401
|
Amano Y, Matsubara D, Kihara A, Nishino H, Mori Y, Niki T. Expression and localisation of methylthioadenosine phosphorylase (MTAP) in oral squamous cell carcinoma and their significance in epithelial-to-mesenchymal transition. Pathology 2021; 54:294-301. [PMID: 34518040 DOI: 10.1016/j.pathol.2021.05.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 05/22/2021] [Accepted: 05/30/2021] [Indexed: 10/20/2022]
Abstract
Methylthioadenosine phosphorylase (MTAP) is a rate-limiting enzyme in the methionine salvage pathway, which recycles one carbon unit that is lost during polyamine synthesis back into the methionine cycle. Although MTAP deficiency has been reported in various tumours, MTAP is overexpressed and might promote oncogenesis in other cancers, including prostate and colon cancer. Currently, little is known about the MTAP status of oral squamous cell carcinoma (OSCC). In this study, we immunohistochemically examined the expression of MTAP in surgically resected oral epithelial dysplasia (OED, n=7), carcinoma in situ (CIS) (n=16), and OSCC (n=118). In the normal epithelium, MTAP was only weakly expressed in the cytoplasm of the basal layer cells. In OED, CIS, and OSCC, MTAP was uniformly expressed in the cytoplasm of the dysplastic and cancer cells. In addition to cytoplasmic MTAP expression, 45 of 118 cases (38.1%) exhibited increased nuclear expression of MTAP in the cancer cells at the invasive front. Statistical analysis showed that the concomitant nuclear and cytoplasmic expression of MTAP was associated with a high budding score (p=0.0023); poor differentiation (p=0.0044); aggressive invasion patterns (p=0.0001); and features of epithelial-to-mesenchymal transition (EMT), such as loss of E-cadherin expression (p=0.0003) and upregulated expression of vimentin (p=0.0002), slug (p=0.0002), and laminin 5 (p<0.0001). High expression of protein arginine methyltransferase 1 or 5, the functions of which are reported to be inhibited in MTAP-deficient cancer, was associated with the concomitant nuclear and cytoplasmic expression of MTAP (p<0.0001). Concomitant nuclear and cytoplasmic expression of MTAP was marginally significantly associated with worse 5-year relapse-free survival (p=0.045). These findings suggest that MTAP not only plays a role in the oncogenesis of OSCC, but that it might also make it more aggressive by inducing EMT through its activity in the methionine salvage pathway.
Collapse
Affiliation(s)
- Yusuke Amano
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan.
| | - Daisuke Matsubara
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Atsushi Kihara
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Hiroshi Nishino
- Department of Otolaryngology, Jichi Medical University, Shimotsuke, Japan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
402
|
So HK, Kim S, Kang JS, Lee SJ. Role of Protein Arginine Methyltransferases and Inflammation in Muscle Pathophysiology. Front Physiol 2021; 12:712389. [PMID: 34489731 PMCID: PMC8416770 DOI: 10.3389/fphys.2021.712389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Arginine methylation mediated by protein arginine methyltransferases (PRMTs) is a post-translational modification of both histone and non-histone substrates related to diverse biological processes. PRMTs appear to be critical regulators in skeletal muscle physiology, including regeneration, metabolic homeostasis, and plasticity. Chronic inflammation is commonly associated with the decline of skeletal muscle mass and strength related to aging or chronic diseases, defined as sarcopenia. In turn, declined skeletal muscle mass and strength can exacerbate chronic inflammation. Thus, understanding the molecular regulatory pathway underlying the crosstalk between skeletal muscle function and inflammation might be essential for the intervention of muscle pathophysiology. In this review, we will address the current knowledge on the role of PRMTs in skeletal muscle physiology and pathophysiology with a specific emphasis on its relationship with inflammation.
Collapse
Affiliation(s)
- Hyun-Kyung So
- Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Research Institute of Aging-Related Disease, AniMusCure Inc., Suwon, South Korea
| | - Sunghee Kim
- Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jong-Sun Kang
- Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Sang-Jin Lee
- Research Institute of Aging-Related Disease, AniMusCure Inc., Suwon, South Korea
| |
Collapse
|
403
|
An update on allosteric modulators as a promising strategy targeting histone methyltransferase. Pharmacol Res 2021; 172:105865. [PMID: 34474102 DOI: 10.1016/j.phrs.2021.105865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Histone methylation is a vital post-translational modification process in epigenetic regulation. The perturbation of histone methylation accounts for many diseases, including malignant cancers. Although achieving significant advances over past decades, orthosteric inhibitors targeting histone methyltransferases still suffer from challenges on subtype selectivity and acquired drug-resistant mutations. As an alternative, new compounds targeting the evolutionarily less conserved allosteric sites, exemplified by HKMTs and PRMTs inhibitors, offer a promising strategy to address this quandary. Herein, we highlight the allosteric sites and mechanisms in histone methyltransferases along with representative allosteric modulators, expecting to facilitate the discovery of allosteric modulators in favor of epigenetic therapy.
Collapse
|
404
|
Al-Hamashi AA, Chen D, Deng Y, Dong G, Huang R. Discovery of a potent and dual-selective bisubstrate inhibitor for protein arginine methyltransferase 4/5. Acta Pharm Sin B 2021; 11:2709-2718. [PMID: 34589391 PMCID: PMC8463262 DOI: 10.1016/j.apsb.2020.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/27/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) have been implicated in the progression of many diseases. Understanding substrate recognition and specificity of individual PRMT would facilitate the discovery of selective inhibitors towards future drug discovery. Herein, we reported the design and synthesis of bisubstrate analogues for PRMTs that incorporate a S-adenosylmethionine (SAM) analogue moiety and a tripeptide through an alkyl substituted guanidino group. Compound AH237 is a potent and selective inhibitor for PRMT4 and PRMT5 with a half-maximal inhibition concentration (IC50) of 2.8 and 0.42 nmol/L, respectively. Computational studies provided a plausible explanation for the high potency and selectivity of AH237 for PRMT4/5 over other 40 methyltransferases. This proof-of-principle study outlines an applicable strategy to develop potent and selective bisubstrate inhibitors for PRMTs, providing valuable probes for future structural studies.
Collapse
Affiliation(s)
- Ayad A. Al-Hamashi
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-almoadham, Baghdad 10047, Iraq
| | - Dongxing Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Youchao Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Guangping Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
405
|
Tay NW, Liu F, Wang C, Zhang H, Zhang P, Chen YZ. Protein music of enhanced musicality by music style guided exploration of diverse amino acid properties. Heliyon 2021; 7:e07933. [PMID: 34632134 PMCID: PMC8488493 DOI: 10.1016/j.heliyon.2021.e07933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 11/27/2022] Open
Abstract
Inspired by the traceable analogies between protein sequences and music notes, protein music has been composed from amino acid sequences for popularizing science and sourcing melodies. Despite the continuous development of protein-to-music algorithms, the musicality of protein music lags far behind human music. Musicality may be enhanced by fine-tuned protein-to-music mapping to the features of a specific music style. We analyzed the features of a music style (Fantasy-Impromptu style), and used the quantized musical features to guide broad exploration of diverse amino acid properties (104 properties, sequence patterns and variations) for developing a novel protein-to-music algorithm of enhanced musicality. This algorithm was applied to 18 proteins of various biological functions. The derived music pieces consistently exhibited enhanced musicality with respect to existing protein music. Music style guided exploration of diverse amino acid properties enable protein music composition of enhanced musicality, which may be further developed and applied to a wider variety of music styles.
Collapse
Affiliation(s)
- Nicole WanNi Tay
- Raffles Institution, 1 Raffles Institution Ln, 575954, Singapore
| | - Fanxi Liu
- Raffles Institution, 1 Raffles Institution Ln, 575954, Singapore
| | - Chaoxin Wang
- Department of Computer Science, Kansas State University, Manhattan, KS, 66506, USA
| | - Hui Zhang
- School of Arts, Minnan Normal University, Zhengzhou, 363000, China
| | - Peng Zhang
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, 117543, Singapore
| | - Yu Zong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, 117543, Singapore
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
406
|
Weiss N, Seneviranthe C, Jiang M, Wang K, Luo M. Profiling and Validation of Live-Cell Protein Methylation with Engineered Enzymes and Methionine Analogues. Curr Protoc 2021; 1:e213. [PMID: 34370893 DOI: 10.1002/cpz1.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein methyltransferases (PMTs) regulate many aspects of normal and disease processes through substrate methylation, with S-adenosyl-L-methionine (SAM) as a cofactor. It has been challenging to elucidate cellular protein lysine and arginine methylation because these modifications barely alter physical properties of target proteins and often are context dependent, transient, and substoichiometric. To reveal bona fide methylation events associated with specific PMT activities in native contexts, we developed the live-cell Bioorthogonal Profiling of Protein Methylation (lcBPPM) technology, in which the substrates of specific PMTs are labeled by engineered PMTs inside living cells, with in situ-synthesized SAM analogues as cofactors. The biorthogonality of this technology is achieved because these SAM analogue cofactors can only be processed by the engineered PMTs-and not native PMTs-to modify the substrates with distinct chemical groups. Here, we describe the latest lcBPPM protocol and its application to reveal proteome-wide methylation and validate specific methylation events. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Live-cell labeling of substrates of protein methyltransferases GLP1 and PRMT1 with lcBPPM-feasible enzymes and SAM analogue precursors Support Protocol: Gram-scale synthesis of Hey-Met Basic Protocol 2: Click labeling of lcBPPM cell lysates with a biotin-azide probe Alternate Protocol: Click labeling of small-scale lcBPPM cell lysates with a TAMRA-azide dye for in-gel fluorescence visualization Basic Protocol 3: Enrichment of biotinylated lcBPPM proteome with streptavidin beads Basic Protocol 4: Proteome-wide identification of lcBPPM targets with mass spectrometry Basic Protocol 5: Validation of individual lcBPPM targets by western blot.
Collapse
Affiliation(s)
- Nicole Weiss
- BCMB Allied Program, Weill Cornell Medical College, Cornell University, New York, New York
| | - Chamara Seneviranthe
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ming Jiang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, New York
| | - Ke Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, New York
| |
Collapse
|
407
|
Huang D, Jing G, Zhang L, Chen C, Zhu S. Interplay Among Hydrogen Sulfide, Nitric Oxide, Reactive Oxygen Species, and Mitochondrial DNA Oxidative Damage. FRONTIERS IN PLANT SCIENCE 2021; 12:701681. [PMID: 34421950 PMCID: PMC8377586 DOI: 10.3389/fpls.2021.701681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/06/2021] [Indexed: 06/01/2023]
Abstract
Hydrogen sulfide (H2S), nitric oxide (NO), and reactive oxygen species (ROS) play essential signaling roles in cells by oxidative post-translational modification within suitable ranges of concentration. All of them contribute to the balance of redox and are involved in the DNA damage and repair pathways. However, the damage and repair pathways of mitochondrial DNA (mtDNA) are complicated, and the interactions among NO, H2S, ROS, and mtDNA damage are also intricate. This article summarized the current knowledge about the metabolism of H2S, NO, and ROS and their roles in maintaining redox balance and regulating the repair pathway of mtDNA damage in plants. The three reactive species may likely influence each other in their generation, elimination, and signaling actions, indicating a crosstalk relationship between them. In addition, NO and H2S are reported to be involved in epigenetic variations by participating in various cell metabolisms, including (nuclear and mitochondrial) DNA damage and repair. Nevertheless, the research on the details of NO and H2S in regulating DNA damage repair of plants is in its infancy, especially in mtDNA.
