401
|
Alsayyah A, ElMazoudy R, Al-Namshan M, Al-Jafary M, Alaqeel N. Chronic neurodegeneration by aflatoxin B1 depends on alterations of brain enzyme activity and immunoexpression of astrocyte in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109407. [PMID: 31279280 DOI: 10.1016/j.ecoenv.2019.109407] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
Aflatoxin B1 poses the greatest risk among the mycotoxins to target-organisms particularly human, however, no studies addressed the neurotoxicity of chronic exposure of aflatoxin. The oral dose level 1/600th of LD50 for 30, 60, and 90 days was used for three aflatoxin groups, respective to negative and vehicle control groups. Activity levels of brain antioxidants viz: superoxide dismutase, catalase, glutathione, and glutathione peroxidase significantly decreased in the three experimental durations in time-dependent trend, in contrast, lipid peroxidation showed a significant increase compared to controls. Significantly, chronic-dependent increase trend was noticed in the AF60 and AF90 group for acid phosphatase (16.1%, 35.2%), alkaline phosphatase (32.1%, 50.8%), aspartate aminotransferase (38.7%, 120.0%) and lactate dehydrogenase (30.6%, 42.1%) activities, respectively. However, a significant 23.7% decrease in the brain creatine kinase activity following 90 days of AFB1administration. Chronic administration of aflatoxin also causes alterations in activities of protein carbonyl with a maximum increase (twofold) after 90 days. Further, histopathological and immunohistochemical results confirmed time-related vasodilation, necrosis and astrocytes gliosis by high glial fibrillary acidic protein immunostaining in response to AFB1. These findings infer that long-term exposure to AFB1 results in several pathophysiological circumstances in a duration-dependent manner concerning neurodegeneration especially Alzheimer's disease.
Collapse
Affiliation(s)
- Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box.2208, Dammam, 31441, Saudi Arabia
| | - Reda ElMazoudy
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.
| | - Mashael Al-Namshan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Meneerah Al-Jafary
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Nouf Alaqeel
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| |
Collapse
|
402
|
Divolis G, Stavropoulos A, Manioudaki M, Apostolidou A, Doulou A, Gavriil A, Dafnis I, Chroni A, Mummery C, Xilouri M, Sideras P. Activation of both transforming growth factor-β and bone morphogenetic protein signalling pathways upon traumatic brain injury restrains pro-inflammatory and boosts tissue reparatory responses of reactive astrocytes and microglia. Brain Commun 2019; 1:fcz028. [PMID: 32954268 PMCID: PMC7425383 DOI: 10.1093/braincomms/fcz028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Various ligands and receptors of the transforming growth factor-β superfamily have been found upregulated following traumatic brain injury; however, the role of this signalling system in brain injury pathophysiology is not fully characterized. To address this, we utilized an acute stab wound brain injury model to demonstrate that hallmarks of transforming growth factor-β superfamily system activation, such as levels of phosphorylated Smads, ligands and target genes for both transforming growth factor-β and bone morphogenetic protein pathways, were upregulated within injured tissues. Using a bone morphogenetic protein-responsive reporter mouse model, we showed that activation of the bone morphogenetic protein signalling pathway involves primarily astrocytes that demarcate the wound area. Insights regarding the potential role of transforming growth factor-β superfamily activation in glia cells within the injured tissues were obtained indirectly by treating purified reactive astrocytes and microglia with bone morphogenetic protein-4 or transforming growth factor-β1 and characterizing changes in their transcriptional profiles. Astrocytes responded to both ligands with considerably overlapping profiles, whereas, microglia responded selectively to transforming growth factor-β1. Novel pathways, crucial for repair of tissue-injury and blood-brain barrier, such as activation of cholesterol biosynthesis and transport, production of axonal guidance and extracellular matrix components were upregulated by transforming growth factor-β1 and/or bone morphogenetic protein-4 in astrocytes. Moreover, both ligands in astrocytes and transforming growth factor-β1 in microglia shifted the phenotype of reactive glia cells towards the anti-inflammatory and tissue reparatory 'A2'-like and 'M0/M2'-like phenotypes, respectively. Increased expression of selected key components of the in vitro modulated pathways and markers of 'A2'-like astrocytes was confirmed within the wound area, suggesting that these processes could also be modulated in situ by the integrated action of transforming growth factor-β and/or bone morphogenetic protein-mediated signalling. Collectively, our study provides a comprehensive comparative analysis of transforming growth factor-β superfamily signalling in reactive astrocytes and microglia and points towards a crucial role of both transforming growth factor-β and bone morphogenetic protein pathways in modulating the inflammatory and brain injury reparatory functions of activated glia cells.
Collapse
Affiliation(s)
- Georgios Divolis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Athanasios Stavropoulos
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria Manioudaki
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Anastasia Apostolidou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Athanasia Doulou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ariana Gavriil
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Dafnis
- Institute of Biosciences and Applications, National Center for Scientific Research-Demokritos, 15341 Athens, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research-Demokritos, 15341 Athens, Greece
| | - Christine Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Maria Xilouri
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Paschalis Sideras
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
403
|
Park S, Lim W, You S, Song G. Ochratoxin A exerts neurotoxicity in human astrocytes through mitochondria-dependent apoptosis and intracellular calcium overload. Toxicol Lett 2019; 313:42-49. [DOI: 10.1016/j.toxlet.2019.05.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 11/15/2022]
|
404
|
Zhang G, Ma P, Wan S, Xu J, Yang M, Qiu G, Zhuo F, Xu S, Huo J, Ju Y, Liu H. Dystroglycan is involved in the activation of ERK pathway inducing the change of AQP4 expression in scratch-injured astrocytes. Brain Res 2019; 1721:146347. [DOI: 10.1016/j.brainres.2019.146347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 07/21/2019] [Indexed: 01/28/2023]
|
405
|
Verkhratsky A, Rodrigues JJ, Pivoriunas A, Zorec R, Semyanov A. Astroglial atrophy in Alzheimer’s disease. Pflugers Arch 2019; 471:1247-1261. [DOI: 10.1007/s00424-019-02310-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
|
406
|
Thau-Zuchman O, Ingram R, Harvey GG, Cooke T, Palmas F, Pallier PN, Brook J, Priestley JV, Dalli J, Tremoleda JL, Michael-Titus AT. A Single Injection of Docosahexaenoic Acid Induces a Pro-Resolving Lipid Mediator Profile in the Injured Tissue and a Long-Lasting Reduction in Neurological Deficit after Traumatic Brain Injury in Mice. J Neurotrauma 2019; 37:66-79. [PMID: 31256709 DOI: 10.1089/neu.2019.6420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Traumatic brain injury (TBI) can lead to life-changing neurological deficits, which reflect the fast-evolving secondary injury post-trauma. There is a need for acute protective interventions, and the aim of this study was to explore in an experimental TBI model the neuroprotective potential of a single bolus of a neuroactive omega-3 fatty acid, docosahexaenoic acid (DHA), administered in a time window feasible for emergency services. Adult mice received a controlled cortical impact injury (CCI) and neurological impairment was assessed with the modified Neurological Severity Score (mNSS) up to 28 days post-injury. DHA (500 nmol/kg) or saline were injected intravenously at 30 min post-injury. The lipid mediator profile was assessed in the injured hemisphere at 3 h post-CCI. After completion of behavioral tests and lesion assessment using magnetic resonance imaging, over 7 days or 28 days post-TBI, the tissue was analyzed by immunohistochemistry. The single DHA bolus significantly reduced the injury-induced neurological deficit and increased pro-resolving mediators in the injured brain. DHA significantly reduced lesion size, the microglia and astrocytic reaction, and oxidation, and decreased the accumulation of beta-amyloid precursor protein (APP), indicating a reduced axonal injury at 7 days post-TBI. DHA reduced the neurofilament light levels in plasma at 28 days. Therefore, an acute single bolus of DHA post-TBI, in a time window relevant for acute emergency intervention, can induce a long-lasting and significant improvement in neurological outcome, and this is accompanied by a marked upregulation of neuroprotective mediators, including the DHA-derived resolvins and protectins.
Collapse
Affiliation(s)
- Orli Thau-Zuchman
- Center for Neuroscience, Surgery and Trauma,z Queen Mary University of London, London, United Kingdom
| | - Rachael Ingram
- Center for Neuroscience, Surgery and Trauma,z Queen Mary University of London, London, United Kingdom
| | - Georgina G Harvey
- Center for Neuroscience, Surgery and Trauma,z Queen Mary University of London, London, United Kingdom
| | - Thomas Cooke
- Center for Neuroscience, Surgery and Trauma,z Queen Mary University of London, London, United Kingdom
| | - Francesco Palmas
- Lipid Mediator Unit, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Patrick N Pallier
- Center for Neuroscience, Surgery and Trauma,z Queen Mary University of London, London, United Kingdom
| | - Joseph Brook
- Center for Molecular Oncology, Queen Mary University of London, London, United Kingdom
| | - John V Priestley
- Center for Neuroscience, Surgery and Trauma,z Queen Mary University of London, London, United Kingdom
| | - Jesmond Dalli
- Lipid Mediator Unit, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Jordi L Tremoleda
- Center for Neuroscience, Surgery and Trauma,z Queen Mary University of London, London, United Kingdom
| | - Adina T Michael-Titus
- Center for Neuroscience, Surgery and Trauma,z Queen Mary University of London, London, United Kingdom
| |
Collapse
|
407
|
Role of the protease-activated receptor 1 in regulating the function of glial cells within central and peripheral nervous system. J Neural Transm (Vienna) 2019; 126:1259-1271. [DOI: 10.1007/s00702-019-02075-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023]
|
408
|
Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair. Nat Commun 2019; 10:3879. [PMID: 31462640 PMCID: PMC6713740 DOI: 10.1038/s41467-019-11707-7] [Citation(s) in RCA: 444] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/25/2019] [Indexed: 02/08/2023] Open
Abstract
Traumatic spinal cord injury results in severe and irreversible loss of function. The injury triggers a complex cascade of inflammatory and pathological processes, culminating in formation of a scar. While traditionally referred to as a glial scar, the spinal injury scar in fact comprises multiple cellular and extracellular components. This multidimensional nature should be considered when aiming to understand the role of scarring in limiting tissue repair and recovery. In this Review we discuss recent advances in understanding the composition and phenotypic characteristics of the spinal injury scar, the oversimplification of defining the scar in binary terms as good or bad, and the development of therapeutic approaches to target scar components to enable improved functional outcome after spinal cord injury.
