401
|
Lin X, Tan Y, Pan L, Tian Z, Lin L, Su M, Ou G, Chen Y. Prognostic value of RRM1 and its effect on chemoresistance in pancreatic cancer. Cancer Chemother Pharmacol 2024; 93:237-251. [PMID: 38040978 DOI: 10.1007/s00280-023-04616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/05/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE Pancreatic cancer (PC) remains a lethal disease, and gemcitabine resistance is prevalent. However, the biomarkers suggestive of gemcitabine resistance remain unclear. METHODS Bioinformatic tools identified ribonucleotide reductase catalytic subunit M1 (RRM1) in gemcitabine-related datasets. A cox regression model revealed the predictive value of RRM1 with clinical features. An external clinical cohort confirmed the prognostic value of RRM1. RRM1 expression was validated in gemcitabine-resistant cells in vitro and in orthotopic PC model. CCK8, flow cytometry, transwell migration, and invasion assays were used to explore the effect of RRM1 on gemcitabine-resistant cells. The CIBERSORT algorithm investigated the impact of RRM1 on immune infiltration. RESULTS The constructed nomogram based on RRM1 effectively predicted prognosis and was further validated. Moreover, patients with higher RRM1 had shorter overall survival. RRM1 expression was significantly higher in PC tissue and gemcitabine-resistant cells in vitro and in vivo. RRM1 knockdown reversed gemcitabine resistance, inhibited migration and invasion. The infiltration levels of CD4 + T cells, CD8 + T cells, neutrophils, and plasma cells correlated markedly with RRM1 expression, and communication between tumor and immune cells probably depends on NF-κB/mTOR signaling. CONCLUSION RRM1 may be a potential marker for prognosis and a target marker for gemcitabine resistance in PC.
Collapse
Affiliation(s)
- Xingyi Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Ying Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Lele Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Zhenfeng Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Lijun Lin
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Mingxin Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Guangsheng Ou
- Department of Gastrointestinal Surgery, The Third-Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510600, People's Republic of China.
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
402
|
Sisto M, Lisi S. Epigenetic Regulation of EMP/EMT-Dependent Fibrosis. Int J Mol Sci 2024; 25:2775. [PMID: 38474021 PMCID: PMC10931844 DOI: 10.3390/ijms25052775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Fibrosis represents a process characterized by excessive deposition of extracellular matrix (ECM) proteins. It often represents the evolution of pathological conditions, causes organ failure, and can, in extreme cases, compromise the functionality of organs to the point of causing death. In recent years, considerable efforts have been made to understand the molecular mechanisms underlying fibrotic evolution and to identify possible therapeutic strategies. Great interest has been aroused by the discovery of a molecular association between epithelial to mesenchymal plasticity (EMP), in particular epithelial to mesenchymal transition (EMT), and fibrogenesis, which has led to the identification of complex molecular mechanisms closely interconnected with each other, which could explain EMT-dependent fibrosis. However, the result remains unsatisfactory from a therapeutic point of view. In recent years, advances in epigenetics, based on chromatin remodeling through various histone modifications or through the intervention of non-coding RNAs (ncRNAs), have provided more information on the fibrotic process, and this could represent a promising path forward for the identification of innovative therapeutic strategies for organ fibrosis. In this review, we summarize current research on epigenetic mechanisms involved in organ fibrosis, with a focus on epigenetic regulation of EMP/EMT-dependent fibrosis.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari, Piazza Giulio Cesare 1, I-70124 Bari, Italy;
| | | |
Collapse
|
403
|
Zhang H, Chen N, Ding C, Zhang H, Liu D, Liu S. Ferroptosis and EMT resistance in cancer: a comprehensive review of the interplay. Front Oncol 2024; 14:1344290. [PMID: 38469234 PMCID: PMC10926930 DOI: 10.3389/fonc.2024.1344290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
Ferroptosis differs from traditional cell death mechanisms like apoptosis, necrosis, and autophagy, primarily due to its reliance on iron metabolism and the loss of glutathione peroxidase activity, leading to lipid peroxidation and cell death. The dysregulation of iron metabolism is a hallmark of various cancers, contributing to tumor progression, metastasis, and notably, drug resistance. The acquisition of mesenchymal characteristics by epithelial cells is known as Epithelial-Mesenchymal Transition (EMT), a biological process intricately linked to cancer development, promoting traits such as invasiveness, metastasis, and resistance to therapeutic interventions. EMT plays a pivotal role in cancer progression and contributes significantly to the complex dynamics of carcinogenesis. Research findings indicate that mesenchymal cancer cells exhibit greater susceptibility to ferroptosis compared to their epithelial counterparts. The induction of ferroptosis becomes more effective in eliminating drug-resistant cancer cells during the process of EMT. The interplay between ferroptosis and EMT, a process where epithelial cells transform into mobile mesenchymal cells, is crucial in understanding cancer progression. EMT is associated with increased cancer metastasis and drug resistance. The review delves into how ferroptosis and EMT influence each other, highlighting the role of key proteins like GPX4, which protects against lipid peroxidation, and its inhibition can induce ferroptosis. Conversely, increased GPX4 expression is linked to heightened resistance to ferroptosis in cancer cells. Moreover, the review discusses the implications of EMT-induced transcription factors such as Snail, Zeb1, and Twist in modulating the sensitivity of tumor cells to ferroptosis, thereby affecting drug resistance and cancer treatment outcomes. Targeting the ferroptosis pathway offers a promising therapeutic strategy, particularly for tumors resistant to conventional treatments. The induction of ferroptosis in these cells could potentially overcome drug resistance. However, translating these findings into clinical practice presents challenges, including understanding the precise mechanisms of ferroptosis induction, identifying predictive biomarkers, and optimizing combination therapies. The review underscores the need for further research to unravel the complex interactions between ferroptosis, EMT, and drug resistance in cancer. This could lead to the development of more effective, targeted cancer treatments, particularly for drug-resistant tumors, offering new hope in cancer therapeutics.
Collapse
Affiliation(s)
- Huiming Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Naifeng Chen
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Chenglong Ding
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Huinan Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Dejiang Liu
- College of Biology and Agriculture, Jiamusi University, Jiamusi, China
| | - Shuang Liu
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| |
Collapse
|
404
|
Yuan Y, Zhang XF, Li YC, Chen HQ, Wen T, Zheng JL, Zhao ZY, Hu QY. VX-509 attenuates the stemness characteristics of colorectal cancer stem-like cells by regulating the epithelial-mesenchymal transition through Nodal/Smad2/3 signaling. World J Stem Cells 2024; 16:207-227. [PMID: 38455101 PMCID: PMC10915959 DOI: 10.4252/wjsc.v16.i2.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Colorectal cancer stem cells (CCSCs) are heterogeneous cells that can self-renew and undergo multidirectional differentiation in colorectal cancer (CRC) patients. CCSCs are generally accepted to be important sources of CRC and are responsible for the progression, metastasis, and therapeutic resistance of CRC. Therefore, targeting this specific subpopulation has been recognized as a promising strategy for overcoming CRC. AIM To investigate the effect of VX-509 on CCSCs and elucidate the underlying mechanism. METHODS CCSCs were enriched from CRC cell lines by in conditioned serum-free medium. Western blot, Aldefluor, transwell and tumorigenesis assays were performed to verify the phenotypic characteristics of the CCSCs. The anticancer efficacy of VX-509 was assessed in HCT116 CCSCs and HT29 CCSCs by performing cell viability analysis, colony formation, sphere formation, flow cytometry, and western blotting assessments in vitro and tumor growth, immunohistochemistry and immunofluorescence assessments in vivo. RESULTS Compared with parental cells, sphere cells derived from HCT116 and HT29 cells presented increased expression of stem cell transcription factors and stem cell markers and were more potent at promoting migration and tumorigenesis, demonstrating that the CRC sphere cells displayed CSC features. VX-509 inhibited the tumor malignant biological behavior of CRC-stem-like cells, as indicated by their proliferation, migration and clonality in vitro, and suppressed the tumor of CCSC-derived xenograft tumors in vivo. Besides, VX-509 suppressed the CSC characteristics of CRC-stem-like cells and inhibited the progression of epithelial-mesenchymal transition (EMT) signaling in vitro. Nodal was identified as the regulatory factor of VX-509 on CRC stem-like cells through analyses of differentially expressed genes and CSC-related database information. VX-509 markedly downregulated the expression of Nodal and its downstream phosphorylated Smad2/3 to inhibit EMT progression. Moreover, VX-509 reversed the dedifferentiation of CCSCs and inhibited the progression of EMT induced by Nodal overexpression. CONCLUSION VX-509 prevents the EMT process in CCSCs by inhibiting the transcription and protein expression of Nodal, and inhibits the dedifferentiated self-renewal of CCSCs.
Collapse
Affiliation(s)
- Yun Yuan
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Xu-Fan Zhang
- Department of Nuclear Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Yu-Chen Li
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Hong-Qing Chen
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Tian Wen
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Jia-Lian Zheng
- Department of Hepatology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning Province, China
| | - Zi-Yi Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, Sichuan Province, China
| | - Qiong-Ying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China.
| |
Collapse
|
405
|
Li W, Dong X, Wan Z, Wang W, Zhang J, Mi Y, Li R, Xu Z, Wang B, Li N, He G. PXMP4 promotes gastric cancer cell epithelial-mesenchymal transition via the PI3K/AKT signaling pathway. Mol Biol Rep 2024; 51:350. [PMID: 38401002 DOI: 10.1007/s11033-024-09312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Peroxisomal membrane protein 4 (PXMP4), a member of the peroxisome membrane protein PXMP2/4 family, participates in the progression of several malignant cancers. Nevertheless, the effect of PXMP4 in the development of gastric cancer (GC) is still unknown. As a result, the focus of this investigation was to elucidate the potential mechanisms of PXMP4 in GC. METHODS AND RESULTS Firstly, bioinformatics analysis results showed higher expression of PXMP4 in GC tissues. Secondly, clinical analysis of 57 patients with GC revealed correlations between PXMP4 expression and differentiation, depth of invasion, as well as TNM stage. Furthermore, individuals with elevated PXMP4 expression in GC exhibited an unfavorable prognosis. In vitro data showed the involvement of knockdown/overexpression of PXMP4 in the proliferation, invasion, and migration of GC cells, and triggering the epithelial-mesenchymal transition (EMT) of GC cells through the activation of the PI3K/AKT signaling pathway. LY294002, a PI3K/AKT inhibitor, inhibited the expression of PI3K/AKT-related proteins but did not affect the expression of PXMP4. CONCLUSIONS These findings indicate that PXMP4 potentially functions as an upstream molecule in the PI3K/AKT pathway, governing the EMT process in GC.
Collapse
Affiliation(s)
- Wei Li
- School of forensic Medicine, Xinxiang Medical University, Xinxiang, 453000, China
| | - Xiangyang Dong
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Zhidan Wan
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Wenxin Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Jingyu Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Yongrun Mi
- School of forensic Medicine, Xinxiang Medical University, Xinxiang, 453000, China
| | - Ruiyuan Li
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
- Sanquan College, Xinxiang Medical University, Xinxiang, 453000, China
| | - Zishan Xu
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Beixi Wang
- The Fourth Clinical College, Xinxiang Medical University, Xinxiang, 453000, China
| | - Na Li
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China.
| | - Guoyang He
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
406
|
Vedovatto S, Oliveira FD, Pereira LC, Scheffel TB, Beckenkamp LR, Bertoni APS, Wink MR, Lenz G. CD73 mitigates ZEB1 expression in papillary thyroid carcinoma. Cell Commun Signal 2024; 22:145. [PMID: 38388432 PMCID: PMC10882796 DOI: 10.1186/s12964-024-01522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND ZEB1, a core transcription factor involved in epithelial-mesenchymal transition (EMT), is associated with aggressive cancer cell behavior, treatment resistance, and poor prognosis across various tumor types. Similarly, the expression and activity of CD73, an ectonucleotidase implicated in adenosine generation, is an important marker of tumor malignancy. Growing evidence suggests that EMT and the adenosinergic pathway are intricately linked and play a pivotal role in cancer development. Therefore, this study focuses on exploring the correlations between CD73 and ZEB1, considering their impact on tumor progression. METHODS We employed CRISPR/Cas9 technology to silence CD73 expression in cell lines derived from papillary thyroid carcinoma. These same cells underwent lentiviral transduction of a reporter of ZEB1 non-coding RNA regulation. We conducted studies on cell migration using scratch assays and analyses of cellular speed and polarity. Additionally, we examined ZEB1 reporter expression through flow cytometry and immunocytochemistry, complemented by Western blot analysis for protein quantification. For further insights, we applied gene signatures representing different EMT states in an RNA-seq expression analysis of papillary thyroid carcinoma samples from The Cancer Genome Atlas. RESULTS Silencing CD73 expression led to a reduction in ZEB1 non-coding RNA regulation reporter expression in a papillary thyroid carcinoma-derived cell line. Additionally, it also mitigated ZEB1 protein expression. Moreover, the expression of CD73 and ZEB1 was correlated with alterations in cell morphology characteristics crucial for cell migration, promoting an increase in cell polarity index and cell migration speed. RNA-seq analysis revealed higher expression of NT5E (CD73) in samples with BRAF mutations, accompanied by a prevalence of partial-EMT/hybrid state signature expression. CONCLUSIONS Collectively, our findings suggest an association between CD73 expression and/or activity and the post-transcriptional regulation of ZEB1 by non-coding RNA, indicating a reduction in its absence. Further investigations are warranted to elucidate the relationship between CD73 and ZEB1, with the potential for targeting them as therapeutic alternatives for cancer treatment in the near future.
