-43 gene had been deleted by homologous recombination. Integrin-mediated neurite outgrowth was unaffected by GAP-43 deletion. Both neurite outgrowth and rapid phosphorylation of GAP-43 in isolated growth cones required the first three Ig domains of a NCAM-Fc chimera and were stimulated maximally at 5 micrograms/ml (approximately 50 nM). Likewise, GAP-43 phosphorylation in isolated growth cones also was stimulated by an L1-Fc chimera. Both neurite outgrowth and NCAM-stimulated GAP-43 phosphorylation were inhibited by antibodies to the FGF receptor and a diacylglycerol lipase inhibitor (RHC80267) that blocks the production of arachidonic acid in response to activation of the FGF receptor. Direct activation of the FGF receptor and the arachidonic acid cascade with either basic FGF or melittin also resulted in increased GAP-43 phosphorylation. These data suggest that the stimulation of neurite outgrowth by NCAM requires GAP-43 function and that GAP-43 phosphorylation in isolated growth cones occurs via an FGF receptor-dependent increase in arachidonic acid.
Collapse
|
417
|
Schwaiger FW, Hager G, Raivich G, Kreutzberg GW. Cellular activation in neuroregeneration. PROGRESS IN BRAIN RESEARCH 1999; 117:197-210. [PMID: 9932410 DOI: 10.1016/s0079-6123(08)64017-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- F W Schwaiger
- Department of Neuromorphology, Max-Planck-Institute of Neurobiology, Martinsried, Germany.
| | | | | | | |
Collapse
|
418
|
Esdar C, Oehrlein SA, Reinhardt S, Maelicke A, Herget T. The protein kinase C (PKC) substrate GAP-43 is already expressed in neural precursor cells, colocalizes with PKCeta and binds calmodulin. Eur J Neurosci 1999; 11:503-16. [PMID: 10051751 DOI: 10.1046/j.1460-9568.1999.00455.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the growth-associated protein of 43-kDa (GAP-43), which is described as a postmitotic, neuron-specific major protein kinase C (PKC) substrate, was investigated in the murine embryonic carcinoma cell line PCC7-Mz1 which develops into a brain-tissue-like pattern of neuronal, fibroblast-like and astroglial cells upon stimulation with all-trans retinoic acid (RA). GAP-43 expression was very low in stem cells, but increased on mRNA and protein level within the 12 h after differentiation was initiated. While the P1 promoter of the GAP-43 gene gave rise to a 1.6-kb mRNA and was already active at a very low level in PCC7-Mz1 stem cells, transcription of the P2 promoter, which resulted in a 1.4-kb mRNA, was completely blocked in stem cells but increased rapidly after RA treatment. Within the first 2 days of neural differentiation, GAP-43 was localized with the cytoplasmic membrane and the Golgi complex of proliferating neural precursor cells. Then, GAP-43 was translocated to the growth cones and neurites, and from day 6, when neurons began to acquire polarity, the protein was found in the axons. GAP-43 was never detected in the non-neuronal PCC7-Mz1 derivatives, i.e. in fibroblasts or glial cells. In the foetal rat brain (prenatal day F11), GAP-43 was expressed in the optic stalk, the lense plakode and in the postmitotic neurons of the marginal zone of the hindbrain. Moreover, in a layer between the ventricular and marginal zone of the hindbrain (F13) and forebrain (F15), GAP-43 was already expressed in mitotic neural precursor cells. In PCC7-Mz1 cultures, 2 days after addition of RA, GAP-43 became phosphorylated upon activation of PKC, and colocalized specifically with the novel PKC isoform eta. Phosphorylation of GAP-43 caused a disruption of its complex with calmodulin. These data demonstrate that GAP-43 is already a functional PKC substrate in prolific neuronal precursor cells, and may participate in neuronal cell lineage determination.
Collapse
Affiliation(s)
- C Esdar
- Laboratory of Molecular Neurobiology, Mainz, Germany
| | | | | | | | | |
Collapse
|
419
|
Capogna M, Fankhauser C, Gagliardini V, Gähwiler BH, Thompson SM. Excitatory synaptic transmission and its modulation by PKC is unchanged in the hippocampus of GAP-43-deficient mice. Eur J Neurosci 1999; 11:433-40. [PMID: 10051744 DOI: 10.1046/j.1460-9568.1999.00450.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We compared excitatory synaptic transmission between hippocampal pyramidal cells in dissociated hippocampal cell cultures and in area CA3 of hippocampal slice cultures derived from wild-type mice and mice with a genetic deletion of the presynaptic growth associated protein GAP-43. The basal frequency and amplitude of action potential-dependent and -independent spontaneous excitatory postsynaptic currents were similar in both groups. The probability that any two CA3 pyramidal cells in wild-type or GAP-43 knockout (-/-) slice cultures were synaptically connected was assessed with paired recordings and was not different. Furthermore, unitary synaptic responses were similar in the two genotypes. Bath application of phorbol 12,13-diacetate (0.6-3 microM) elicited a comparable increase in the frequency of miniature excitatory synaptic currents in wild-type and GAP-43 (-/-) cultures. This effect was blocked by the protein kinase C inhibitor, bisindolylmaleimide I (1.2 microM). Finally, 3 microM phorbol 12,13-diacetate potentiated the amplitude of unitary synaptic currents to a comparable extent in wild-type and GAP-43 (-/-) slice cultures. We conclude that GAP-43 is not required for normal excitatory synaptic transmission or the potentiation of presynaptic glutamate release mediated by activation of protein kinase C in the hippocampus.
Collapse
Affiliation(s)
- M Capogna
- Brain Research Institute, University of Zurich, Switzerland
| | | | | | | | | |
Collapse
|
420
|
Abstract
To have a proper spatial visual perception, vertebrate retinal ganglion cells connect to their brain targets in a highly ordered fashion. The molecular bases for such topographic retinotectal connection in mammals still remain largely unknown. Using the gene knock-out approach in mice, we report here a key role for the GAP-43 growth cone protein in the development of the visual system. In mice bearing a targeted disruption of GAP-43 exon 1, a high proportion of retinal ganglion cell (RGC) axons was found to grow abnormally into the ipsilateral optic tract and into the hypothalamus. After leaving the optic chiasm during development, the GAP-43-deficient RGC axons generally follow the optic tracts but are unable to form proper terminal zones in the lateral geniculate nucleus. Moreover, in the superior colliculus, RGC axons lacking GAP-43 are intermingled. These results suggest an essential role for GAP-43 in development of the topographic retinotectal connection.