Collapse
Affiliation(s)
- Dandan Huang
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Guangqin Jing
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Lili Zhang
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Changbao Chen
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Shuhua Zhu
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
408
|
Robertson J, Ungogo MA, Aldfer MM, Lemgruber L, McWhinnie FS, Bode BE, Jones KL, Watson AJB, de Koning HP, Burley GA. Direct, Late-Stage Mono-N-arylation of Pentamidine: Method Development, Mechanistic Insight, and Expedient Access to Novel Antiparastitics against Diamidine-Resistant Parasites. ChemMedChem 2021; 16:3396-3401. [PMID: 34357687 PMCID: PMC9291547 DOI: 10.1002/cmdc.202100509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/16/2022]
Abstract
A selective mono‐N‐arylation strategy of amidines under Chan‐Lam conditions is described. During the reaction optimization phase, the isolation of a mononuclear Cu(II) complex provided unique mechanistic insight into the operation of Chan‐Lam mono‐N‐arylation. The scope of the process is demonstrated, and then applied to access the first mono‐N‐arylated analogues of pentamidine. Sub‐micromolar activity against kinetoplastid parasites was observed for several analogues with no cross‐resistance in pentamidine and diminazene‐resistant trypanosome strains and against Leishmania mexicana. A fluorescent mono‐N‐arylated pentamidine analogue revealed rapid cellular uptake, accumulating in parasite nuclei and the kinetoplasts. The DNA binding capability of the mono‐N‐arylated pentamidine series was confirmed by UV‐melt measurements using AT‐rich DNA. This work highlights the potential to use Chan‐Lam mono‐N‐arylation to develop therapeutic leads against diamidine‐resistant trypanosomiasis and leishmaniasis.
Collapse
Affiliation(s)
- Jack Robertson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Marzuq A Ungogo
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Mustafa M Aldfer
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Leandro Lemgruber
- Glasgow Imaging Facility, Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Fergus S McWhinnie
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Bela E Bode
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Katherine L Jones
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Harry P de Koning
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Glenn A Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| |
Collapse
|
409
|
Sternburg EL, Gruijs da Silva LA, Dormann D. Post-translational modifications on RNA-binding proteins: accelerators, brakes, or passengers in neurodegeneration? Trends Biochem Sci 2021; 47:6-22. [PMID: 34366183 DOI: 10.1016/j.tibs.2021.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs) are critical players in RNA expression and metabolism, thus, the proper regulation of this class of proteins is critical for cellular health. Regulation of RBPs often occurs through post-translational modifications (PTMs), which allow the cell to quickly and efficiently respond to cellular and environmental stimuli. PTMs have recently emerged as important regulators of RBPs implicated in neurodegenerative disorders, in particular amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we summarize how disease-associated PTMs influence the biophysical properties, molecular interactions, subcellular localization, and function of ALS/FTD-linked RBPs, such as FUS and TDP-43. We will discuss how PTMs are believed to play pathological, protective, or ambiguous roles in these neurodegenerative disorders.
Collapse
Affiliation(s)
- Erin L Sternburg
- Johannes Gutenberg-Universität (JGU) Mainz, Faculty of Biology, Mainz, Germany
| | - Lara A Gruijs da Silva
- Johannes Gutenberg-Universität (JGU) Mainz, Faculty of Biology, Mainz, Germany; Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Dorothee Dormann
- Johannes Gutenberg-Universität (JGU) Mainz, Faculty of Biology, Mainz, Germany; Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
410
|
Lei Y, Han P, Tian D. Protein arginine methyltransferases and hepatocellular carcinoma: A review. Transl Oncol 2021; 14:101194. [PMID: 34365222 PMCID: PMC8353347 DOI: 10.1016/j.tranon.2021.101194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/27/2022] Open
Abstract
Protein arginine methylation is essential in multiple biological processes. The family of PRMTs is a novel regulator of liver diseases. Deregulation of PRMTs is correlated with HCC prognosis and clinical features. PRMTs play a vital role in HCC malignancy, immune responses and metabolism. PRMTs may represent druggable targets as novel strategies for HCC therapy.
Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed cancers with a high mortality rate worldwide. The complexity of HCC initiation and progression poses a great challenge to the diagnosis and treatment. An increasing number of studies have focused on the emerging roles of protein arginine methylation in cancers, including tumor growth, invasion, metastasis, metabolism, immune responses, chemotherapy sensitivity, etc. The family of protein arginine methyltransferases (PRMTs) is the most important proteins that mediate arginine methylation. The deregulation of PRMTs’ expression and functions in cancers have been gradually unveiled, and many PRMTs inhibitors are in preclinical and clinical investigations now. This review focuses predominantly on the aberrant expression of PRMTs, underlying mechanisms, as well as their potential applications in HCC, and provide novel insights into HCC therapy.
Collapse
Affiliation(s)
- Yu Lei
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Ping Han
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
411
|
Zhu J, Li X, Cai X, Zha H, Zhou Z, Sun X, Rong F, Tang J, Zhu C, Liu X, Fan S, Wang J, Liao Q, Ouyang G, Xiao W. Arginine monomethylation by PRMT7 controls MAVS-mediated antiviral innate immunity. Mol Cell 2021; 81:3171-3186.e8. [PMID: 34171297 DOI: 10.1016/j.molcel.2021.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/10/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Accurate control of innate immune responses is required to eliminate invading pathogens and simultaneously avoid autoinflammation and autoimmune diseases. Here, we demonstrate that arginine monomethylation precisely regulates the mitochondrial antiviral-signaling protein (MAVS)-mediated antiviral response. Protein arginine methyltransferase 7 (PRMT7) forms aggregates to catalyze MAVS monomethylation at arginine residue 52 (R52), attenuating its binding to TRIM31 and RIG-I, which leads to the suppression of MAVS aggregation and subsequent activation. Upon virus infection, aggregated PRMT7 is disabled in a timely manner due to automethylation at arginine residue 32 (R32), and SMURF1 is recruited to PRMT7 by MAVS to induce proteasomal degradation of PRMT7, resulting in the relief of PRMT7 suppression of MAVS activation. Therefore, we not only reveal that arginine monomethylation by PRMT7 negatively regulates MAVS-mediated antiviral signaling in vitro and in vivo but also uncover a mechanism by which PRMT7 is tightly controlled to ensure the timely activation of antiviral defense.
Collapse
Affiliation(s)
- Junji Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Huangyuan Zha
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Ziwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jinghua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Sijia Fan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China; Hubei Hongshan Laboratory, Wuhan 430070, P.R. China.
| |
Collapse
|
412
|
Trager MH, Sah B, Chen Z, Liu L. Control of Breast Cancer Pathogenesis by Histone Methylation and the Hairless Histone Demethylase. Endocrinology 2021; 162:6259332. [PMID: 33928351 PMCID: PMC8237996 DOI: 10.1210/endocr/bqab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is a highly heterogeneous disease, encompassing many subtypes that have distinct origins, behaviors, and prognoses. Although traditionally seen as a genetic disease, breast cancer is now also known to involve epigenetic abnormalities. Epigenetic regulators, such as DNA methyltransferases and histone-modifying enzymes, play essential roles in gene regulation and cancer development. Dysregulation of epigenetic regulator activity has been causally linked with breast cancer pathogenesis. Hairless (HR) encodes a 130-kDa transcription factor that is essential for development and tissue homeostasis. Its role in transcription regulation is partly mediated by its interaction with multiple nuclear receptors, including thyroid hormone receptor, retinoic acid receptor-related orphan receptors, and vitamin D receptor. HR has been studied primarily in epidermal development and homeostasis. Hr-mutant mice are highly susceptible to ultraviolet- or carcinogen-induced skin tumors. Besides its putative tumor suppressor function in skin, loss of HR function has also been implicated in increased leukemia susceptibility and promotes the growth of melanoma and brain cancer cells. HR has also been demonstrated to function as a histone H3 lysine 9 demethylase. Recent genomics studies have identified HR mutations in a variety of human cancers, including breast cancer. The anticancer function and mechanism of action by HR in mammary tissue remains to be investigated. Here, we review the emerging role of HR, its histone demethylase activity and histone methylation in breast cancer development, and potential for epigenetic therapy.
Collapse
Affiliation(s)
- Megan H Trager
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, USA
| | - Bindeshwar Sah
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Zhongming Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55912, USA
| | - Liang Liu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55912, USA
- Correspondence: Liang Liu, PhD, The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
| |
Collapse
|
413
|
Giuliani V, Miller MA, Liu CY, Hartono SR, Class CA, Bristow CA, Suzuki E, Sanz LA, Gao G, Gay JP, Feng N, Rose JL, Tomihara H, Daniele JR, Peoples MD, Bardenhagen JP, Geck Do MK, Chang QE, Vangamudi B, Vellano C, Ying H, Deem AK, Do KA, Genovese G, Marszalek JR, Kovacs JJ, Kim M, Fleming JB, Guccione E, Viale A, Maitra A, Emilia Di Francesco M, Yap TA, Jones P, Draetta G, Carugo A, Chedin F, Heffernan TP. PRMT1-dependent regulation of RNA metabolism and DNA damage response sustains pancreatic ductal adenocarcinoma. Nat Commun 2021; 12:4626. [PMID: 34330913 PMCID: PMC8324870 DOI: 10.1038/s41467-021-24798-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that has remained clinically challenging to manage. Here we employ an RNAi-based in vivo functional genomics platform to determine epigenetic vulnerabilities across a panel of patient-derived PDAC models. Through this, we identify protein arginine methyltransferase 1 (PRMT1) as a critical dependency required for PDAC maintenance. Genetic and pharmacological studies validate the role of PRMT1 in maintaining PDAC growth. Mechanistically, using proteomic and transcriptomic analyses, we demonstrate that global inhibition of asymmetric arginine methylation impairs RNA metabolism, which includes RNA splicing, alternative polyadenylation, and transcription termination. This triggers a robust downregulation of multiple pathways involved in the DNA damage response, thereby promoting genomic instability and inhibiting tumor growth. Taken together, our data support PRMT1 as a compelling target in PDAC and informs a mechanism-based translational strategy for future therapeutic development.Statement of significancePDAC is a highly lethal cancer with limited therapeutic options. This study identified and characterized PRMT1-dependent regulation of RNA metabolism and coordination of key cellular processes required for PDAC tumor growth, defining a mechanism-based translational hypothesis for PRMT1 inhibitors.
Collapse
Affiliation(s)
- Virginia Giuliani
- Traction, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Meredith A Miller
- Traction, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chiu-Yi Liu
- Traction, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stella R Hartono
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Caleb A Class
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN, USA
| | | | - Erika Suzuki
- Traction, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Guang Gao
- Traction, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason P Gay
- Traction, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ningping Feng
- Traction, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Johnathon L Rose
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hideo Tomihara
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgery, Kindai University Nara Hospital, Nara, JP, USA
| | - Joseph R Daniele
- Traction, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael D Peoples
- Traction, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer P Bardenhagen
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary K Geck Do
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing E Chang
- ORBIT, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bhavatarini Vangamudi
- Traction, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Exo Therapeutics, Cambridge, MA, USA
| | - Christopher Vellano
- Traction, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haoqiang Ying
- Department of Cellular and Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angela K Deem
- Traction, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giannicola Genovese
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph R Marszalek
- Traction, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey J Kovacs
- Traction, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ernesto Guccione
- Department of Oncological Sciences and Pharmacological Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Emilia Di Francesco
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giulio Draetta
- Traction, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandro Carugo
- Traction, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frederic Chedin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Timothy P Heffernan
- Traction, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
414
|
Lu R, Zhang H, Jiang YN, Wang ZQ, Sun L, Zhou ZW. Post-Translational Modification of MRE11: Its Implication in DDR and Diseases. Genes (Basel) 2021; 12:1158. [PMID: 34440334 PMCID: PMC8392716 DOI: 10.3390/genes12081158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/15/2022] Open
Abstract
Maintaining genomic stability is vital for cells as well as individual organisms. The meiotic recombination-related gene MRE11 (meiotic recombination 11) is essential for preserving genomic stability through its important roles in the resection of broken DNA ends, DNA damage response (DDR), DNA double-strand breaks (DSBs) repair, and telomere maintenance. The post-translational modifications (PTMs), such as phosphorylation, ubiquitination, and methylation, regulate directly the function of MRE11 and endow MRE11 with capabilities to respond to cellular processes in promptly, precisely, and with more diversified manners. Here in this paper, we focus primarily on the PTMs of MRE11 and their roles in DNA response and repair, maintenance of genomic stability, as well as their association with diseases such as cancer.