Collapse
Affiliation(s)
- Samlai Vedovatto
- Department of Biophysics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Prédio 43431, sala 107, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Dittrich Oliveira
- Department of Biophysics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Prédio 43431, sala 107, UFRGS, Porto Alegre, RS, Brazil
| | - Luiza Cherobini Pereira
- Department of Biophysics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Prédio 43431, sala 107, UFRGS, Porto Alegre, RS, Brazil
| | - Thamiris Becker Scheffel
- Department of Biophysics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Prédio 43431, sala 107, UFRGS, Porto Alegre, RS, Brazil
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Ana Paula Santin Bertoni
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Guido Lenz
- Department of Biophysics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Prédio 43431, sala 107, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
407
|
Su X, Yan L, Si J, Wang Z, Liang C, Peng K, Shen J, Duan S. LINC00319: Unraveling the spectrum from gene regulation to clinical applications in cancer progression. Gene 2024; 896:148044. [PMID: 38042213 DOI: 10.1016/j.gene.2023.148044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
LncRNAs are RNA transcripts that exceed 200 nucleotides in length and do not encode proteins. LINC00319 is a type of lncRNA that is highly expressed in various cancers and is regulated by CCL18 and MYC. High levels of LINC00319 are associated with poorer prognosis and more malignant clinical features in cancer patients. LINC00319 can regulate the expression of downstream genes, including 2 protein-coding genes and 11 miRNAs. It participates in controlling three signaling pathways and various cellular behaviors. LINC00319 and its downstream genes are potential targets for cancer therapy and are associated with common cancer treatments. This article reviews the abnormal expression of LINC00319 in human cancers and related molecular mechanisms, providing clues for further diagnosis and treatment.
Collapse
Affiliation(s)
- Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China; Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Lingtao Yan
- Medical Genetics Center, Department of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jiahua Si
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China; Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China; Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Chenhao Liang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China; Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Kehao Peng
- The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China; Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China; Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
408
|
Zhao S, Wang Q, Zhang X, Ma B, Shi Y, Yin Y, Kong W, Zhang W, Li J, Yang H. MARCH5-mediated downregulation of ACC2 promotes fatty acid oxidation and tumor progression in ovarian cancer. Free Radic Biol Med 2024; 212:464-476. [PMID: 38211832 DOI: 10.1016/j.freeradbiomed.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Lipid metabolic reprogramming has been recognized as a hallmark of human cancer. Acetyl-CoA Carboxylases (ACCs) are key rate-limiting enzymes involved in fatty acid metabolism regulation by catalyzing the carboxylation of acetyl-CoA to malonyl-CoA. Previously, most studies focused on the role of ACC1 in fatty acid metabolism in cancer, while the function of ACC2 remains largely uncharacterized in human cancers, especially in ovarian cancer (OC). Here, we show that ACC2 was significantly downregulated in cancerous tissue of OC, and the downregulation of ACC2 is closely associated with lager tumor size, metastases and worse prognosis in OC patients. Downregulation of ACC2 promoted proliferation and metastasis of OC both in vitro and in vivo by enhancing FAO. Notably, mitochondria-associated ubiquitin ligase (MARCH5) was identified to interact with and downregulate ACC2 by ubiquitination and degradation in OC. Moreover, ACC2 downregulation-enhanced FAO contributed to the progression of OC promoted by MARCH5. In conclusion, our findings demonstrate that MARCH5-mediated downregulation of ACC2 promotes FAO and tumorigenesis in OC, suggesting MARCH5-ACC2 axis as a potent candidate for the treatment and prevention of OC.
Collapse
Affiliation(s)
- Shuhua Zhao
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Qingqiang Wang
- General Department, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xiaohong Zhang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Boyi Ma
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yuan Shi
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yadong Yin
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Weina Kong
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Wei Zhang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Jibin Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China.
| | - Hong Yang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
409
|
Li H, Wang Z, Liang H, Liu X, Liu H, Zhuang Z, Hou J. Depletion of PHLDB2 Suppresses Epithelial-Mesenchymal Transition and Enhances Anti-Tumor Immunity in Head and Neck Squamous Cell Carcinoma. Biomolecules 2024; 14:232. [PMID: 38397469 PMCID: PMC10886581 DOI: 10.3390/biom14020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The role of Pleckstrin homology-like domain family B member 2 (PHLDB2) in the regulation of cell migration has been extensively studied. However, the exploration of PHLDB2 in head and neck squamous cell carcinoma (HNSCC) is still limited in terms of expression, function, and therapeutic potential. In this study, we discovered an upregulation of PHLDB2 expression in HNSCC tissues which was correlated with a negative prognosis in patients with HNSCC. Additionally, we determined that a high level of expression of PHLDB2 is crucial for maintaining cell migration through the regulation of the epithelial-mesenchymal transition (EMT). Furthermore, we demonstrated that the ablation of PHLDB2 in tumor cells inhibited tumorigenicity in a C3H syngeneic tumor-bearing mouse model. Mechanistically, PHLDB2 was found to be involved in the regulation of T cell anti-tumor immunity, primarily by enhancing the activation and infiltration of CD8+ T cells. In light of these findings, PHLDB2 emerges as a promising biomarker and therapeutic target for interventions in HNSCC.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (H.L.); (Z.W.); (X.L.); (H.L.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Ziyi Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (H.L.); (Z.W.); (X.L.); (H.L.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Huiting Liang
- Department of Stomatology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China;
| | - Xiaoyong Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (H.L.); (Z.W.); (X.L.); (H.L.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Haichao Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (H.L.); (Z.W.); (X.L.); (H.L.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Zehang Zhuang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (H.L.); (Z.W.); (X.L.); (H.L.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (H.L.); (Z.W.); (X.L.); (H.L.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
410
|
Strippoli R, Niayesh-Mehr R, Adelipour M, Khosravi A, Cordani M, Zarrabi A, Allameh A. Contribution of Autophagy to Epithelial Mesenchymal Transition Induction during Cancer Progression. Cancers (Basel) 2024; 16:807. [PMID: 38398197 PMCID: PMC10886827 DOI: 10.3390/cancers16040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial Mesenchymal Transition (EMT) is a dedifferentiation process implicated in many physio-pathological conditions including tumor transformation. EMT is regulated by several extracellular mediators and under certain conditions it can be reversible. Autophagy is a conserved catabolic process in which intracellular components such as protein/DNA aggregates and abnormal organelles are degraded in specific lysosomes. In cancer, autophagy plays a controversial role, acting in different conditions as both a tumor suppressor and a tumor-promoting mechanism. Experimental evidence shows that deep interrelations exist between EMT and autophagy-related pathways. Although this interplay has already been analyzed in previous studies, understanding mechanisms and the translational implications of autophagy/EMT need further study. The role of autophagy in EMT is not limited to morphological changes, but activation of autophagy could be important to DNA repair/damage system, cell adhesion molecules, and cell proliferation and differentiation processes. Based on this, both autophagy and EMT and related pathways are now considered as targets for cancer therapy. In this review article, the contribution of autophagy to EMT and progression of cancer is discussed. This article also describes the multiple connections between EMT and autophagy and their implication in cancer treatment.
Collapse
Affiliation(s)
- Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, I.R.C.C.S., 00149 Rome, Italy
| | - Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| | - Maryam Adelipour
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran;
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain;
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| |
Collapse
|
411
|
Cheng X, Wu C, Xu H, Zou R, Li T, Ye S. miR-557 inhibits hepatocellular carcinoma progression through Wnt/β-catenin signaling pathway by targeting RAB10. Aging (Albany NY) 2024; 16:3716-3733. [PMID: 38364252 PMCID: PMC10929814 DOI: 10.18632/aging.205554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/26/2023] [Indexed: 02/18/2024]
Abstract
Accumulating evidence suggests that aberrant miRNAs participate in carcinogenesis and progression of hepatocellular carcinoma (HCC). Abnormal miR-557 expression is reported to interfere with the progression of several human cancers. However, the potential roles of miR-557 in HCC remain largely unknown. In the current study, we found that miR-557 was down-regulated in HCC tissues and cell lines, and was closely related to recurrence and metastasis of HCC. Notably, overexpression of miR-557 inhibited proliferation, migration, invasion, epithelial-to-mesenchymal transition (EMT) progression, blocked cells in G0/G1 phase of MHCC-97H cells in vitro, and suppressed tumor growth in vivo. However, loss of miR-557 facilitated these parameters in Huh7 cells both in vitro and in vivo. Moreover, RAB10 was identified as a direct downstream target of miR-557 through its 3'-UTR. Furthermore, RAB10 re-expression or knockdown partially abolished the effects of miR-557 on proliferation, migration, invasion, and EMT progression of HCC cells. Mechanistically, overexpression of miR-557 suppressed Wnt/β-catenin signaling by inhibiting GSK-3β phosphorylation, increasing β-catenin phosphorylation, and decreasing β-catenin transport to the nucleus, while knockdown of miR-557 activated Wnt/β-catenin signaling. Moreover, the TOP/FOP-Flash reporter assays showed that miR-557 overexpression or knockdown significantly suppressed or activated Wnt signaling activity, respectively. Additionally, low expression of miR-557 and high expression of RAB10 in HCC tissues was closely associated with tumor size, degree of differentiation, TNM stage and poor prognosis in HCC patients. Taken together, these results demonstrate that miR-557 blocks the progression of HCC via the Wnt/β-catenin pathway by targeting RAB10.
Collapse
Affiliation(s)
- Xiaoye Cheng
- Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Can Wu
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Haocheng Xu
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ruixiang Zou
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Taiyuan Li
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Shanping Ye
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
412
|
Qu J, Lin L, Fu G, Zheng M, Geng J, Sun X, Xing L. The analysis of multiple omics and examination of pathological images revealed the prognostic and therapeutic significances of CD93 in lung squamous cell carcinoma. Life Sci 2024; 339:122422. [PMID: 38224815 DOI: 10.1016/j.lfs.2024.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
As a potent pro-angiogenic factor, the role of CD93 in the prognosis and therapeutic outcomes of lung squamous cell carcinoma (LUSC) merits exploration. In this study, we systematically collected transcriptomic, genomic, and clinical data from various public databases, as well as pathological images from hospital-operated patients. Employing statistical analysis software like R (Version 4.2.2) and GraphPad (Version 8.0), we conducted comprehensive analyses of multi-omics data. The results revealed elevated CD93 expression in LUSC tissues, closely associated with various cancer-related pathways. High CD93 expression indicated advanced clinical stage and poorer prognosis. Furthermore, CD93 contributed to resistance against chemotherapy and immunotherapy by enhancing tumor cell stemness, reducing immune cell infiltration, and inducing T cell exhaustion. Patients with low CD93 expression exhibited higher response rates to both chemotherapy and immunotherapy. Immunohistochemistry validated the significance of CD93 in LUSC. CD93 emerges as a biomarker signaling unfavorable prognosis and influencing therapeutic outcomes, suggesting a potential LUSC treatment avenue.