Collapse
Affiliation(s)
- Q Zhu
- Centre for Research in Neuroscience, McGill University, The Montreal General Hospital Research Institute, Montreal, H3G 1A4, Canada
| | | |
Collapse
|
421
|
Kellendonk C, Tronche F, Casanova E, Anlag K, Opherk C, Schütz G. Inducible site-specific recombination in the brain. J Mol Biol 1999; 285:175-82. [PMID: 9878397 DOI: 10.1006/jmbi.1998.2307] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Cre/loxP recombination system allows the generation of tissue-specific somatic mutations in mice. Additional temporal control of somatic mutagenesis is highly desirable, as this would permit a more precise analysis of gene function in complex systems such as the central nervous system. Extending our previous studies, we compared several ligand-regulated recombinases, in which the ligand-binding domain (LBD) of the progesterone receptor or the estrogen receptor was fused to the Cre recombinase. A fusion protein between the Cre recombinase and a truncated LBD of the progesterone receptor was chosen to obtain inducible recombination in the brain. This fusion protein can be activated by the synthetic steroid RU486, but not by the physiological hormone progesterone. Its expression was targeted to the brain using regulatory sequences of the calcium-calmodulin-dependent kinase IIalpha or the Thy-1 gene. Application of RU486 to the mice induced Cre-mediated recombination of a lacZ reporter transgene in the cortex and hippocampus, showing that spatially and temporally controlled gene targeting can be mediated in the brain.
Collapse
Affiliation(s)
- C Kellendonk
- German Cancer Research Center, Mol. Biol. of the Cell I, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | | | | | | | | | | |
Collapse
|
422
|
Nonobligate role of early or sustained expression of immediate-early gene proteins c-fos, c-jun, and Zif/268 in hippocampal mossy fiber sprouting. J Neurosci 1998. [PMID: 9801364 DOI: 10.1523/jneurosci.18-22-09245.1998] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axon sprouting in dentate granule cells is an important model of structural plasticity in the hippocampus. Although the process can be triggered by deafferentation, intense activation of glutamate receptors, and other convulsant stimuli, the specific molecular steps required to initiate and sustain mossy fiber (MF) reorganization are unknown. The cellular immediate early genes (IEGs) c-fos, c-jun, and zif/268 are major candidates for the initial steps of this plasticity, because they encode transcription factors that may trigger cascades of activity-dependent neuronal gene expression and are strongly induced in all experimental models of MF sprouting. The mutant mouse stargazer offers an important opportunity to test the specific role of IEGs, because it displays generalized nonconvulsive epilepsy and intense MF sprouting in the absence of regional cell injury. Here we report that stargazer mice show no detectable elevations in c-Fos, c-Jun, or Zif/268 immediate early gene proteins (IEGPs) before or during MF growth. Experimental results in stargazer, including (1) a strong IEGP response to kainate-induced convulsive seizures, (2) no IEGP response after prolongation of spike-wave synchronization, (3) no IEGP increase at the developmental onset of seizures or after prolonged seizure suppression, and (4) unaltered levels of the intracellular Ca2+-buffering proteins calbindin-D28k or parvalbumin, exclude the possibility that absence of an IEGP response in stargazer is either gene-linked or suppressed by known refractory mechanisms. These data demonstrate that increased levels of these IEGPs are not an obligatory step in MF-reactive sprouting and differentiate the early downstream molecular cascades of two major seizure types.
Collapse
|
423
|
Madsen JR, MacDonald P, Irwin N, Goldberg DE, Yao GL, Meiri KF, Rimm IJ, Stieg PE, Benowitz LI. Tacrolimus (FK506) increases neuronal expression of GAP-43 and improves functional recovery after spinal cord injury in rats. Exp Neurol 1998; 154:673-83. [PMID: 9878202 DOI: 10.1006/exnr.1998.6974] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tacrolimus (FK506), a widely used immunosuppressant drug, has neurite-promoting activity in cultured PC12 cells and peripheral neurons. The present study investigated whether tacrolimus affects the expression of the neuronal growth-associated protein, GAP-43, as well as functional recovery after photothrombotic spinal cord injury in the rat. In injured animals receiving tacrolimus, the number of neurons expressing GAP-43 mRNA and protein approximately doubled compared to that in injured animals receiving vehicle alone. This increase in GAP-43-positive cells was paralleled by a significant improvement in neurological function evaluated by open-field and inclined plane tests. Another FKBP-12 ligand (V-10,367) had similar effects on GAP-43 expression and functional outcome, indicating that the observed effects of tacrolimus do not involve inhibition of the phosphatase calcineurin. Thus, tacrolimus, a drug which is already approved for use in humans, as well as other FKBP-12 ligands which do not inhibit calcineurin, could potentially enhance functional outcome after CNS injury in humans.
Collapse
Affiliation(s)
- J R Madsen
- Department of Neurosurgery, Children's Hospital, Boston, Massachusetts, 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
424
|
Higo N, Oishi T, Yamashita A, Matsuda K, Hayashi M. Gene expression of growth-associated proteins, GAP-43 and SCG10, in the hippocampal formation of the macaque monkey: nonradioactive in situ hybridization study. Hippocampus 1998; 8:533-47. [PMID: 9825963 DOI: 10.1002/(sici)1098-1063(1998)8:5<533::aid-hipo11>3.0.co;2-#] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We performed nonradioactive in situ hybridization histochemistry in the monkey hippocampal formation that includes the hippocampus, the subicular complex, and the entorhinal cortex to detect the expression of mRNA for two growth-associated proteins: GAP-43 and SCG10. Overall, the distribution patterns overlapped but were partially distinct. In the hippocampus, the intense hybridization signals for both GAP-43 and SCG10 mRNAs were observed in the pyramidal cell layer of Ammon's horn, especially in CA3 subfields. The intense hybridization signals were also observed in the stratum oriens of Ammon's horn and the polymorphic layer of the dentate gyrus. In the granule cell layer of the dentate gyrus, many GAP-43 mRNA-positive cells were observed, whereas a few positive cells with weak signals were observed for SCG10 mRNA. Throughout the subicular complex, the hybridization signals for both mRNAs were weak. In the entorhinal cortex, both mRNAs were abundant in the caudal field. These subregion-specific expression of the growth-associated proteins may reflect the functional specialization regarding plasticity in each region of the monkey hippocampal formation.