Collapse
Affiliation(s)
- Ruiqing Lu
- School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; (R.L.); (Y.-N.J.)
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming 650118, China;
| | - Yi-Nan Jiang
- School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; (R.L.); (Y.-N.J.)
| | - Zhao-Qi Wang
- Leibniz Institute on Aging–Fritz Lipmann Institute (FLI), 07745 Jena, Germany;
- Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, 07745 Jena, Germany
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhong-Wei Zhou
- School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; (R.L.); (Y.-N.J.)
| |
Collapse
|
415
|
Protein Arginine Methyltransferase (PRMT) Inhibitors-AMI-1 and SAH Are Effective in Attenuating Rhabdomyosarcoma Growth and Proliferation in Cell Cultures. Int J Mol Sci 2021; 22:ijms22158023. [PMID: 34360791 PMCID: PMC8348967 DOI: 10.3390/ijms22158023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a malignant soft tissue cancer that develops mostly in children and young adults. With regard to histopathology, four rhabdomyosarcoma types are distinguishable: embryonal, alveolar, pleomorphic and spindle/sclerosing. Currently, increased amounts of evidence indicate that not only gene mutations, but also epigenetic modifications may be involved in the development of RMS. Epigenomic changes regulate the chromatin architecture and affect the interaction between DNA strands, histones and chromatin binding proteins, thus, are able to control gene expression. The main aim of the study was to assess the role of protein arginine methyltransferases (PRMT) in the cellular biology of rhabdomyosarcoma. In the study we used two pan-inhibitors of PRMT, called AMI-1 and SAH, and evaluated their effects on proliferation and apoptosis of RMS cells. We observed that AMI-1 and SAH reduce the invasive phenotype of rhabdomyosarcoma cells by decreasing their proliferation rate, cell viability and ability to form cell colonies. In addition, microarray analysis revealed that these inhibitors attenuate the activity of the PI3K-Akt signaling pathway and affect expression of genes related to it.
Collapse
|
416
|
Wei HH, Fan XJ, Hu Y, Tian XX, Guo M, Mao MW, Fang ZY, Wu P, Gao SX, Peng C, Yang Y, Wang Z. A systematic survey of PRMT interactomes reveals the key roles of arginine methylation in the global control of RNA splicing and translation. Sci Bull (Beijing) 2021; 66:1342-1357. [PMID: 36654156 DOI: 10.1016/j.scib.2021.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/13/2020] [Accepted: 12/30/2020] [Indexed: 01/20/2023]
Abstract
Thousands of proteins undergo arginine methylation, a widespread post-translational modification catalyzed by several protein arginine methyltransferases (PRMTs). However, global understanding of their biological functions is limited due to the lack of a complete picture of the catalytic network for each PRMT. Here, we systematically identified interacting proteins for all human PRMTs and demonstrated their functional importance in mRNA splicing and translation. We demonstrated significant overlapping of interactomes of human PRMTs with the known methylarginine-containing proteins. Different PRMTs are functionally redundant with a high degree of overlap in their substrates and high similarities between their putative methylation motifs. Importantly, RNA-binding proteins involved in regulating RNA splicing and translation contain highly enriched arginine methylation regions. Moreover, inhibition of PRMTs globally alternates alternative splicing (AS) and suppresses translation. In particular, ribosomal proteins are extensively modified with methylarginine, and mutations in their methylation sites suppress ribosome assembly, translation, and eventually cell growth. Collectively, our study provides a global view of different PRMT networks and uncovers critical functions of arginine methylation in regulating mRNA splicing and translation.
Collapse
Affiliation(s)
- Huan-Huan Wei
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Xiao-Juan Fan
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Hu
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Xu Tian
- National Facility for Protein Science in Shanghai, Zhang-Jiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Meng Guo
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710000, China
| | - Miao-Wei Mao
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhao-Yuan Fang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Zhang-Jiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shuai-Xin Gao
- National Facility for Protein Science in Shanghai, Zhang-Jiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhang-Jiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yun Yang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
417
|
Farina S, Esposito F, Battistoni M, Biamonti G, Francia S. Post-Translational Modifications Modulate Proteinopathies of TDP-43, FUS and hnRNP-A/B in Amyotrophic Lateral Sclerosis. Front Mol Biosci 2021; 8:693325. [PMID: 34291086 PMCID: PMC8287968 DOI: 10.3389/fmolb.2021.693325] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
It has been shown that protein low-sequence complexity domains (LCDs) induce liquid-liquid phase separation (LLPS), which is responsible for the formation of membrane-less organelles including P-granules, stress granules and Cajal bodies. Proteins harbouring LCDs are widely represented among RNA binding proteins often mutated in ALS. Indeed, LCDs predispose proteins to a prion-like behaviour due to their tendency to form amyloid-like structures typical of proteinopathies. Protein post-translational modifications (PTMs) can influence phase transition through two main events: i) destabilizing or augmenting multivalent interactions between phase-separating macromolecules; ii) recruiting or excluding other proteins and/or nucleic acids into/from the condensate. In this manuscript we summarize the existing evidence describing how PTM can modulate LLPS thus favouring or counteracting proteinopathies at the base of neurodegeneration in ALS.
Collapse
Affiliation(s)
- Stefania Farina
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - Consiglio Nazionale delle Ricerce (CNR), Pavia, Italy.,University School for Advanced Studies IUSS, Pavia, Italy
| | - Francesca Esposito
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - Consiglio Nazionale delle Ricerce (CNR), Pavia, Italy.,Università Degli Studi di Pavia, Pavia, Italy
| | | | - Giuseppe Biamonti
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - Consiglio Nazionale delle Ricerce (CNR), Pavia, Italy
| | - Sofia Francia
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - Consiglio Nazionale delle Ricerce (CNR), Pavia, Italy
| |
Collapse
|
418
|
Couto E Silva A, Wu CYC, Clemons GA, Acosta CH, Chen CT, Possoit HE, Citadin CT, Lee RHC, Brown JI, Frankel A, Lin HW. Protein arginine methyltransferase 8 modulates mitochondrial bioenergetics and neuroinflammation after hypoxic stress. J Neurochem 2021; 159:742-761. [PMID: 34216036 DOI: 10.1111/jnc.15462] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 11/28/2022]
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes involved in gene regulation and protein/histone modifications. PRMT8 is primarily expressed in the central nervous system, specifically within the cellular membrane and synaptic vesicles. Recently, PRMT8 has been described to play key roles in neuronal signaling such as a regulator of dendritic arborization, synaptic function and maturation, and neuronal differentiation and plasticity. Here, we examined the role of PRMT8 in response to hypoxia-induced stress in brain metabolism. Our results from liquid chromatography mass spectrometry, mitochondrial oxygen consumption rate (OCR), and protein analyses indicate that PRMT8(-/-) knockout mice presented with altered membrane phospholipid composition, decreased mitochondrial stress capacity, and increased neuroinflammatory markers, such as TNF-α and ionized calcium binding adaptor molecule 1 (Iba1, a specific marker for microglia/macrophage activation) after hypoxic stress. Furthermore, adenovirus-based overexpression of PRMT8 reversed the changes in membrane phospholipid composition, mitochondrial stress capacity, and neuroinflammatory markers. Together, our findings establish PRMT8 as an important regulatory component of membrane phospholipid composition, short-term memory function, mitochondrial function, and neuroinflammation in response to hypoxic stress.
Collapse
Affiliation(s)
| | | | | | | | - Chuck T Chen
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - HarLee E Possoit
- Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | | | - Jennifer I Brown
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy.,Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
419
|
Janaszak-Jasiecka A, Siekierzycka A, Płoska A, Dobrucki IT, Kalinowski L. Endothelial Dysfunction Driven by Hypoxia-The Influence of Oxygen Deficiency on NO Bioavailability. Biomolecules 2021; 11:biom11070982. [PMID: 34356605 PMCID: PMC8301841 DOI: 10.3390/biom11070982] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. The initial stage of CVDs is characterized by endothelial dysfunction, defined as the limited bioavailability of nitric oxide (NO). Thus, any factors that interfere with the synthesis or metabolism of NO in endothelial cells are involved in CVD pathogenesis. It is well established that hypoxia is both the triggering factor as well as the accompanying factor in cardiovascular disease, and diminished tissue oxygen levels have been reported to influence endothelial NO bioavailability. In endothelial cells, NO is produced by endothelial nitric oxide synthase (eNOS) from L-Arg, with tetrahydrobiopterin (BH4) as an essential cofactor. Here, we discuss the mechanisms by which hypoxia affects NO bioavailability, including regulation of eNOS expression and activity. What is particularly important is the fact that hypoxia contributes to the depletion of cofactor BH4 and deficiency of substrate L-Arg, and thus elicits eNOS uncoupling-a state in which the enzyme produces superoxide instead of NO. eNOS uncoupling and the resulting oxidative stress is the major driver of endothelial dysfunction and atherogenesis. Moreover, hypoxia induces impairment in mitochondrial respiration and endothelial cell activation; thus, oxidative stress and inflammation, along with the hypoxic response, contribute to the development of endothelial dysfunction.
Collapse
Affiliation(s)
- Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Laboratory of Trace Elements Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
| | - Iwona T. Dobrucki
- University of Illinois at Urbana-Champaign Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, MC-251, Urbana, IL 61801, USA;
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-233 Gdansk, Poland
- Correspondence:
| |
Collapse
|
420
|
Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat Rev Drug Discov 2021; 20:509-530. [PMID: 33742187 DOI: 10.1038/s41573-021-00159-8] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) are emerging as attractive therapeutic targets. PRMTs regulate transcription, splicing, RNA biology, the DNA damage response and cell metabolism; these fundamental processes are altered in many diseases. Mechanistically understanding how these enzymes fuel and sustain cancer cells, especially in specific metabolic contexts or in the presence of certain mutations, has provided the rationale for targeting them in oncology. Ongoing inhibitor development, facilitated by structural biology, has generated tool compounds for the majority of PRMTs and enabled clinical programmes for the most advanced oncology targets, PRMT1 and PRMT5. In-depth mechanistic investigations using genetic and chemical tools continue to delineate the roles of PRMTs in regulating immune cells and cancer cells, and cardiovascular and neuronal function, and determine which pathways involving PRMTs could be synergistically targeted in combination therapies for cancer. This research is enhancing our knowledge of the complex functions of arginine methylation, will guide future clinical development and could identify new clinical indications.
Collapse
|
421
|
Ezeka G, Adhikary G, Kandasamy S, Friedberg JS, Eckert RL. Sulforaphane inhibits PRMT5 and MEP50 function to suppress the mesothelioma cancer cell phenotype. Mol Carcinog 2021; 60:429-439. [PMID: 33872411 PMCID: PMC10074327 DOI: 10.1002/mc.23301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/26/2023]
Abstract
Mesothelioma is a highly aggressive cancer of the mesothelial lining that is caused by exposure to asbestos. Surgical resection followed by chemotherapy is the current treatment strategy, but this is marginally successful and leads to drug-resistant disease. We are interested in factors that maintain the aggressive mesothelioma cancer phenotype as therapy targets. Protein arginine methyltransferase 5 (PRMT5) functions in concert with the methylosome protein 50 (MEP50) cofactor to catalyze symmetric dimethylation of key arginine resides in histones 3 and 4 which modifies the chromatin environment to alter tumor suppressor and oncogene expression and enhance cancer cell survival. Our studies show that PRMT5 or MEP50 loss reduces H4R3me2s formation and that this is associated with reduced cancer cell spheroid formation, invasion, and migration. Treatment with sulforaphane (SFN), a diet-derived anticancer agent, reduces PRMT5/MEP50 level and H4R3me2s formation and suppresses the cancer phenotype. We further show that SFN treatment reduces PRMT5 and MEP50 levels and that this reduction is required for SFN suppression of the cancer phenotype. SFN treatment also reduces tumor formation which is associated with reduced PRMT5/MEP50 expression and activity. These findings suggest that SFN may be a useful mesothelioma treatment agent that operates, at least in part, via suppression of PRMT5/MEP50 function.