Collapse
Affiliation(s)
- Jialin Qu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan 250117, Shandong, China
| | - Li Lin
- Department of Respiratory Medicine, Shandong Provincial Chest Hospital, Shandong Public Health Clinical Center, Jinan 250117, Shandong, China
| | - Guangming Fu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Mei Zheng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan 250117, Shandong, China
| | - Jiaxiao Geng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan 250117, Shandong, China
| | - Xiaorong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan 250117, Shandong, China.
| |
Collapse
|
413
|
Tang Y, Liu Y, Wang X, Guo H, Chen L, Hu G, Cui Y, Liang S, Zuo J, Luo Z, Chen X, Wang X. OLFM2 promotes epithelial-mesenchymal transition, migration, and invasion in colorectal cancer through the TGF-β/Smad signaling pathway. BMC Cancer 2024; 24:204. [PMID: 38350902 PMCID: PMC10865519 DOI: 10.1186/s12885-024-11925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is an aggressive tumor of the gastrointestinal tract, which is a major public health concern worldwide. Despite numerous studies, the precise mechanism of metastasis behind its progression remains elusive. As a member of the containing olfactomedin domains protein family, olfactomedin 2 (OLFM2) may play a role in tumor metastasis. It is highly expressed in colorectal cancer, and its role in the metastasis of CRC is still unclear. As such, this study seeks to explore the function of OLFM2 on CRC metastasis and its potential mechanisms. METHODS Real-time fluorescence quantitative PCR and western blotting were used to study the expression of OLFM2 in human CRC and adjacent normal tissues. Knockdown and overexpression OLFM2 cell lines were constructed using siRNA and overexpression plasmids to explore the role of OLFM2 in the migration and invasion of CRC through transwell, and wound healing experiments. Finally, the expression of epithelial-mesenchymal transition (EMT) -related proteins and TGF-β/Smad signaling pathway-related proteins was investigated using western blotting. RESULTS In this study, we observed an elevation of OLFM2 expression levels in CRC tissues. To investigate the function of OLFM2, we overexpressed and knocked down OLFM2. We discovered that OLFM2 knockdown inhibited migration and invasion of colon cancer cells. Furthermore, E-cadherin expression increased while N-cadherin and Vimentin expression were opposite. It is no surprise that overexpressing OLFM2 had the opposite effects. We also identified that OLFM2 knockdown resulted in reduced TGF-βR1 and downstream molecules p-Smad2 and p-Smad3, which are related to the TGF-β / Smad pathway. In contrast, overexpressing OLFM2 significantly boosted their expression levels. CONCLUSION The protein OLFM2 has been identified as a crucial determinant in the progression of CRC. Its mechanism of action involves the facilitation of EMT through the TGF-β/Smad signaling pathway. Given its pivotal role in CRC, OLFM2 has emerged as a promising diagnostic and therapeutic target for the disease. These results indicate the potential of OLFM2 as a valuable biomarker for CRC diagnosis and treatment and highlight the need for further research exploring its clinical significance.
Collapse
Affiliation(s)
- Yong Tang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Gastroenterology, Ziyang Yanjiang People's Hospital, Ziyang, China
| | - Yi Liu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaobo Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Haiyang Guo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lin Chen
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Guangbing Hu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yutong Cui
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shiqi Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ji Zuo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zichen Luo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xinrui Chen
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianfei Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
- Digestive Endoscopy Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
414
|
Lin M, Zhang M, Yi B, Chen J, Wen S, Chen R, Chen T, Li Z. Emerging role of SENP1 in tumorigenesis and cancer therapy. Front Pharmacol 2024; 15:1354323. [PMID: 38389923 PMCID: PMC10882314 DOI: 10.3389/fphar.2024.1354323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Acting as a cysteine protease, small ubiquitin-like modifier (SUMO)/sentrin-specific protease1 (SENP1) involved in multiple physiological and pathological processes through processing the precursor SUMO protein into mature form and deSUMOylating target protein. It has been reported that SENP1 is highly expressed and plays a carcinogenic role in various cancers. In this paper, we mainly explore the function and mechanism of SENP1 in tumor cell proliferation, apoptosis, invasion, metastasis, stemness, angiogenesis, metabolism and drug resistance. Furthermore, the research progress of SENP1 inhibitors for cancer treatment is introduced. This study aims to provide theoretical references for cancer therapy by targeting SENP1.
Collapse
Affiliation(s)
- Min Lin
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Man Zhang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Bei Yi
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinchi Chen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Siqi Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ruiqi Chen
- Department of Gastrointestinal Surgery, Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tianyu Chen
- Department of Gastrointestinal Surgery, Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhao Li
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
415
|
Yin SY, Liu YJ, Li JP, Liu J. Overexpression of FERM Domain Containing Kindlin 2 (FERMT2) in Fibroblasts Correlates with EMT and Immunosuppression in Gastric Cancer. Int J Genomics 2024; 2024:4123737. [PMID: 38352691 PMCID: PMC10864055 DOI: 10.1155/2024/4123737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
The mesenchymal feature, dominated by epithelial mesenchymal transition (EMT) and stromal cell activation, is one of the main reasons for the aggressive nature of tumors, yet it remains poorly understood. In gastric cancer (GC), the fermitin family homolog-2 (FERMT2) is involved in macrophage signaling, promoting migration and invasion. However, the function of FERMT2 in fibroblasts remains unclear. Here, we demonstrated that downregulation of FERMT2 expression can block EMT in GC cells by inhibiting fibroblast activation in vitro. Furthermore, we found that, in addition to the known pathways, fibroblast-derived FERMT2 promotes M2-like macrophage growth and that in human GC samples, there is a strong positive correlation between FERMT2 and CD163 and CD206 levels. Notably, high FERMT2 expression was significantly associated with poor clinical outcomes and was upregulated in patients with advanced disease. Taken together, our results provide evidence that the fibroblast-FERMT2-EMT-M2 macrophage axis plays a critical role in the GC mesenchymal phenotype and may be a promising target for the treatment of advanced GC.
Collapse
Affiliation(s)
- Sheng-yan Yin
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Second Chinese Medicine Hospital, Nanjing, Jiangsu 210029, China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Yuan-jie Liu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Second Chinese Medicine Hospital, Nanjing, Jiangsu 210029, China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Jie-pin Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jian Liu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Second Chinese Medicine Hospital, Nanjing, Jiangsu 210029, China
| |
Collapse
|
416
|
Zhang Y, Xiao B, Liu Y, Wu S, Xiang Q, Xiao Y, Zhao J, Yuan R, Xie K, Li L. Roles of PPAR activation in cancer therapeutic resistance: Implications for combination therapy and drug development. Eur J Pharmacol 2024; 964:176304. [PMID: 38142851 DOI: 10.1016/j.ejphar.2023.176304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Therapeutic resistance is a major obstacle to successful treatment or effective containment of cancer. Peroxisome proliferator-activated receptors (PPARs) play an essential role in regulating energy homeostasis and determining cell fate. Despite of the pleiotropic roles of PPARs in cancer, numerous studies have suggested their intricate relationship with therapeutic resistance in cancer. In this review, we provided an overview of the roles of excessively activated PPARs in promoting resistance to modern anti-cancer treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. The mechanisms through which activated PPARs contribute to therapeutic resistance in most cases include metabolic reprogramming, anti-oxidant defense, anti-apoptosis signaling, proliferation-promoting pathways, and induction of an immunosuppressive tumor microenvironment. In addition, we discussed the mechanisms through which activated PPARs lead to multidrug resistance in cancer, including drug efflux, epithelial-to-mesenchymal transition, and acquisition and maintenance of the cancer stem cell phenotype. Preliminary studies investigating the effect of combination therapies with PPAR antagonists have suggested the potential of these antagonists in reversing resistance and facilitating sustained cancer management. These findings will provide a valuable reference for further research on and clinical translation of PPAR-targeting treatment strategies.
Collapse
Affiliation(s)
- Yanxia Zhang
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China; Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yunduo Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yuhan Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Junxiu Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Keping Xie
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China.
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
417
|
Yang W, Lin L, Lu T, Yu H, Zhang S. Identification of EMT-associated prognostic features among grade II/III gliomas. Sci Rep 2024; 14:2822. [PMID: 38307919 PMCID: PMC10837424 DOI: 10.1038/s41598-024-53399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
Grade II/III gliomas have a highly heterogeneous clinical course. Identifying prognostic biomarkers in grade II/III gliomas is essential to guide clinical management. We explored epithelial-mesenchymal transition (EMT)-related genes to uncover prognostic features in grade II/III gliomas. Consensus cluster analysis of 200 EMT-related genes classified 512 grade II/III glioma samples into two molecular subtypes, C1 and C2. The C1 subtype had significantly worse overall survival compared to the C2 subtype. Pathway analysis revealed C1 tumors were highly associated with tumor progression pathways and demonstrated higher immune cell infiltration scores. Differential expression analysis identified four genes (ACTN1, AQP1, LAMC3, NRM) that discriminated the two subtypes. Validation in external datasets confirmed that high expression of this four-gene signature predicted poor prognosis in grade II/III gliomas. Cellular experiments showed ACTN1, AQP1 and NRM promoted glioma cell proliferation, migration and invasion. We examined correlations of the signature genes with T cell exhaustion markers and found ACTN1 expression had the strongest association. Immunohistochemistry analysis further demonstrated that ACTN1 protein expression in grade II/III gliomas was negatively correlated with patient overall survival. In summary, our study identified a concise four-gene signature that robustly predicts grade II/III gliomas prognosis across multiple datasets. The signature provides clinical relevance in distinguishing more aggressive grade II/III glioma tumors. Targeting the ACTN1, AQP1 and NRM genes may offer new therapeutic opportunities to improve grade II/III gliomas patient outcomes.
Collapse
Affiliation(s)
- Wenyong Yang
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Liangbin Lin
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Tianqi Lu
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hui Yu
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Sunfu Zhang
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China.
| |
Collapse
|
418
|
Chen Y, Yang Y, Wang N, Liu R, Wu Q, Pei H, Li W. β-Sitosterol suppresses hepatocellular carcinoma growth and metastasis via FOXM1-regulated Wnt/β-catenin pathway. J Cell Mol Med 2024; 28:e18072. [PMID: 38063438 PMCID: PMC10844700 DOI: 10.1111/jcmm.18072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 02/08/2024] Open
Abstract
β-Sitosterol is a natural compound with demonstrated anti-cancer properties against various cancers. However, its effects on hepatocellular carcinoma (HCC) and the underlying mechanisms are not well understood. This study aims to investigate the impact of β-sitosterol on HCC. In this study, we investigated the effects of β-sitosterol on HCC tumour growth and metastasis using a xenograft mouse model and a range of molecular analyses, including bioinformatics, real-time PCR, western blotting, lentivirus transfection, CCK8, scratch and transwell assays. The results found that β-sitosterol significantly inhibits HepG2 cell proliferation, migration and invasion both in vitro and in vivo. Bioinformatics analysis identifies forkhead box M1 (FOXM1) as a potential target for β-sitosterol in HCC treatment. FOXM1 is upregulated in HCC tissues and cell lines, correlating with poor prognosis in patients. β-Sitosterol downregulates FOXM1 expression in vitro and in vivo. FOXM1 overexpression mitigates β-sitosterol's inhibitory effects on HepG2 cells. Additionally, β-sitosterol suppresses epithelial-mesenchymal transition (EMT) in HepG2 cells, while FOXM1 overexpression promotes EMT. Mechanistically, β-sitosterol inhibits Wnt/β-catenin signalling by downregulating FOXM1, regulating target gene transcription related to HepG2 cell proliferation and metastasis. β-Sitosterol shows promising potential as a therapeutic candidate for inhibiting HCC growth and metastasis through FOXM1 downregulation and Wnt/β-catenin signalling inhibition.
Collapse
Affiliation(s)
- Yuankun Chen
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Yijun Yang
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
| | - Nengyi Wang
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
| | - Rui Liu
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
| | - Qiuping Wu
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
| | - Hua Pei
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Wenting Li
- Department of Infectious and Tropical DiseasesThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Key Laboratory of Tropical Translational Medicine of Ministry of HealthHainan Medical UniversityHaikouHainanChina
- Department of Infectious DiseasesThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
419
|
Li M, Wang X, Chen X, Hong J, Du Y, Song D. GK921, a transglutaminase inhibitor, strengthens the antitumor effect of cisplatin on pancreatic cancer cells by inhibiting epithelial-to-mesenchymal transition. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166925. [PMID: 38084873 DOI: 10.1016/j.bbadis.2023.166925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 12/30/2023]
Abstract
Pancreatic adenocarcinoma (PAAD), a common digestive malignant tumor, presents high mortality rates and limited treatment methods. Currently, chemotherapy remains the main therapy method for patients with PAAD. As a classical chemotherapy drug, cisplatin (DDP) is limited by dose-related toxicity in patients with PAAD. In this study, we demonstrated that TGM2 may be a treatment and prognosis marker in pancreatic cancer patients. Co-treatment of low dose of DDP and GK921, a transglutaminase (TGM2) inhibitor, is capable of synergistically inhibiting the PAAD cell viability and proliferation in vitro and in vivo. Based on in vitro study, GK921 inhibited the epithelial-to-mesenchymal transition (EMT) induced by TGM2 as well as aggravated cell cycle arrest and apoptosis resulted from DDP, making pancreatic cancer cells more sensible to DDP. Our results showed that GK921 increased the protein levels regarding E-cadherin as well as decreased the protein level regarding Snail2, N-cadherin, which indicated that GK921 inhibited EMT in pancreatic cancer cells. Snail2 overexpression inhibited GK921/DDP-induced cell apoptosis, as well as mitigated the GK921/DDP-caused cell death and the EMT inhibition. In vivo studies also found GK921/DDP combination can further inhibit the growth of PAAD without significantly side effects. To sum up, we showed that GK921 increased PAAD cells sensitivity to DDP via inhibiting EMT. As revealed, DDP/GK921 co-treatment could promisingly serve for treating PAAD patients.