Collapse
Affiliation(s)
- N Higo
- Information Science Division, Electrotechnical Laboratory, Umezono, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
425
|
Kutzleb C, Sanders G, Yamamoto R, Wang X, Lichte B, Petrasch-Parwez E, Kilimann MW. Paralemmin, a prenyl-palmitoyl-anchored phosphoprotein abundant in neurons and implicated in plasma membrane dynamics and cell process formation. J Biophys Biochem Cytol 1998; 143:795-813. [PMID: 9813098 PMCID: PMC2148134 DOI: 10.1083/jcb.143.3.795] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report the identification and initial characterization of paralemmin, a putative new morphoregulatory protein associated with the plasma membrane. Paralemmin is highly expressed in the brain but also less abundantly in many other tissues and cell types. cDNAs from chicken, human, and mouse predict acidic proteins of 42 kD that display a pattern of sequence cassettes with high inter-species conservation separated by poorly conserved linker sequences. Prenylation and palmitoylation of a COOH-terminal cluster of three cysteine residues confers hydrophobicity and membrane association to paralemmin. Paralemmin is also phosphorylated, and its mRNA is differentially spliced in a tissue-specific and developmentally regulated manner. Differential splicing, lipidation, and phosphorylation contribute to electrophoretic heterogeneity that results in an array of multiple bands on Western blots, most notably in brain. Paralemmin is associated with the cytoplasmic face of the plasma membranes of postsynaptic specializations, axonal and dendritic processes and perikarya, and also appears to be associated with an intracellular vesicle pool. It does not line the neuronal plasmalemma continuously but in clusters and patches. Its molecular and morphological properties are reminiscent of GAP-43, CAP-23, and MARCKS, proteins implicated in plasma membrane dynamics. Overexpression in several cell lines shows that paralemmin concentrates at sites of plasma membrane activity such as filopodia and microspikes, and induces cell expansion and process formation. The lipidation motif is essential for this morphogenic activity. We propose a function for paralemmin in the control of cell shape, e.g., through an involvement in membrane flow or in membrane-cytoskeleton interaction.
Collapse
Affiliation(s)
- C Kutzleb
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
426
|
Interstitial branches develop from active regions of the axon demarcated by the primary growth cone during pausing behaviors. J Neurosci 1998. [PMID: 9742160 DOI: 10.1523/jneurosci.18-19-07930.1998] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interstitial branches arise from the axon shaft, sometimes at great distances behind the primary growth cone. After a waiting period that can last for days after extension of the primary growth cone past the target, branches elongate toward their targets. Delayed interstitial branching is an important but little understood mechanism for target innervation in the developing CNS of vertebrates. One possible mechanism of collateral branch formation is that the axon shaft responds to target-derived signals independent of the primary growth cone. Another possibility is that the primary growth cone recognizes the target and demarcates specific regions of the axon for future branching. To address whether behaviors of the primary growth cone and development of interstitial branches are related, we performed high-resolution time-lapse imaging on dissociated sensorimotor cortical neurons that branch interstitially in vivo. Imaging of entire cortical neurons for periods of days revealed that the primary growth cone pauses in regions in which axon branches later develop. Pausing behaviors involve repeated cycles of collapse, retraction, and extension during which growth cones enlarge and reorganize. Remnants of reorganized growth cones are left behind on the axon shaft as active filopodial or lamellar protrusions, and axon branches subsequently emerge from these active regions of the axon shaft. In this study we propose a new model to account for target innervation in vivo by interstitial branching. Our model suggests that delayed interstitial branching results directly from target recognition by the primary growth cone.
Collapse
|
427
|
Xiao B, Tu JC, Petralia RS, Yuan JP, Doan A, Breder CD, Ruggiero A, Lanahan AA, Wenthold RJ, Worley PF. Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 1998; 21:707-16. [PMID: 9808458 DOI: 10.1016/s0896-6273(00)80588-7] [Citation(s) in RCA: 521] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Homer is a neuronal immediate early gene (IEG) that is enriched at excitatory synapses and binds group 1 metabotropic glutamate receptors (mGluRs). Here, we characterize a family of Homer-related proteins derived from three distinct genes. Like Homer IEG (now termed Homer 1a), all new members bind group 1 mGluRs. In contrast to Homer 1a, new members are constitutively expressed and encode a C-terminal coiled-coil (CC) domain that mediates self-multimerization. CC-Homers form natural complexes that cross-link mGluRs and are enriched at the postsynaptic density. Homer 1a does not multimerize and blocks the association of mGluRs with CC-Homer complexes. These observations support a model in which the dynamic expression of Homer 1a competes with constitutively expressed CC-Homers to modify synaptic mGluR properties.
Collapse
Affiliation(s)
- B Xiao
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Chen YC, Chen QS, Lei JL, Wang SL. Physical training modifies the age-related decrease of GAP-43 and synaptophysin in the hippocampal formation in C57BL/6J mouse. Brain Res 1998; 806:238-45. [PMID: 9739145 DOI: 10.1016/s0006-8993(98)00770-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the effect of a moderate amount of prolonged physical training initiated at 3 months of age on the expression of GAP-43 and synaptophysin in the hippocampal formation. C57BL/6J mice were divided into three groups which were trained (24 months old), sedentary (24 months old) and young (3 months old). From 3 months of age on, mice of trained group were treated with voluntary running wheel for 1 h each day (5 days per week) until 24 months of age (21 months running), whereas mice of sedentary group were put in immobilized wheels for the same time. Using immunohistochemistry and image analysis system, GAP-43 and synaptophysin were analysed quantitatively in the CA1, CA3 areas and the dentate gyrus of the hippocampal formation. As compared with young mice, the densities of GAP-43 and synaptophysin immunostaining showed a significant decrease in the hippocampal formation in sedentary group (P<0.01). After 21 months of running, the densities of GAP-43 and synaptophysin immunostaining significantly increased in the examined areas of the hippocampal formation in trained mice compared to their age-matched sedentary controls (P<0.05, 0.01). These results indicate that a moderate amount of prolonged physical training could modify the age-related decrease of the expression of GAP-43 and synaptophysin in the hippocampal formation, and that the increased expression of GAP-43 and synaptophysin might be associated with the anatomical sprouting and synaptogenesis.
Collapse
Affiliation(s)
- Y C Chen
- Department of Anatomy, Beijing Medical University, Beijing 100083, China.