Collapse
Affiliation(s)
- Geraldine Ezeka
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | | | - Joseph S. Friedberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| |
Collapse
|
422
|
Quillien A, Gilbert G, Boulet M, Ethuin S, Waltzer L, Vandel L. Prmt5 promotes vascular morphogenesis independently of its methyltransferase activity. PLoS Genet 2021; 17:e1009641. [PMID: 34153034 PMCID: PMC8248709 DOI: 10.1371/journal.pgen.1009641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/01/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
During development, the vertebrate vasculature undergoes major growth and remodeling. While the transcriptional cascade underlying blood vessel formation starts to be better characterized, little is known concerning the role and mode of action of epigenetic enzymes during this process. Here, we explored the role of the Protein Arginine Methyl Transferase Prmt5 in blood vessel formation as well as hematopoiesis using zebrafish as a model system. Through the combination of different prmt5 loss-of-function approaches we highlighted a key role of Prmt5 in both processes. Notably, we showed that Prmt5 promotes vascular morphogenesis through the transcriptional control of ETS transcription factors and adhesion proteins in endothelial cells. Interestingly, using a catalytic dead mutant of Prmt5 and a specific drug inhibitor, we found that while Prmt5 methyltransferase activity was required for blood cell formation, it was dispensable for vessel formation. Analyses of chromatin architecture impact on reporter genes expression and chromatin immunoprecipitation experiments led us to propose that Prmt5 regulates transcription by acting as a scaffold protein that facilitates chromatin looping to promote vascular morphogenesis. Blood vessel formation is an essential developmental process required for the survival of all vertebrates. The vascular anatomy and the mechanisms involved in vessel formation are highly conserved among vertebrates. Hence, we used zebrafish as a model, to decipher the role and the mode of action of Prmt5, an enzyme known to regulate gene expression, in vascular morphogenesis and in blood cell formation in vivo. Using different approaches, we highlighted a key role of Prmt5 during both processes. However, we found that while blood cell formation required Prmt5 enzymatic activity, vascular morphogenesis was independent on its activity. Prmt5 has been proposed as a therapeutic target in many diseases, including cancer. Yet, we show here that Prmt5 acts at least in part independently of its methyltransferase activity to regulate vascular morphogenesis. By shedding light on a mechanism of action of Prmt5 that will be insensitive to enzymatic inhibitors, our data calls forth the design of alternative drugs. In addition, this non-canonical function of Prmt5 may have a more pervasive role than previously thought in physiological conditions, i.e. during development, but also in pathological situations such as in tumor angiogenesis and certainly deserves more attention in the future.
Collapse
Affiliation(s)
- Aurélie Quillien
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse, France
- * E-mail: (AQ); (LV)
| | - Guerric Gilbert
- Université Clermont Auvergne, CNRS, INSERM, iGReD, Clermont-Ferrand, France
| | - Manon Boulet
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Université Clermont Auvergne, CNRS, INSERM, iGReD, Clermont-Ferrand, France
| | - Séverine Ethuin
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucas Waltzer
- Université Clermont Auvergne, CNRS, INSERM, iGReD, Clermont-Ferrand, France
| | - Laurence Vandel
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Université Clermont Auvergne, CNRS, INSERM, iGReD, Clermont-Ferrand, France
- * E-mail: (AQ); (LV)
| |
Collapse
|
423
|
Zhang F, Kerbl-Knapp J, Rodriguez Colman MJ, Meinitzer A, Macher T, Vujić N, Fasching S, Jany-Luig E, Korbelius M, Kuentzel KB, Mack M, Akhmetshina A, Pirchheim A, Paar M, Rinner B, Hörl G, Steyrer E, Stelzl U, Burgering B, Eisenberg T, Pertschy B, Kratky D, Madl T. Global analysis of protein arginine methylation. CELL REPORTS METHODS 2021; 1:100016. [PMID: 35475236 PMCID: PMC9017121 DOI: 10.1016/j.crmeth.2021.100016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/02/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022]
Abstract
Quantitative information about the levels and dynamics of post-translational modifications (PTMs) is critical for an understanding of cellular functions. Protein arginine methylation (ArgMet) is an important subclass of PTMs and is involved in a plethora of (patho)physiological processes. However, because of the lack of methods for global analysis of ArgMet, the link between ArgMet levels, dynamics, and (patho)physiology remains largely unknown. We utilized the high sensitivity and robustness of nuclear magnetic resonance (NMR) spectroscopy to develop a general method for the quantification of global protein ArgMet. Our NMR-based approach enables the detection of protein ArgMet in purified proteins, cells, organoids, and mouse tissues. We demonstrate that the process of ArgMet is a highly prevalent PTM and can be modulated by small-molecule inhibitors and metabolites and changes in cancer and during aging. Thus, our approach enables us to address a wide range of biological questions related to ArgMet in health and disease.
Collapse
Affiliation(s)
- Fangrong Zhang
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Jakob Kerbl-Knapp
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Maria J. Rodriguez Colman
- Oncode Institute and Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8010 Graz, Austria
| | - Therese Macher
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Sandra Fasching
- Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Evelyne Jany-Luig
- Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Melanie Korbelius
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Katharina B. Kuentzel
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Maximilian Mack
- BioTechMed-Graz, 8010 Graz, Austria
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Alena Akhmetshina
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Margret Paar
- Otto-Loewi Research Center, Physiological Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Beate Rinner
- Division of Biomedical Research, Medical University of Graz, 8036 Graz, Austria
| | - Gerd Hörl
- Otto-Loewi Research Center, Physiological Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Ernst Steyrer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Ulrich Stelzl
- BioTechMed-Graz, 8010 Graz, Austria
- Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Boudewijn Burgering
- Oncode Institute and Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Tobias Eisenberg
- BioTechMed-Graz, 8010 Graz, Austria
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth – University of Graz, Graz, Austria
| | - Brigitte Pertschy
- BioTechMed-Graz, 8010 Graz, Austria
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth – University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
424
|
Liu X, Wang H, Zhao X, Luo Q, Wang Q, Tan K, Wang Z, Jiang J, Cui J, Du E, Xia L, Du W, Chen D, Xia L, Xiao S. Arginine methylation of METTL14 promotes RNA N 6-methyladenosine modification and endoderm differentiation of mouse embryonic stem cells. Nat Commun 2021; 12:3780. [PMID: 34145242 PMCID: PMC8213825 DOI: 10.1038/s41467-021-24035-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/28/2021] [Indexed: 11/08/2022] Open
Abstract
RNA N6-methyladenosine (m6A), the most abundant internal modification of mRNAs, plays key roles in human development and health. Post-translational methylation of proteins is often critical for the dynamic regulation of enzymatic activity. However, the role of methylation of the core methyltransferase METTL3/METTL14 in m6A regulation remains elusive. We find by mass spectrometry that METTL14 arginine 255 (R255) is methylated (R255me). Global mRNA m6A levels are greatly decreased in METTL14 R255K mutant mouse embryonic stem cells (mESCs). We further find that R255me greatly enhances the interaction of METTL3/METTL14 with WTAP and promotes the binding of the complex to substrate RNA. We show that protein arginine N-methyltransferases 1 (PRMT1) interacts with and methylates METTL14 at R255, and consistent with this, loss of PRMT1 reduces mRNA m6A modification globally. Lastly, we find that loss of R255me preferentially affects endoderm differentiation in mESCs. Collectively, our findings show that arginine methylation of METTL14 stabilizes the binding of the m6A methyltransferase complex to its substrate RNA, thereby promoting global m6A modification and mESC endoderm differentiation. This work highlights the crosstalk between protein methylation and RNA methylation in gene expression.
Collapse
Affiliation(s)
- Xiaona Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, P.R. China
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hailong Wang
- Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, P.R. China
| | - Xueya Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Qizhi Luo
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Qingwen Wang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Kaifen Tan
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Zihan Wang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jia Jiang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jinru Cui
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Enhui Du
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Linjian Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Wenyi Du
- Sichuan MoDe Technology Co., Ltd, Chengdu, P. R. China
| | - Dahua Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute of Biomedical Research, Yunnan University, Kunming, P.R. China.
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China.
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, P.R. China.
| | - Shan Xiao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China.
| |
Collapse
|
425
|
Giogha C, Scott NE, Wong Fok Lung T, Pollock GL, Harper M, Goddard-Borger ED, Pearson JS, Hartland EL. NleB2 from enteropathogenic Escherichia coli is a novel arginine-glucose transferase effector. PLoS Pathog 2021; 17:e1009658. [PMID: 34133469 PMCID: PMC8238200 DOI: 10.1371/journal.ppat.1009658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/28/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
During infection, enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) directly manipulate various aspects of host cell function through the translocation of type III secretion system (T3SS) effector proteins directly into the host cell. Many T3SS effector proteins are enzymes that mediate post-translational modifications of host proteins, such as the glycosyltransferase NleB1, which transfers a single N-acetylglucosamine (GlcNAc) to arginine residues, creating an Arg-GlcNAc linkage. NleB1 glycosylates death-domain containing proteins including FADD, TRADD and RIPK1 to block host cell death. The NleB1 paralogue, NleB2, is found in many EPEC and EHEC strains but to date its enzymatic activity has not been described. Using in vitro glycosylation assays combined with mass spectrometry, we found that NleB2 can utilize multiple sugar donors including UDP-glucose, UDP-GlcNAc and UDP-galactose during glycosylation of the death domain protein, RIPK1. Sugar donor competition assays demonstrated that UDP-glucose was the preferred substrate of NleB2 and peptide sequencing identified the glycosylation site within RIPK1 as Arg603, indicating that NleB2 catalyses arginine glucosylation. We also confirmed that NleB2 catalysed arginine-hexose modification of Flag-RIPK1 during infection of HEK293T cells with EPEC E2348/69. Using site-directed mutagenesis and in vitro glycosylation assays, we identified that residue Ser252 in NleB2 contributes to the specificity of this distinct catalytic activity. Substitution of Ser252 in NleB2 to Gly, or substitution of the corresponding Gly255 in NleB1 to Ser switches sugar donor preference between UDP-GlcNAc and UDP-glucose. However, this switch did not affect the ability of the NleB variants to inhibit inflammatory or cell death signalling during HeLa cell transfection or EPEC infection. NleB2 is thus the first identified bacterial Arg-glucose transferase that, similar to the NleB1 Arg-GlcNAc transferase, inhibits host protein function by arginine glycosylation. Bacterial gut pathogens including enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC), manipulate host cell function by using a type III secretion system to inject ‘effector’ proteins directly into the host cell cytoplasm. We and others have shown that many of these effectors are novel enzymes, including NleB1, which transfers a single N-acetylglucosamine (GlcNAc) sugar to arginine residues, mediating Arg-GlcNAc glycosylation. Here, we found that a close homologue of NleB1 that is also present in EPEC and EHEC termed NleB2, uses a different sugar during glycosylation. We demonstrated that in contrast to NleB1, the preferred nucleotide-sugar substrate of NleB2 is UDP-glucose and we identified the amino acid residue within NleB2 that dictates this unique catalytic activity. Substitution of this residue in NleB2 and NleB1 switches the sugar donor usage of these enzymes but does not affect their ability to inhibit host cell signalling. Thus, NleB2 is the first identified bacterial arginine-glucose transferase, an activity which has previously only been described in plants and algae.