Collapse
Affiliation(s)
- Elizabeth J Bradbury
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Guy's Campus, London Bridge, London, SE1 1UL, UK.
| | - Emily R Burnside
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Guy's Campus, London Bridge, London, SE1 1UL, UK
| |
Collapse
|
409
|
Wang WT, Sun L, Sun CH. PDIA3-regulted inflammation and oxidative stress contribute to the traumatic brain injury (TBI) in mice. Biochem Biophys Res Commun 2019; 518:657-663. [PMID: 31466719 DOI: 10.1016/j.bbrc.2019.08.100] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability throughout the world. However, the molecular mechanism contributing to TBI still remains unclear. Protein disulfide isomerases (PDI) are a family of redox chaperones, which catalyze formation or isomerization of disulfide bonds in proteins. PDIA3, a critical member of PDI family, is a multi-functional protein, playing critical roles in modulating inflammation, apoptosis and oxidative stress under various kinds of disease conditions. Nevertheless, its regulatory effects on TBI have far from to be known. In the present study, we attempted to explore the modulation of neuroinflammatory responses by PDIA3 and its contribution to oxidative stress and cell death after TBI in the wild type (PDIA+/+) and PDIA3 knockout (PDIA3+/+) C57BL/6 mice. Results here suggested that PDIA3 expression was markedly up-regulated in the late trauma human brain tissues, which was verified in the PDIA3+/+ mice at 24 h after TBI. PDIA-/- provided significant improvements in cognitive impairments and contusion volume induced by TBI. Apoptosis in brain samples was also alleviated in TBI mice with PDIA3 deficiency. Significantly, PDIA3-/- mitigated neuroinflammation after TBI in mice, as evidenced by the reduced expression of pro-inflammatory factors interleukin (IL)-6, tumor necrosis factor-α (TNF-α) and IL-1β, while the enhanced anti-inflammatory regulator IL-10. These anti-inflammatory activities by PDIA3-/- were associated with the decrease in phosphorylated nuclear factor kappa B (NF-κB)/p65. PDIA3-/- mice following TBI showed attenuated oxidative stress, as proved by the restored superoxide dismutase (SOD) and glutathione (GSH) activities, and the down-regulated malondialdehyde (MDA) levels in brain samples. These effects regulated by PDIA3 were confirmed in OGDR-treated astrocytes. Collectively, these data demonstrated a detrimental role of PDIA3 in regulating TBI, providing an effective therapeutic target for TBI treatment in future.
Collapse
Affiliation(s)
- Wu-Tao Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China; Department of Anesthesiology, School of General Medicine Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Li Sun
- Department of Anesthesiology, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, China
| | - Chao-Hui Sun
- Department of Anesthesiology, Affiliated Huxi Hospital of Jining Medical College, Shanxian Central Hospital, Shanxian, Shandong, 274300, China.
| |
Collapse
|
410
|
Escartin C, Guillemaud O, Carrillo-de Sauvage MA. Questions and (some) answers on reactive astrocytes. Glia 2019; 67:2221-2247. [PMID: 31429127 DOI: 10.1002/glia.23687] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/12/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Astrocytes are key cellular partners for neurons in the central nervous system. Astrocytes react to virtually all types of pathological alterations in brain homeostasis by significant morphological and molecular changes. This response was classically viewed as stereotypical and is called astrogliosis or astrocyte reactivity. It was long considered as a nonspecific, secondary reaction to pathological conditions, offering no clues on disease-causing mechanisms and with little therapeutic value. However, many studies over the last 30 years have underlined the crucial and active roles played by astrocytes in physiology, ranging from metabolic support, synapse maturation, and pruning to fine regulation of synaptic transmission. This prompted researchers to explore how these new astrocyte functions were changed in disease, and they reported alterations in many of them (sometimes beneficial, mostly deleterious). More recently, cell-specific transcriptomics revealed that astrocytes undergo massive changes in gene expression when they become reactive. This observation further stressed that reactive astrocytes may be very different from normal, nonreactive astrocytes and could influence disease outcomes. To make the picture even more complex, both normal and reactive astrocytes were shown to be molecularly and functionally heterogeneous. Very little is known about the specific roles that each subtype of reactive astrocytes may play in different disease contexts. In this review, we have interrogated researchers in the field to identify and discuss points of consensus and controversies about reactive astrocytes, starting with their very name. We then present the emerging knowledge on these cells and future challenges in this field.
Collapse
Affiliation(s)
- Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Univ. Paris Sud, Univ. Paris-Saclay, UMR 9199, Neurodegenerative Disease Laboratory, Fontenay-aux-Roses, France
| | - Océane Guillemaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Univ. Paris Sud, Univ. Paris-Saclay, UMR 9199, Neurodegenerative Disease Laboratory, Fontenay-aux-Roses, France
| | - Maria-Angeles Carrillo-de Sauvage
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Univ. Paris Sud, Univ. Paris-Saclay, UMR 9199, Neurodegenerative Disease Laboratory, Fontenay-aux-Roses, France
| |
Collapse
|
411
|
Yasmin A, Pitkänen A, Jokivarsi K, Poutiainen P, Gröhn O, Immonen R. MRS Reveals Chronic Inflammation in T2w MRI-Negative Perilesional Cortex - A 6-Months Multimodal Imaging Follow-Up Study. Front Neurosci 2019; 13:863. [PMID: 31474824 PMCID: PMC6707062 DOI: 10.3389/fnins.2019.00863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Sustained inflammation in the injured cortex is a promising therapeutic target for disease-modification after traumatic brain injury (TBI). However, its extent and dynamics of expansion are incompletely understood which challenges the timing and placement of therapeutics to lesioned area. Our aim was to characterize the evolution of chronic inflammation during lesion expansion in lateral fluid-percussion injury (FPI) rat model with focus on the MRI-negative perilesional cortex. T2-weighted MR imaging (T2w MRI) and localized magnetic resonance spectroscopy (MRS) were performed at 1, 3, and 6 months post-injury. End-point histology, including Nissl for neuronal death, GFAP for astrogliosis, and Prussian Blue for iron were used to assess perilesional histopathology. An additional animal cohort was imaged with a positron emission tomography (PET) using translocator protein 18 kDa (TSPO) radiotracer [18F]-FEPPA. T2w MRI assessed lesion growth and detected chronic inflammation along the lesion border while rest of the ipsilateral cortex was MRI-negative (MRI-). Instead, myo-inositol that is an inflammatory MRS marker for gliosis, glutathione for oxidative stress, and choline for membrane turnover were elevated throughout the 6-months follow-up in the MRI- perilesional cortex (all p < 0.05). MRS markers revealed chronically sustained inflammation across the ipsilateral cortex but did not indicate the upcoming lesion expansion. Instead, the rostral expansion of the cortical lesion was systematically preceded by a hyperintense band in T2w images months earlier. Histologic analysis of the hyperintensity indicated scattered astrocytes, incomplete glial scar, and intracellularly packed and free iron. Yet, the band was negative in [18F]-FEPPA-PET. [18F]-FEPPA also showed no cortical TSPO expression within the MRS voxel in MRI- perilesional cortex or anywhere along glial scar when assessed at 2 months post-injury. However, [18F]-FEPPA showed a robust signal increase, indicating reactive microgliosis in the ipsilateral thalamus at 2 months post-TBI. We present evidence that MRS reveals chronic posttraumatic inflammation in MRI-negative perilesional cortex. The mismatch in MRS, MRI, and PET measures may allow non-invasive endophenotyping of beneficial and detrimental inflammatory processes to aid targeting and timing of anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Amna Yasmin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kimmo Jokivarsi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pekka Poutiainen
- Center of Diagnostic Imaging, Department of Cyclotron and Radiopharmacy, Kuopio University Hospital, Kuopio, Finland
| | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riikka Immonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
412
|
Song S, Luo L, Sun B, Sun D. Roles of glial ion transporters in brain diseases. Glia 2019; 68:472-494. [PMID: 31418931 DOI: 10.1002/glia.23699] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Glial ion transporters are important in regulation of ionic homeostasis, cell volume, and cellular signal transduction under physiological conditions of the central nervous system (CNS). In response to acute or chronic brain injuries, these ion transporters can be activated and differentially regulate glial functions, which has subsequent impact on brain injury or tissue repair and functional recovery. In this review, we summarized the current knowledge about major glial ion transporters, including Na+ /H+ exchangers (NHE), Na+ /Ca2+ exchangers (NCX), Na+ -K+ -Cl- cotransporters (NKCC), and Na+ -HCO3 - cotransporters (NBC). In acute neurological diseases, such as ischemic stroke and traumatic brain injury (TBI), these ion transporters are rapidly activated and play significant roles in regulation of the intra- and extracellular pH, Na+ , K+ , and Ca2+ homeostasis, synaptic plasticity, and myelin formation. However, overstimulation of these ion transporters can contribute to glial apoptosis, demyelination, inflammation, and excitotoxicity. In chronic brain diseases, such as glioma, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), glial ion transporters are involved in the glioma Warburg effect, glial activation, neuroinflammation, and neuronal damages. These findings suggest that glial ion transporters are involved in tissue structural and functional restoration, or brain injury and neurological disease development and progression. A better understanding of these ion transporters in acute and chronic neurological diseases will provide insights for their potential as therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lanxin Luo
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China.,Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, Dois Portos, Portugal
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
413
|
Mao W, Yi X, Qin J, Tian M, Jin G. CXCL12 promotes proliferation of radial glia like cells after traumatic brain injury in rats. Cytokine 2019; 125:154771. [PMID: 31400639 DOI: 10.1016/j.cyto.2019.154771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 01/22/2023]
Abstract
To investigate the effect of CXCL12 on regeneration of radial glia like cells after traumatic brain injury (TBI). We randomly divided 48 rats into 4 groups: (1) the sham group, rats were performed craniotomy only, (2) the control group, saline were injected into the ipsilateral cortex after TBI, (3) the CXCL12 group, CXCL12 were injected, and (4) the CXCL12 + AMD3100 group, a mixture of CXCL12 and AMD3100 were injected. Seven days after TBI, the brain tissues were subjected to immunofluorescence double-labeled staining of BrdU/Nestin, BLBP/Nestin, BLBP/Vimentin, BLBP/SOX2, BLBP/CXCR4, BLBP/DCX. Western Blot assay was used to measure the levels of Nestin, BLBP, and Vimentin. Compared with the control group, CXCL12 treatment significantly increased the number of cells stained with BrdU/Nestin, BLBP/Nestin, and BLBP/Vimentin around the injured cortex and corpus callosum areas. CXCL12 + AMD3100 treatment significantly decreased the number of these cells compared with the CXCL12 treatment and control group. The protein levels of Nestin, BLBP, and Vimentin had the same change trends as those of the immunofluorescence staining. The BLBP/Vimentin positive cells presented with the astrocyte pattern around the injured cortex area but with the RGCs pattern around the injured corpus callosum area. The BLBP positive cells also expressed CXCR4 and SOX2. Altogether, CXCL12 promotes the proliferation of neural precursor cells after TBI by combing to its receptor, CXCR4. The proliferating neural precursor cells presents radial glial cell like cells. The RGCs-like cells can differentiate into immature neurons and promote the migration of immature neurons.
Collapse
Affiliation(s)
- Weifeng Mao
- Department of Anatomy, Nantong University Medical School, Jiangsu 226001, China
| | - Xin Yi
- Department of Anatomy, Nantong University Medical School, Jiangsu 226001, China
| | - Jianbing Qin
- Department of Anatomy, Nantong University Medical School, Jiangsu 226001, China
| | - Meiling Tian
- Department of Anatomy, Nantong University Medical School, Jiangsu 226001, China
| | - Guohua Jin
- Department of Anatomy, Nantong University Medical School, Jiangsu 226001, China.
| |
Collapse
|
414
|
Derouiche A, Geiger KD. Perspectives for Ezrin and Radixin in Astrocytes: Kinases, Functions and Pathology. Int J Mol Sci 2019; 20:ijms20153776. [PMID: 31382374 PMCID: PMC6695708 DOI: 10.3390/ijms20153776] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are increasingly perceived as active partners in physiological brain function and behaviour. The structural correlations of the glia–synaptic interaction are the peripheral astrocyte processes (PAPs), where ezrin and radixin, the two astrocytic members of the ezrin-radixin-moesin (ERM) family of proteins are preferentially localised. While the molecular mechanisms of ERM (in)activation appear universal, at least in mammalian cells, and have been studied in great detail, the actual ezrin and radixin kinases, phosphatases and binding partners appear cell type specific and may be multiplexed within a cell. In astrocytes, ezrin is involved in process motility, which can be stimulated by the neurotransmitter glutamate, through activation of the glial metabotropic glutamate receptors (mGluRs) 3 or 5. However, it has remained open how this mGluR stimulus is transduced to ezrin activation. Knowing upstream signals of ezrin activation, ezrin kinase(s), and membrane-bound binding partners of ezrin in astrocytes might open new approaches to the glial role in brain function. Ezrin has also been implicated in invasive behaviour of astrocytomas, and glial activation. Here, we review data pertaining to potential molecular interaction partners of ezrin in astrocytes, with a focus on PKC and GRK2, and in gliomas and other diseases, to stimulate further research on their potential roles in glia-synaptic physiology and pathology.