Collapse
Affiliation(s)
- Mengxin Li
- Department of Breast Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Xuanzhong Wang
- Department of Radiation Oncology, First Hospital of Jilin University, Changchun, China
| | - Xuyang Chen
- School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Jinghui Hong
- Department of Breast Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Ye Du
- Department of Breast Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Dong Song
- Department of Breast Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
420
|
Wang W, Zhou Y, Li W, Quan C, Li Y. Claudins and hepatocellular carcinoma. Biomed Pharmacother 2024; 171:116109. [PMID: 38185042 DOI: 10.1016/j.biopha.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has a high incidence and dismal prognosis, making it a significant global health burden. To change this, the development of new therapeutic strategies is imminent. The claudin (CLDN) family, as key components of tight junctions (TJs), plays an important role in the initiation and development of cancer. Dysregulated expression of CLDNs leads to loss of intercellular adhesion and aberrant cell signaling, which are closely related to cancer cell invasion, migration, and epithelial-mesenchymal transition (EMT). CLDN1, CLDN3, CLDN4, CLDN5, CLDN6, CLDN7, CLDN9, CLDN10, CLDN11, CLDN14, and CLDN17 are aberrantly expressed in HCC, which drives the progression of the disease. Consequently, they have tremendous potential as prognostic indicators and therapeutic targets. This article summarizes the aberrant expression, molecular mechanisms, and clinical application studies of different subtypes of CLDNs in HCC, with a particular emphasis on CLDN1.
Collapse
Affiliation(s)
- Wentao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The Second Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Yi Zhou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Wei Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China.
| |
Collapse
|
421
|
Ding J, Gao W, Yang H, Duan L, Sun D, Liu L, Qu X, Yu H, Xu B, Zhao S, Wang L, Chai J. KBTBD2 promotes proliferation and migration of gastric cancer via activating EGFR signaling pathway. Pathol Res Pract 2024; 254:155095. [PMID: 38237399 DOI: 10.1016/j.prp.2024.155095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/22/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND To explore the role of Kelch repeat and BTB (POZ) domain containing 2 (KBTBD2) in Gastric cancer(GC) via studying the level of KBTBD2 and its impact on GC cells and mice model. METHODS Expression of KBTBD2 in GC was analyzed by analysis of TCGA data, Western blotting and Real-time quantitative polymerasechain reaction (RT-qPCR). The role of KBTBD2 on GC cells proliferation, viability, invasion, migration and apoptosis in vitro were assessed by using western blotting,RT-qPCR,CCK-8, EDU, Colony Formation Assay, Wound healing assay, Transwell, JC-1 mitochondrial membrane potential and flow cytometry assay, respectively. And levels of Bcl-2, BAX, PARP, E-cadherin, Vimentin, N-cadherin, EGFR, SOS1, NROS, BRAF,ERK1/2 and GAPDH were tested by western blotting. Relation of KBTBD2 and epidermal growth factor receptor (EGFR) was predicted by KEGG analysis. KBTBD2 gene GSEA enrichment was analyzed by using R language. Moreover, CCK-8, western blotting, and wound healing assays were used to verify the correlation of KBTBD2 and EGFR pathway. Finally, tumor growth in mice was also investigated. Cells proliferation, migration and apoptosis were detected by Ki67 staining, Tunnel staining and mouse lung metastasis model. RESULTS KBTBD2 was highly expressed in GC, and was related to poor prognosis. Moreover, silencing KBTBD2 suppressed GC cell proliferation, migration and invasion, while also inhibited the EMT, but promoted apoptosis. At the same time, KBTBD2 overexpression showed opposite results. In addition, KBTBD2 regulated the EGFR pathway. Further, silencing KBTBD2 inhibited tumor growth, cell proliferation and migration but promoted apoptosis in vivo, and KBTBD2 overexpression showed opposite results. CONCLUSIONS KBTBD2 was highly expressed in GC. KBTBD2 promotes the progress of GC by activating EGFR signal pathway. KBTBD2 may thus be a novel target for treating GC.
Collapse
Affiliation(s)
- Jishuang Ding
- Department of Gastroenterological Surgery, Shanxian Central Hospital, Heze, Shandong, China; Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Gao
- Department of Science and Technology Report Center, Shandong Institute of Scientific and Technical Information, China
| | - Haiying Yang
- Department of Orthopedics, Binzhou People's Hospital Affiliated to Shandong First Medical University,Binzhou, Shandong, China
| | - Lei Duan
- Department of Pediatrics, Boxing County People's Hospital, Binzhou, Shandong, China
| | - Dong Sun
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Luguang Liu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xianlin Qu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hang Yu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Botao Xu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Siwei Zhao
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Longgang Wang
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Jie Chai
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
422
|
Hong L, Chen M, Huang M, Chen W, Abudukeremu X, She F, Chen Y. FOXA2 suppresses gallbladder carcinoma cell migration, invasion, and epithelial-mesenchymal transition by targeting SERPINB5. ENVIRONMENTAL TOXICOLOGY 2024; 39:708-722. [PMID: 37665156 DOI: 10.1002/tox.23953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Gallbladder cancer (GBC), a highly malignant gastrointestinal tumor, lacks effective therapies. Foxhead box A2 (FOXA2) is a tumor suppressor that is poorly expressed in various human malignancies. This study aimed to ascertain FOXA2 expression in GBC and its relevance to tumor metastasis, and to elucidate its regulatory mechanism with epithelial-mesenchymal transition (EMT) as an entry point, in the hope of providing a potential therapeutic target for GBC. METHODS FOXA2 expression in GBC tissues was first detected using immunohistochemistry (IHC), followed by correlation analysis with clinicopathological characteristics and survival prognosis. Subsequently, the effects of FOXA2 on GBC cell migration and invasion, as well as EMT induction, were evaluated by scratch, Transwell, RT-PCR, and Western blot assays, together with animal experimentation. Ultimately, mRNA sequencing was carried out to identify the key downstream target genes of FOXA2 in controlling the EMT process in GBC cells, and dual-luciferase reporter and chromatin immunoprecipitation assays were used to determine its regulatory mechanism. RESULTS FOXA2 was underexpressed in GBC tissues and inversely correlated with tumor node metastasis stage, lymph node metastasis, and poor patient prognosis. FOXA2 exerts suppressive effects on EMT and metastasis of GBC in vivo and in vitro. FOXA2 can impede GBC cell migratory and invasive functions and EMT by positively mediating serine protein kinase inhibitor B5 (SERPINB5) expression. CONCLUSION FOXA2 directly binds to the SERPINB5 promoter region to stimulate its transcription, thereby modulating the migration and invasion behaviors of GBC cells as well as the EMT process, which might be an effective therapeutic target against GBC.
Collapse
Affiliation(s)
- Lingju Hong
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Mingyuan Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Maotuan Huang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Weihong Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiahenazi Abudukeremu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yanling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
423
|
Mukerjee N, Nag S, Bhattacharya B, Alexiou A, Mirgh D, Mukherjee D, Adhikari MD, Anand K, Muthusamy R, Gorai S, Thorat N. Clinical impact of epithelial–mesenchymal transition for cancer therapy. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe epithelial–mesenchymal transition (EMT) represents a pivotal frontier in oncology, playing a central role in the metastatic cascade of cancer—a leading global health challenge. This comprehensive review delves into the complexities of EMT, a process where cancer cells gain exceptional mobility, facilitating their invasion into distant organs and the establishment of secondary malignancies. We thoroughly examine the myriad of factors influencing EMT, encompassing transcription factors, signalling pathways, metabolic alterations, microRNAs, long non‐coding RNAs, epigenetic changes, exosomal interactions and the intricate dynamics of the tumour microenvironment. Particularly, the review emphasises the advanced stages of EMT, crucial for the development of highly aggressive cancer phenotypes. During this phase, cancer cells penetrate the vascular barrier and exploit the bloodstream to propagate life‐threatening metastases through the mesenchymal–epithelial transition. We also explore EMT's significant role in fostering tumour dormancy, senescence, the emergence of cancer stem cells and the formidable challenge of therapeutic resistance. Our review transcends a mere inventory of EMT‐inducing elements; it critically assesses the current state of EMT‐focused clinical trials, revealing both the hurdles and significant breakthroughs. Highlighting the potential of EMT research, we project its transformative impact on the future of cancer therapy. This exploration is aimed at paving the way towards an era of effectively managing this relentless disease, positioning EMT at the forefront of innovative cancer research strategies.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Department of Microbiology West Bengal State University, Barasat Kolkata India
| | - Sagnik Nag
- Department of Bio‐Sciences School of Biosciences & Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Bikramjit Bhattacharya
- Department of Applied Microbiology School of Biosciences and Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Athanasios Alexiou
- Department of Science and Engineering Novel Global Community Educational Foundation Hebersham New South Wales Australia
| | - Divya Mirgh
- Vaccine and Immunotherapy Canter Massachusetts General Hospital Boston Massachusetts USA
| | | | - Manab Deb Adhikari
- Department of Biotechnology University of North Bengal Darjeeling West Bengal India
| | - Krishnan Anand
- Department of Chemical Pathology School of Pathology Faculty of Health Sciences University of the Free State Bloemfontein South Africa
| | - Raman Muthusamy
- Center for Global Health Research Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| | | | - Nanasaheb Thorat
- Limerick Digital Cancer Research Centre and Department of Physics Bernal Institute University of Limerick, Castletroy Limerick Ireland
| |
Collapse
|
424
|
Abstract
Epithelial-to-mesenchymal transition (EMT), a biological phenomenon of cellular plasticity initially reported in embryonic development, has been increasingly recognized for its importance in cancer progression and metastasis. Despite tremendous progress being made in the past 2 decades in our understanding of the molecular mechanism and functional importance of EMT in cancer, there are several mysteries around EMT that remain unresolved. In this Unsolved Mystery, we focus on the variety of EMT types in metastasis, cooperative and collective EMT behaviors, spatiotemporal characterization of EMT, and strategies of therapeutically targeting EMT. We also highlight new technical advances that will facilitate the efforts to elucidate the unsolved mysteries of EMT in metastasis.
Collapse
Affiliation(s)
- Toni Celià-Terrassa
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey, United States of America
| |
Collapse
|
425
|
Guo Z, Zhao Y, Xu M, Zhao L, Wang X. Natural killer cell-based signature: Prognostic analysis in head and neck squamous cell carcinoma. J Gene Med 2024; 26:e3671. [PMID: 38384136 DOI: 10.1002/jgm.3671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/12/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSC) is a challenging cancer with significant clinical implications. Natural killer (NK) cells have emerged as important players in tumor immunosurveillance, yet their role and potential as prognostic biomarkers in HNSC remain unclear. METHODS Quantitative analysis using multiple algorithms identified FCRL1, KIR3DL2 and ZNF541 as molecules significantly associated with local NK cell infiltration and patient survival. A prognostic model based on these molecules demonstrated robust predictive performance. RESULTS Analysis of high- and low-risk patient groups revealed distinct differences in the tumor microenvironment, indicating an inhibitory immune microenvironment in high-risk patients. Notably, low-risk patients exhibited potential sensitivity to immunotherapy and showed favorable responses to specific drugs such as axitinib, methotrexate, rapamycin and vorinostat. NK cells, important effectors of the innate immune response, were found to play a crucial role in HNSC immunity. The present study provides valuable insights into the correlation between FCRL1, KIR3DL2, ZNF541 and NK cell infiltration, paving the way for future investigations into their roles in HNSC. Activation of NOTCH signaling, MYC targets, DNA repair, E2F targets, epithelial-mesenchymal transition, G2M checkpoint and mitotic spindle pathways in high-risk patients suggests their involvement in disease progression and poor prognosis. CONCLUSIONS The present study reveals the significance of NK cells in HNSC and their potential as prognostic biomarkers. The CFKZ score offers a promising approach for predicting patient outcomes and guiding personalized treatment decisions in HNSC. These findings contribute to our understanding of HNSC immunobiology and hold implications for precision medicine in HNSC management.