Collapse
Affiliation(s)
- Cristina Giogha
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tania Wong Fok Lung
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Georgina L. Pollock
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Marina Harper
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ethan D. Goddard-Borger
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Elizabeth L. Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
426
|
Iyamu ID, Al-Hamashi AA, Huang R. A Pan-Inhibitor for Protein Arginine Methyltransferase Family Enzymes. Biomolecules 2021; 11:854. [PMID: 34201091 PMCID: PMC8230315 DOI: 10.3390/biom11060854] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/09/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) play important roles in transcription, splicing, DNA damage repair, RNA biology, and cellular metabolism. Thus, PRMTs have been attractive targets for various diseases. In this study, we reported the design and synthesis of a potent pan-inhibitor for PRMTs that tethers a thioadenosine and various substituted guanidino groups through a propyl linker. Compound II757 exhibits a half-maximal inhibition concentration (IC50) value of 5 to 555 nM for eight tested PRMTs, with the highest inhibition for PRMT4 (IC50 = 5 nM). The kinetic study demonstrated that II757 competitively binds at the SAM binding site of PRMT1. Notably, II757 is selective for PRMTs over a panel of other methyltransferases, which can serve as a general probe for PRMTs and a lead for further optimization to increase the selectivity for individual PRMT.
Collapse
Affiliation(s)
- Iredia D. Iyamu
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; (I.D.I.); (A.A.A.-H.)
| | - Ayad A. Al-Hamashi
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; (I.D.I.); (A.A.A.-H.)
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-almoadham, Baghdad 10047, Iraq
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; (I.D.I.); (A.A.A.-H.)
| |
Collapse
|
427
|
Yin S, Liu L, Brobbey C, Palanisamy V, Ball LE, Olsen SK, Ostrowski MC, Gan W. PRMT5-mediated arginine methylation activates AKT kinase to govern tumorigenesis. Nat Commun 2021; 12:3444. [PMID: 34103528 PMCID: PMC8187744 DOI: 10.1038/s41467-021-23833-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
AKT is involved in a number of key cellular processes including cell proliferation, apoptosis and metabolism. Hyperactivation of AKT is associated with many pathological conditions, particularly cancers. Emerging evidence indicates that arginine methylation is involved in modulating AKT signaling pathway. However, whether and how arginine methylation directly regulates AKT kinase activity remain unknown. Here we report that protein arginine methyltransferase 5 (PRMT5), but not other PRMTs, promotes AKT activation by catalyzing symmetric dimethylation of AKT1 at arginine 391 (R391). Mechanistically, AKT1-R391 methylation cooperates with phosphatidylinositol 3,4,5 trisphosphate (PIP3) to relieve the pleckstrin homology (PH)-in conformation, leading to AKT1 membrane translocation and subsequent activation by phosphoinositide-dependent kinase-1 (PDK1) and the mechanistic target of rapamycin complex 2 (mTORC2). As a result, deficiency in AKT1-R391 methylation significantly suppresses AKT1 kinase activity and tumorigenesis. Lastly, we show that PRMT5 inhibitor synergizes with AKT inhibitor or chemotherapeutic drugs to enhance cell death. Altogether, our study suggests that R391 methylation is an important step for AKT activation and its oncogenic function.
Collapse
Affiliation(s)
- Shasha Yin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Liu Liu
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Charles Brobbey
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Viswanathan Palanisamy
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology, and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Shaun K Olsen
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
428
|
Quinlan RBA, Brennan PE. Chemogenomics for drug discovery: clinical molecules from open access chemical probes. RSC Chem Biol 2021; 2:759-795. [PMID: 34458810 PMCID: PMC8341094 DOI: 10.1039/d1cb00016k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years chemical probes have proved valuable tools for the validation of disease-modifying targets, facilitating investigation of target function, safety, and translation. Whilst probes and drugs often differ in their properties, there is a belief that chemical probes are useful for translational studies and can accelerate the drug discovery process by providing a starting point for small molecule drugs. This review seeks to describe clinical candidates that have been inspired by, or derived from, chemical probes, and the process behind their development. By focusing primarily on examples of probes developed by the Structural Genomics Consortium, we examine a variety of epigenetic modulators along with other classes of probe.
Collapse
Affiliation(s)
- Robert B A Quinlan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
| | - Paul E Brennan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
- Alzheimer's Research (UK) Oxford Drug Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford OX3 7FZ UK
| |
Collapse
|
429
|
Chen YR, Li HN, Zhang LJ, Zhang C, He JG. Protein Arginine Methyltransferase 5 Promotes Esophageal Squamous Cell Carcinoma Proliferation and Metastasis via LKB1/AMPK/mTOR Signaling Pathway. Front Bioeng Biotechnol 2021; 9:645375. [PMID: 34124017 PMCID: PMC8193860 DOI: 10.3389/fbioe.2021.645375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Esophageal squamous cell carcinoma (ESCC) is the eighth most common cancer in the world. Protein arginine methyltransferase 5 (PRMT5), an enzyme that catalyzes symmetric and asymmetric methylation on arginine residues of histone and non-histone proteins, is overexpressed in many cancers. However, whether or not PRMT5 participates in the regulation of ESCC remains largely unclear. Methods: PRMT5 mRNA and protein expression in ESCC tissues and cell lines were examined by RT-PCR, western blotting, and immunohistochemistry assays. Cell proliferation was examined by RT-PCR, western blotting, immunohistochemistry assays, MTT, and EdU assays. Cell apoptosis and cell cycle were examined by RT-PCR, western blotting, immunohistochemistry assays, and flow cytometry. Cell migration and invasion were examined by RT-PCR, western blotting, immunohistochemistry assays, and wound-healing and transwell assays. Tumor volume, tumors, and mouse weight were measured in different groups. Lung tissues with metastatic foci, the number of nodules, and lung/total weight were measured in different groups. Results: In the present study, the PRMT5 expression level was dramatically upregulated in ESCC clinical tissues as well as ESCC cell lines (ECA109 and KYSE150). Furthermore, knocking down PRMT5 obviously suppressed cell migration, invasion, proliferation, and cell arrest in G1 phase and promoted cell apoptosis in ESCC cells. Meanwhile, downregulating PRMT5 also increased the expression levels of Bax, caspase-3, and caspase-9, while expression levels of Bax-2, MMP-2, MMP-9, and p21 were decreased, which are members of the cyclin-dependent kinase family. Furthermore, knocking down PRMT5 could increase the expression of LKB1 and the phosphorylation (p)-AMPK expression and decrease the p-mTOR level. Additionally, overexpression of LKB1 could reveal anti-tumor effects in ESCC cell lines by inhibiting ESCC cell, migration, invasion, and proliferation and accelerating cell apoptosis. Besides, upregulating LKB1 expression could increase the levels of Bax, caspase-3, and caspase-9 and weaken the levels of Bax-2, MMP-2, and MMP-9. Moreover, knocking down PRMT5 could weaken the tumor growth and lung metastasis in vivo with upregulating the LKB1 expression and the p-AMPK level and downregulating the p-mTOR expression. Conclusion: PRMT5 may act as a tumor-inducing agent in ESCC by modulating LKB1/AMPK/mTOR pathway signaling.
Collapse
Affiliation(s)
- Yu-Ru Chen
- Department of Oncology, Heze Municipal Hospital, Heze, China
| | - Hua-Ni Li
- Department of Oncology, Heze Municipal Hospital, Heze, China
| | - Lian-Jun Zhang
- Department of Critical Care Medicine, Heze Municipal Hospital, Heze, China
| | - Chong Zhang
- Magnetic Resonance Room, Heze Municipal Hospital, Heze, China
| | - Jin-Guang He
- Department of Oncology, Heze Municipal Hospital, Heze, China
| |
Collapse
|
430
|
Miller JJ. Targeting protein arginine methylation to death. Neuro Oncol 2021; 23:1421-1422. [PMID: 34037795 DOI: 10.1093/neuonc/noab123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Julie J Miller
- Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
431
|
Jackson-Weaver O, Ungvijanpunya N, Yuan Y, Qian J, Gou Y, Wu J, Shen H, Chen Y, Li M, Richard S, Chai Y, Sucov HM, Xu J. PRMT1-p53 Pathway Controls Epicardial EMT and Invasion. Cell Rep 2021; 31:107739. [PMID: 32521264 DOI: 10.1016/j.celrep.2020.107739] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 02/08/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023] Open
Abstract
Epicardial cells are cardiac progenitors that give rise to the majority of cardiac fibroblasts, coronary smooth muscle cells, and pericytes during development. An integral phase of epicardial fate transition is epithelial-to-mesenchymal transition (EMT) that confers motility. We uncover an essential role for the protein arginine methyltransferase 1 (PRMT1) in epicardial invasion and differentiation. Using scRNA-seq, we show that epicardial-specific deletion of Prmt1 reduced matrix and ribosomal gene expression in epicardial-derived cell lineages. PRMT1 regulates splicing of Mdm4, which is a key controller of p53 stability. Loss of PRMT1 leads to accumulation of p53 that enhances Slug degradation and blocks EMT. During heart development, the PRMT1-p53 pathway is required for epicardial invasion and formation of epicardial-derived lineages: cardiac fibroblasts, coronary smooth muscle cells, and pericytes. Consequently, this pathway modulates ventricular morphogenesis and coronary vessel formation. Altogether, our study reveals molecular mechanisms involving the PRMT1-p53 pathway and establish its roles in heart development.