Collapse
Affiliation(s)
- Amin Derouiche
- Institute of Anatomy II, Goethe-University Frankfurt, D-60590 Frankfurt am Main, Germany.
| | - Kathrin D Geiger
- Neuropathology, Institute for Pathology, Carl Gustav Carus University Hospital, TU Dresden, D-01307 Dresden, Germany
| |
Collapse
|
415
|
Dehlaghi Jadid K, Davidsson J, Lidin E, Hånell A, Angéria M, Mathiesen T, Risling M, Günther M. COX-2 Inhibition by Diclofenac Is Associated With Decreased Apoptosis and Lesion Area After Experimental Focal Penetrating Traumatic Brain Injury in Rats. Front Neurol 2019; 10:811. [PMID: 31417487 PMCID: PMC6682700 DOI: 10.3389/fneur.2019.00811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 07/15/2019] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is followed by a secondary inflammation in the brain. The inflammatory response includes prostanoid synthesis by the inducible enzyme cyclooxygenase-2 (COX-2). Inhibition of COX-2 is associated with improved functional outcome in experimental TBI models, although central nervous system-specific effects are not fully understood. Animal studies report better outcomes in females than males. The exact mechanisms for this gender dichotomy remain unknown. In an initial study we reported increased COX-2 expression in male rats, compared to female, following experimental TBI. It is possible that COX-2 induction is directly associated with increased cell death after TBI. Therefore, we designed a sequential study to investigate the blocking of COX-2 specifically, using the established COX-2 inhibitor diclofenac. Male Sprague-Dawley rats weighing between 250 and 350 g were exposed to focal penetrating TBI and randomly selected for diclofenac treatment (5 μg intralesionally, immediately following TBI) (n = 8), controls (n = 8), sham operation (n = 8), and normal (no manipulation) (n = 4). After 24 h, brains were removed, fresh frozen, cut into 14 μm coronal sections and subjected to COX-2 immunofluorescence, Fluoro Jade, TUNEL, and lesion area analyses. Diclofenac treatment decreased TUNEL staining indicative of apoptosis with a mean change of 54% (p < 0.05) and lesion area with a mean change of 55% (p < 0.005). Neuronal degeneration measured by Fluoro Jade and COX-2 protein expression levels were not affected. In conclusion, COX-2 inhibition by diclofenac was associated with decreased apoptosis and lesion area after focal penetrating TBI and may be of interest for further studies of clinical applications.
Collapse
Affiliation(s)
- Kayvan Dehlaghi Jadid
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Johan Davidsson
- Division of Vehicle Safety, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Erik Lidin
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Anders Hånell
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Maria Angéria
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Tiit Mathiesen
- Department of Clinical Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Mårten Risling
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Mattias Günther
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
416
|
Funnell JL, Balouch B, Gilbert RJ. Magnetic Composite Biomaterials for Neural Regeneration. Front Bioeng Biotechnol 2019; 7:179. [PMID: 31404143 PMCID: PMC6669379 DOI: 10.3389/fbioe.2019.00179] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Nervous system damage caused by physical trauma or degenerative diseases can result in loss of sensory and motor function for patients. Biomaterial interventions have shown promise in animal studies, providing contact guidance for extending neurites or sustained release of various drugs and growth factors; however, these approaches often target only one aspect of the regeneration process. More recent studies investigate hybrid approaches, creating complex materials that can reduce inflammation or provide neuroprotection in addition to stimulating growth and regeneration. Magnetic materials have shown promise in this field, as they can be manipulated non-invasively, are easily functionalized, and can be used to mechanically stimulate cells. By combining different types of biomaterials (hydrogels, nanoparticles, electrospun fibers) and incorporating magnetic elements, magnetic materials can provide multiple physical and chemical cues to promote regeneration. This review, for the first time, will provide an overview of design strategies for promoting regeneration after neural injury with magnetic biomaterials.
Collapse
Affiliation(s)
| | | | - Ryan J. Gilbert
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
417
|
Tessarin GWL, Michalec OM, Torres-da-Silva KR, Da Silva AV, Cruz-Rizzolo RJ, Gonçalves A, Gasparini DC, Horta-Júnior JAC, Ervolino E, Bittencourt JC, Lovejoy DA, Casatti CA. A Putative Role of Teneurin-2 and Its Related Proteins in Astrocytes. Front Neurosci 2019; 13:655. [PMID: 31316338 PMCID: PMC6609321 DOI: 10.3389/fnins.2019.00655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/07/2019] [Indexed: 11/13/2022] Open
Abstract
Teneurins are type II transmembrane proteins comprised of four phylogenetically conserved homologs (Ten-1-4) that are highly expressed during neurogenesis. An additional bioactive peptide named teneurin C-terminal-associated peptide (TCAP-1-4) is present at the carboxyl terminal of teneurins. The possible correlation between the Ten/TCAP system and brain injuries has not been explored yet. Thus, this study examined the expression of these proteins in the cerebral cortex after mechanical brain injury. Adult rats were subjected to cerebral cortex injury by needle-insertion lesion and sacrificed at various time points. This was followed by analysis of the lesion area by immunohistochemistry and conventional RT-PCR techniques. Control animals (no brain injury) showed only discrete Ten-2-like immunoreactive pyramidal neurons in the cerebral cortex. In contrast, Ten-2 immunoreactivity was significantly up-regulated in the reactive astrocytes in all brain-injured groups (p < 0.0001) when compared to the control group. Interestingly, reactive astrocytes also showed intense immunoreactivity to LPHN-1, an endogenous receptor for the Ten-2 splice variant named Lasso. Semi-quantitative analysis of Ten-2 and TCAP-2 expression revealed significant increases of both at 48 h, 3 days and 5 days (p < 0.0001) after brain injury compared to the remaining groups. Immortalized cerebellar astrocytes were also evaluated for Ten/TCAP expression and intracellular calcium signaling by fluorescence microscopy after TCAP-1 treatment. Immortalized astrocytes expressed additional Ten/TCAP homologs and exhibited significant increases in intracellular calcium concentrations after TCAP-1 treatment. This study is the first to demonstrate that Ten-2/TCAP-2 and LPHN-1 are upregulated in reactive astrocytes after a mechanical brain injury. Immortalized cerebellar astrocytes expressed Ten/TCAP homologs and TCAP-1 treatment stimulated intracellular calcium signaling. These findings disclose a new functional role of the Ten/TCAP system in astrocytes during tissue repair of the CNS.
Collapse
Affiliation(s)
- Gestter W L Tessarin
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Ola M Michalec
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Kelly R Torres-da-Silva
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - André V Da Silva
- Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil.,School of Medicine, Federal University of Mato Grosso do Sul (UFMS), Três Lagoas, Brazil
| | - Roelf J Cruz-Rizzolo
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Alaide Gonçalves
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Daniele C Gasparini
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - José A C Horta-Júnior
- Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Jackson C Bittencourt
- Department of Anatomy, Institute of Biomedical Sciences, São Paulo University (USP), São Paulo, Brazil
| | - David A Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Cláudio A Casatti
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
418
|
Teng S, Palmieri A, Maita I, Zheng C, Das G, Park J, Zhou R, Alder J, Thakker-Varia S. Inhibition of EphA/Ephrin-A signaling using genetic and pharmacologic approaches improves recovery following traumatic brain injury in mice. Brain Inj 2019; 33:1385-1401. [DOI: 10.1080/02699052.2019.1641622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shavonne Teng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Alicia Palmieri
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Isabella Maita
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Cynthia Zheng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Gitanjali Das
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Juyeon Park
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Renping Zhou
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
419
|
Al-Khrasani M, Mohammadzadeh A, Balogh M, Király K, Barsi S, Hajnal B, Köles L, Zádori ZS, Harsing LG. Glycine transporter inhibitors: A new avenue for managing neuropathic pain. Brain Res Bull 2019; 152:143-158. [PMID: 31302238 DOI: 10.1016/j.brainresbull.2019.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Interneurons operating with glycine neurotransmitter are involved in the regulation of pain transmission in the dorsal horn of the spinal cord. In addition to interneurons, glycine release also occurs from glial cells neighboring glutamatergic synapses in the spinal cord. Neuronal and glial release of glycine is controlled by glycine transporters (GlyTs). Inhibitors of the two isoforms of GlyTs, the astrocytic type-1 (GlyT-1) and the neuronal type-2 (GlyT-2), decrease pain sensation evoked by injuries of peripheral sensory neurons or inflammation. The function of dorsal horn glycinergic interneurons has been suggested to be reduced in neuropathic pain, which can be reversed by GlyT-2 inhibitors (Org-25543, ALX1393). Several lines of evidence also support that peripheral nerve damage or inflammation may shift glutamatergic neurochemical transmission from N-methyl-D aspartate (NMDA) NR1/NR2A receptor- to NR1/NR2B receptor-mediated events (subunit switch). This pathological overactivation of NR1/NR2B receptors can be reduced by GlyT-1 inhibitors (NFPS, Org-25935), which decrease excessive glycine release from astroglial cells or by selective antagonists of NR2B subunits (ifenprodil, Ro 25-6981). Although several experiments suggest that GlyT inhibitors may represent a novel strategy in the control of neuropathic pain, proving this concept in human beings is hampered by lack of clinically applicable GlyT inhibitors. We also suggest that drugs inhibiting both GlyT-1 and GlyT-2 non-selectively and reversibly, may favorably target neuropathic pain. In this paper we overview inhibitors of the two isoforms of GlyTs as well as the effects of these drugs in experimental models of neuropathic pain. In addition, the possible mechanisms of action of the GlyT inhibitors, i.e. how they affect the neurochemical and pain transmission in the spinal cord, are also discussed. The growing evidence for the possible therapeutic intervention of neuropathic pain by GlyT inhibitors further urges development of drugable compounds, which may beneficially restore impaired pain transmission in various neuropathic conditions.
Collapse
Affiliation(s)
- Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary.