Collapse
Affiliation(s)
- Zizhao Guo
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxia Zhao
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Xu
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Long Zhao
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolei Wang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
426
|
Luo ZY, Tian Q, Cheng NM, Liu WH, Yang Y, Chen W, Zhang XZ, Zheng XY, Chen MS, Zhuang QY, Zhao BX, Liu CS, Liu XL, Li Q, Wang YC. Pien Tze Huang Inhibits Migration and Invasion of Hepatocellular Carcinoma Cells by Repressing PDGFRB/YAP/CCN2 Axis Activity. Chin J Integr Med 2024; 30:115-124. [PMID: 35947230 DOI: 10.1007/s11655-022-3533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the effects of Pien Tze Huang (PZH) on the migration and invasion of HCC cells and underlying molecular mechanism. METHODS Cell counting kit-8 (CCK-8) was applied to evaluate the cell viabilities of SMMC-7721, SK-Hep-1, C3A and HL-7702 (6 × 103 cells/well) co-incubated with different concentrations of PZH (0, 0.2, 0.4, 0.6, 0.8 mg/mL) for 24 h. Transwell, wound healing assay, CCK-8 and Annexin V-FITC/PI staining were conducted to investigate the effects of PZH on the migration, invasion, proliferation and apoptosis of SK-Hep-1 and SMMC-7721 cells (650 µ g/mL for SK-Hep-1 cells and 330 µ g/mL for SMMC-7721 cells), respectively. In vivo, lung metastasis mouse model constructed by tail vein injection of HCC cells was used for evaluating the anti-metastasis function of PZH. SK-Hep-1 cells (106 cells/200 µ L per mice) were injected into B-NDG mice via tail vein. Totally 8 mice were randomly divided into PZH and control groups, 4 mice in each group. After 2-d inoculation, mice in the PZH group were administered with PZH (250 mg/kg, daily) and mice in the control group received only vehicle (PBS) from the 2nd day after xenograft to day 17. Transcriptome analysis based on RNA-seq was subsequently used for deciphering anti-tumor mechanism of PZH. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were applied to verify RNA-seq results. Luciferase reporter assay was performed to examine the transcriptional activity of yes-associated protein (YAP). RESULTS PZH treatment significantly inhibited the migration, invasion, proliferation and promoted the apoptosis of HCC cells in vitro and in vivo (P<0.01). Transcriptome analysis indicated that Hippo signaling pathway was associated with anti-metastasis function of PZH. Mechanical study showed PZH significantly inhibited the expressions of platelet derived growth factor receptor beta (PDGFRB), YAP, connective tissue growth factor (CCN2), N-cadherin, vimentin and matrix metallopeptidase 2 (MMP2, P<0.01). Meanwhile, the phosphorylation of YAP was also enhanced by PZH treatment in vitro and in vivo. Furthermore, PZH played roles in inhibiting the transcriptional activity of YAP. CONCLUSION PZH restrained migration, invasion and epithelial-mesenchymal transition of HCC cells through repressing PDGFRB/YAP/CCN2 axis.
Collapse
Affiliation(s)
- Zhi-Yi Luo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian Province, 363099, China
| | - Qi Tian
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
- College of Biological Science and Engineering and Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, China
| | - Niang-Mei Cheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
- College of Biological Science and Engineering and Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, China
| | - Wen-Han Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Ye Yang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
- College of Biological Science and Engineering and Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, China
| | - Wei Chen
- Department of Internal Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Xiang-Zhi Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
- College of Biological Science and Engineering and Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, China
| | - Xiao-Yuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
- College of Biological Science and Engineering and Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, China
| | - Ming-Sheng Chen
- Department of Internal Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Qiu-Yu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
- College of Biological Science and Engineering and Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, China
| | - Bi-Xing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
- College of Biological Science and Engineering and Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, China
| | - Cong-Sheng Liu
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian Province, 363099, China
| | - Xiao-Long Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
- College of Biological Science and Engineering and Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, China
| | - Qin Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China.
- College of Biological Science and Engineering and Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, China.
- Department of Internal Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China.
| | - Ying-Chao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
- College of Biological Science and Engineering and Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
427
|
Pu X, Zhang C, Ding G, Gu H, Lv Y, Shen T, Pang T, Cao L, Jia S. Diagnostic plasma small extracellular vesicles miRNA signatures for pancreatic cancer using machine learning methods. Transl Oncol 2024; 40:101847. [PMID: 38035445 PMCID: PMC10730862 DOI: 10.1016/j.tranon.2023.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Identifying biomarkers may lead to easier detection and a better understanding of pathogenesis of pancreatic ductal adenocarcinoma (PDAC). METHODS Plasma small extracellular vesicles (sEV) from 106 participants, including 20 healthy controls (HC), 12 chronic pancreatitis (CP) patients, 12 benign pancreatic tumour (BPT) patients, and 58 PDAC patients, were profiled for microRNA (miRNA) sequencing. Three machine learning methods were applied to establish and evaluate the diagnostic model. RESULTS The plasma sEV miRNA diagnostic signature (d-signature) selected using the three machine learning methods could distinguish PDAC patients from non-PDAC individuals, HC, and benign pancreatic disease (BPD, CP plus BPT) both in training and validation cohort. Combining the d-signature with carbohydrate antigen 19-9 (CA19-9) performed better than with each model alone. Plasma sEV miR-664a-3p was selected by all methods and used to predict PDAC diagnosis with high accuracy combined with CA19-9. Plasma sEV miR-664a-3p was significantly positively associated with the presence of vascular invasion, lower surgery ratio, and poor differentiation. MiR-664a-3p was mainly distributed in the PDAC cancer stroma, including fibers and vessels, and was accompanied by VEGFA expression. Overexpression of miR-664a-3p could promote the epithelial-mesenchymal transition (EMT) and angiogenesis. CONCLUSION In conclusion, our study demonstrated the potential utility of the sEV-miRNA d-signature in the diagnosis of PDAC via machine learning methods. A novel sEV biomarker, miR-664a-3p, was identified for the diagnosis of PDAC. It can also potentially promote angiogenesis and metastasis, provide insight into PDAC pathogenesis, and reveal novel regulators of this disease.
Collapse
Affiliation(s)
- Xiaofan Pu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaolei Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongpeng Gu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Lv
- Department of Emergency Medicine, Sir Run Run Shaw Hospital Xiasha Campus, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Shen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianshu Pang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China.
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
428
|
Zhao YC, Wang TJ, Cui J, She LZ, Zhang RF, Zhang CH. The role of SLC39A4 in the prognosis, immune microenvironment, and contribution to malignant behavior in vivo and in vitro of cervical cancer. Transl Oncol 2024; 40:101839. [PMID: 38029507 PMCID: PMC10698533 DOI: 10.1016/j.tranon.2023.101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) are becoming more common in younger women. Solute carrier family 39 member 4 (SLC39A4) produces a zinc ion transporter involved in metastasis and invasion of tumors. METHODS The Cancer Genome Atlas RNA-seq data was used to investigate the expression of SLC39A4 and its prognostic potential. The assessment of the effect of SLC39A4 on cell growth and migration in CESC was conducted using MTT, colony formation, and Transwell assays. SLC39A4 was studied in vivo using a xenograft mouse model, and its functional involvement in oncogenesis was investigated by identifying the associated differentially expressed genes (DEGs). We evaluated the relationships among SLC39A4 levels, chemosensitivity, radiosensitivity and immune infiltration. RESULTS SLC39A4 was upregulated in CESC samples, and individuals with greater SLC39A4 mRNA expression had shorter overall survival. SLC39A4 has been identified to be a regulator of tumor cell metastasis and proliferation in vivo and in vitro, with an area under the curve of 0.874 for diagnosing CESC. In total, 948 DEGs were discovered to be enriched in key CESC progression-related signaling pathways. Additionally, intratumoral immune checkpoint and infiltration activity were associated with SLC39A4 expression. High SLC39A4 expression exhibited poor chemosensitivity and radiosensitivity profiles. CONCLUSION In conclusion, SLC39A4 is a key regulator of CESC development, prognosis, and the composition of the tumor immune microenvironment. SLC39A4 could be used as a prognostic or diagnostic screening tool and as a potential target for CESC treatment.
Collapse
Affiliation(s)
- Yue-Chen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China
| | - Tie-Jun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China
| | - Jie Cui
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China
| | - Li-Zhen She
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China
| | - Rui-Feng Zhang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China; Department of Internal Medicin-1, Jilin Cancer Hospital, Changchun, Jilin 130103, PR China
| | - Chao-He Zhang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China.
| |
Collapse
|
429
|
Fernandes S, Cassani M, Cavalieri F, Forte G, Caruso F. Emerging Strategies for Immunotherapy of Solid Tumors Using Lipid-Based Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305769. [PMID: 38054651 PMCID: PMC10885677 DOI: 10.1002/advs.202305769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/09/2023] [Indexed: 12/07/2023]
Abstract
The application of lipid-based nanoparticles for COVID-19 vaccines and transthyretin-mediated amyloidosis treatment have highlighted their potential for translation to cancer therapy. However, their use in delivering drugs to solid tumors is limited by ineffective targeting, heterogeneous organ distribution, systemic inflammatory responses, and insufficient drug accumulation at the tumor. Instead, the use of lipid-based nanoparticles to remotely activate immune system responses is an emerging effective strategy. Despite this approach showing potential for treating hematological cancers, its application to treat solid tumors is hampered by the selection of eligible targets, tumor heterogeneity, and ineffective penetration of activated T cells within the tumor. Notwithstanding, the use of lipid-based nanoparticles for immunotherapy is projected to revolutionize cancer therapy, with the ultimate goal of rendering cancer a chronic disease. However, the translational success is likely to depend on the use of predictive tumor models in preclinical studies, simulating the complexity of the tumor microenvironment (e.g., the fibrotic extracellular matrix that impairs therapeutic outcomes) and stimulating tumor progression. This review compiles recent advances in the field of antitumor lipid-based nanoparticles and highlights emerging therapeutic approaches (e.g., mechanotherapy) to modulate tumor stiffness and improve T cell infiltration, and the use of organoids to better guide therapeutic outcomes.
Collapse
Affiliation(s)
- Soraia Fernandes
- Center for Translational Medicine (CTM)International Clinical Research Centre (ICRC)St. Anne HospitalBrno656 91Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Marco Cassani
- Center for Translational Medicine (CTM)International Clinical Research Centre (ICRC)St. Anne HospitalBrno656 91Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Francesca Cavalieri
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
- Dipartimento di Scienze e Tecnologie ChimicheUniversita di Roma “Tor Vergata”Via della Ricerca Scientifica 1Rome00133Italy
| | - Giancarlo Forte
- Center for Translational Medicine (CTM)International Clinical Research Centre (ICRC)St. Anne HospitalBrno656 91Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonSE5 9NUUK
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| |
Collapse
|
430
|
Li Y, Pan B, Zhang F, Jia X, Zhu X, Tong X, Zhao J, Li C. TPI1 promotes MAPK/ERK-induced EMT, cell migration and invasion in lung adenocarcinoma. Thorac Cancer 2024; 15:327-338. [PMID: 38130074 PMCID: PMC10834191 DOI: 10.1111/1759-7714.15196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Triosephosphate isomerase 1 (TPI1), as a widely involved glycolytic enzyme, plays a significant role in glucose metabolism and is highly expressed in various tumors. However, its role in lung adenocarcinoma (LUAD) remains incompletely understood. METHODS Through bioinformatic analysis, we identified a positive association between high expression of TPI1 and metastasis in LUAD. Western blot, RT-qPCR, wound healing assays and transwell experiments, were employed to investigate potential mechanisms. RESULTS In this study, bioinformatic analysis showed that high expression of TPI1 was associated with poor prognosis in LUAD patients. We examined the expression of TPI1 in 29 paired LUAD tissues and found that TPI1 expression was higher in LUAD tissues than in paired adjacent noncancerous tissues. Meanwhile, overexpression of TPI1 promoted the epithelial-mesenchymal transition (EMT) process in LUAD cells, while silencing TPI1 weakened the EMT process. Furthermore, TPI1 was shown to regulate EMT through the MAPK/ERK signaling pathway. CONCLUSION TPI1 promotes LUAD metastasis by activating the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Yu Li
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Bin Pan
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of Cardiothoracic SurgeryPeople's Hospital Affiliated to Jiangsu UniversityZhenjiangChina
| | | | - Xinyu Jia
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xinyu Zhu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xin Tong
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun Zhao
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chang Li
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
431
|
Braissand N, Bernet A. [Targeting netrin-1 to inhibit epithelial-mesenchymal transition: a new insight for cancer therapy]. Med Sci (Paris) 2024; 40:124-126. [PMID: 38411414 DOI: 10.1051/medsci/2023207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Affiliation(s)
- Nicolas Braissand
- Laboratoire Apoptose, cancer et développement, Équipe labellisée La Ligue, LabEx DEVweCAN, Institut PLAsCAN,Centre de recherche en cancérologie de Lyon, Inserm U1052-CNRS UMR5286, Netris Pharma, Lyon, France
| | - Agnès Bernet
- Laboratoire Apoptose, cancer et développement, Équipe labellisée La Ligue, LabEx DEVweCAN, Institut PLAsCAN,Centre de recherche en cancérologie de Lyon, Inserm U1052-CNRS UMR5286, Netris Pharma, Lyon, France
| |
Collapse
|
432
|
Mao-Mao, Zhang JJ, Xu YP, Shao MM, Wang MC. Regulatory effects of natural products on N6-methyladenosine modification: A novel therapeutic strategy for cancer. Drug Discov Today 2024; 29:103875. [PMID: 38176674 DOI: 10.1016/j.drudis.2023.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
N6-methyladenosine (m6A) is considered to be the most common and abundant epigenetics modification in messenger RNA (mRNA) and noncoding RNA. Abnormal modification of m6A is closely related to the occurrence, development, progression, and prognosis of cancer. m6A regulators have been identified as novel targets for anticancer drugs. Natural products, a rich source of traditional anticancer drugs, have been utilized for the development of m6A-targeting drugs. Here, we review the key role of m6A modification in cancer progression and explore the prospects and structural modification mechanisms of natural products as potential drugs targeting m6A modification for cancer treatment.