| | | | | | | |
Collapse
|
429
|
Schmidt JT. Up-regulation of protein kinase C in regenerating optic nerve fibers of goldfish: immunohistochemistry and kinase activity assay. JOURNAL OF NEUROBIOLOGY 1998; 36:315-24. [PMID: 9733068 DOI: 10.1002/(sici)1097-4695(19980905)36:3<315::aid-neu1>3.0.co;2-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein kinase C (PKC) activation has been associated with synaptic plasticity in many projections, and manipulating PKC in the retinotectal projection strongly affects the activity-driven sharpening of the retinotopic map. This study examined levels of PKC in the regenerating retinotectal projection via immunostaining and assay of activity. A polyclonal antibody to the conserved C2 (Ca2+ binding) domain of classical PKC isozymes (anti-panPKC) recognized a single band at 79-80 kD on Western blots of goldfish brain. It stained one class of retinal bipolar cells and the ganglion cells in normal retina, as shown previously. Strong staining was not present in the optic fiber layer of retina or in optic nerve, optic tract, or terminal zone in tectum, with the exception of a single fascicle of optic nerve fibers that by their location and by L1 (E587) staining were identified as those arising from newly added ganglion cells at the retinal margin. Normal tectal sections showed dark staining of a subclass of type XIV neuron with somas at the top of the periventricular layer and an apical dendrite ascending to stratum opticum. In regenerating retina, swollen ganglion cells stained darkly and stained axons were seen in the optic fiber layer. In regenerating optic nerve (2-11 weeks postcrush), all fascicles of optic fibers stained darkly for both PKC and L1(E587). At 5 weeks postcrush, PKC staining could also be seen in the medial and lateral optic tracts and stratum opticum at the front half of the tectum and very lightly over the terminal zones. PKC activity was measured in homogenized tissues dissected from a series of fish with unilateral nerve crush from 1 to 5 weeks previously. Activity levels stimulated by phorbols and Ca2+ were measured by phosphorylation of a specific peptide and referred to levels measured in the opposite control side. Regeneration did not increase overall PKC activity in retina or tectum, but in optic nerve there was an 80% rise after the first week. The increased activity verifies that the increased staining in nerve represented an up-regulation of functional PKC during nerve regeneration.
Collapse
Affiliation(s)
- J T Schmidt
- Department of Biological Sciences and Neurobiology Research Center, State University of New York at Albany, 12222, USA
| |
Collapse
|
430
|
Li Y, Jiang N, Powers C, Chopp M. Neuronal damage and plasticity identified by microtubule-associated protein 2, growth-associated protein 43, and cyclin D1 immunoreactivity after focal cerebral ischemia in rats. Stroke 1998; 29:1972-80; discussion 1980-1. [PMID: 9731626 DOI: 10.1161/01.str.29.9.1972] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE An objective of therapeutic intervention after cerebral ischemia is to promote improved functional outcome. Improved outcome may be associated with a reduction of the volume of cerebral infarction and the promotion of cerebral plasticity. In the developing brain, neuronal growth is concomitant with expression of particular proteins, including microtubule-associated protein 2 (MAP-2), growth-associated protein 43 (GAP-43), and cyclin D1. In the present study we measured the expression of select proteins associated with neurite damage and plasticity (MAP-2 and GAP-43) as well as cell cycle (cyclin D1) after induction of focal cerebral ischemia in the rat. METHODS Brains from rats (n=28) subjected to 2 hours of middle cerebral artery occlusion and 6 hours, 12 hours, and 2, 7, 14, 21, and 28 days (n=4 per time point) of reperfusion and control sham-operated (n=3) and normal (n=2) rats were processed by immunohistochemistry with antibodies raised against MAP-2, GAP-43, and cyclin D1. Double staining of these proteins for cellular colocalization was also performed. RESULTS Loss of immunoreactivity of both MAP-2 and GAP-43 was observed in most damaged neurons in the ischemic core. In contrast, MAP-2, GAP-43, and cyclin D1 were selectively increased in morphologically intact or altered neurons localized to the ischemic core at an early stage (eg, 6 hours) of reperfusion and in the boundary zone to the ischemic core (penumbra) during longer reperfusion times. CONCLUSIONS The selective expressions of the neuronal structural proteins (MAP-2 in dendrites and GAP-43 in axons) and the cyclin D1 cell cycle protein in neurons observed in the boundary zone to the ischemic core are suggestive of compensatory and repair mechanisms in ischemia-damaged neurons after transient focal cerebral ischemia.
Collapse
Affiliation(s)
- Y Li
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, Mich, USA
| | | | | | | |
Collapse
|
431
|
Wang X, Avigan M, Norgren RB. FUSE-binding protein is developmentally regulated and is highly expressed in mouse and chicken embryonic brain. Neurosci Lett 1998; 252:191-4. [PMID: 9739993 DOI: 10.1016/s0304-3940(98)00598-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
GAP-43 modulates axon guidance and neuronal plasticity. In vitro, FUSE-binding protein (FBP) binds to a segment of GAP-43 mRNA which regulates the stability of the transcript. FBP has also been shown to bind to a c-myc cis element and regulate transcription. In the current work, analysis of RNA and protein expression indicated that FBP is expressed in a distinct spatial temporal pattern during embryonic development. Expression was particularly high in the brain. In the adult, expression was not detected in most tissues but was still prominent in the brain and teste. This finding is consistent with a dual role of the protein as a single-strand polynucleotide-binding protein.
Collapse
Affiliation(s)
- X Wang
- Department of Cell Biology and Anatomy, University Nebraska Medical Center, Omaha 68198-6395, USA
| | | | | |
Collapse
|
432
|
Lucius R, Gallinat S, Rosenstiel P, Herdegen T, Sievers J, Unger T. The angiotensin II type 2 (AT2) receptor promotes axonal regeneration in the optic nerve of adult rats. J Exp Med 1998; 188:661-70. [PMID: 9705948 PMCID: PMC2213348 DOI: 10.1084/jem.188.4.661] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The renin-angiotensin system (RAS) has been traditionally linked to blood pressure and volume regulation mediated through the angiotensin II (ANG II) type 1 (AT1) receptor. Here we report that ANG II via its ANG II type 2 (AT2) receptor promotes the axonal elongation of postnatal rat retinal explants (postnatal day 11) and dorsal root ganglia neurons in vitro, and, moreover, axonal regeneration of retinal ganglion cells after optic nerve crush in vivo. In retinal explants, ANG II (10(-7)-10(-5) M) induced neurite elongation via its AT2 receptor, since the effects were mimicked by the AT2 receptor agonist CGP 42112 (10(-5) M) and were entirely abolished by costimulation with the AT2 receptor antagonist PD 123177 (10(-5) M), but not by the AT1 receptor antagonist losartan (10(-5) M). To investigate whether ANG II is able to promote axonal regeneration in vivo, we performed optic nerve crush experiments in the adult rats. After ANG II treatment (0.6 nmol), an increased number of growth-associated protein (GAP)-43-positive fibers was detected and the regenerating fibers regularly crossed the lesion site (1.6 mm). Cotreatment with the AT2 receptor antagonist PD 123177 (6 nmol), but not with the AT1 receptor antagonist losartan (6 nmol), completely abolished the ANG II-induced axonal regeneration, providing for the first time direct evidence for receptor-specific neurotrophic action of ANG II in the central nervous system of adult mammals and revealing a hitherto unknown function of the RAS.