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Szilvia Barsi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Benjamin Hajnal
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Laszlo G Harsing
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| |
Collapse
|
420
|
Ladak AA, Enam SA, Ibrahim MT. A Review of the Molecular Mechanisms of Traumatic Brain Injury. World Neurosurg 2019; 131:126-132. [PMID: 31301445 DOI: 10.1016/j.wneu.2019.07.039] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Traumatic brain injury (TBI) refers to any insult to the brain resulting in primary (direct) and secondary (indirect) damage to the brain parenchyma. Secondary damage is often linked to the molecular mechanisms that occur post TBI and result in excitotoxicity, neuroinflammation and cytokine damage, oxidative damage, and eventual cell death as prominent mechanisms of cell damage. We present a review highlighting the relation of each of these mechanisms with TBI, their mode of damaging brain tissue, and therapeutic correlation. We also mention the long-term sequelae and their pathophysiology in relation to TBI focusing on Parkinson disease, Alzheimer disease, epilepsy, and chronic traumatic encephalopathy. Understanding of the molecular mechanisms is important in order to realize the secondary and long-term sequelae that follow primary TBI and to devise targeted therapy for quick recovery accordingly.
Collapse
Affiliation(s)
- Asma Akbar Ladak
- Medical College, Aga Khan University Hospital, Karachi, Pakistan
| | - Syed Ather Enam
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan.
| | | |
Collapse
|
421
|
Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD. Global brain inflammation in stroke. Lancet Neurol 2019; 18:1058-1066. [PMID: 31296369 DOI: 10.1016/s1474-4422(19)30078-x] [Citation(s) in RCA: 553] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
Abstract
Stroke, including acute ischaemic stroke and intracerebral haemorrhage, results in neuronal cell death and the release of factors such as damage-associated molecular patterns (DAMPs) that elicit localised inflammation in the injured brain region. Such focal brain inflammation aggravates secondary brain injury by exacerbating blood-brain barrier damage, microvascular failure, brain oedema, oxidative stress, and by directly inducing neuronal cell death. In addition to inflammation localised to the injured brain region, a growing body of evidence suggests that inflammatory responses after a stroke occur and persist throughout the entire brain. Global brain inflammation might continuously shape the evolving pathology after a stroke and affect the patients' long-term neurological outcome. Future efforts towards understanding the mechanisms governing the emergence of so-called global brain inflammation would facilitate modulation of this inflammation as a potential therapeutic strategy for stroke.
Collapse
Affiliation(s)
- Kaibin Shi
- Tianjin Medical University General Hospital, Tianjin, China; Department of Neurology, and Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - De-Cai Tian
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tianjin Medical University General Hospital, Tianjin, China
| | - Zhi-Guo Li
- Tianjin Medical University General Hospital, Tianjin, China
| | - Andrew F Ducruet
- Department of Neurology, and Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Michael T Lawton
- Department of Neurology, and Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Fu-Dong Shi
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
422
|
Ballout N, Rochelle T, Brot S, Bonnet ML, Francheteau M, Prestoz L, Zibara K, Gaillard A. Characterization of Inflammation in Delayed Cortical Transplantation. Front Mol Neurosci 2019; 12:160. [PMID: 31293384 PMCID: PMC6603085 DOI: 10.3389/fnmol.2019.00160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/07/2019] [Indexed: 01/30/2023] Open
Abstract
We previously reported that embryonic motor cortical neurons transplanted 1-week after lesion in the adult mouse motor cortex significantly enhances graft vascularization, survival, and proliferation of grafted cells, the density of projections developed by grafted neurons and improves functional repair and recovery. The purpose of the present study is to understand the extent to which post-traumatic inflammation following cortical lesion could influence the survival of grafted neurons and the development of their projections to target brain regions and conversely how transplanted cells can modulate host inflammation. For this, embryonic motor cortical tissue was grafted either immediately or with a 1-week delay into the lesioned motor cortex of adult mice. Immunohistochemistry (IHC) analysis was performed to determine the density and cell morphology of resident and peripheral infiltrating immune cells. Then, in situ hybridization (ISH) was performed to analyze the distribution and temporal mRNA expression pattern of pro-inflammatory or anti-inflammatory cytokines following cortical lesion. In parallel, we analyzed the protein expression of both M1- and M2-associated markers to study the M1/M2 balance switch. We have shown that 1-week after the lesion, the number of astrocytes, microglia, oligodendrocytes, and CD45+ cells were significantly increased along with characteristics of M2 microglia phenotype. Interestingly, the majority of microglia co-expressed transforming growth factor-β1 (TGF-β1), an anti-inflammatory cytokine, supporting the hypothesis that microglial activation is also neuroprotective. Our results suggest that the modulation of post-traumatic inflammation 1-week after cortical lesion might be implicated in the improvement of graft vascularization, survival, and density of projections developed by grafted neurons.
Collapse
Affiliation(s)
- Nissrine Ballout
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM U1084, Poitiers, France.,Laboratory of Stem Cells, PRASE, DSST, Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Tristan Rochelle
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM U1084, Poitiers, France
| | - Sebastien Brot
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM U1084, Poitiers, France
| | - Marie-Laure Bonnet
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM U1084, Poitiers, France.,CHU Poitiers, Poitiers, France
| | - Maureen Francheteau
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM U1084, Poitiers, France
| | - Laetitia Prestoz
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM U1084, Poitiers, France
| | - Kazem Zibara
- Laboratory of Stem Cells, PRASE, DSST, Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM U1084, Poitiers, France
| |
Collapse
|
423
|
Kumar Sahel D, Kaira M, Raj K, Sharma S, Singh S. Mitochondrial dysfunctioning and neuroinflammation: Recent highlights on the possible mechanisms involved in Traumatic Brain Injury. Neurosci Lett 2019; 710:134347. [PMID: 31229625 DOI: 10.1016/j.neulet.2019.134347] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 11/18/2022]
Abstract
Traumatic brain injury (TBI) is the injury to the vasculature of brain while trauma caused by physical, chemical and biological stimuli. TBI is the leading cause of mortality and morbidity around the world. In this, primary insult leads to secondary injury through the involvement and initiation of various pathological processes. The most citable includes excitotoxicity, Blood Brain Barrier (BBB) dysfunction, inflammation, mitochondrial dysfunction, oxidative stress, calcium efflux, microglial mediated release of proinflammatory mediators (cytokine, chemokines, interleukin, tissue necrosis factor etc.). The morphological changes in TBI are proportional to mitochondrial dysfunctioning and microglial activation, which play an assorted role in neurodegeneration following traumatic brain injury. It is also assumed that the release of nitric oxide, activation of microglial cells plays a diversive role in maintaining the physiological and pathological balance. This review cites different pathophysiological mechanisms that are involved in progenesis of secondary injury after primary insult. These targets further are useful to explore the deep molecular mechanisms and to analyse the effectiveness of available drugs. Moreover, the present review reflects the underlying inflammatory cascade responsible for neuronal loss and neurological deficit in TBI.
Collapse
Affiliation(s)
- Deepak Kumar Sahel
- Neuroscience Division, Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, 142001, India
| | - Meenakshi Kaira
- Department of Pharmaceutical Sciences, M.D University, Rohtak, Haryana, 124001, India
| | - Khadga Raj
- Neuroscience Division, Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, 142001, India
| | - Shakshi Sharma
- Neuroscience Division, Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
424
|
Torres-Sánchez A, Vanegas JM, Purohit PK, Arroyo M. Combined molecular/continuum modeling reveals the role of friction during fast unfolding of coiled-coil proteins. SOFT MATTER 2019; 15:4961-4975. [PMID: 31172154 DOI: 10.1039/c9sm00117d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Coiled-coils are filamentous proteins that form the basic building block of important force-bearing cellular elements, such as intermediate filaments and myosin motors. In addition to their biological importance, coiled-coil proteins are increasingly used in new biomaterials including fibers, nanotubes, or hydrogels. Coiled-coils undergo a structural transition from an α-helical coil to an unfolded state upon extension, which allows them to sustain large strains and is critical for their biological function. By performing equilibrium and out-of-equilibrium all-atom molecular dynamics (MD) simulations of coiled-coils in explicit solvent, we show that two-state models based on Kramers' or Bell's theories fail to predict the rate of unfolding at high pulling rates. We further show that an atomistically informed continuum rod model accounting for phase transformations and for the hydrodynamic interactions with the solvent can reconcile two-state models with our MD results. Our results show that frictional forces, usually neglected in theories of fibrous protein unfolding, reduce the thermodynamic force acting on the interface, and thus control the dynamics of unfolding at different pulling rates. Our results may help interpret MD simulations at high pulling rates, and could be pertinent to cytoskeletal networks or protein-based artificial materials subjected to shocks or blasts.
Collapse
|
425
|
Zhang Y, Wang J, Zhang Y, Wei J, Wu R, Cai H. Overexpression of long noncoding RNA Malat1 ameliorates traumatic brain injury induced brain edema by inhibiting AQP4 and the NF-κB/IL-6 pathway. J Cell Biochem 2019; 120:17584-17592. [PMID: 31218751 DOI: 10.1002/jcb.29025] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 01/20/2023]
Abstract
Brain edema is a major traumatic brain injury (TBI)-related neurological complication. In the initiation stage of TBI, brain edema is characterized by astrocyte swelling (cytotoxic edema). We studied the impact of a long noncoding RNA, Malat1, on the TBI-induced astrocyte swelling and brain edema. Our results showed that Malat1 was downregulated in both the TBI rat model and the astrocyte fluid percussion injury (FPI) model, which concurred with brain edema and astrocyte swelling. Overexpression of Malat1 significantly inhibited rat brain edema, meanwhile reducing interleukin-6 (IL-6), nuclear factor-κB (NF-κB), and aquaporin 4 (AQP4) expression after TBI. In addition, overexpression of Malat1 ameliorated FPI-induced astrocyte swelling and reduced IL-6 release. Quantitative real-time polymerase chain reaction and Western blot analysis also corroborated the inhibitory effects of Malat1 on NF-κB and AQP4 expression after FPI. Our results highlighted the protective effects of Malat1 on the TBI-induced brain edema, which were mediated through regulating IL-6, NF-κB, and AQP4 expression. Our study could provide a novel approach for TBI treatment.