Collapse
Affiliation(s)
- Olan Jackson-Weaver
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA; Trauma & Critical Care Education Division, Tulane School of Medicine, Tulane University, New Orleans, LA, USA
| | - Nicha Ungvijanpunya
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Jiang Qian
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Yongchao Gou
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA; College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Jian Wu
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Hua Shen
- Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Yibu Chen
- Norris Medical Library, University of Southern California, Los Angeles, CA, USA
| | - Meng Li
- Norris Medical Library, University of Southern California, Los Angeles, CA, USA
| | - Stéphane Richard
- Segal Cancer Center, Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research and Departments of Oncology and Medicine, McGill University, Montréal, QC H3T 1E2, Canada
| | - Yang Chai
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Henry M Sucov
- Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA; Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
432
|
Hwang JW, Cho Y, Bae GU, Kim SN, Kim YK. Protein arginine methyltransferases: promising targets for cancer therapy. Exp Mol Med 2021; 53:788-808. [PMID: 34006904 PMCID: PMC8178397 DOI: 10.1038/s12276-021-00613-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Protein methylation, a post-translational modification (PTM), is observed in a wide variety of cell types from prokaryotes to eukaryotes. With recent and rapid advancements in epigenetic research, the importance of protein methylation has been highlighted. The methylation of histone proteins that contributes to the epigenetic histone code is not only dynamic but is also finely controlled by histone methyltransferases and demethylases, which are essential for the transcriptional regulation of genes. In addition, many nonhistone proteins are methylated, and these modifications govern a variety of cellular functions, including RNA processing, translation, signal transduction, DNA damage response, and the cell cycle. Recently, the importance of protein arginine methylation, especially in cell cycle regulation and DNA repair processes, has been noted. Since the dysregulation of protein arginine methylation is closely associated with cancer development, protein arginine methyltransferases (PRMTs) have garnered significant interest as novel targets for anticancer drug development. Indeed, several PRMT inhibitors are in phase 1/2 clinical trials. In this review, we discuss the biological functions of PRMTs in cancer and the current development status of PRMT inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Jee Won Hwang
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Yena Cho
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Gyu-Un Bae
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Su-Nam Kim
- grid.35541.360000000121053345Natural Product Research Institute, Korea Institute of Science and Technology, Gangneung, 25451 Republic of Korea
| | - Yong Kee Kim
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| |
Collapse
|
433
|
Schneider L, Herkt S, Wang L, Feld C, Wesely J, Kuvardina ON, Meyer A, Oellerich T, Häupl B, Seifried E, Bonig H, Lausen J. PRMT6 activates cyclin D1 expression in conjunction with the transcription factor LEF1. Oncogenesis 2021; 10:42. [PMID: 34001852 PMCID: PMC8129428 DOI: 10.1038/s41389-021-00332-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/15/2021] [Accepted: 04/28/2021] [Indexed: 11/09/2022] Open
Abstract
The establishment of cell type specific gene expression by transcription factors and their epigenetic cofactors is central for cell fate decisions. Protein arginine methyltransferase 6 (PRMT6) is an epigenetic regulator of gene expression mainly through methylating arginines at histone H3. This way it influences cellular differentiation and proliferation. PRMT6 lacks DNA-binding capability but is recruited by transcription factors to regulate gene expression. However, currently only a limited number of transcription factors have been identified, which facilitate recruitment of PRMT6 to key cell cycle related target genes. Here, we show that LEF1 contributes to the recruitment of PRMT6 to the central cell cycle regulator CCND1 (Cyclin D1). We identified LEF1 as an interaction partner of PRMT6. Knockdown of LEF1 or PRMT6 reduces CCND1 expression. This is in line with our observation that knockdown of PRMT6 increases the number of cells in G1 phase of the cell cycle and decreases proliferation. These results improve the understanding of PRMT6 activity in cell cycle regulation. We expect that these insights will foster the rational development and usage of specific PRMT6 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Lucas Schneider
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany
| | - Stefanie Herkt
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany
| | - Lei Wang
- Department of Eukaryotic Genetics, Institute of Industrial Genetics, University of Stuttgart, Stuttgart, Germany
| | - Christine Feld
- Department of Eukaryotic Genetics, Institute of Industrial Genetics, University of Stuttgart, Stuttgart, Germany
| | - Josephine Wesely
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Automated Systems and Genomics, The New York Stem Cell Foundation Research Institute, New York, USA
| | - Olga N Kuvardina
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany
| | - Annekarin Meyer
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany.,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Department of Molecular Diagnostics/Translational Proteomics, Frankfurt Cancer Institute, Frankfurt, Germany
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany.,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Department of Molecular Diagnostics/Translational Proteomics, Frankfurt Cancer Institute, Frankfurt, Germany
| | - Erhard Seifried
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany
| | - Halvard Bonig
- Goethe University, Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Frankfurt, Germany.,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
| | - Joern Lausen
- Department of Eukaryotic Genetics, Institute of Industrial Genetics, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
434
|
Emery-Corbin SJ, Hamey JJ, Ansell BRE, Balan B, Tichkule S, Stroehlein AJ, Cooper C, McInerney BV, Hediyeh-Zadeh S, Vuong D, Crombie A, Lacey E, Davis MJ, Wilkins MR, Bahlo M, Svärd SG, Gasser RB, Jex AR. Eukaryote-Conserved Methylarginine Is Absent in Diplomonads and Functionally Compensated in Giardia. Mol Biol Evol 2021; 37:3525-3549. [PMID: 32702104 PMCID: PMC7743719 DOI: 10.1093/molbev/msaa186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Methylation is a common posttranslational modification of arginine and lysine in eukaryotic proteins. Methylproteomes are best characterized for higher eukaryotes, where they are functionally expanded and evolved complex regulation. However, this is not the case for protist species evolved from the earliest eukaryotic lineages. Here, we integrated bioinformatic, proteomic, and drug-screening data sets to comprehensively explore the methylproteome of Giardia duodenalis-a deeply branching parasitic protist. We demonstrate that Giardia and related diplomonads lack arginine-methyltransferases and have remodeled conserved RGG/RG motifs targeted by these enzymes. We also provide experimental evidence for methylarginine absence in proteomes of Giardia but readily detect methyllysine. We bioinformatically infer 11 lysine-methyltransferases in Giardia, including highly diverged Su(var)3-9, Enhancer-of-zeste and Trithorax proteins with reduced domain architectures, and novel annotations demonstrating conserved methyllysine regulation of eukaryotic elongation factor 1 alpha. Using mass spectrometry, we identify more than 200 methyllysine sites in Giardia, including in species-specific gene families involved in cytoskeletal regulation, enriched in coiled-coil features. Finally, we use known methylation inhibitors to show that methylation plays key roles in replication and cyst formation in this parasite. This study highlights reduced methylation enzymes, sites, and functions early in eukaryote evolution, including absent methylarginine networks in the Diplomonadida. These results challenge the view that arginine methylation is eukaryote conserved and demonstrate that functional compensation of methylarginine was possible preceding expansion and diversification of these key networks in higher eukaryotes.
Collapse
Affiliation(s)
- Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Brendan R E Ansell
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Swapnil Tichkule
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Andreas J Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Crystal Cooper
- Central Analytical Research Facility (CARF), Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Bernie V McInerney
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW, Australia
| | - Soroor Hediyeh-Zadeh
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Smithfield, NSW, Australia
| | - Andrew Crombie
- Microbial Screening Technologies, Smithfield, NSW, Australia
| | - Ernest Lacey
- Microbial Screening Technologies, Smithfield, NSW, Australia.,Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, North Ryde, NSW, Australia
| | - Melissa J Davis
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
435
|
Wang YP, Sharda A, Xu SN, van Gastel N, Man CH, Choi U, Leong WZ, Li X, Scadden DT. Malic enzyme 2 connects the Krebs cycle intermediate fumarate to mitochondrial biogenesis. Cell Metab 2021; 33:1027-1041.e8. [PMID: 33770508 PMCID: PMC10472834 DOI: 10.1016/j.cmet.2021.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/21/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Mitochondria have an independent genome (mtDNA) and protein synthesis machinery that coordinately activate for mitochondrial generation. Here, we report that the Krebs cycle intermediate fumarate links metabolism to mitobiogenesis through binding to malic enzyme 2 (ME2). Mechanistically, fumarate binds ME2 with two complementary consequences. First, promoting the formation of ME2 dimers, which activate deoxyuridine 5'-triphosphate nucleotidohydrolase (DUT). DUT fosters thymidine generation and an increase of mtDNA. Second, fumarate-induced ME2 dimers abrogate ME2 monomer binding to mitochondrial ribosome protein L45, freeing it for mitoribosome assembly and mtDNA-encoded protein production. Methylation of the ME2-fumarate binding site by protein arginine methyltransferase-1 inhibits fumarate signaling to constrain mitobiogenesis. Notably, acute myeloid leukemia is highly dependent on mitochondrial function and is sensitive to targeting of the fumarate-ME2 axis. Therefore, mitobiogenesis can be manipulated in normal and malignant cells through ME2, an unanticipated governor of mitochondrial biomass production that senses nutrient availability through fumarate.
Collapse
Affiliation(s)
- Yi-Ping Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China
| | - Azeem Sharda
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shuang-Nian Xu
- Department of Hematology, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Nick van Gastel
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cheuk Him Man
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Una Choi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Wei Zhong Leong
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xi Li
- Department of Hematology, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
436
|
Cai C, Gu S, Yu Y, Zhu Y, Zhang H, Yuan B, Shen L, Yang B, Feng X. PRMT5 Enables Robust STAT3 Activation via Arginine Symmetric Dimethylation of SMAD7. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003047. [PMID: 34026434 PMCID: PMC8132155 DOI: 10.1002/advs.202003047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/06/2020] [Indexed: 05/30/2023]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is the type II arginine methyltransferase that catalyzes the mono- and symmetrical dimethylation of protein substrates at the arginine residues. Emerging evidence reveals that PRMT5 is involved in the regulation of tumor cell proliferation and cancer development. However, the exact role of PRMT5 in human lung cancer cell proliferation and the underlying molecular mechanism remain largely elusive. Here, it is shown that PRMT5 promotes lung cancer cell proliferation through the Smad7-STAT3 axis. Depletion or inhibition of PRMT5 dramatically dampens STAT3 activation and thus suppresses the proliferation of human lung cancer cells. Furthermore, depletion of Smad7 blocks PRMT5-mediated STAT3 activation. Mechanistically, PRMT5 binds to and methylates Smad7 on Arg-57, enhances Smad7 binding to IL-6 co-receptor gp130, and consequently ensures robust STAT3 activation. The findings position PRMT5 as a critical regulator of STAT3 activation, and suggest it as a potential therapeutic target for the treatment of human lung cancer.
Collapse
Affiliation(s)
- Congcong Cai
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Shuchen Gu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Yi Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Yezhang Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - HanChenxi Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Bo Yuan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Xin‐Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- The Second Affiliated HospitalZhejiang UniversityHangzhouZhejiang310009China
| |
Collapse
|
437
|
The Role of Protein Arginine Methylation as Post-Translational Modification on Actin Cytoskeletal Components in Neuronal Structure and Function. Cells 2021; 10:cells10051079. [PMID: 34062765 PMCID: PMC8147392 DOI: 10.3390/cells10051079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
The brain encompasses a complex network of neurons with exceptionally elaborated morphologies of their axonal (signal-sending) and dendritic (signal-receiving) parts. De novo actin filament formation is one of the major driving and steering forces for the development and plasticity of the neuronal arbor. Actin filament assembly and dynamics thus require tight temporal and spatial control. Such control is particularly effective at the level of regulating actin nucleation-promoting factors, as these are key components for filament formation. Arginine methylation represents an important post-translational regulatory mechanism that had previously been mainly associated with controlling nuclear processes. We will review and discuss emerging evidence from inhibitor studies and loss-of-function models for protein arginine methyltransferases (PRMTs), both in cells and whole organisms, that unveil that protein arginine methylation mediated by PRMTs represents an important regulatory mechanism in neuritic arbor formation, as well as in dendritic spine induction, maturation and plasticity. Recent results furthermore demonstrated that arginine methylation regulates actin cytosolic cytoskeletal components not only as indirect targets through additional signaling cascades, but can also directly control an actin nucleation-promoting factor shaping neuronal cells—a key process for the formation of neuronal networks in vertebrate brains.
Collapse
|
438
|
Zeisel MB, Guerrieri F, Levrero M. Host Epigenetic Alterations and Hepatitis B Virus-Associated Hepatocellular Carcinoma. J Clin Med 2021; 10:jcm10081715. [PMID: 33923385 PMCID: PMC8071488 DOI: 10.3390/jcm10081715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary malignancy of the liver and a leading cause of cancer-related deaths worldwide. Although much progress has been made in HCC drug development in recent years, treatment options remain limited. The major cause of HCC is chronic hepatitis B virus (HBV) infection. Despite the existence of a vaccine, more than 250 million individuals are chronically infected by HBV. Current antiviral therapies can repress viral replication but to date there is no cure for chronic hepatitis B. Of note, inhibition of viral replication reduces but does not eliminate the risk of HCC development. HBV contributes to liver carcinogenesis by direct and indirect effects. This review summarizes the current knowledge of HBV-induced host epigenetic alterations and their association with HCC, with an emphasis on the interactions between HBV proteins and the host cell epigenetic machinery leading to modulation of gene expression.