Collapse
Affiliation(s)
- R Lucius
- Institute of Anatomy, Christian-Albrechts-University Kiel, D-24105 Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
433
|
Readiness of zebrafish brain neurons to regenerate a spinal axon correlates with differential expression of specific cell recognition molecules. J Neurosci 1998. [PMID: 9671667 DOI: 10.1523/jneurosci.18-15-05789.1998] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We analyzed changes in the expression of mRNAs for the axonal growth-promoting cell recognition molecules L1.1, L1.2, and neural cell adhesion molecule (NCAM) after a rostral (proximal) or caudal (distal) spinal cord transection in adult zebrafish. One class of cerebrospinal projection nuclei (represented by the nucleus of the medial longitudinal fascicle, the intermediate reticular formation, and the magnocellular octaval nucleus) showed a robust regenerative response after both types of lesions as determined by retrograde tracing and/or in situ hybridization for GAP-43. A second class (represented by the nucleus ruber, the nucleus of the lateral lemniscus, and the tangential nucleus) showed a regenerative response only after proximal lesion. After distal lesion, upregulation of L1.1 and L1.2 mRNAs, but not NCAM mRNA expression, was observed in the first class of nuclei. The second class of nuclei did not show any changes in their mRNA expression after distal lesion. After proximal lesion, both classes of brain nuclei upregulated L1.1 mRNA expression (L1.2 and NCAM were not tested after proximal lesion). In the glial environment distal to the spinal lesion, labeling for L1.2 mRNA but not L1.1 or NCAM mRNAs was increased. These results, combined with findings in the lesioned retinotectal system of zebrafish (Bernharnhardt et al., 1996), indicate that the neuron-intrinsic regulation of cell recognition molecules after axotomy depends on the cell type as well as on the proximity of the lesion to the neuronal soma. Glial reactions differ for different regions of the CNS.
Collapse
|
434
|
Retinal ganglion cell axon progression from the optic chiasm to initiate optic tract development requires cell autonomous function of GAP-43. J Neurosci 1998. [PMID: 9671660 DOI: 10.1523/jneurosci.18-15-05692.1998] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pathfinding mechanisms underlying retinal ganglion cell (RGC) axon growth from the optic chiasm into the optic tract are unknown. Previous work has shown that mouse embryos deficient in GAP-43 have an enlarged optic chiasm within which RGC axons were reportedly stalled. Here we have found that the enlarged chiasm of GAP-43 null mouse embryos appears subsequent to a failure of the earliest RGC axons to progress laterally through the chiasm-tract transition zone to form the optic tract. Previous work has shown that ventral diencephalon CD44/stage-specific embryonic antigen (SSEA) neurons provide guidance information for RGC axons during chiasm formation. Here we found that in the chiasm-tract transition zone, axons of CD44/SSEA neurons precede RGC axons into the lateral diencephalic wall and like RGC axons also express GAP-43. However unlike RGC axons, CD44/SSEA axon trajectories are unaffected in GAP-43 null embryos, indicating that GAP-43-dependent guidance at this site is RGC axon specific or occurs only at specific developmental times. To determine whether the phenotype results from loss of GAP-43 in RGCs or in diencephalon components such as CD44/SSEA axons, wild-type, heterozygous, or homozygous GAP-43 null donor retinal tissues were grafted onto host diencephalons of all three genotypes, and graft axon growth into the optic tract region was assessed. Results show that optic tract development requires cell autonomous GAP-43 function in RGC axons and not in cellular elements of the ventral diencephalon or transition zone.
Collapse
|
435
|
Oishi T, Higo N, Umino Y, Matsuda K, Hayashi M. Development of GAP-43 mRNA in the macaque cerebral cortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 109:87-97. [PMID: 9706394 DOI: 10.1016/s0165-3806(98)00067-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To estimate the extent of axonal growth in various areas of the cerebral cortex, we measured the amount of GAP-43 mRNA in the cerebral cortex of developing macaque monkeys. In four areas, i.e., the prefrontal area (FD delta), the temporal association area (TE), the primary somatosensory area (PC), and the primary visual area (OC), the amount of GAP-43 mRNA was measured from the intermediate fetal period [embryonic day 120 (E120)] to the adult stage. In two other areas, i.e., the parietal association area (PG) and the secondary visual area (OB), the amount of GAP-43 mRNA was measured during the postnatal period. The amount of GAP-43 mRNA was highest at E120, decreased roughly exponentially, and approached the asymptote by postnatal day 70 (P70). The amount of GAP-43 mRNA was higher in the association areas (FD delta, TE, and PG) than in the primary sensory areas (PC and OC) during development and at the adult stage. These findings suggest that axonal growth in the cerebral cortex is most exuberant before or during the intermediate fetal period and approximately ends by P70. Furthermore, axonal growth is evidently more intensive in the association areas than in the primary sensory areas during the stage following the intermediate fetal period.
Collapse
Affiliation(s)
- T Oishi
- Neuroscience Section, Electrotechnical Laboratory, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
436
|
Dijkhuizen PA, Pasterkamp RJ, Hermens WT, de Winter F, Giger RJ, Verhaagen J. Adenoviral vector-mediated gene delivery to injured rat peripheral nerve. J Neurotrauma 1998; 15:387-97. [PMID: 9624624 DOI: 10.1089/neu.1998.15.387] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although much progress has been made, current treatments of peripheral nerve damage mostly result in only partial recovery. Local production of neurite outgrowth-promoting molecules, such as neurotrophins and/or cell adhesion molecules, at the site of damage may be used as a new means to promote the regeneration process. We have now explored the ability of an adenoviral vector encoding the reporter gene LacZ (Ad-LacZ) to direct the expression of a foreign gene to Schwann cells of intact and crushed rat sciatic nerves. Infusion of 8 x 10(7) PFU Ad-LacZ in the intact sciatic nerve resulted in the transduction of many Schwann cells with high levels of transgene expression lasting at least up to 12 days following viral vector administration. The efficacy of adenoviral vector delivery to a crushed nerve was investigated using three strategies. Injection of the adenoviral vector at the time of, or immediately after, a crush resulted in the transduction of only a few Schwann cells. Administration of the adenoviral vector the day after the crush resulted in the transduction of a similar number of Schwann cells 5 days after administration, as observed in uncrushed nerves. Regenerating nerve fibers were closely associated with beta-galactosidase-positive Schwann cells, indicating that the capacity of transduced Schwann cells to guide regenerating fibers was not altered. These results imply that the expression of growth-promoting proteins through adenoviral vector-mediated gene transfer may be a realistic option to promote peripheral nerve regeneration.