Collapse
Affiliation(s)
- Mao-Mao
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Jin-Jing Zhang
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Yue-Ping Xu
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Min-Min Shao
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Meng-Chuan Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China.
| |
Collapse
|
433
|
Ling Y, Kang X, Yi Y, Feng S, Ma G, Qu H. CLDN5: From structure and regulation to roles in tumors and other diseases beyond CNS disorders. Pharmacol Res 2024; 200:107075. [PMID: 38228255 DOI: 10.1016/j.phrs.2024.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Claudin-5 (CLDN5) is an essential component of tight junctions (TJs) and is critical for the integrity of the blood-brain barrier (BBB), ensuring homeostasis and protection from damage to the central nervous system (CNS). Currently, many researchers have summarized the role and mechanisms of CLDN5 in CNS diseases. However, it is noteworthy that CLDN5 also plays a significant role in tumor growth and metastasis. In addition, abnormal CLDN5 expression is involved in the development of respiratory diseases, intestinal diseases, cardiac diseases, and diabetic ocular complications. This paper aims to review the structure, expression, and regulation of CLDN5, focusing on its role in tumors, including its expression and regulation, effects on malignant phenotypes, and clinical significance. Furthermore, this paper will provide an overview of the role and mechanisms of CLDN5 in respiratory diseases, intestinal diseases, cardiac diseases, and diabetic ocular complications.
Collapse
Affiliation(s)
- Yao Ling
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China; Bethune Second Clinical Medical College of Jilin University, Changchun, China
| | - Xinxin Kang
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China; Bethune Second Clinical Medical College of Jilin University, Changchun, China
| | - Ying Yi
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China; Bethune Second Clinical Medical College of Jilin University, Changchun, China
| | - Shenao Feng
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China; Bethune Second Clinical Medical College of Jilin University, Changchun, China
| | - Guanshen Ma
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China; Bethune Second Clinical Medical College of Jilin University, Changchun, China
| | - Huinan Qu
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
434
|
Zhao W, Wu Y, Wang S, Zhao F, Liu W, Xue Z, Zhang L, Wang J, Han M, Li X, Huang B. HTRA1 promotes EMT through the HDAC6/Ac-α-tubulin pathway in human GBM cells. CNS Neurosci Ther 2024; 30:e14605. [PMID: 38334007 PMCID: PMC10853898 DOI: 10.1111/cns.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 01/07/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND The infiltrative nature of human gliomas renders complete surgical removal of tumors futile. Thus, illuminating mechanisms of their infiltrative properties may improve therapies and outcomes of glioma patients. METHODS Comprehensive bioinformatic analyses of PRSS family were undertaken. Transfection of HTRA1 siRNAs was used to suppress HTRA1 expression. CCK-8, EdU, and colony formation assay were employed to assess cell viability, and cell migration/invasion was detected by transwell, wound healing, and 3D tumor spheroid invasion assays. Immunoprecipitation was applied to study the mechanism that HTRA1 affected cell migration. In addition, in situ xenograft tumor model was employed to explore the role of HTRA1 in glioma growth in vivo. RESULTS HTRA1 knockdown could lead to suppression of cell viability, migration and invasion, as well as increased apoptosis. Immunoprecipitation results indicates HTRA1 might facilitate combination between HDAC6 and α-tubulin to enhance cell migration by decreasing α-tubulin acetylation. Besides, HTRA1 knockdown inhibited the growth of xenografts derived from orthotopic implantation of GBM cells and prolonged the survival time of tumor-bearing mice. CONCLUSION Our results indicate that HTRA1 promotes the proliferation and migration of GBM cells in vitro and in vivo, and thus may be a potential target for treatment in gliomas.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Yibo Wu
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
| | - Shuai Wang
- University of Pittsburgh Medical Center Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | - Feihu Zhao
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
| | - Wenyu Liu
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
| | - Zhiyi Xue
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
| | - Lin Zhang
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinanChina
| | - Jian Wang
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Mingzhi Han
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Xingang Li
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Bin Huang
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| |
Collapse
|
435
|
Chen L, Lu J, Li X, Wang X, Qiao R, Guo W, Ren Q. LncRNA KTN1-AS1 facilitates esophageal squamous cell carcinoma progression via miR-885-5p/STRN3 axis. Genes Genomics 2024; 46:241-252. [PMID: 37747640 DOI: 10.1007/s13258-023-01451-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/27/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies and frequent cause of cancer-related death worldwide. Long non-coding RNAs (lncRNAs) play regulatory roles and serve as biomarkers of multiple cancers, including ESCC. Our previous studies have confirmed that lncRNA Kinectin 1 antisense RNA 1 (KTN1-AS1) is highly expressed in ESCC and exerts oncogene function through RBBP4/HDAC1 complex. OBJECTIVE Our present study focused on exploring a novel molecular mechanism of KTN1-AS1 in ESCC. METHODS In this study, qRT-PCR assay, Western blot assay, Luciferase reporter assay, and RNA immunoprecipitation assay were conducted. RESULTS We found that KTN1-AS1 could bind to miR-885-5p in ESCC cells, and miR-885-5p was low expressed in ESCC. Overexpression of miR-885-5p inhibited esophageal cancer cells proliferation and invasion in vitro. Mechanistic analysis demonstrated that miR-885-5p specifically targeted striatin 3 (STRN3), and KTN1-AS1/miR-885-5p promoted the EMT process by Hippo pathway in STRN3/YAP1 dependent manner. CONCLUSION To sum up, KTN1-AS1 facilitates ESCC progression by acting as a ceRNA for miR-885-5p to regulate STRN3 expression and the Hippo pathway, and KTN1-AS1 maybe used as a promising therapeutic target for ESCC.
Collapse
Affiliation(s)
- Liying Chen
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Juntao Lu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, Hebei, 050011, China
| | - Xiaoxu Li
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, Hebei, 050011, China
| | - Xinhao Wang
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, Hebei, 050011, China
| | - Ruoyang Qiao
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, Hebei, 050011, China.
| | - Qian Ren
- Department of Human Anatomy, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
436
|
Nandi S, Nag A, Khatua S, Sen S, Chakraborty N, Naskar A, Acharya K, Calina D, Sharifi-Rad J. Anticancer activity and other biomedical properties of β-sitosterol: Bridging phytochemistry and current pharmacological evidence for future translational approaches. Phytother Res 2024; 38:592-619. [PMID: 37929761 DOI: 10.1002/ptr.8061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
Sterols, including β-sitosterol, are essential components of cellular membranes in both plant and animal cells. Despite being a major phytosterol in various plant materials, comprehensive scientific knowledge regarding the properties of β-sitosterol and its potential applications is essential for scholarly pursuits and utilization purposes. β-sitosterol shares similar chemical characteristics with cholesterol and exhibits several pharmacological activities without major toxicity. This study aims to bridge the gap between phytochemistry and current pharmacological evidence of β-sitosterol, focusing on its anticancer activity and other biomedical properties. The goal is to provide a comprehensive understanding of β-sitosterol's potential for future translational approaches. A thorough examination of the literature was conducted to gather relevant information on the biological properties of β-sitosterol, particularly its anticancer therapeutic potential. Various databases were searched, including PubMed/MedLine, Scopus, Google Scholar, and Web of Science using appropriate keywords. Studies investigating the effects of β-sitosterol on different types of cancer were analyzed, focusing on mechanisms of action, pharmacological screening, and chemosensitizing properties. Modern pharmacological screening studies have revealed the potential anticancer therapeutic properties of β-sitosterol against various types of cancer, including leukemia, lung, stomach, breast, colon, ovarian, and prostate cancer. β-sitosterol has demonstrated chemosensitizing effects on cancer cells, interfering with multiple cell signaling pathways involved in proliferation, cell cycle arrest, apoptosis, survival, metastasis invasion, angiogenesis, and inflammation. Structural derivatives of β-sitosterol have also shown anti-cancer effects. However, research in the field of drug delivery and the detailed mode of action of β-sitosterol-mediated anticancer activities remains limited. β-sitosterol, as a non-toxic compound with significant pharmacological potential, exhibits promising anticancer effects against various cancer types. Despite being relatively less potent than conventional cancer chemotherapeutics, β-sitosterol holds potential as a safe and effective nutraceutical against cancer. Further comprehensive studies are recommended to explore the biological properties of β-sitosterol, including its mode of action, and develop novel formulations for its potential use in cancer treatment. This review provides a foundation for future investigations and highlights the need for further research on β-sitosterol as a potent superfood in combating cancer.
Collapse
Affiliation(s)
- Sudeshna Nandi
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, India
| | - Somanjana Khatua
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, India
| | - Surjit Sen
- Department of Botany, Fakir Chand College, Kolkata, India
| | | | - Arghya Naskar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
437
|
Wang Z, Chen G, Yuan D, Wu P, Guo J, Lu Y, Wang Z. Caveolin-1 promotes glioma proliferation and metastasis by enhancing EMT via mediating PAI-1 activation and its correlation with immune infiltrates. Heliyon 2024; 10:e24464. [PMID: 38298655 PMCID: PMC10827802 DOI: 10.1016/j.heliyon.2024.e24464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Glioma is typically characterized by a poor prognosis and is associated with a decline in the quality of life as the disease advances. However, the development of effective therapies for glioma has been inadequate. Caveolin-1 (CAV-1) is a membrane protein that plays a role in caveolae formation and interacts with numerous signaling proteins, compartmentalizing them in caveolae and frequently exerting direct control over their activity through binding to its scaffolding domain. Although CAV-1 is a vital regulator of tumour progression, its role in glioma remains unclear. Our findings indicated that the knockdown of CAV-1 significantly inhibits the proliferation and metastasis of glioma. Subsequent mechanistic investigations demonstrated that CAV-1 promotes proliferation and metastasis by activating the photoshatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Furthermore, we demonstrated that CAV-1 overexpression upregulates the expression of serpin peptidase inhibitor, class E, member 1 (SERPINE1, also known as PAI-1), which serves as a marker for the epithelial-mesenchymal transition (EMT) process. Further research showed that PAI-1 knockdown abolished the CAV-1 mediated activation of PI3K/Akt signaling pathway. In glioma tissues, CAV-1 expression exhibited a correlation with unfavorable prognosis and immune infiltration among glioma patients. In summary, our study provided evidence that CAV-1 activates the PI3K/Akt signaling pathway by upregulating PAI-1, thereby promoting the proliferation and metastasis of glioma through enhanced epithelial-mesenchymal transition (EMT) and angiogenesis, and CAV-1 is involved in the immune infiltration.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Gang Chen
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Debin Yuan
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Peizhang Wu
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Jun Guo
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Yisheng Lu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong University, Jiangsu, 226001, China
| | - Zhenyu Wang
- Department of Pediatric General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, No. 355 Luding Road, Shanghai, 200062, Shanghai, China
| |
Collapse
|
438
|
Niu W, Liu Q, Huo X, Luo Y, Zhang X. TL1A promotes metastasis and EMT process of colorectal cancer. Heliyon 2024; 10:e24392. [PMID: 38312710 PMCID: PMC10835226 DOI: 10.1016/j.heliyon.2024.e24392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Background Metastasis is the major problem of colorectal cancer (CRC) and is correlated with the high mortality. Tumor necrosis factor-like cytokine 1A (TL1A) is a novel regulatory factor for inflammatory diseases. This work aimed to investigate the role of TL1A in CRC metastasis. Method AOM/DSS-induced mouse model, xenograft tumor model and metastasis murine model were established to mimic the colitis-associated CRC and investigate CRC growth and metastasis in vivo. Colon tissues were assessed by hematoxylin/eosin (HE) staining and immunohistochemistry (IHC). CRC cell metastasis in vivo was observed using in vivo imaging system (IVIS). Cell viability and proliferation were examined using cell counting kit 8 (CCK-8) and EdU experiments. The expression of tumor growth factor β (TGFβ) and metastatic biomarkers were detected using western blotting experiment. The in vitro cell metastasis was measured by Transwell. Results Knockdown of TL1A notably suppressed the generation of colonic tumors in azoxymethane/dextran sodium sulfate (AOM/DSS) model, suppressed in vivo CRC cell growth, as well as lung and liver metastasis. The inflammation response and inflammatory cell infiltration in tumor sites were decreased by TL1A depletion. The in vitro CRC cell growth and metastasis was also suppressed by shTL1A, along with altered expression of epithelial mesenchymal transition (EMT) biomarkers. TL1A depletion suppressed the level of the TGF-β1 receptor (TβRI) and phosphorylation of Smad3 in CRC cells. Stimulation with TGF-β recovered the CRC cell migration and invasion that suppressed by shTL1A. Conclusion Our work implicated TL1A as a promoter of CRC generation and metastasis and defines TGF-β/Smad3 signaling as mediator of TL1A-regualated CRC cell metastasis.