Collapse
Affiliation(s)
- Yamin Zhang
- Department of Neurology, Gansu Provincial Hospital, Lanzhou, Gansu, People's Republic of China
| | - Jianping Wang
- Emergency Department, Gansu Provincial Hospital, Lanzhou, Gansu, People's Republic of China
| | - Yi Zhang
- Department of Neurology, Gansu Provincial Hospital, Lanzhou, Gansu, People's Republic of China
| | - Jia Wei
- Youth League Committee, Gansu Provincial Hospital, Lanzhou, Gansu, People's Republic of China
| | - Ruipeng Wu
- Department of Neurology, Gansu Provincial Hospital, Lanzhou, Gansu, People's Republic of China
| | - Hui Cai
- General Surgery Clinical Medicine Center, Gansu Provincial Hospital, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
426
|
Zhao J, Wang B, Huang T, Guo X, Yang Z, Song J, Zhang M. Glial response in early stages of traumatic brain injury. Neurosci Lett 2019; 708:134335. [PMID: 31207278 DOI: 10.1016/j.neulet.2019.134335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
Traumatic brain in jury affects a number of individuals per year and is a major cause of worldwide death and disability. Yet, its pathophysiological mechanism remains unclear. It is well-known that glial cells, including microglia and astrocytes, are activated and involved in tissue damage and repair in the peri-lesion regions after traumatic brain injury; however, global glial responses are rarely reported. The purpose of this study was to investigate the global activation of microglia and astrocytes 1 day after traumatic brain injury. To test this, we used a weight drop device to inflict traumatic brain injury on left side of the brain and performed hematoxylin-eosin staining to detect tissue damage. We used immunohistochemical staining and western blotting to detect the activation of microglia and astrocytes 1 day after TBI. We found that microglia were significantly activated in ipsilateral regions. Interestingly, we found that astrocytes were also significantly activated in the ipsilateral regions, contralateral cortex, and contralateral corpus callosum. These results suggest that a focal damage can cause a global glial reaction.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, China
| | - Bo Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, China
| | - Tingqin Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, West fifth Road No.157, Xi'an, Shaanxi 710004, China
| | - Xiaoye Guo
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, China
| | - Zhongbo Yang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, China
| | - Jinning Song
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, China
| | - Ming Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, West fifth Road No.157, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
427
|
Nasr IW, Chun Y, Kannan S. Neuroimmune responses in the developing brain following traumatic brain injury. Exp Neurol 2019; 320:112957. [PMID: 31108085 DOI: 10.1016/j.expneurol.2019.112957] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of both acute and long-term morbidity in the pediatric population, leading to a substantial, long-term socioeconomic burden. Despite the increase in the amount of pre-clinical and clinical research, treatment options for TBI rely heavily on supportive care with very limited targeted interventions that improve the acute and chronic sequelae of TBI. Other than injury prevention, not much can be done to limit the primary injury, which consists of tissue damage and cellular destruction. Secondary injury is the result of the ongoing complex inflammatory pathways that further exacerbate tissue damage, resulting in the devastating chronic outcomes of TBI. On the other hand, some level of inflammation is essential for neuronal regeneration and tissue repair. In this review article we discuss the various stages of the neuroimmune response in the immature, pediatric brain in the context of normal maturation and development of the immune system. The developing brain has unique features that distinguish it from the adult brain, and the immune system plays an integral role in CNS development. Those features could potentially make the developing brain more susceptible to worse outcomes, both acutely and in the long-term. The neuroinflammatory reaction which is triggered by TBI can be described as a highly intricate interaction between the cells of the innate and the adaptive immune systems. The innate immune system is triggered by non-specific danger signals that are released from damaged cells and tissues, which in turn leads to neutrophil infiltration, activation of microglia and astrocytes, complement release, as well as histamine release by mast cells. The adaptive immune response is subsequently activated leading to the more chronic effects of neuroinflammation. We will also discuss current attempts at modulating the TBI-induced neuroinflammatory response. A better understanding of the role of the immune system in normal brain development and how immune function changes with age is crucial for designing therapies to appropriately target the immune responses following TBI in order to enhance repair and plasticity.
Collapse
Affiliation(s)
- Isam W Nasr
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Young Chun
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America.
| |
Collapse
|
428
|
Sta Maria NS, Sargolzaei S, Prins ML, Dennis EL, Asarnow RF, Hovda DA, Harris NG, Giza CC. Bridging the gap: Mechanisms of plasticity and repair after pediatric TBI. Exp Neurol 2019; 318:78-91. [PMID: 31055004 DOI: 10.1016/j.expneurol.2019.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/09/2019] [Accepted: 04/25/2019] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury is the leading cause of death and disability in the United States, and may be associated with long lasting impairments into adulthood. The multitude of ongoing neurobiological processes that occur during brain maturation confer both considerable vulnerability to TBI but may also provide adaptability and potential for recovery. This review will examine and synthesize our current understanding of developmental neurobiology in the context of pediatric TBI. Delineating this biology will facilitate more targeted initial care, mechanism-based therapeutic interventions and better long-term prognostication and follow-up.
Collapse
Affiliation(s)
- Naomi S Sta Maria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, ZNI115, Los Angeles, CA 90033, United States of America.
| | - Saman Sargolzaei
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America.
| | - Mayumi L Prins
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Emily L Dennis
- Brigham and Women's Hospital/Harvard University and Department of Psychology, Stanford University, 1249 Boylston Street, Boston, MA 02215, United States of America.
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Box 951759, 760 Westwood Plaza, 48-240C Semel Institute, Los Angeles, CA 90095-1759, United States of America.
| | - David A Hovda
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Department of Medical and Molecular Pharmacology, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562 & Semel 18-228A, Los Angeles, CA 90095-6901, United States of America.
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Christopher C Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America; Division of Pediatric Neurology, Mattel Children's Hospital - UCLA, Los Angeles, CA, United States of America.
| |
Collapse
|
429
|
Shin N, Kim HG, Shin HJ, Kim S, Kwon HH, Baek H, Yi MH, Zhang E, Kim JJ, Hong J, Lee SY, Lee W, Triantafillu UL, Kim CS, Kim Y, Kim DW. Uncoupled Endothelial Nitric Oxide Synthase Enhances p-Tau in Chronic Traumatic Encephalopathy Mouse Model. Antioxid Redox Signal 2019; 30:1601-1620. [PMID: 30070145 DOI: 10.1089/ars.2017.7280] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease thought to be caused by repetitive traumatic brain injury (TBI) and subconcussive injuries. While hyperphosphorylation of tau (p-Tau), which is attributed to astrocytic tangles (ATs) and neurofibrillary tangles, is known to be involved in CTE, there are limited neuropathological or molecular data. By utilizing repetitive mild TBI (rmTBI) mouse models, our aim was to examine the pathological changes of CTE-associated structures, specifically the ATs. RESULTS Our rmTBI mouse models showed symptoms of depressive behavior and memory deficit, alongside an increased p-Tau expression in their neurons and astrocytes in both the hippocampus and cortex. rmTBI induced oxidative stress in endothelial cells and nitric oxide (NO) generation in astrocytes, which were mediated by hypoxia and increased hypoxia-inducible factor 1-α (HIF1α). There was also correlated decreased regional cerebral tissue perfusion units, mild activation of astrocytes and NFκB phosphorylation, increased expression of inducible nitric oxide synthase (iNOS), increased endothelial nitric oxide synthase (eNOS) uncoupling with decreased tetrahydrobiopterin, and increased expression of nitrotyrosine, NADPH oxidase 2 (Nox2)/nuclear factor (erythroid-derived 2) factor 2 (Nrf2) signaling proteins. Combined, these effects induced peroxynitrite formation and hyperphosphorylation of tau in the hippocampus and cortex toward the formation of ATs. INNOVATION Our model features molecular pathogenesis events of CTE with clinically relevant latency periods. In particular, this is the first demonstration of an increased astrocytic iNOS expression in an in vivo model. CONCLUSION We propose a novel mechanism of uncoupled eNOS and NO contribution to Tau phosphorylation and AT formation in rmTBI brain, toward an increased molecular understanding of the pathophysiology of human CTE.
Collapse
Affiliation(s)
- Nara Shin
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.,2 Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea.,3 Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyeong-Geug Kim
- 4 Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hyo Jung Shin
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.,3 Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Sena Kim
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyeok Hee Kwon
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.,3 Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyunjung Baek
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.,3 Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Min-Hee Yi
- 5 Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Enji Zhang
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.,6 Department of Anesthesia Medicine, Yanbian University Hospital, Yanbian, China
| | - Jwa-Jin Kim
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.,7 LES Corporation, Inc., Daejeon, Republic of Korea
| | - Jinpyo Hong
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Sun Yeul Lee
- 2 Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Wonhyung Lee
- 2 Department of Anesthesia and Pain Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ursula L Triantafillu
- 8 Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama
| | - Cuk-Seong Kim
- 3 Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea.,9 Department of Physiology, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Yonghyun Kim
- 8 Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama
| | - Dong Woon Kim
- 1 Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.,3 Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
430
|
McConnell HL, Li Z, Woltjer RL, Mishra A. Astrocyte dysfunction and neurovascular impairment in neurological disorders: Correlation or causation? Neurochem Int 2019; 128:70-84. [PMID: 30986503 DOI: 10.1016/j.neuint.2019.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
The neurovascular unit, consisting of neurons, astrocytes, and vascular cells, has become the focus of much discussion in the last two decades and emerging literature now suggests an association between neurovascular dysfunction and neurological disorders. In this review, we synthesize the known and suspected contributions of astrocytes to neurovascular dysfunction in disease. Throughout the brain, astrocytes are centrally positioned to dynamically mediate interactions between neurons and the cerebral vasculature, and play key roles in blood-brain barrier maintenance and neurovascular coupling. It is increasingly apparent that the changes in astrocytes in response to a variety of insults to brain tissue -collectively referred to as "reactive astrogliosis" - are not just an epiphenomenon restricted to morphological alterations, but comprise functional changes in astrocytes that contribute to the phenotype of neurological diseases with both beneficial and detrimental effects. In the context of the neurovascular unit, astrocyte dysfunction accompanies, and may contribute to, blood-brain barrier impairment and neurovascular dysregulation, highlighting the need to determine the exact nature of the relationship between astrocyte dysfunction and neurovascular impairments. Targeting astrocytes may represent a new strategy in combinatorial therapeutics for preventing the mismatch of energy supply and demand that often accompanies neurological disorders.
Collapse
Affiliation(s)
- Heather L McConnell
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Zhenzhou Li
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States; Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan City, China
| | - Randall L Woltjer
- Department of Neuropathology, Oregon Health & Science University, Portland, OR, United States
| | - Anusha Mishra
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
431
|
Glotfelty EJ, Delgado TE, Tovar-y-Romo LB, Luo Y, Hoffer BJ, Olson L, Karlsson TE, Mattson MP, Harvey BK, Tweedie D, Li Y, Greig NH. Incretin Mimetics as Rational Candidates for the Treatment of Traumatic Brain Injury. ACS Pharmacol Transl Sci 2019; 2:66-91. [PMID: 31396586 PMCID: PMC6687335 DOI: 10.1021/acsptsci.9b00003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is becoming an increasing public health issue. With an annually estimated 1.7 million TBIs in the United States (U.S) and nearly 70 million worldwide, the injury, isolated or compounded with others, is a major cause of short- and long-term disability and mortality. This, along with no specific treatment, has made exploration of TBI therapies a priority of the health system. Age and sex differences create a spectrum of vulnerability to TBI, with highest prevalence among younger and older populations. Increased public interest in the long-term effects and prevention of TBI have recently reached peaks, with media attention bringing heightened awareness to sport and war related head injuries. Along with short-term issues, TBI can increase the likelihood for development of long-term neurodegenerative disorders. A growing body of literature supports the use of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon (Gcg) receptor (R) agonists, along with unimolecular combinations of these therapies, for their potent neurotrophic/neuroprotective activities across a variety of cellular and animal models of chronic neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and acute cerebrovascular disorders (stroke). Mild or moderate TBI shares many of the hallmarks of these conditions; recent work provides evidence that use of these compounds is an effective strategy for its treatment. Safety and efficacy of many incretin-based therapies (GLP-1 and GIP) have been demonstrated in humans for the treatment of type 2 diabetes mellitus (T2DM), making these compounds ideal for rapid evaluation in clinical trials of mild and moderate TBI.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas E. Delgado
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Luis B. Tovar-y-Romo
- Division
of Neuroscience, Institute of Cellular Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yu Luo
- Department
of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Barry J. Hoffer
- Department
of Neurosurgery, Case Western Reserve University
School of Medicine, Cleveland, Ohio 44106, United States
| | - Lars Olson
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Mark P. Mattson
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Brandon K. Harvey
- Molecular
Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience
Department, National Institute on Drug Abuse,
National Institutes of Health, Baltimore, Maryland 21224, United States
| | - David Tweedie
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Yazhou Li
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Nigel H. Greig
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
432
|
Reeves C, Pradim-Jardim A, Sisodiya SM, Thom M, Liu JYW. Spatiotemporal dynamics of PDGFRβ expression in pericytes and glial scar formation in penetrating brain injuries in adults. Neuropathol Appl Neurobiol 2019; 45:609-627. [PMID: 30636077 PMCID: PMC6767497 DOI: 10.1111/nan.12539] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022]
Abstract
Aims Understanding the spatiotemporal dynamics of reactive cell types following brain injury is important for future therapeutic interventions. We have previously used penetrating cortical injuries following intracranial recordings as a brain repair model to study scar‐forming nestin‐expressing cells. We now explore the relationship between nestin‐expressing cells, PDGFRβ+ pericytes and Olig2+ glia, including their proliferation and functional maturation. Methods In 32 cases, ranging from 3 to 461 days post injury (dpi), immunohistochemistry for PDGFRβ, nestin, GFAP, Olig2, MCM2, Aquaporin 4 (Aq4), Glutamine Synthetase (GS) and Connexin 43 (Cx43) was quantified for cell densities, labelling index (LI) and cellular co‐expression at the injury site compared to control regions. Results PDGFRβ labelling highlighted both pericytes and multipolar parenchymal cells. PDGFRβ LI and PDGFRβ+/MCM2+ cells significantly increased in injury Zones at 10–13 dpi with migration of pericytes away from vessels with increased co‐localization of PDGRFβ with nestin compared to control regions (P < 0.005). Olig2+/MCM2+ cell populations peaked at 13 dpi with significantly higher cell densities at injury sites than in control regions (P < 0.01) and decreasing with dpi (P < 0.05). Cx43 LI was reduced in acute injuries but increased with dpi (P < 0.05) showing significant cellular co‐localization with nestin and GFAP (P < 0.005 and P < 0.0001) but not PDGFRβ. Conclusions These findings indicate that PDGFRβ+ and Olig2+ cells contribute to the proliferative fraction following penetrating brain injuries, with evidence of pericyte migration. Dynamic changes in Cx43 in glial cell types with dpi suggest functional alterations during temporal stages of brain repair.