Collapse
Affiliation(s)
- P A Dijkhuizen
- Graduate School for the Neurosciences, Netherlands Institute for Brain Research, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
437
|
Aarts LH, Schrama LH, Hage WJ, Bos JL, Gispen WH, Schotman P. B-50/GAP-43-induced formation of filopodia depends on Rho-GTPase. Mol Biol Cell 1998; 9:1279-92. [PMID: 9614174 PMCID: PMC25350 DOI: 10.1091/mbc.9.6.1279] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the present study we show that expression of the neural PKC-substrate B-50 (growth-associated protein [GAP-43]) in Rat-1 fibroblasts induced the formation of filopodial extensions during spreading. This morphological change was accompanied by an enhanced formation of peripheral actin filaments and by accumulation of vinculin immunoreactivity in filopodial focal adhesions, colocalizing with B-50. In time lapse experiments, the B-50-induced filopodial extensions were shown to stay in close contact with the substratum and appeared remarkably stable, resulting in a delayed lamellar spreading of the fibroblasts. The morphogenetic effects of the B-50 protein were entirely dependent on the integrity of the two N-terminal cysteines involved in membrane association (C3C4), but were not significantly affected by mutations of the PKC-phosphorylation site (S41) or deletion of the C terminus (177-226). Cotransfection of B-50 with dominant negative Cdc42 or Rac did not prevent B-50-induced formation of filopodial cells, whereas this process could be completely blocked by cotransfection with dominant negative Rho or Clostridium botulinum C3-transferase. Conversely, constitutively active Rho induced a similar filopodial phenotype as B-50. We therefore propose that the induction of surface extensions by B-50 in spreading Rat-1 fibroblasts depends on Rho-guanosine triphosphatase function.
Collapse
Affiliation(s)
- L H Aarts
- Department of Physiological Chemistry, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
438
|
Yang Y, Tandon P, Liu Z, Sarkisian MR, Stafstrom CE, Holmes GL. Synaptic reorganization following kainic acid-induced seizures during development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 107:169-77. [PMID: 9593878 DOI: 10.1016/s0165-3806(97)00211-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prolonged seizures in the adult brain causes neuronal loss in the hippocampus and aberrant growth (sprouting) of granule cell axons (mossy fibers) in the supragranular zone of the fascia dentata and stratum infrapyramidale of CA3. There is considerable evidence that these changes in neuronal growth following seizures are age related, with younger animals having fewer reactive changes following prolonged seizures than older animals. However, there is little information available regarding the age at which seizures in the developing brain result in alterations in axonal growth and synapse formation. In this study, we evaluated the effects of kainic acid (KA)-induced seizures during development on synaptic reorganization using the expression of growth-associated protein-43 (GAP-43), a marker for synaptogenesis and Timm stain which detects the presence of zinc in granule cell axons. Age specific doses of KA were used to induce seizures of similar intensity at various ages (postnatal days (P) 12, 21, 25, 35, 45, 60) in Sprague-Dawley rats. Up to the age of P25, there were no differences in either Timm or GAP-43 staining between animals with KA seizures and controls. In P25 and older KA-treated rats, Timm staining was found in the supragranular layer of the dentate gyrus. This staining increased with age at the time of KA injection. Seizures in adult (P60), but not younger rats also resulted in increased staining in the suprapyramidal layer of the CA3 subfields. Changes in GAP-43 were delayed compared to the Timm staining with no differences between KA-treated animals and controls until P35 when a band of GAP-43 immunostaining appeared in the supragranular inner molecular layer, progressively increasing in intensity and thickness with time. This study demonstrates that seizure-induced reactive synaptogenesis is age-related. Since both Timm and GAP-43 reflect different aspects of reactive synaptogenesis, used in combination these methods provide useful information about the structural changes following seizures during development.
Collapse
Affiliation(s)
- Y Yang
- Department of Neurology, Harvard Medical School, Children's Hospital, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
439
|
Andres C, Seidman S, Beeri R, Timberg R, Soreq H. Transgenic acetylcholinesterase induces enlargement of murine neuromuscular junctions but leaves spinal cord synapses intact. Neurochem Int 1998; 32:449-56. [PMID: 9676744 DOI: 10.1016/s0197-0186(97)00121-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acetylcholinesterase (AChE) produced by spinal cord motoneurons accumulates within axo-dendritic spinal cord synapses. It is also secreted from motoneuron cell bodies, through their axons, into the region of neuromuscular junctions, where it terminates cholinergic neurotransmission. Here we show that transgenic mice expressing human AChE in their spinal cord motoneurons display primarily normal axo-dendritic spinal cord cholinergic synapses in spite of the clear excess of transgenic over host AChE within these synapses. This is in contrast to our recent observation that a modest excess of AChE drastically affects the structure and long-term functioning of neuromuscular junctions in these mice although they express human AChE in their spinal cord, but not muscle. Enlarged muscle endplates with either exaggerated or drastically shortened post-synaptic folds then lead to a progressive neuromotor decline and massive amyotrophy (Andres et al., 1997). These findings demonstrate that excess neuronal AChE may cause distinct effects on spinal cord and neuromuscular synapses and attribute the late-onset neuromotor deterioration observed in AChE transgenic mice to neuromuscular junction abnormalities.
Collapse
Affiliation(s)
- C Andres
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Israel
| | | | | | | | | |
Collapse
|
440
|
Holtmaat AJ, Oestreicher AB, Gispen WH, Verhaagen J. Manipulation of gene expression in the mammalian nervous system: application in the study of neurite outgrowth and neuroregeneration-related proteins. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:43-71. [PMID: 9600624 DOI: 10.1016/s0165-0173(97)00044-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A fundamental issue in neurobiology entails the study of the formation of neuronal connections and their potential to regenerate following injury. In recent years, an expanding number of gene families has been identified involved in different aspects of neurite outgrowth and regeneration. These include neurotrophic factors, cell-adhesion molecules, growth-associated proteins, cytoskeletal proteins and chemorepulsive proteins. Genetic manipulation technology (transgenic mice, knockout mice, viral vectors and antisense oligonucleotides) has been instrumental in defining the function of these neurite outgrowth-related proteins. The aim of this paper is to provide an overview of the above-mentioned four approaches to manipulate gene expression in vivo and to discuss the progress that has been made using this technology in helping to understand the molecular mechanisms that regulate neurite outgrowth. We will show that work with transgenic mice and knockout mice has contributed significantly to the dissection of the function of several proteins with a key role in neurite outgrowth and neuronal survival. Recently developed viral vectors for gene transfer in postmitotic neurons have opened up new avenues to analyze the function of a protein following local expression in naive adult rodents. The initial results with viral vector-based gene transfer provide a conceptual framework for further studies on genetic therapy of neuroregeneration and neurodegenerative diseases.
Collapse
Affiliation(s)
- A J Holtmaat
- Graduate School of Neurosciences Amsterdam, Netherlands Institute for Brain Research
| | | | | | | |
Collapse
|
441
|
Abstract
Twenty-five genes have been identified in which mutations cause epileptic seizures in mice. The gene for a Na+/H+ exchanger has recently been found to underlie the spontaneous mutant slow wave epilepsy. Studies of such mutants should help elucidate the mechanisms that control neuronal excitability.