Collapse
Affiliation(s)
- Weiwei Niu
- The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang City, Hebei province, 050000, China
| | - Qian Liu
- The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang City, Hebei province, 050000, China
| | - Xiaoxia Huo
- The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang City, Hebei province, 050000, China
| | - Yuxin Luo
- The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang City, Hebei province, 050000, China
| | - Xiaolan Zhang
- The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang City, Hebei province, 050000, China
| |
Collapse
|
439
|
Li Q, Wan C, Zhang Z, Liu G, Wang S. CTSC promoted the migration and invasion of glioma cells via activation of STAT3/SERPINA3 axis. Gene 2024; 893:147948. [PMID: 37925117 DOI: 10.1016/j.gene.2023.147948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Cathepsin C (CTSC) has been reported to be upregulated in several cancers, however, there are still many missing links about the role of CTSC in glioma. To address this knowledge gap, the present study employed bioinformatics analysis, Transwell assay, RT-qPCR and Western blot assays to investigate the expression level of CTSC in glioma tissues, its relationship with survival period, and its effect on the migration and invasion ability of glioma cells. The findings revealed that CTSC was upregulated in glioma and was associated with poor prognosis. Moreover, CTSC was found to promote cell migration and invasion abilities as well as epithelial-mesenchymal transition (EMT). A further study found that CTSC induced SERPINA3 and STAT3 expression in glioma cells. Additionally, we demonstrated that STAT3 signaling mediated upregulation of SERPINA3 expression by CTSC. In sum, our findings suggest that CTSC activates the STAT3/SERPINA3 axis to promote migration and invasion of glioma cells, which may lead to new potential therapeutic approaches for humans with cancer.
Collapse
Affiliation(s)
- Qi Li
- Department of Neurosurgery, Tianjin First Central Hospital, Tianjin, China
| | - Chenguang Wan
- Department of Neurosurgery, Tianjin First Central Hospital, Tianjin, China
| | - Zhifei Zhang
- Department of Neurosurgery, Tianjin First Central Hospital, Tianjin, China
| | - Guangwei Liu
- Department of Otolaryngology, Tianjin Third Central Hospital, Tianjin, China
| | - Song Wang
- Department of Neurosurgery, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
440
|
Cao T, Hong L, Yu D, Shen J, Jiang L, Hu N, He S. Circular RNA circTMEM59 inhibits progression of pancreatic ductal adenocarcinoma by targeting miR-147b/SOCS1: An in vitro study. Heliyon 2024; 10:e24402. [PMID: 38304778 PMCID: PMC10831602 DOI: 10.1016/j.heliyon.2024.e24402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Purpose This study aimed to detect the role and mechanism of circTMEM59 in pancreatic ductal adenocarcinoma (PDAC). Methods 66 paired PDAC tissues and normal samples were harvested from patients diagnosed and undergoing pancreatic cancer surgery in our hospital. The expression of circTMEM59 in PDAC tissues and cell lines was detected. Based on bioinformatics information, the circTMEM59 mimics, miR-147b mimics, miR-147b inhibitor and si-suppressor of cytokine signaling 1 (SOCS1) were transfected into PDAC cells. The expression levels of circTMEM59, miR-147b and SOCS1 were detected by quantitative real-time polymerase chain reaction (qRT-PCR). RNA interaction was confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Cell invasion and proliferation were evaluated by Transwell and Cell Counting Kit-8 (CCK-8) assays. The protein expression was detected by Western blot. Results CircTMEM59 was confirmed to be downregulated in PDAC tumor tissues and cells. Low expression of circTMEM59 was closely correlated with the short survival time and poor clinicopathological characteristics. By up-regulating the expression of circTMEM59 in PDAC cells, cell proliferation, invasion and epithelial-mesenchymal transition (EMT) were inhibited. More importantly, miR-147b could be sponged by circTMEM59, and knockdown of miR-147b inhibited progression of PDAC cells. Further study revealed that SOCS1 was targeted by miR-147b. SOCS1 expression was negatively related to miR-147b expression and positively related to circTMEM59 expression in PDAC tissues. Upregulated miR-147b and downregulated SOCS1 could rescue the effects of circTMEM59 on cell proliferation, EMT and invasion. Conclusion Our data indicated that circTMEM59 inhibited cell proliferation, invasion and EMT of PDAC by regulating miR-147b/SOCS1 axis.
Collapse
Affiliation(s)
- Tieliu Cao
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, China
| | - Liang Hong
- Department of Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Dan Yu
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, China
| | - Jie Shen
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, China
| | - Liwen Jiang
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, China
| | - Nanhua Hu
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, China
| | - Shengli He
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, China
| |
Collapse
|
441
|
Gong C, Tu Z, Long X, Liu X, Liu F, Liu J, Zhu X, Li J, Huang K. Predictive role of E2F6 in cancer prognosis and responses of immunotherapy. Int Immunopharmacol 2024; 127:111302. [PMID: 38071912 DOI: 10.1016/j.intimp.2023.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND E2F6 is a member of the E2F transcription factor family. Numerous studies have demonstrated that E2F6 is critical to cancer development and progression, but its role in cancer immunotherapy remains unclear. METHODS Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases were used to obtain RNA-seq data for cancer and normal tissues, and we utilized the cBioPortal to analyze E2F6 genomic alterations in pan-cancer. The protein localization of E2F6 was obtained using the Human Protein Atlas (HPA), and the upregulation of E2F6 expression in clinical glioblastoma multiforme (GBM) tissues was detected by Western blot analysis. The ComPPI website was used to analyze the protein interaction information of E2F6. To evaluate the role of E2F6 in pan-cancer prognosis, we used univariate Cox regression and Kaplan-Meier methods, and gene set enrichment analysis (GSEA) was utilized to identify markers associated with E2F6 expression in tumors. TIMER 2.0 was used to study E2F6-related immune cell infiltration in tumor tissues, and the correlation of E2F6 with immunotherapy biomarkers was investigated using Spearman correlation analysis. The role of E2F6 in the cell cycle was analyzed by flow cytometry, and the Cell Counting Kit-8 (CCK-8) and colony formation assays were utilized to determine the proliferative ability of cells. RESULTS In most tumor types, E2F6 was highly expressed and was a good predictor of prognosis. E2F6 was significantly related to markers of immune activation, tumor immune cell infiltration, and immune regulators. Furthermore, E2F6 knockdown significantly attenuated the proliferative ability of glioma cells. Finally, E2F6 effectively predicted anti-programmed cell death 1 (PD1) treatment response. CONCLUSION E2F6 is an effective biomarker that predicts the prognosis of cancer patients treated with anti-immune checkpoint therapy.
Collapse
Affiliation(s)
- Chuandong Gong
- Department of Neurosurgery, the 2(nd) affiliated hospital, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, PR China; JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, PR China
| | - Zewei Tu
- Department of Neurosurgery, the 2(nd) affiliated hospital, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, PR China; JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, PR China
| | - Xiaoyan Long
- East China Institute of Digital Medical Engineering, Shangrao, Jiangxi 330006, PR China
| | - Xinjun Liu
- People's Hospital of Yingtan City, Yingtan, Jiangxi 330006, PR China
| | - Feng Liu
- Department of Neurosurgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, PR China
| | - Jia Liu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06511, USA
| | - Xingen Zhu
- Department of Neurosurgery, the 2(nd) affiliated hospital, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, PR China; JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, PR China.
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, the 2(nd) affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Kai Huang
- Department of Neurosurgery, the 2(nd) affiliated hospital, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, PR China; JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
442
|
Liu P, Kong X, Yi S, Chen Y, Luo W. IFIT3 accelerates the progression of head and neck squamous cell carcinoma by targeting PD-L1 to activate PI3K/AKT signaling pathway. World J Surg Oncol 2024; 22:34. [PMID: 38273364 PMCID: PMC10809513 DOI: 10.1186/s12957-023-03274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Emerging evidence has shown interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) may be predicted to be a candidate oncogene and involved in the onset and progression of cancer, but IFIT3's potential role in cancer, particularly in head and neck squamous cell carcinoma (HNSC), is not well recognized. This study aims to reveal the role of IFIT3 in HNSC and the underlying molecular mechanism. METHODS Bioinformatics analysis, immunohistochemical staining, RT-PCR, and Western blotting analysis were used to detect IFIT3 expression in HNSC. CCK-8 assays, colony formation assays, wound-healing assays, transwell assays, and sphere formation were used to explore proliferative, migratory, and invasive activities and cancer stemness of HNSC cells after IFIT3 knockdown and over-expressed. The alterations of EMT markers and PI3K/AKT pathway were detected by Western blotting. Animal studies were performed to analyze the effect of IFIT3 on tumor growth and metastasis of HNSC in vivo. RESULTS In this study, we observed that IFIT3 was highly expressed in HNSC, and its higher expression contributed to poorer survival of patients with clinical stage IV or grade 3. Function assay indicated that IFIT3 promoted malignant behaviors in vitro, as well as tumor growth and lung metastasis in vivo. Meanwhile, PD-L1 knockdown or over-expressed reversed cancer cell stemness, migration, invasion, and PI3K/AKT signaling pathway which were regulated by IFIT3. CONCLUSIONS Our results reveal that IFIT3 promotes EMT and cancer stemness by targeting PD-L1 to activate PI3K/AKT signaling pathway in HNSC, and targeting IFIT3 may be a novel strategy for the treatment of patients with HNSC.
Collapse
Affiliation(s)
- Peng Liu
- Department of Otolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Xin Kong
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shijiang Yi
- Department of Otolaryngology Head and Neck Surgery, the Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ying Chen
- Department of Traditional Chinese Medicine, the Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wenlong Luo
- Department of Otolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
443
|
Lin K, Zhao Y, Tang Y, Chen Y, Lin M, He L. Collagen I-induced VCAN/ERK signaling and PARP1/ZEB1-mediated metastasis facilitate OSBPL2 defect to promote colorectal cancer progression. Cell Death Dis 2024; 15:85. [PMID: 38267463 PMCID: PMC10808547 DOI: 10.1038/s41419-024-06468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
The global burden of colorectal cancer (CRC) has rapidly increased in recent years. Dysregulated cholesterol homeostasis facilitated by extracellular matrix (ECM) remodeling transforms the tumor microenvironment. Collagen I, a major with ECM component is highly expressed in colorectal tumors with infiltrative growth. Although oxysterol binding protein (OSBP)-related proteins accommodate tumorigenesis, OSBPL2, which is usually involved in deafness, is not associated with CRC progression. Therefore, we aimed to investigate the pathological function of OSBPL2 and identify the molecular link between ECM-Collagen I and OSBPL2 in CRC to facilitate the development of new treatments for CRC. OSBPL2 predicted a favorable prognosis in stage IV CRC and substantially repressed Collagen I-induced focal adhesion, migration, and invasion. The reduction of OSBPL2 activated ERK signaling through the VCAN/AREG/EREG axis during CRC growth, while relying on PARP1 via ZEB1 in CRC metastasis. OSBPL2 defect supported colorectal tumor growth and metastasis, which were suppressed by the ERK and PARP1 inhibitors SCH772984 and AG14361, respectively. Overall, our findings revealed that the Collagen I-induced loss of OSBPL2 aggravates CRC progression through VCAN-mediated ERK signaling and the PARP1/ZEB1 axis. This demonstrates that SCH772984 and AG14361 are reciprocally connective therapies for OSBPL2Low CRC, which could contribute to further development of targeted CRC treatment.
Collapse
Affiliation(s)
- Kang Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yuqi Tang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Ying Chen
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Moubin Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China.