Collapse
Affiliation(s)
- C Reeves
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London.,Department of Neuropathology, UCL Queen Square Institute of Neurology, Queen Square, London
| | - A Pradim-Jardim
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London.,Department of Neurology and Neurosurgery, Universidade Federal de Sao Paulo, UNIFESP, Sao Paulo/SP, Brazil
| | - S M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London.,Chalfont Centre for Epilepsy, Chesham Lane, Chalfont St Peter, Bucks, SL9 0RJ, UK
| | - M Thom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London.,Department of Neuropathology, UCL Queen Square Institute of Neurology, Queen Square, London
| | - J Y W Liu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London.,Department of Neuropathology, UCL Queen Square Institute of Neurology, Queen Square, London.,School of life Sciences, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|
433
|
Lipachev N, Arnst N, Melnikova A, Jäälinoja H, Kochneva A, Zhigalov A, Kulesskaya N, Aganov AV, Mavlikeev M, Rauvala H, Kiyasov AP, Paveliev M. Quantitative changes in perineuronal nets in development and posttraumatic condition. J Mol Histol 2019; 50:203-216. [PMID: 30903543 DOI: 10.1007/s10735-019-09818-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/11/2019] [Indexed: 11/30/2022]
Abstract
Perineuronal net (PNN) is a highly structured portion of the CNS extracellular matrix (ECM) regulating synaptic plasticity and a range of pathologic conditions including posttraumatic regeneration and epilepsy. Here we studied Wisteria floribunda agglutinin-stained histological sections to quantify the PNN size and enrichment of chondroitin sulfates in mouse brain and spinal cord. Somatosensory cortex sections were examined during the period of PNN establishment at postnatal days 14, 21 and 28. The single cell PNN size and the chondroitin sulfate intensity were quantified for all cortex layers and specifically for the cortical layer IV which has the highest density of PNN-positive neurons. We demonstrate that the chondroitin sulfate proteoglycan staining intensity is increased between P14 and P28 while the PNN size remains unchanged. We then addressed posttraumatic changes of the PNN expression in laminae 6 and 7 of cervical spinal cord following hemisection injury. We demonstrate increase of the chondroitin sulfate content at 1.6-1.8 mm rostrally from the injury site and increase of the density of PNN-bearing cells at 0.4-1.2 mm caudally from the injury site. We further demonstrate decrease of the single cell PNN area at 0.2 mm caudally from the injury site suggesting that the PNN ECM takes part in the posttraumatic tissue rearrangement in the spinal cord. Our results demonstrate new insights on the PNN structure dynamics in the developing and posttraumatic CNS.
Collapse
Affiliation(s)
- Nikita Lipachev
- Neuroscience Center, University of Helsinki, Viikinkaari 4, P.O.Box 56, 00790, Helsinki, Finland.,Institute of Physics, Kazan Federal University, Kazan Kremlyovskaya 16a, Tatarstan, Russia, 420111
| | - Nikita Arnst
- Neuroscience Center, University of Helsinki, Viikinkaari 4, P.O.Box 56, 00790, Helsinki, Finland.,Institut für Biochemie und Biophysik, Friedrich-Schiller-Universität Jena, Hans-Knöll-Str.2, 07745, Jena, Germany
| | - Anastasiia Melnikova
- Neuroscience Center, University of Helsinki, Viikinkaari 4, P.O.Box 56, 00790, Helsinki, Finland.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan K.Marx 74, Tatarstan, Russia, 420012
| | - Harri Jäälinoja
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, P.O.Box 56, 00790, Helsinki, Finland
| | - Anastasiya Kochneva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan K.Marx 74, Tatarstan, Russia, 420012
| | - Alexander Zhigalov
- Neuroscience Center, University of Helsinki, Viikinkaari 4, P.O.Box 56, 00790, Helsinki, Finland
| | - Natalia Kulesskaya
- Neuroscience Center, University of Helsinki, Viikinkaari 4, P.O.Box 56, 00790, Helsinki, Finland
| | - Albert V Aganov
- Institute of Physics, Kazan Federal University, Kazan Kremlyovskaya 16a, Tatarstan, Russia, 420111
| | - Mikhail Mavlikeev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan K.Marx 74, Tatarstan, Russia, 420012
| | - Heikki Rauvala
- Neuroscience Center, University of Helsinki, Viikinkaari 4, P.O.Box 56, 00790, Helsinki, Finland
| | - Andrey P Kiyasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan K.Marx 74, Tatarstan, Russia, 420012
| | - Mikhail Paveliev
- Neuroscience Center, University of Helsinki, Viikinkaari 4, P.O.Box 56, 00790, Helsinki, Finland. .,Danish Research Institute of Translational Neuroscience, Aarhus University, Ole Worms Allé 3, 8000, Aarhus C, Denmark.
| |
Collapse
|
434
|
McNamara MC, Sharifi F, Okuzono J, Montazami R, Hashemi NN. Microfluidic Manufacturing of Alginate Fibers with Encapsulated Astrocyte Cells. ACS APPLIED BIO MATERIALS 2019; 2:1603-1613. [DOI: 10.1021/acsabm.9b00022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
435
|
Abstract
Sports-related traumatic brain injuries (TBIs) range in severity from severe to subconcussive. Although technologies exist for clinical diagnosis of more severe injuries, methods for diagnosis of milder forms of brain injury are limited. Developing objective measures to indicate pathogenic processes after a suspected mild TBI is challenging for multiple reasons. The field of biomarker discovery for diagnosing TBI continues to expand, with newly identified candidate biomarkers being reported regularly. Brain-specific biomarkers include proteins derived from neurons and glia, and are often measured to assess neural injury and repair, and to predict outcomes. Ideally, changes in biomarker levels should indicate pathologic events and answer critical questions for accurate diagnosis and prognosis. For example, does the presence or a change in the biomarker level suggest greater vulnerability for sustaining a second concussion or show that the window of increased vulnerability has passed? Likewise, do changes in biomarker levels predict postconcussion syndrome or recovery/repair? Although there are numerous promising candidates for fluid biomarkers that may diagnose mild TBI or concussion, none has reached the clinic to date. In this chapter, we will define biomarkers, discuss the importance of understanding their normal and pathologic functions, and outline some considerations for interpreting detection assay results in TBI. We will then review five proposed blood and cerebrospinal fluid biomarkers (tau, neurofilament, ubiquitin carboxyl-terminal hydrolase L1, S100β, and glial fibrillary acidic protein) used currently to address TBI. Lastly, we will discuss a future trajectory for developing new, clinically useful fluid biomarkers.
Collapse
|
436
|
Dissemination of brain inflammation in traumatic brain injury. Cell Mol Immunol 2019; 16:523-530. [PMID: 30846842 DOI: 10.1038/s41423-019-0213-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is recognized as a global health problem due to its increasing occurrence, challenging treatment, and persistent impacts on brain pathophysiology. Neural cell death in patients with TBI swiftly causes inflammation in the injured brain areas, which is recognized as focal brain inflammation. Focal brain inflammation causes secondary brain injury by exacerbating brain edema and neuronal death, while also exerting divergent beneficial effects, such as sealing the damaged limitans and removing cellular debris. Recent evidence from patients with TBI and studies on animal models suggest that brain inflammation after TBI is not only restricted to the focal lesion but also disseminates to remote areas of the brain. The dissemination of inflammation has been detected within days after the primary injury and persists chronically. This state of inflammation may be related to remote complications of TBI in patients, such as hyperthermia and hypopituitarism, and may lead to progressive neurodegeneration, such as chronic traumatic encephalopathy. Future studies should focus on understanding the mechanisms that govern the initiation and propagation of brain inflammation after TBI and its impacts on post-trauma brain pathology.
Collapse
|
437
|
Lozano DC, Choe TE, Cepurna WO, Morrison JC, Johnson EC. Early Optic Nerve Head Glial Proliferation and Jak-Stat Pathway Activation in Chronic Experimental Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:921-932. [PMID: 30835784 PMCID: PMC6402265 DOI: 10.1167/iovs.18-25700] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
PURPOSE We previously reported increased expression of cell proliferation and Jak-Stat pathway-related genes in chronic experimental glaucoma model optic nerve heads (ONH) with early, mild injury. Here, we confirm these observations by localizing, identifying, and quantifying ONH cellular proliferation and Jak-Stat pathway activation in this model. METHODS Chronic intraocular pressure (IOP) elevation was achieved via outflow pathway sclerosis. After 5 weeks, ONH longitudinal sections were immunolabeled with proliferation and cell-type markers to determine nuclear densities in the anterior (unmyelinated) and transition (partially myelinated) ONH. Nuclear pStat3 labeling was used to detect Jak-Stat pathway activation. Nuclear density differences between control ONH (uninjected) and ONH with either early or advanced injury (determined by optic nerve injury grading) were identified by ANOVA. RESULTS Advanced injury ONH had twice the nuclear density (P < 0.0001) of controls and significantly greater astrocyte density in anterior (P = 0.0001) and transition (P = 0.006) ONH regions. An increased optic nerve injury grade positively correlated with increased microglia/macrophage density in anterior and transition ONH (P < 0.0001, both). Oligodendroglial density was unaffected. In glaucoma model ONH, 80% of anterior and 66% of transition region proliferating cells were astrocytes. Nuclear pStat3 labeling significantly increased in early injury anterior ONH, and 95% colocalized with astrocytes. CONCLUSIONS Astrocytes account for the majority of proliferating cells, contributing to a doubled nuclear density in advanced injury ONH. Jak-Stat pathway activation is apparent in the early injury glaucoma model ONH. These data confirm dramatic astrocyte cell proliferation and early Jak-Stat pathway activation in ONH injured by elevated IOP.