Collapse
Affiliation(s)
- J O McNamara
- Department of Medicine, Duke University Medical Center, 401 Bryan Research Building, Research Drive, Durham, North Carolina 27710, USA
| | | |
Collapse
|
442
|
Woolhead C, Zhang Y, Lieberaman A, Schachner M, Emson P, Anderson P. Differential effects of autologous peripheral nerve grafts to the corpus striatum of adult rats on the regeneration of axons of striatal and nigral neurons and on the expression of GAP-43 and the cell adhesion molecules N-CAM and L1. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980209)391:2<259::aid-cne8>3.0.co;2-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
443
|
Gold BG, Yew JY, Zeleny-Pooley M. The immunosuppressant FK506 increases GAP-43 mRNA levels in axotomized sensory neurons. Neurosci Lett 1998; 241:25-8. [PMID: 9502207 DOI: 10.1016/s0304-3940(97)00960-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FK506, an immunosuppressant drug used to prevent allograft rejection in organ transplantations, accelerates functional recovery and nerve regeneration in the rat sciatic nerve crush model. While the mechanism by which FK506 increases regeneration is unknown, in contrast to immunosuppression, it does not involve calcineurin inhibition. Using the reverse-transcriptase polymerase chain reaction (RT-PCR) technique and a digoxigenin-labeled probe, we show that subcutaneous injections of FK506 (10 mg/kg/day) markedly increases the level of axotomy-induced growth-associated protein (GAP-43) mRNA in dorsal root ganglion (DRG) neurons. Quantitation of DRG neurons revealed that FK506 produced a 33% increase in the numbers of neurons exhibiting intense staining. Increased synthesis of GAP-43 may play a role in FK506's ability to speed nerve regeneration.
Collapse
Affiliation(s)
- B G Gold
- Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland 97201, USA
| | | | | |
Collapse
|
444
|
Fagerström S, Påhlman S, Nånberg E. Protein kinase C-dependent tyrosine phosphorylation of p130cas in differentiating neuroblastoma cells. J Biol Chem 1998; 273:2336-43. [PMID: 9442079 DOI: 10.1074/jbc.273.4.2336] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cell signaling docking protein p130cas became tyrosine-phosphorylated in SH-SY5Y human neuroblastoma cells during induced differentiation with 12-O-tetradecanoylphorbol-13-acetate (TPA) and serum or a combination of basic fibroblast growth factor (bFGF) and insulin-like growth factor-I (IGF-I). The differentiating cells develop a neuronal phenotype with neurites and growth cones and sustained activation of protein kinase C (PKC) and pp60c-src. The TPA-induced p130cas phosphorylation increased within 5 min of stimulation and persisted for at least 4 days, whereas bFGF/IGF-I-induced p130cas phosphorylation was biphasic. However, the increase in tyrosine phosphorylation of p130cas was not restricted to differentiation inducing stimuli. The phosphorylation was blocked by the specific PKC inhibitor GF 109203X, and transient transfection with active PKC-epsilon induced p130cas tyrosine phosphorylation. pp60c-src, known to directly phosphorylate p130cas in other cell systems, was not activated after stimulation with TPA or bFGF/IGF-I for up to 30 min, and the initial p130cas phosphorylation was resistant to the Src family kinase inhibitor herbimycin A. However, in long term stimulated cells, herbimycin A blocked the induced phosphorylation of p130cas. Also, overexpression of src induced phosphorylation of p130cas. p130cas protein and phosphorylated p130cas were present in growth cones isolated from differentiated SH-SY5Y cells. Inhibition of PKC activity in differentiating cells with GF 109203X leads to a rapid retraction of growth cone filopodia, and p130cas phosphorylation decreased transiently (within minutes). Growth cones isolated from these cells were virtually devoid of phosphorylated p130cas. These data suggest a function for p130cas as a PKC downstream target in SH-SY5Y cells and possibly also in their growth cones.
Collapse
Affiliation(s)
- S Fagerström
- Department of Laboratory Medicine, Lund University, University Hospital MAS, Malmö, Sweden
| | | | | |
Collapse
|
445
|
BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. J Neurosci 1998. [PMID: 9391013 DOI: 10.1523/jneurosci.17-24-09583.1997] [Citation(s) in RCA: 366] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rubrospinal neurons (RSNs) undergo a marked atrophy in the second week after cervical axotomy. This delayed atrophy is accompanied by a decline in the expression of regeneration-associated genes such as GAP-43 and Talpha1-tubulin, which are initially elevated after injury. These responses may reflect a deficiency in the trophic support of axotomized RSNs. To test this hypothesis, we first analyzed the expression of mRNAs encoding the trk family of neurotrophin receptors. In situ hybridization revealed expression of full-length trkB receptors in virtually all RSNs, which declined 7 d after axotomy. Full-length trkC mRNA was expressed at low levels. Using RT-PCR, we found that mRNAs encoding trkC isoforms with kinase domain inserts were present at levels comparable to that for the unmodified receptor. TrkA mRNA expression was not detected in RSNs, and the expression of p75 was restricted to a small subpopulation of axotomized cells. In agreement with the pattern of trk receptor expression, infusion of recombinant human BDNF or NT-4/5 into the vicinity of the axotomized RSNs, between days 7 and 14 after axotomy, fully prevented their atrophy. This effect was still evident 2 weeks after the termination of BDNF treatment. Moreover, BDNF or NT-4/5 treatment stimulated the expression of GAP-43 and Talpha1-tubulin mRNA and maintained the level of trkB expression. Vehicle, NGF, or NT-3 treatment had no significant effect on cell size or GAP-43 and Talpha1-tubulin expression. In a separate experiment, infusion of BDNF also was found to increase the number of axotomized RSNs that regenerated into a peripheral nerve graft. Thus, in BDNF-treated animals, the prevention of neuronal atrophy and the stimulation GAP-43 and Talpha1-tubulin expression is correlated with an increased regenerative capacity of axotomized RSNs.
Collapse
|
446
|
Vanek P, Thallmair M, Schwab ME, Kapfhammer JP. Increased lesion-induced sprouting of corticospinal fibres in the myelin-free rat spinal cord. Eur J Neurosci 1998; 10:45-56. [PMID: 9753112 DOI: 10.1046/j.1460-9568.1998.00018.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myelin contains potent inhibitors of neurite growth which have been implicated in the failure of long-distance regeneration of nerve fibres within the CNS. These myelin-associated neurite growth inhibitors may also be involved in the stabilization of neural connections by suppressing sprouting and fibre growth. After lesions of the CNS in neonatal animals, extensive rearrangements of the remaining fibre systems have been observed. In the rat, this plasticity of neuronal connections is severely restricted following the first few weeks of postnatal life, coincident with the progression of myelination of the nervous system. A well-studied example of postnatal plasticity is the sprouting of one corticospinal tract (CST) into the denervated half of the spinal cord after unilateral motor cortex or pyramidal lesions. In the hamster and rat, significant CST sprouting is restricted to the first 10 postnatal days. Here we show that very extensive sprouting of corticospinal fibres occurs after deafferentations as late as P21 if myelination is prevented by neonatal X-irradiation in the rat lumbar spinal cord. Sprouted fibres from the intact CST cross the midline and develop large terminal arbors in the denervated spinal cord, suggesting the establishment of synaptic connections. Our results suggest that myelin and its associated neurite growth inhibitors play an important role in the termination of neurite growth permissive periods during postnatal CNS development. Corticospinal sprouting subsequent to lesions early in life, i.e. in the absence of myelin-associated neurite growth inhibitors may explain the frequent occurrence of mirror movements in patients with hemiplegic cerebral palsy.