Collapse
Affiliation(s)
- Mirjam B. Zeisel
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France;
- Correspondence: (M.B.Z.); (M.L.)
| | - Francesca Guerrieri
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France;
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France;
- Hospices Civils de Lyon, Hôpital Croix Rousse, Service d’Hépato-Gastroentérologie, 69004 Lyon, France
- Correspondence: (M.B.Z.); (M.L.)
| |
Collapse
|
439
|
Yao B, Gui T, Zeng X, Deng Y, Wang Z, Wang Y, Yang D, Li Q, Xu P, Hu R, Li X, Chen B, Wang J, Zen K, Li H, Davis MJ, Herold MJ, Pan HF, Jiang ZW, Huang DCS, Liu M, Ju J, Zhao Q. PRMT1-mediated H4R3me2a recruits SMARCA4 to promote colorectal cancer progression by enhancing EGFR signaling. Genome Med 2021; 13:58. [PMID: 33853662 PMCID: PMC8048298 DOI: 10.1186/s13073-021-00871-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/17/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Aberrant changes in epigenetic mechanisms such as histone modifications play an important role in cancer progression. PRMT1 which triggers asymmetric dimethylation of histone H4 on arginine 3 (H4R3me2a) is upregulated in human colorectal cancer (CRC) and is essential for cell proliferation. However, how this dysregulated modification might contribute to malignant transitions of CRC remains poorly understood. METHODS In this study, we integrated biochemical assays including protein interaction studies and chromatin immunoprecipitation (ChIP), cellular analysis including cell viability, proliferation, colony formation, and migration assays, clinical sample analysis, microarray experiments, and ChIP-Seq data to investigate the potential genomic recognition pattern of H4R3me2s in CRC cells and its effect on CRC progression. RESULTS We show that PRMT1 and SMARCA4, an ATPase subunit of the SWI/SNF chromatin remodeling complex, act cooperatively to promote colorectal cancer (CRC) progression. We find that SMARCA4 is a novel effector molecule of PRMT1-mediated H4R3me2a. Mechanistically, we show that H4R3me2a directly recruited SMARCA4 to promote the proliferative, colony-formative, and migratory abilities of CRC cells by enhancing EGFR signaling. We found that EGFR and TNS4 were major direct downstream transcriptional targets of PRMT1 and SMARCA4 in colon cells, and acted in a PRMT1 methyltransferase activity-dependent manner to promote CRC cell proliferation. In vivo, knockdown or inhibition of PRMT1 profoundly attenuated the growth of CRC cells in the C57BL/6 J-ApcMin/+ CRC mice model. Importantly, elevated expression of PRMT1 or SMARCA4 in CRC patients were positively correlated with expression of EGFR and TNS4, and CRC patients had shorter overall survival. These findings reveal a critical interplay between epigenetic and transcriptional control during CRC progression, suggesting that SMARCA4 is a novel key epigenetic modulator of CRC. Our findings thus highlight PRMT1/SMARCA4 inhibition as a potential therapeutic intervention strategy for CRC. CONCLUSION PRMT1-mediated H4R3me2a recruits SMARCA4, which promotes colorectal cancer progression by enhancing EGFR signaling.
Collapse
Affiliation(s)
- Bing Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.,Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Tao Gui
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xiangwei Zeng
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yexuan Deng
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Zhi Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Dongjun Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qixiang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Peipei Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Ruifeng Hu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xinyu Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Bing Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Ke Zen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Haitao Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Melissa J Davis
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Hua-Feng Pan
- Department of General Surgery, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-Wei Jiang
- Department of General Surgery, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Junyi Ju
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
440
|
Migazzi A, Scaramuzzino C, Anderson EN, Tripathy D, Hernández IH, Grant RA, Roccuzzo M, Tosatto L, Virlogeux A, Zuccato C, Caricasole A, Ratovitski T, Ross CA, Pandey UB, Lucas JJ, Saudou F, Pennuto M, Basso M. Huntingtin-mediated axonal transport requires arginine methylation by PRMT6. Cell Rep 2021; 35:108980. [PMID: 33852844 PMCID: PMC8132453 DOI: 10.1016/j.celrep.2021.108980] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/09/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
The huntingtin (HTT) protein transports various organelles, including vesicles containing neurotrophic factors, from embryonic development throughout life. To better understand how HTT mediates axonal transport and why this function is disrupted in Huntington's disease (HD), we study vesicle-associated HTT and find that it is dimethylated at a highly conserved arginine residue (R118) by the protein arginine methyltransferase 6 (PRMT6). Without R118 methylation, HTT associates less with vesicles, anterograde trafficking is diminished, and neuronal death ensues-very similar to what occurs in HD. Inhibiting PRMT6 in HD cells and neurons exacerbates mutant HTT (mHTT) toxicity and impairs axonal trafficking, whereas overexpressing PRMT6 restores axonal transport and neuronal viability, except in the presence of a methylation-defective variant of mHTT. In HD flies, overexpressing PRMT6 rescues axonal defects and eclosion. Arginine methylation thus regulates HTT-mediated vesicular transport along the axon, and increasing HTT methylation could be of therapeutic interest for HD.
Collapse
Affiliation(s)
- Alice Migazzi
- Laboratory of Transcriptional Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy; Dulbecco Telethon Institute, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy; Department of Biomedical Sciences (DBS), University of Padova, Padova 35131, Italy
| | - Chiara Scaramuzzino
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble 38000, France
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Debasmita Tripathy
- Laboratory of Transcriptional Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Ivó H Hernández
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Rogan A Grant
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Michela Roccuzzo
- Advanced Imaging Core Facility, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Laura Tosatto
- Institute of Biophysics, National Research Council (CNR) Trento unit, Trento 38123, Italy
| | - Amandine Virlogeux
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble 38000, France
| | - Chiara Zuccato
- Department of Biosciences, University of Milan, Milan, Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan 20122, Italy
| | | | - Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Udai B Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - José J Lucas
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble 38000, France.
| | - Maria Pennuto
- Dulbecco Telethon Institute, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy; Department of Biomedical Sciences (DBS), University of Padova, Padova 35131, Italy; Veneto Institute of Molecular Medicine (VIMM), via Orus 2, Padova 35129, Italy; Padova Neuroscience Center (PNC), Padova 35131, Italy; Myology Center (CIR-Myo), Padova 35131, Italy.
| | - Manuela Basso
- Laboratory of Transcriptional Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy.
| |
Collapse
|
441
|
Huang J, Zheng Y, Zheng X, Qian B, Yin Q, Lu J, Lei H. PRMT5 Promotes EMT Through Regulating Akt Activity in Human Lung Cancer. Cell Transplant 2021; 30:9636897211001772. [PMID: 33829865 PMCID: PMC8040599 DOI: 10.1177/09636897211001772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The type II protein arginine methyltransferase 5 (PRMT5) has been engaged in various human cancer development and progression types. Nevertheless, few studies uncover the biological functions of PRMT5 in the epithelial-mesenchymal transition (EMT) of human lung cancer cells, and the associated molecular mechanisms and signaling cascades are entirely unknown. Here, we show that PRMT5 is the ectopic expression in human lung cancer tissues and cell lines. Further study reveals that silencing PRMT5 by lentivirus-mediated shRNA or blocking of PRMT5 by specific inhibitor GSK591 attenuates the expression levels of EMT-related markers in vivo, using the xenograft mouse model. Moreover, our results show that down-regulation of PRMT5 impairs EGFR/Akt signaling cascades in human lung cancer cells, whereas re-expression of PRMT5 recovers those changes, suggesting that PRMT5 regulates EMT probably through EGFR/Akt signaling axis. Altogether, our results demonstrate that PRMT5 serves as a critical oncogenic regulator and promotes EMT in human lung cancer cells. More importantly, our findings also suggest that PRMT5 may be a potential therapeutic candidate for the treatment of human lung cancer.
Collapse
Affiliation(s)
- Jianhao Huang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Clinical Medical College, 66324Nanjing Medical University, Nanjing, PR China.,Department of Pulmonary and Critical Care Medicine, 66324Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yonghua Zheng
- Department of Pulmonary Medicine, Department of Respiratory Medicine, Shanghai Jinshan Tinglin Hospital, Shanghai, PR China
| | - Xiao Zheng
- Department of Pulmonary Medicine, Department of Respiratory Medicine, Shanghai Jinshan Tinglin Hospital, Shanghai, PR China
| | - Bao Qian
- Department of Pulmonary Medicine, Department of Respiratory Medicine, Shanghai Jinshan Tinglin Hospital, Shanghai, PR China
| | - Qi Yin
- Department of Pulmonary and Critical Care Medicine, 66324Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jingjing Lu
- Department of Pulmonary and Critical Care Medicine, 66324Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Han Lei
- Department of Pulmonary and Critical Care Medicine, Shanghai East Clinical Medical College, 66324Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
442
|
Yang M, Lin X, Segers F, Suganthan R, Hildrestrand GA, Rinholm JE, Aas PA, Sousa MML, Holm S, Bolstad N, Warren D, Berge RK, Johansen RF, Yndestad A, Kristiansen E, Klungland A, Luna L, Eide L, Halvorsen B, Aukrust P, Bjørås M. OXR1A, a Coactivator of PRMT5 Regulating Histone Arginine Methylation. Cell Rep 2021; 30:4165-4178.e7. [PMID: 32209476 DOI: 10.1016/j.celrep.2020.02.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/04/2020] [Accepted: 02/13/2020] [Indexed: 01/01/2023] Open
Abstract
Oxidation resistance gene 1 (OXR1) protects cells against oxidative stress. We find that male mice with brain-specific isoform A knockout (Oxr1A-/-) develop fatty liver. RNA sequencing of male Oxr1A-/- liver indicates decreased growth hormone (GH) signaling, which is known to affect liver metabolism. Indeed, Gh expression is reduced in male mice Oxr1A-/- pituitary gland and in rat Oxr1A-/- pituitary adenoma cell-line GH3. Oxr1A-/- male mice show reduced fasting-blood GH levels. Pull-down and proximity ligation assays reveal that OXR1A is associated with arginine methyl transferase PRMT5. OXR1A-depleted GH3 cells show reduced symmetrical dimethylation of histone H3 arginine 2 (H3R2me2s), a product of PRMT5 catalyzed methylation, and chromatin immunoprecipitation (ChIP) of H3R2me2s shows reduced Gh promoter enrichment. Finally, we demonstrate with purified proteins that OXR1A stimulates PRMT5/MEP50-catalyzed H3R2me2s. Our data suggest that OXR1A is a coactivator of PRMT5, regulating histone arginine methylation and thereby GH production within the pituitary gland.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Xiaolin Lin
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Filip Segers
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | | | | | - Per Arne Aas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mirta M L Sousa
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway; Proteomics and Metabolomics Core Facility-PROMEC, Norwegian University of Science and Technology, the Central Norway Regional Health Authority, Trondheim, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Nils Bolstad
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - David Warren
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Rune F Johansen
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Luisa Luna
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway.
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.
| |
Collapse
|
443
|
Xie M, Wu Z, Ying S, Liu L, Zhao C, Yao C, Zhang Z, Luo C, Wang W, Zhao D, Zhang J, Qiu W, Wang Y. Sublytic C5b-9 induces glomerular mesangial cell proliferation via ERK1/2-dependent SOX9 phosphorylation and acetylation by enhancing Cyclin D1 in rat Thy-1 nephritis. Exp Mol Med 2021; 53:572-590. [PMID: 33811247 PMCID: PMC8102557 DOI: 10.1038/s12276-021-00589-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/01/2023] Open
Abstract
Glomerular mesangial cell (GMC) proliferation is a histopathological alteration in human mesangioproliferative glomerulonephritis (MsPGN) or in animal models of MsPGN, e.g., the rat Thy-1 nephritis (Thy-1N) model. Although sublytic C5b-9 assembly on the GMC membrane can trigger cell proliferation, the mechanisms are still undefined. We found that sublytic C5b-9-induced rat GMC proliferation was driven by extracellular signal-regulated kinase 1/2 (ERK1/2), sry-related HMG-box 9 (SOX9), and Cyclin D1. Here, ERK1/2 phosphorylation was a result of the calcium influx-PKC-α-Raf-MEK1/2 axis activated by sublytic C5b-9, and Cyclin D1 gene transcription was enhanced by ERK1/2-dependent SOX9 binding to the Cyclin D1 promoter (-582 to -238 nt). In addition, ERK1/2 not only interacted with SOX9 in the cell nucleus to mediate its phosphorylation at serine residues 64 (a new site identified by mass spectrometry) and 181 (a known site), but also indirectly induced SOX9 acetylation by elevating the expression of general control non-repressed protein 5 (GCN5), which together resulted in Cyclin D1 synthesis and GMC proliferation. Moreover, our in vivo experiments confirmed that silencing these genes ameliorated the lesions of Thy-1N rats and reduced SOX9 phosphorylation, acetylation and Cyclin D1 expression. Furthermore, the renal tissue sections of MsPGN patients also showed higher phosphorylation or expression of ERK1/2, SOX9, and Cyclin D1. In summary, these findings suggest that sublytic C5b-9-induced GMC proliferation in rat Thy-1N requires SOX9 phosphorylation and acetylation via enhanced Cyclin D1 gene transcription, which may provide a new insight into human MsPGN pathogenesis.