Collapse
Affiliation(s)
- Diana C. Lozano
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Tiffany E. Choe
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - William O. Cepurna
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - John C. Morrison
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Elaine C. Johnson
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
438
|
Novgorodov SA, Voltin JR, Wang W, Tomlinson S, Riley CL, Gudz TI. Acid sphingomyelinase deficiency protects mitochondria and improves function recovery after brain injury. J Lipid Res 2019; 60:609-623. [PMID: 30662008 PMCID: PMC6399498 DOI: 10.1194/jlr.m091132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability worldwide and a prominent risk factor for neurodegenerative diseases. The expansion of nervous tissue damage after the initial trauma involves a multifactorial cascade of events, including excitotoxicity, oxidative stress, inflammation, and deregulation of sphingolipid metabolism that further mitochondrial dysfunction and secondary brain damage. Here, we show that a posttranscriptional activation of an acid sphingomyelinase (ASM), a key enzyme of the sphingolipid recycling pathway, resulted in a selective increase of sphingosine in mitochondria during the first week post-TBI that was accompanied by reduced activity of mitochondrial cytochrome oxidase and activation of the Nod-like receptor protein 3 inflammasome. TBI-induced mitochondrial abnormalities were rescued in the brains of ASM KO mice, which demonstrated improved behavioral deficit recovery compared with WT mice. Furthermore, an elevated autophagy in an ASM-deficient brain at the baseline and during the development of secondary brain injury seems to foster the preservation of mitochondria and brain function after TBI. Of note, ASM deficiency attenuated the early stages of reactive astrogliosis progression in an injured brain. These findings highlight the crucial role of ASM in governing mitochondrial dysfunction and brain-function impairment, emphasizing the importance of sphingolipids in the neuroinflammatory response to TBI.
Collapse
Affiliation(s)
- Sergei A Novgorodov
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425
| | - Joshua R Voltin
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425
| | - Wenxue Wang
- Microbiology and Immunology Medical University of South Carolina, Charleston, SC 29425
| | - Stephen Tomlinson
- Microbiology and Immunology Medical University of South Carolina, Charleston, SC 29425
| | | | - Tatyana I Gudz
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425
- Ralph H. Johnson Veterans Affairs Medical Center Charleston, SC 29401
| |
Collapse
|
439
|
Hlavac N, VandeVord PJ. Astrocyte Mechano-Activation by High-Rate Overpressure Involves Alterations in Structural and Junctional Proteins. Front Neurol 2019; 10:99. [PMID: 30853931 PMCID: PMC6395392 DOI: 10.3389/fneur.2019.00099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
Primary blast neurotrauma represents a unique injury paradigm characterized by high-rate overpressure effects on brain tissue. One major hallmark of blast neurotrauma is glial reactivity, notably prolonged astrocyte activation. This cellular response has been mainly defined in primary blast neurotrauma by increased intermediate filament expression. Because the intermediate filament networks physically interface with transmembrane proteins for junctional support, it was hypothesized that cell junction regulation is altered in the reactive phenotype as well. This would have implications for downstream transcriptional regulation via signal transduction pathways like nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Therefore, a custom high-rate overpressure simulator was built for in vitro testing using mechanical conditions based on intracranial pressure measurements in a rat model of blast neurotrauma. Primary rat astrocytes were exposed to isolated high-rate mechanical stimulation to study cell junction dynamics in relation to their mechano-activation. First, a time course for "classical" features of reactivity was devised by evaluation of glial fibrillary acidic protein (GFAP) and proliferating cell nuclear antigen (PCNA) expression. This was followed by gene and protein expression for both gap junction (connexins) and anchoring junction proteins (integrins and cadherins). Signal transduction analysis was carried out by nuclear localization of two molecules, NF-κB p65 and mitogen-activated protein kinase (MAPK) p38. Results indicated significant increases in connexin-43 expression and PCNA first at 24 h post-overpressure (p < 0.05), followed by structural reactivity (via increased GFAP, p < 0.05) corresponding to increased anchoring junction dynamics at 48 h post-overpressure (p < 0.05). Moreover, increased phosphorylation of focal adhesion kinase (FAK) was observed in addition to increased nuclear localization of both p65 and p38 (p < 0.05) during the period of structural reactivity. To evaluate the transcriptional activity of p65 in the nucleus, electrophoretic mobility shift assay was conducted for a binding site on the promoter region for intracellular adhesion molecule-1 (ICAM-1), an antagonist of tight junctions. A significant increase in the interaction of nuclear proteins with the NF-κB site on the ICAM-1 corresponded to increased gene and protein expression of ICAM-1 (p < 0.05). Altogether, these results indicate multiple targets and corresponding signaling pathways which involve cell junction dynamics in the mechano-activation of astrocytes following high-rate overpressure.
Collapse
Affiliation(s)
- Nora Hlavac
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute, Blacksburg, VA, United States
| | - Pamela J VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute, Blacksburg, VA, United States.,Department of Research, Salem Veterans Affairs Medical Center, Salem, VA, United States
| |
Collapse
|
440
|
Morris-Schaffer K, Merrill A, Jew K, Wong C, Conrad K, Harvey K, Marvin E, Sobolewski M, Oberdörster G, Elder A, Cory-Slechta DA. Effects of neonatal inhalation exposure to ultrafine carbon particles on pathology and behavioral outcomes in C57BL/6J mice. Part Fibre Toxicol 2019; 16:10. [PMID: 30777081 PMCID: PMC6379948 DOI: 10.1186/s12989-019-0293-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/01/2019] [Indexed: 01/01/2023] Open
Abstract
Background Recent epidemiological studies indicate early-life exposure to air pollution is associated with adverse neurodevelopmental outcomes. Previous studies investigating neonatal exposure to ambient fine and ultrafine particles have shown sex specific inflammation-linked pathological changes and protracted learning deficits. A potential contributor to the adverse phenotypes from developmental exposure to particulate matter observed in previous studies may be elemental carbon, a well-known contributor to pollution particulate. The present study is an evaluation of pathological and protracted behavioral alterations in adulthood following subacute neonatal exposure to ultrafine elemental carbon. C57BL/6J mice were exposed to ultrafine elemental carbon at 50 μg/m3 from postnatal days 4–7 and 10–13 for 4 h/day. Behavioral outcomes measured were locomotor activity, novel object recognition (short-term memory), elevated plus maze (anxiety-like behavior), fixed interval (FI) schedule of food reward (learning, timing) and differential reinforcement of low rate (DRL) schedule of food reward (impulsivity, inability to inhibit responding). Neuropathology was assessed by measures of inflammation (glial fibrillary-acidic protein), myelin basic protein expression in the corpus callosum, and lateral ventricle area. Results Twenty-four hours following the final exposure day, no significant differences in anogenital distance, body weight or central nervous system pathological markers were observed in offspring of either sex. Nor were significant changes observed in novel object recognition, elevated plus maze performance, FI, or DRL schedule-controlled behavior in either females or males. Conclusion The limited effect of neonatal exposure to ultrafine elemental carbon suggests this component of air pollution is not a substantial contributor to the behavioral alterations and neuropathology previously observed in response to ambient pollution particulate exposures. Rather, other more reactive constituent species, organic and/or inorganic, gas-phase components, or combinations of constituents may be involved. Defining these neurotoxic components is critical to the formulation of better animal models, more focused mechanistic assessments, and potential regulatory policies for air pollution. Electronic supplementary material The online version of this article (10.1186/s12989-019-0293-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keith Morris-Schaffer
- Department of Environmental Medicine, Box EHSC, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Alyssa Merrill
- Department of Environmental Medicine, Box EHSC, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Katrina Jew
- Department of Environmental Medicine, Box EHSC, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Candace Wong
- Department of Environmental Medicine, Box EHSC, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Katherine Conrad
- Department of Environmental Medicine, Box EHSC, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Katherine Harvey
- Department of Environmental Medicine, Box EHSC, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Elena Marvin
- Department of Environmental Medicine, Box EHSC, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Marissa Sobolewski
- Department of Environmental Medicine, Box EHSC, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Günter Oberdörster
- Department of Environmental Medicine, Box EHSC, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Alison Elder
- Department of Environmental Medicine, Box EHSC, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, Box EHSC, University of Rochester Medical Center, Rochester, NY, 14642, USA
| |
Collapse
|
441
|
Chen B, Tjahja J, Malla S, Liebman C, Cho M. Astrocyte Viability and Functionality in Spatially Confined Microcavitation Zone. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4889-4899. [PMID: 30638362 DOI: 10.1021/acsami.8b21410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) can result in cell/tissue damage and lead to clinical and neuropsychiatric symptoms. Shock waves from a blast propagate through the brain and initiate cascades of mechanical and physiological events that can adversely affect the brain function. Although studies using animal models and brain slices have shown macroscale changes in the brain tissue in response to blast, systematic elucidation of coupling mechanisms is currently lacking. One mechanism that has been postulated and demonstrated repeatedly is the blast-induced generation and subsequent collapse of micron-size bubbles (i.e., microcavitation). Using a custom-designed exposure system, we have previously reported that upon collapsing of microbubbles, astrocytes exhibited changes in the cell viability, cellular biomechanics, production of reactive oxygen species, and activation of apoptotic signaling pathways. In this paper, we have applied microfabrication techniques and seeded astrocytes in a spatially controlled manner to determine the extent of cell damage from the site of the collapse of microbubbles. Such a novel experimental design is proven to facilitate our effort to examine the altered cell viability and functionality by monitoring the transient calcium spiking activity in real-time. We now report that the effect of microcavitation depends on the distance from which cells are seeded, and the cell functionality assessed by calcium dynamics is significantly diminished in the cells located within ∼800 μm of the collapsing microbubbles. Both calcium influx across the cell membrane via N-type calcium channels and intracellular calcium store are altered in response to microcavitation. Finally, the FDA-approved poloxamer 188 (P188) was used to reconstitute the compromised cell membrane and restore the cell's reparative capability. This finding may lead to a feasible treatment for partially mitigating the tissue damage associated with bTBI.
Collapse
Affiliation(s)
- Bo Chen
- Department of Bioengineering , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Jessica Tjahja
- Department of Bioengineering , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Sameep Malla
- Department of Bioengineering , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Caleb Liebman
- Department of Bioengineering , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Michael Cho
- Department of Bioengineering , University of Texas at Arlington , Arlington , Texas 76019 , United States
| |
Collapse
|
442
|
Dual Roles of Astrocyte-Derived Factors in Regulation of Blood-Brain Barrier Function after Brain Damage. Int J Mol Sci 2019; 20:ijms20030571. [PMID: 30699952 PMCID: PMC6387062 DOI: 10.3390/ijms20030571] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) is a major functional barrier in the central nervous system (CNS), and inhibits the extravasation of intravascular contents and transports various essential nutrients between the blood and the brain. After brain damage by traumatic brain injury, cerebral ischemia and several other CNS disorders, the functions of the BBB are disrupted, resulting in severe secondary damage including brain edema and inflammatory injury. Therefore, BBB protection and recovery are considered novel therapeutic strategies for reducing brain damage. Emerging evidence suggests key roles of astrocyte-derived factors in BBB disruption and recovery after brain damage. The astrocyte-derived vascular permeability factors include vascular endothelial growth factors, matrix metalloproteinases, nitric oxide, glutamate and endothelin-1, which enhance BBB permeability leading to BBB disruption. By contrast, the astrocyte-derived protective factors include angiopoietin-1, sonic hedgehog, glial-derived neurotrophic factor, retinoic acid and insulin-like growth factor-1 and apolipoprotein E which attenuate BBB permeability resulting in recovery of BBB function. In this review, the roles of these astrocyte-derived factors in BBB function are summarized, and their significance as therapeutic targets for BBB protection and recovery after brain damage are discussed.