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Luwei He
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
444
|
Du W, Quan X, Wang C, Song Q, Mou J, Pei D. Regulation of tumor metastasis and CD8 + T cells infiltration by circRNF216/miR-576-5p/ZC3H12C axis in colorectal cancer. Cell Mol Biol Lett 2024; 29:19. [PMID: 38267865 PMCID: PMC10809481 DOI: 10.1186/s11658-024-00539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND The tumor immune microenvironment (TIME) is an important regulator of tumor progression, growth and metastasis. In addition, tumor metastasis is one of the principal obstacles to the treatment of colorectal cancer (CRC). Circular RNAs (circRNAs) have been recognized as important regulators in the development of malignancies. However, their specific roles and mechanisms in both CRC metastasis and TIME have not been thoroughly investigated. METHODS High-throughput next-generation sequencing technology and real-time fluorescence quantitative PCR technology were performed to identify differential circRNAs in CRC. Functional assays including transwell assay, wound healing assay, and metastasis models were conducted to assess the effect of circRNF216 on CRC metastasis. In addition, luciferase reporter, western blot, RNA immunoprecipitation (RIP), and fluorescent in situ hybridization (FISH) were performed to explore the underlying mechanism of circRNF216. The level of immune infiltration was assessed by bioinformatics analysis and flow cytometry in CRC model. Furthermore, rescue and mutation experiments were used for verification. RESULTS circRNF216 was identified as a putative tumor suppressor that is downregulated in CRC tissues and cells. Overexpression of circRNF216 inhibits metastasis in vitro and vivo. Mechanistically, circRNF216 acts as a competitive endogenous RNA (ceRNA) for miR-576-5p, alleviating miR-576-5p repression on its target ZC3H12C, which in turn downregulated N-cadherin. Additionally, circRNF216 could enhance the infiltration level of CD8+ T cells by upregulating ZC3H12C, ultimately inhibiting the development of CRC, which suggests that circRNF216 is a potential biomarker for the treatment of CRC. CONCLUSIONS Here, we provide novel mechanistic insight revealing how circRNF216 functioned in CRC metastasis and TIME via the circRNF216/miR-576-5p/ZC3H12C pathway. Therefore, circRNF216 holds promise as a potential therapeutic target and novel diagnostic marker for CRC.
Collapse
Affiliation(s)
- Wenqi Du
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, China
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xin Quan
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Chaoqun Wang
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Qiuya Song
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Jie Mou
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China.
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
445
|
Han T, Wu J, Liu Y, Zhou J, Miao R, Guo J, Xu Z, Xing Y, Bai Y, Hu D. Integrating bulk-RNA sequencing and single-cell sequencing analyses to characterize adenosine-enriched tumor microenvironment landscape and develop an adenosine-related prognostic signature predicting immunotherapy in lung adenocarcinoma. Funct Integr Genomics 2024; 24:19. [PMID: 38265702 DOI: 10.1007/s10142-023-01281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
The adenosine-signaling axis has been recognized as an important immunomodulatory pathway in tumor immunity. However, the biological role of the adenosine-signaling axis in the remodeling of the tumor microenvironment (TME) in lung adenocarcinoma (LUAD) remains unclear. Here, we quantified adenosine signaling (ado_sig) in LUAD samples using the GSVA method and assessed the prognostic value of adenosine in LUAD. Afterward, we explored the heterogeneity of the tumor-immune microenvironment at different adenosine levels. In addition, we analyzed the potential biological pathways engaged by adenosine. Next, we established single-cell transcriptional profiles of LUAD and analyzed cellular composition and cell-cell communication analysis under different adenosine microenvironments. Moreover, we established adenosine-related prognostic signatures (ARS) based on comprehensive bioinformatics analysis and evaluated the efficacy of ARS in predicting immunotherapy. The results demonstrated that adenosine signaling adversely impacted the survival of immune-enriched LUAD. The high-adenosine microenvironment exhibited elevated pro-tumor-immune infiltration, including M2 macrophages and displayed notably increased epithelial-mesenchymal transition (EMT) transformation. Furthermore, adenosine signaling displayed significant associations with the expression patterns and prognostic value of immunomodulators within the TME. Single-cell sequencing data revealed increased fibroblast occupancy and a prominent activation of the SPP1 signaling pathway in the high adenosine-signaling microenvironment. The ARS exhibited promising effectiveness in prognostication and predicting immunotherapy response in LUAD. In summary, overexpression of adenosine can cause a worsened prognosis in the LUAD with abundant immune infiltration. Moreover, increased adenosine levels are associated with pro-tumor-immune infiltration, active EMT transformation, pro-tumor angiogenesis, and other factors promoting cancer progression, which collectively contribute to the formation of an immunosuppressive microenvironment. Importantly, the ARS developed in this study demonstrate high efficacy in evaluating the response to immunotherapy.
Collapse
Affiliation(s)
- Tao Han
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China.
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Rui Miao
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Zhi Xu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China
| | - Yingru Xing
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, People's Republic of China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China.
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, People's Republic of China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China.
| |
Collapse
|
446
|
Fontana R, Mestre-Farrera A, Yang J. Update on Epithelial-Mesenchymal Plasticity in Cancer Progression. ANNUAL REVIEW OF PATHOLOGY 2024; 19:133-156. [PMID: 37758242 PMCID: PMC10872224 DOI: 10.1146/annurev-pathmechdis-051222-122423] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular process by which epithelial cells lose their characteristics and acquire mesenchymal traits to promote cell movement. This program is aberrantly activated in human cancers and endows tumor cells with increased abilities in tumor initiation, cell migration, invasion, metastasis, and therapy resistance. The EMT program in tumors is rarely binary and often leads to a series of gradual or intermediate epithelial-mesenchymal states. Functionally, epithelial-mesenchymal plasticity (EMP) improves the fitness of cancer cells during tumor progression and in response to therapies. Here, we discuss the most recent advances in our understanding of the diverse roles of EMP in tumor initiation, progression, metastasis, and therapy resistance and address major clinical challenges due to EMP-driven phenotypic heterogeneity in cancer. Uncovering novel molecular markers and key regulators of EMP in cancer will aid the development of new therapeutic strategies to prevent cancer recurrence and overcome therapy resistance.
Collapse
Affiliation(s)
- Rosa Fontana
- Department of Pharmacology, Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, California, USA;
| | - Aida Mestre-Farrera
- Department of Pharmacology, Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, California, USA;
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, California, USA;
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
447
|
Abstract
Abstract
Matrix metalloproteinase-2 (MMP-2) is a gelatinase and is involved in multiple steps of the metastatic cascade. More than a decade ago an increased expression of MMP-2 in tumour cells or higher serum levels was reported to be a prognostic biomarker for a lower disease-free and overall survival rate. In recent years new evidence has indicated that MMP-2 has an important role in the tumour ecosystem. It is one of the many players in the onco-sphere, involved in interacting between tumour cells, host cells and the microenvironment. It plays a role in the dissemination of tumour cells, the epithelial–mesenchymal and mesenchymal–epithelial transitions, the formation of the pre-metastatic and metastatic niches, dormancy of tumour cells and modulating the immune system. The aim of this review is to highlight these multiple roles in the metastatic cascade and how many signalling pathways can up or down-regulate MMP-2 activity in the different stages of cancer progression and the effect of MMP-2 on the onco-sphere. Research in head and neck cancer is used as an example of these processes. The use of non-specific MMP inhibitors has been unsuccessful showing only limited benefits and associated with high toxicity as such that none have progressed past Phase III trials. Preclinical trials are undergoing using antibodies directed against specific matrix metalloproteinases, these targeted therapies may be potentially less toxic to the patients.
Collapse
Affiliation(s)
- Nigel P. Murray
- Minimal Residual Disease Laboratory, Faculty of Medicine , University Finis Terrae , Santiago , Chile
- Department of Haematology , Hospital de Carabineros de Chile , Santiago , Chile
| |
Collapse
|
448
|
Hu C, Ye M, Bai J, Liu P, Lu F, Chen J, Xu Y, Yan L, Yu P, Xiao Z, Gu D, Xu L, Tian Y, Tang Q. FOXA2-initiated transcriptional activation of INHBA induced by methylmalonic acid promotes pancreatic neuroendocrine neoplasm progression. Cell Mol Life Sci 2024; 81:50. [PMID: 38252148 PMCID: PMC10803496 DOI: 10.1007/s00018-023-05084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024]
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are a group of highly heterogeneous neoplasms originating from the endocrine islet cells of the pancreas with characteristic neuroendocrine differentiation, more than 60% of which represent metastases when diagnosis, causing major tumor-related death. Metabolic alterations have been recognized as one of the hallmarks of tumor metastasis, providing attractive therapeutic targets. However, little is known about the molecular mechanism of metabolic changes regulating PanNEN progression. In this study, we first identified methylmalonic acid (MMA) as an oncometabolite for PanNEN progression, based on serum metabolomics of metastatic PanNEN compared with non-metastatic PanNEN patients. One of the key findings was the potentially novel mechanism of epithelial-mesenchymal transition (EMT) triggered by MMA. Inhibin βA (INHBA) was characterized as a key regulator of MMA-induced PanNEN progression according to transcriptomic analysis, which has been validated in vitro and in vivo. Mechanistically, INHBA was activated by FOXA2, a neuroendocrine (NE) specific transcription factor, which was initiated during MMA-induced progression. In addition, MMA-induced INHBA upregulation activated downstream MITF to regulate EMT-related genes in PanNEN cells. Collectively, these data suggest that activation of INHBA via FOXA2 promotes MITF-mediated EMT during MMA inducing PanNEN progression, which puts forward a novel therapeutic target for PanNENs.
Collapse
Affiliation(s)
- Chunhua Hu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Mujie Ye
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Jianan Bai
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Pengfei Liu
- Department of Gastroenterology, Jiangyin People's Hospital, Jiangyin, Jiangsu Province, China
| | - Feiyu Lu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Jinhao Chen
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Yanling Xu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Lijun Yan
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Ping Yu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Zequan Xiao
- Department of Gastroenterology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili State, China
| | - Danyang Gu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Lin Xu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Ye Tian
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China.
| |
Collapse
|
449
|
Xie C, Hao X, Yuan H, Wang C, Sharif R, Yu H. Crosstalk Between circRNA and Tumor Microenvironment of Hepatocellular Carcinoma: Mechanism, Function and Applications. Onco Targets Ther 2024; 17:7-26. [PMID: 38283733 PMCID: PMC10812140 DOI: 10.2147/ott.s437536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common aggressive tumors in the world. Despite the availability of various treatments, its prognosis remains poor due to the lack of specific diagnostic indicators and the high heterogeneity of HCC cases. CircRNAs are noncoding RNAs with stable and highly specific expression. Extensive research evidence suggests that circRNAs mediate the pathogenesis and progression of HCC through acting as miRNA sponges, protein modulators, and translation templates. Tumor microenvironment (TME) has become a hotspot of immune-related research in recent years due to its effects on metabolism, secretion and immunity of HCC. Accordingly, understanding the role played by circRNAs in TME is important for the study of HCC. This review will discuss the crosstalk between circRNAs and TME in HCC. In addition, we will discuss the current deficiencies and controversies in research on circRNAs and predict future research directions.
Collapse
Affiliation(s)
- Chenxi Xie
- Hepatobiliary Center, Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaopei Hao
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| | - Hao Yuan
- Hepatobiliary Center, Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Chongyu Wang
- The First Clinical Medical College of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Razinah Sharif
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
- Biocompatibility Laboratory, Centre for Research and Instrumentation, University Kebangsaan Malaysia, UKM, Bangi, Selangor Darul Ehsan, 43600, Malaysia
| | - Haibo Yu
- Hepatobiliary Center, Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
450
|
Khan FA, Fang N, Zhang W, Ji S. The multifaceted role of Fragile X-Related Protein 1 (FXR1) in cellular processes: an updated review on cancer and clinical applications. Cell Death Dis 2024; 15:72. [PMID: 38238286 PMCID: PMC10796922 DOI: 10.1038/s41419-023-06413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
RNA-binding proteins (RBPs) modulate the expression level of several target RNAs (such as mRNAs) post-transcriptionally through interactions with unique binding sites in the 3'-untranslated region. There is mounting information that suggests RBP dysregulation plays a significant role in carcinogenesis. However, the function of FMR1 autosomal homolog 1(FXR1) in malignancies is just beginning to be unveiled. Due to the diversity of their RNA-binding domains and functional adaptability, FXR1 can regulate diverse transcript processing. Changes in FXR1 interaction with RNA networks have been linked to the emergence of cancer, although the theoretical framework defining these alterations in interaction is insufficient. Alteration in FXR1 expression or localization has been linked to the mRNAs of cancer suppressor genes, cancer-causing genes, and genes involved in genomic expression stability. In particular, FXR1-mediated gene regulation involves in several cellular phenomena related to cancer growth, metastasis, epithelial-mesenchymal transition, senescence, apoptosis, and angiogenesis. FXR1 dysregulation has been implicated in diverse cancer types, suggesting its diagnostic and therapeutic potential. However, the molecular mechanisms and biological effects of FXR1 regulation in cancer have yet to be understood. This review highlights the current knowledge of FXR1 expression and function in various cancer situations, emphasizing its functional variety and complexity. We further address the challenges and opportunities of targeting FXR1 for cancer diagnosis and treatment and propose future directions for FXR1 research in oncology. This work intends to provide an in-depth review of FXR1 as an emerging oncotarget with multiple roles and implications in cancer biology and therapy.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Na Fang
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Weijuan Zhang
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Shaoping Ji
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
- Zhengzhou Shuqing Medical College, Zhengzhou, China.
| |
Collapse
|