Collapse
Affiliation(s)
- Mengxiao Xie
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China ,grid.412676.00000 0004 1799 0784Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029 China
| | - Zhijiao Wu
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Shuai Ying
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Longfei Liu
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China ,grid.89957.3a0000 0000 9255 8984Department of Central Laboratory, The Affiliated Huaian No. 1 People’s Hospital, Nanjing Medical University, One West Huanghe Road, Huai’an, Jiangsu 223300 China
| | - Chenhui Zhao
- grid.412676.00000 0004 1799 0784Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029 China
| | - Chunlei Yao
- grid.412676.00000 0004 1799 0784Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029 China
| | - Zhiwei Zhang
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Can Luo
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Wenbo Wang
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Dan Zhao
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Jing Zhang
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Wen Qiu
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China ,grid.89957.3a0000 0000 9255 8984Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Yingwei Wang
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China ,grid.89957.3a0000 0000 9255 8984Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| |
Collapse
|
444
|
Cheng C, Pei X, Li SW, Yang J, Li C, Tang J, Hu K, Huang G, Min WP, Sang Y. CRISPR/Cas9 library screening uncovered methylated PKP2 as a critical driver of lung cancer radioresistance by stabilizing β-catenin. Oncogene 2021; 40:2842-2857. [PMID: 33742119 DOI: 10.1038/s41388-021-01692-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
Radiation resistance is a major cause of lung cancer treatment failure. Armadillo (ARM) superfamily proteins participate in various fundamental cellular processes; however, whether ARM proteins regulate radiation resistance is not fully understood. Here, we used an unbiased CRISPR/Cas9 library screen and identified plakophilin 2 (PKP2), a member of the ARM superfamily of proteins, as a critical driver of radiation resistance in lung cancer. The PKP2 level was significantly higher after radiotherapy than before radiotherapy, and high PKP2 expression after radiotherapy predicted poor overall survival (OS) and postprogression survival (PPS). Mechanistically, mass spectrometry analysis identified that PKP2 was methylated at the arginine site and interacted with protein arginine methyltransferase 1 (PRMT1). Methylation of PKP2 by PRMT1 stabilized β-catenin by recruiting USP7, further inducing LIG4, a key DNA ligase in nonhomologous end-joining (NHEJ) repair. Concomitantly, PKP2-induced radioresistance depended on facilitating LIG4-mediated NHEJ repair in lung cancer. More strikingly, after exposure to irradiation, treatment with the PRMT1 inhibitor C-7280948 abolished PKP2-induced radioresistance, and C-7280948 is a potential radiosensitizer in lung cancer. In summary, our results demonstrate that targeting the PRMT1/PKP2/β-catenin/LIG4 pathway is an effective approach to overcome radiation resistance in lung cancer.
Collapse
Affiliation(s)
- Chun Cheng
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaofeng Pei
- Department of Thoracic Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Si-Wei Li
- Department of Oncology, Tongji Huangzhou Hospital of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Yang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chenxi Li
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianjun Tang
- Department of Respiratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guofu Huang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei-Ping Min
- Department of Surgery, Pathology and Oncology, University of Western Ontario, London, ON, Canada
| | - Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
445
|
Post A, Bollenbach A, Bakker SJL, Tsikas D. Whole-body arginine dimethylation is associated with all-cause mortality in adult renal transplant recipients. Amino Acids 2021; 53:541-554. [PMID: 33651245 PMCID: PMC8107162 DOI: 10.1007/s00726-021-02965-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022]
Abstract
Arginine residues in proteins can be singly or doubly methylated post-translationally. Proteolysis of arginine-methylated proteins provides monomethyl arginine, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). ADMA and SDMA are considered cardiovascular risk factors, with the underlying mechanisms being not yet fully understood. SDMA lacks appreciable metabolism and is almost completely eliminated by the kidney, whereas ADMA is extensively metabolized to dimethylamine (DMA), with a minor ADMA fraction of about 10% being excreted unchanged in the urine. Urinary DMA and ADMA are useful measures of whole-body asymmetric arginine-dimethylation, while urinary SDMA serves as a whole-body measure of symmetric arginine-dimethylation. In renal transplant recipients (RTR), we previously found that higher plasma ADMA concentrations and lower urinary ADMA and SDMA concentrations were associated with a higher risk of all-cause mortality. Yet, in this RTR collective, no data were available for urinary DMA. For the present study, we additionally measured the excretion rate of DMA in 24-h collected urine samples of the RTR and of healthy kidney donors in the cohort, with the aim to quantitate whole-body asymmetric (ADMA, DMA) and symmetric (SDMA) arginine-dimethylation. We found that lower DMA excretion rates were associated with higher all-cause mortality, yet not with cardiovascular mortality. In the healthy donors, kidney donation was associated with considerable decreases in ADMA (by - 39%, P < 0.0001) and SDMA (by - 21%, P < 0.0001) excretion rates, yet there was no significant change in DMA (by - 9%, P = 0.226) excretion rate. Our results suggest that protein-arginine dimethylation is altered in RTR compared to healthy kidney donors and that it is pronouncedly shifted from symmetric to asymmetric arginine-dimethylation, with whole-body protein-arginine dimethylation being almost unaffected.
Collapse
Affiliation(s)
- Adrian Post
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen and University of Groningen, 9700 RB Groningen, The Netherlands
| | - Alexander Bollenbach
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Stephan J. L. Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen and University of Groningen, 9700 RB Groningen, The Netherlands
| | - Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
446
|
Samuel SF, Barry A, Greenman J, Beltran-Alvarez P. Arginine methylation: the promise of a 'silver bullet' for brain tumours? Amino Acids 2021; 53:489-506. [PMID: 33404912 PMCID: PMC8107164 DOI: 10.1007/s00726-020-02937-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Despite intense research efforts, our pharmaceutical repertoire against high-grade brain tumours has not been able to increase patient survival for a decade and life expectancy remains at less than 16 months after diagnosis, on average. Inhibitors of protein arginine methyltransferases (PRMTs) have been developed and investigated over the past 15 years and have now entered oncology clinical trials, including for brain tumours. This review collates recent advances in the understanding of the role of PRMTs and arginine methylation in brain tumours. We provide an up-to-date literature review on the mechanisms for PRMT regulation. These include endogenous modulators such as alternative splicing, miRNA, post-translational modifications and PRMT-protein interactions, and synthetic inhibitors. We discuss the relevance of PRMTs in brain tumours with a particular focus on PRMT1, -2, -5 and -8. Finally, we include a future perspective where we discuss possible routes for further research on arginine methylation and on the use of PRMT inhibitors in the context of brain tumours.
Collapse
Affiliation(s)
| | - Antonia Barry
- Department of Biomedical Sciences, University of Hull, Hull, UK
| | - John Greenman
- Department of Biomedical Sciences, University of Hull, Hull, UK
| | | |
Collapse
|
447
|
Abstract
Methylation at DNA, RNA and protein levels plays critical roles in many cellular processes and is associated with diverse differentiation events, physiological activities and human diseases. To aid in the diagnostic and therapeutic design for cancer treatment utilising methylation, this review provides a boutique yet comprehensive overview on methylation at different levels including the mechanisms, cross-talking and clinical implications with a particular focus on cancers. We conclude that DNA methylation is the sole type of methylation that has been largely translated into clinics and used for, mostly, early diagnosis. Translating the onco-therapeutic and prognostic values of RNA and protein methylations into clinical use deserves intensive efforts. Simultaneous examination of methylations at multiple levels or together with other forms of molecular markers represents an interesting research direction with profound clinical translational potential.
Collapse
|
448
|
Li WJ, He YH, Yang JJ, Hu GS, Lin YA, Ran T, Peng BL, Xie BL, Huang MF, Gao X, Huang HH, Zhu HH, Ye F, Liu W. Profiling PRMT methylome reveals roles of hnRNPA1 arginine methylation in RNA splicing and cell growth. Nat Commun 2021; 12:1946. [PMID: 33782401 PMCID: PMC8007824 DOI: 10.1038/s41467-021-21963-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/12/2021] [Indexed: 02/05/2023] Open
Abstract
Numerous substrates have been identified for Type I and II arginine methyltransferases (PRMTs). However, the full substrate spectrum of the only type III PRMT, PRMT7, and its connection to type I and II PRMT substrates remains unknown. Here, we use mass spectrometry to reveal features of PRMT7-regulated methylation. We find that PRMT7 predominantly methylates a glycine and arginine motif; multiple PRMT7-regulated arginine methylation sites are close to phosphorylations sites; methylation sites and proximal sequences are vulnerable to cancer mutations; and methylation is enriched in proteins associated with spliceosome and RNA-related pathways. We show that PRMT4/5/7-mediated arginine methylation regulates hnRNPA1 binding to RNA and several alternative splicing events. In breast, colorectal and prostate cancer cells, PRMT4/5/7 are upregulated and associated with high levels of hnRNPA1 arginine methylation and aberrant alternative splicing. Pharmacological inhibition of PRMT4/5/7 suppresses cancer cell growth and their co-inhibition shows synergistic effects, suggesting them as targets for cancer therapy. Arginine methyltransferases (PRMTs) are involved in the regulation of various physiological and pathological conditions. Using proteomics, the authors here profile the methylation substrates of PRMTs 4, 5 and 7 and characterize the roles of these enzymes in cancer-associated splicing regulation.
Collapse
Affiliation(s)
- Wen-Juan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yao-Hui He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jing-Jing Yang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yi-An Lin
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ting Ran
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bing-Ling Peng
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bing-Lan Xie
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ming-Feng Huang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiang Gao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hai-Hua Huang
- Department of Pathology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Helen He Zhu
- Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Ye
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Fujian, China
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China. .,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China. .,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
449
|
Li Z, Wang Q, Wang Y, Wang K, Liu Z, Zhang W, Ye M. An efficient approach based on basic strong cation exchange chromatography for enriching methylated peptides with high specificity for methylproteomics analysis. Anal Chim Acta 2021; 1161:338467. [PMID: 33896563 DOI: 10.1016/j.aca.2021.338467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
Protein methylation as one of the most important post-translational modifications has been under the spotlight due to its essential role in many biological processes. Development of methods for large-scale analysis of protein methylation greatly accelerates the related researches. To date, antibody-based enrichment strategy is the most common approach for methylproteomics analysis. However, it is still lacking of a pan-specific antibody to enrich peptides or proteins carrying all kinds of lysine and arginine methylation forms. Herein, an online basic strong cation exchange chromatography was developed to enrich methylated peptides from protein digests prepared by two complementary methods, including direct multiple enzymes digestion and carboxylic amidation followed by multiple enzymes digestion. After enrichment, the majority of identifications were obtained from direct multiple enzymes digested sample. The enrichment specificity of methylated peptides was up to 28.5%, and 445 methylation forms corresponding to 376 methylation sites were identified on 194 proteins in one LC-MS/MS run using only 100 μg of digests. This method has great potential in studying protein methylation mediated biological processes.
Collapse
Affiliation(s)
- Zhouxian Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China; Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Qi Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keyun Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Mingliang Ye
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
450
|
Colozza G, Koo BK. Wnt/β-catenin signaling: Structure, assembly and endocytosis of the signalosome. Dev Growth Differ 2021; 63:199-218. [PMID: 33619734 PMCID: PMC8251975 DOI: 10.1111/dgd.12718] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Wnt/β‐catenin signaling is an ancient pathway that regulates key aspects of embryonic development, cell differentiation, proliferation, and adult stem cell homeostasis. Work from different laboratories has shed light on the molecular mechanisms underlying the Wnt pathway, including structural details of ligand–receptor interactions. One key aspect that has emerged from multiple studies is that endocytosis of the receptor complex plays a crucial role in fine‐tuning Wnt/β‐catenin signaling. Endocytosis is a key process involved in both activation as well as attenuation of Wnt signaling, but how this is regulated is still poorly understood. Importantly, recent findings show that Wnt also regulates central metabolic pathways such as the acquisition of nutrients through actin‐driven endocytic mechanisms. In this review, we propose that the Wnt pathway displays diverse characteristics that go beyond the regulation of gene expression, through a connection with the endocytic machinery.
Collapse
Affiliation(s)
- Gabriele Colozza
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|