Collapse
|
443
|
State of Astrocytes in the Mice Brain under Conditions of Herpes Viral Infection and Modeled Stroke. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09757-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
444
|
Braeckman K, Descamps B, Pieters L, Vral A, Caeyenberghs K, Vanhove C. Dynamic changes in hippocampal diffusion and kurtosis metrics following experimental mTBI correlate with glial reactivity. NEUROIMAGE-CLINICAL 2019; 21:101669. [PMID: 30658945 PMCID: PMC6412089 DOI: 10.1016/j.nicl.2019.101669] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 01/05/2023]
Abstract
Diffusion magnetic resonance imaging biomarkers can provide quantifiable information of the brain tissue after a mild traumatic brain injury (mTBI). However, the commonly applied diffusion tensor imaging (DTI) model is not very specific to changes in the underlying cellular structures. To overcome these limitations, other diffusion models have recently emerged to provide a more complete view on the damage profile following TBI. In this study, we investigated longitudinal changes in advanced diffusion metrics following experimental mTBI, utilising three different diffusion models in a rat model of mTBI, including DTI, diffusion kurtosis imaging and a white matter model. Moreover, we investigated the association between the diffusion metrics with histological markers, including glial fibrillary acidic protein (GFAP), neurofilaments and synaptophysin in order to investigate specificity. Our results revealed significant decreases in mean diffusivity in the hippocampus and radial diffusivity and radial extra axonal diffusivity (RadEAD) in the cingulum one week post injury. Furthermore, correlation analysis showed that increased values of fractional anisotropy one day post injury in the hippocampus was highly correlated with GFAP reactivity three months post injury. Additionally, we observed a positive correlation between GFAP on one hand and the kurtosis parameters in the hippocampus on the other hand three months post injury. This result indicated that prolonged glial activation three months post injury is related to higher kurtosis values at later time points. In conclusion, our findings point out to the possible role of kurtosis metrics as well as metrics from the white matter model as prognostic biomarker to monitor prolonged glial reactivity and inflammatory responses after a mTBI not only at early timepoints but also several months after injury. Advanced diffusion metrics show longitudinal changes following mTBI Radial diffusivity (RD) and radial extra-axonal diffusivity ↓ in the cingulum Mean diffusivity ↓ in the hippocampus In the cingulum RD is continuously decreased until three months post injury Glial activity correlates with fractional anisotropy in hippocampus
Collapse
Affiliation(s)
- Kim Braeckman
- Infinity Lab, Medical Imaging and Signal Processing Group, UGent, Ghent, Belgium.
| | - Benedicte Descamps
- Infinity Lab, Medical Imaging and Signal Processing Group, UGent, Ghent, Belgium.
| | - Leen Pieters
- Department of Human Structure and Repair, UGent, Ghent, Belgium.
| | - Anne Vral
- Department of Human Structure and Repair, UGent, Ghent, Belgium.
| | - Karen Caeyenberghs
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.
| | - Christian Vanhove
- Infinity Lab, Medical Imaging and Signal Processing Group, UGent, Ghent, Belgium.
| |
Collapse
|
445
|
Baez-Jurado E, Rincón-Benavides MA, Hidalgo-Lanussa O, Guio-Vega G, Ashraf GM, Sahebkar A, Echeverria V, Garcia-Segura LM, Barreto GE. Molecular mechanisms involved in the protective actions of Selective Estrogen Receptor Modulators in brain cells. Front Neuroendocrinol 2019; 52:44-64. [PMID: 30223003 DOI: 10.1016/j.yfrne.2018.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
Synthetic selective modulators of the estrogen receptors (SERMs) have shown to protect neurons and glial cells against toxic insults. Among the most relevant beneficial effects attributed to these compounds are the regulation of inflammation, attenuation of astrogliosis and microglial activation, prevention of excitotoxicity and as a consequence the reduction of neuronal cell death. Under pathological conditions, the mechanism of action of the SERMs involves the activation of estrogen receptors (ERs) and G protein-coupled receptor for estrogens (GRP30). These receptors trigger neuroprotective responses such as increasing the expression of antioxidants and the activation of kinase-mediated survival signaling pathways. Despite the advances in the knowledge of the pathways activated by the SERMs, their mechanism of action is still not entirely clear, and there are several controversies. In this review, we focused on the molecular pathways activated by SERMs in brain cells, mainly astrocytes, as a response to treatment with raloxifene and tamoxifen.
Collapse
Affiliation(s)
- E Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - M A Rincón-Benavides
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - O Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - G Guio-Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - G M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - V Echeverria
- Universidad San Sebastián, Fac. Cs de la Salud, Lientur 1457, Concepción 4080871, Chile; Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA
| | - L M Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - G E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
446
|
Abstract
Neuroglia represent a diverse population of non-neuronal cells in the nervous systems, be that peripheral, central, enteric or autonomic nervous system. Arguably, these cells represent about half of the volume of the human brain. This volumetric ratio, and by extension glia to neurone ratio, not only widely differ depending on the size of the animal species brain and its positioning on the phylogenetic tree, but also vary between the regions of an individual brain. Neuroglia derived from a dual origin (ectoderm and mesodermal) and in an assorted morphology, yet their functional traits can be mainly classified into being keepers of homeostasis (water, ions, neurotransmitters, metabolites, fuels, etc.) and defenders (e.g., against microbial organisms, etc.) of the nervous system. As these capabilities go awry, neuroglia ultimately define their fundamental role in most, if not, all neuropathologies. This concept presented in this chapter serves as a general introduction into the world of neuroglia and subsequent topics covered by this book.
Collapse
|
447
|
Baker EW, Kinder HA, Hutcheson JM, Duberstein KJJ, Platt SR, Howerth EW, West FD. Controlled Cortical Impact Severity Results in Graded Cellular, Tissue, and Functional Responses in a Piglet Traumatic Brain Injury Model. J Neurotrauma 2019; 36:61-73. [DOI: 10.1089/neu.2017.5551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Emily W. Baker
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Holly A. Kinder
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Jessica M. Hutcheson
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Kylee Jo J. Duberstein
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Simon R. Platt
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Elizabeth W. Howerth
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Franklin D. West
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
448
|
Verkhratsky A, Ho MS, Vardjan N, Zorec R, Parpura V. General Pathophysiology of Astroglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:149-179. [PMID: 31583588 PMCID: PMC7188602 DOI: 10.1007/978-981-13-9913-8_7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Astroglial cells are involved in most if not in all pathologies of the brain. These cells can change the morpho-functional properties in response to pathology or innate changes of these cells can lead to pathologies. Overall pathological changes in astroglia are complex and diverse and often vary with different disease stages. We classify astrogliopathologies into reactive astrogliosis, astrodegeneration with astroglial atrophy and loss of function, and pathological remodelling of astrocytes. Such changes can occur in neurological, neurodevelopmental, metabolic and psychiatric disorders as well as in infection and toxic insults. Mutation in astrocyte-specific genes leads to specific pathologies, such as Alexander disease, which is a leukodystrophy. We discuss changes in astroglia in the pathological context and identify some molecular entities underlying pathology. These entities within astroglia may repent targets for novel therapeutic intervention in the management of brain pathologies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Margaret S Ho
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
- Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
- Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
449
|
Zuidema JM, Gilbert RJ, Gottipati MK. Biomaterial Approaches to Modulate Reactive Astroglial Response. Cells Tissues Organs 2018; 205:372-395. [PMID: 30517922 PMCID: PMC6397084 DOI: 10.1159/000494667] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/18/2018] [Indexed: 11/19/2022] Open
Abstract
Over several decades, biomaterial scientists have developed materials to spur axonal regeneration and limit secondary injury and tested these materials within preclinical animal models. Rarely, though, are astrocytes examined comprehensively when biomaterials are placed into the injury site. Astrocytes support neuronal function in the central nervous system. Following an injury, astrocytes undergo reactive gliosis and create a glial scar. The astrocytic glial scar forms a dense barrier which restricts the extension of regenerating axons through the injury site. However, there are several beneficial effects of the glial scar, including helping to reform the blood-brain barrier, limiting the extent of secondary injury, and supporting the health of regenerating axons near the injury site. This review provides a brief introduction to the role of astrocytes in the spinal cord, discusses astrocyte phenotypic changes that occur following injury, and highlights studies that explored astrocyte changes in response to biomaterials tested within in vitro or in vivo environments. Overall, we suggest that in order to improve biomaterial designs for spinal cord injury applications, investigators should more thoroughly consider the astrocyte response to such designs.
Collapse
Affiliation(s)
- Jonathan M Zuidema
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Manoj K Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA,
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA,
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA,
| |
Collapse
|
450
|
Yang C, Wang L, Weng W, Wang S, Ma Y, Mao Q, Gao G, Chen R, Feng J. Steered migration and changed morphology of human astrocytes by an applied electric field. Exp Cell Res 2018; 374:282-289. [PMID: 30508512 DOI: 10.1016/j.yexcr.2018.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023]
Abstract
Direct current electric field (DC EF) plays a role in influencing the biological behaviors and functions of cells. We hypothesize that human astrocytes (HAs) could also be influenced in EF. Astrocytes, an important type of nerve cells with a high proportion quantitatively, are generally activated and largely decide the brain repair results after brain injury. So far, no electrotaxis study on HAs has been performed. We here obtained HAs derived from brain trauma patients. After purification and identification, HAs were seeded in the EF chamber and recorded in a time-lapse image system. LY294002 and U0126 were then used to probe the role of PI3K or ERK signaling pathway on cellular behaviors. The results showed that HAs could be guided to migrate to the anode in DC EFs, in a voltage-dependent manner. The HAs displayed elongated cell bodies and reoriented perpendicularly to the EF in morphology. When treated with LY294002 or U0126, alternation of parameters such as cellular verticality, track speed, displacement speed, long axis, vertical length and circularity were inhibited partly as expected, while the EF-induced directedness was not terminated even at a high drug dosage which was not consistent with previous electrotaxis studies. In conclusion, applied EFs steered the patient-derived HAs directional migration and changed morphology, in which PI3K and ERK pathways at least partially participate. The characteristics of HAs to EF stimulation may be involved in wound healing and neural regeneration, which could be utilized as a novel treatment strategy in brain injury.
Collapse
Affiliation(s)
- Chun Yang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China
| | - Lei Wang
- Department of Neurosurgery, the Yuhuangding Hospital, Yantai 264000, People's Republic of China
| | - Weiji Weng
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, People's Republic of China
| | - Shen Wang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China
| | - Yuxiao Ma
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China
| | - Qing Mao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China
| | - Guoyi Gao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Rui Chen
- Department of Plastic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| | - Junfeng Feng
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China.
| |
Collapse
|