Collapse
Affiliation(s)
- P Vanek
- Institut für Hirnforschung, Universität Zürich, Switzerland
| | | | | | | |
Collapse
|
447
|
|
448
|
Tokuda M, Hatase O. Regulation of neuronal plasticity in the central nervous system by phosphorylation and dephosphorylation. Mol Neurobiol 1998; 17:137-56. [PMID: 9887450 DOI: 10.1007/bf02802028] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuronal plasticity can be defined as adaptive changes in structure and function of the nervous system, an obvious example of which is the capacity to remember and learn. Long-term potentiation and long-term depression are the experimental models of memory in the central nervous system (CNS), and have been frequently utilized for the analysis of the molecular mechanisms of memory formation. Extensive studies have demonstrated that various kinases and phosphatases regulate neuronal plasticity by phosphorylating and dephosphorylating proteins essential to the basic processes of adaptive changes in the CNS. These proteins include receptors, ion channels, synaptic vesicle proteins, and nuclear proteins. Multifunctional kinases (cAMP-dependent protein kinase, Ca2+/phospholipid-dependent protein kinase, and Ca2+/calmodulin-dependent protein kinases) and phosphatases (calcineurin, protein phosphatases 1, and 2A) that specifically modulate the phosphorylation status of neuronal-signaling proteins have been shown to be required for neuronal plasticity. In general, kinases are involved in upregulation of the activity of target substrates, and phosphatases downregulate them. Although this rule is applicable in most of the cases studied, there are also a number of exceptions. A variety of regulation mechanisms via phosphorylation and dephosphorylation mediated by multiple kinases and phosphatases are discussed.
Collapse
Affiliation(s)
- M Tokuda
- Department of Physiology, Kagawa Medical University, Japan
| | | |
Collapse
|
449
|
Targeted overexpression of the neurite growth-associated protein B-50/GAP-43 in cerebellar Purkinje cells induces sprouting after axotomy but not axon regeneration into growth-permissive transplants. J Neurosci 1997. [PMID: 9348347 DOI: 10.1523/jneurosci.17-22-08778.1997] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
B-50/GAP-43 is a nervous tissue-specific protein, the expression of which is associated with axon growth and regeneration. Its overexpression in transgenic mice produces spontaneous axonal sprouting and enhances induced remodeling in several neuron populations (; ). We examined the capacity of this protein to increase the regenerative potential of injured adult central axons, by inducing targeted B-50/GAP-43 overexpression in Purkinje cells, which normally show poor regenerative capabilities. Thus, transgenic mice were produced in which B-50/GAP-43 overexpression was driven by the Purkinje cell-specific L7 promoter. Uninjured transgenic Purkinje cells displayed normal morphology, indicating that transgene expression does not modify the normal phenotype of these neurons. By contrast, after axotomy numerous transgenic Purkinje cells exhibited profuse sprouting along the axon and at its severed end. Nevertheless, despite these growth phenomena, which never occurred in wild-type mice, the severed transgenic axons were not able to regenerate, either spontaneously or into embryonic neural or Schwann cell grafts placed into the lesion site. Finally, although only a moderate Purkinje cell loss occurred in wild-type cerebella after axotomy, a considerable number of injured transgenic neurons degenerated, but they could be partially rescued by the different transplants placed into the lesion site. Thus, B-50/GAP-43 overexpression substantially modifies Purkinje cell response to axotomy, by inducing growth processes and decreasing their resistance to injury. However, the presence of this protein is not sufficient to enable these neurons to accomplish a full program of axon regeneration.
Collapse
|
450
|
Baumeister A, Arber S, Caroni P. Accumulation of muscle ankyrin repeat protein transcript reveals local activation of primary myotube endcompartments during muscle morphogenesis. J Cell Biol 1997; 139:1231-42. [PMID: 9382869 PMCID: PMC2140219 DOI: 10.1083/jcb.139.5.1231] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The characteristic shapes and positions of each individual body muscle are established during the process of muscle morphogenesis in response to patterning information from the surrounding mesenchyme. Throughout muscle morphogenesis, primary myotubes are arranged in small parallel bundles, each myotube spanning the forming muscles from end to end. This unique arrangement potentially assigns a crucial role to primary myotube end regions for muscle morphogenesis. We have cloned muscle ankyrin repeat protein (MARP) as a gene induced in adult rat skeletal muscle by denervation. MARP is the rodent homologue of human C-193 (Chu, W., D.K. Burns, R.A. Swerick, and D.H. Presky. 1995. J. Biol. Chem. 270:10236-10245) and is identical to rat cardiac ankyrin repeat protein. (Zou, Y., S. Evans, J. Chen, H.-C. Kuo, R.P. Harvey, and K.R. Chien. 1997. Development. 124:793-804). In denervated muscle fibers, MARP transcript accumulated in a unique perisynaptic pattern. MARP was also expressed in large blood vessels and in cardiac muscle, where it was further induced by cardiac hypertrophy. During embryonic development, MARP was expressed in forming skeletal muscle. In situ hybridization analysis in mouse embryos revealed that MARP transcript exclusively accumulates at the end regions of primary myotubes during muscle morphogenesis. This closely coincided with the expression of thrombospondin-4 in adjacent prospective tendon mesenchyme, suggesting that these two compartments may constitute a functional unit involved in muscle morphogenesis. Transfection experiments established that MARP protein accumulates in the nucleus and that the levels of both MARP mRNA and protein are controlled by rapid degradation mechanisms characteristic of regulatory early response genes. The results establish the existence of novel regulatory muscle fiber subcompartments associated with muscle morphogenesis and denervation and suggest that MARP may be a crucial nuclear cofactor in local signaling pathways from prospective tendon mesenchyme to forming muscle and from activated muscle interstitial cells to denervated muscle fibers.
Collapse
Affiliation(s)
- A Baumeister
- Friedrich Miescher Institute, P.O. Box 2543, CH-4002 Basel, Switzerland
| | | | | |
Collapse
|