401
|
Abstract
The hereditary lymphedemas provide an opportunity to identify genes involved in normal and deranged lymphatic development. Genetic analysis of families with Milroy's disease identified mutations in VEGFR3 as a cause of congenital lymphedema, confirming the importance of VEGFC/VEGFR3 signaling in lymphatic development. These observations led to the identification of a mouse model for primary lymphedema, and subsequent analysis of this mouse model, using transgenic and gene transfer techniques, has provided initial clues to the development of a biologically based therapy for primary lymphedema. Of more importance from a public health perspective is the fact that manipulation of this pathway may lead to effective therapies for the more prevalent forms of secondary lymphedema. Identification of FOXC2 as the gene mutated in the lymphedema-distichiasis syndrome has revealed new molecular insight into lymphatic development. Molecular analysis of the FOXC2 pathway may provide clues to developmental pathways shared by the lymphatic system and the other developmental abnormalities associated with this complex syndrome. With improving knowledge of the human genome, genetic analysis of families with lymphedema continues to offer one of the most promising approaches to identifying genes influencing lymphatic development.
Collapse
Affiliation(s)
- Robert E Ferrell
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
402
|
Rosen ED. The molecular control of adipogenesis, with special reference to lymphatic pathology. Ann N Y Acad Sci 2002; 979:143-58; discussion 188-96. [PMID: 12543724 DOI: 10.1111/j.1749-6632.2002.tb04875.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adipogenesis is the process by which mature fat cells are formed from pre-adipocytes. Adipogenesis has come under increasing scrutiny not only because the availability of reliable in vitro models makes it an attractive choice for developmental studies, but also because adipocytes are increasingly recognized as major players in a variety of physiological and pathophysiological states, such as obesity and type 2 diabetes. Adipocytes develop from mesenchymal stem cell precursors that are characterized by multipotency. Under the influence of various cues, these cells become committed to the adipocyte lineage. Further hormonal stimulation recruits these pre-adipocytes to accumulate lipid, express fat-specific markers, and become sensitive to the metabolic effects of insulin. A complex transcriptional cascade regulates this process, involving several distinct classes of transcription factor. In particular, the role of the nuclear hormone receptor PPARgamma will be discussed, along with bZip family members C/EBPalpha, C/EBPbeta, and C/EBPdelta. The relationship of adipose depots to the lymphatic system will also be discussed.
Collapse
Affiliation(s)
- Evan D Rosen
- Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| |
Collapse
|
403
|
Ridderstråle M, Carlsson E, Klannemark M, Cederberg A, Kösters C, Tornqvist H, Storgaard H, Vaag A, Enerbäck S, Groop L. FOXC2 mRNA Expression and a 5' untranslated region polymorphism of the gene are associated with insulin resistance. Diabetes 2002; 51:3554-60. [PMID: 12453913 DOI: 10.2337/diabetes.51.12.3554] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The human transcription factor FOXC2 has recently been shown to protect against diet-induced insulin resistance in transgenic mice. We investigated the expression of FOXC2 in fat and muscle and performed a genetic analysis in human subjects. FOXC2 mRNA levels were increased in visceral compared with subcutaneous fat from obese subjects (12 +/- 4-fold; P = 0.0001), and there was a correlation between whole-body insulin sensitivity and FOXC2 mRNA levels in visceral fat (fS-insulin R = -0.64, P = 0.01, and homeostasis model assessment of insulin resistance [HOMA-IR] R = -0.68, P = 0.007) and skeletal muscle (fS-insulin R = -0.57, P = 0.03, and HOMA-IR R = -0.55, P = 0.04). Mutation screening of the FOXC2 gene identified a common polymorphism in the 5' untranslated region (C-512T). The T allele was associated with enhanced insulin sensitivity (HOMA-IR P = 0.007) and lower plasma triglyceride levels in females (P = 0.007). Also, the higher expression of FOXC2 in visceral than in subcutaneous fat was restricted to subjects homozygous for the T allele (P = 0.03 vs. P = 0.7). Our data suggest that increased FOXC2 expression may protect against insulin resistance in human subjects and that genetic variability in the gene may influence features associated with the metabolic syndrome.
Collapse
Affiliation(s)
- Martin Ridderstråle
- Department of Endocrinology, Lund University, Wallenberg Laboratory, University Hospital Malmö, S-205 02 Malmö, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
404
|
Abstract
Different types of lean mice have been produced by genetic manipulation. Leanness can result from deficiency of stored energy or a lack of adipocytes to store the lipid. Mice lacking functional adipocytes are usually insulin resistant and have fatty livers, and elevated circulating triglyceride levels. Insulin resistance may result from the lack of adipocyte hormones (such as leptin) and increased metabolite (such as triglyceride) levels in nonadipose tissue. Mice with depleted adipocyte triglyceride levels typically are insulin sensitive and have normal or low liver and circulating triglycerides. Mechanisms to produce depleted adipocytes include increased energy expenditure by peripheral tissues, peripheral mechanisms to decrease food intake, and altered central regulation of these processes.
Collapse
Affiliation(s)
- Marc L Reitman
- Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892-1770, USA.
| |
Collapse
|
405
|
Zinke I, Schütz CS, Katzenberger JD, Bauer M, Pankratz MJ. Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. EMBO J 2002; 21:6162-73. [PMID: 12426388 PMCID: PMC137192 DOI: 10.1093/emboj/cdf600] [Citation(s) in RCA: 318] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2002] [Revised: 08/12/2002] [Accepted: 09/20/2002] [Indexed: 11/12/2022] Open
Abstract
We have identified genes regulated by starvation and sugar signals in Drosophila larvae using whole-genome microarrays. Based on expression profiles in the two nutrient conditions, they were organized into different categories that reflect distinct physiological pathways mediating sugar and fat metabolism, and cell growth. In the category of genes regulated in sugar-fed, but not in starved, animals, there is an upregulation of genes encoding key enzymes of the fat biosynthesis pathway and a downregulation of genes encoding lipases. The highest and earliest activated gene upon sugar ingestion is sugarbabe, a zinc finger protein that is induced in the gut and the fat body. Identification of potential targets using microarrays suggests that sugarbabe functions to repress genes involved in dietary fat breakdown and absorption. The current analysis provides a basis for studying the genetic mechanisms underlying nutrient signalling.
Collapse
Affiliation(s)
| | | | | | | | - Michael J. Pankratz
- Institut für Genetik, Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe, Germany
Corresponding author I.Zinke and C.Schütz contributed equally to this work
| |
Collapse
|
406
|
Carlsson P, Mahlapuu M. Forkhead transcription factors: key players in development and metabolism. Dev Biol 2002; 250:1-23. [PMID: 12297093 DOI: 10.1006/dbio.2002.0780] [Citation(s) in RCA: 673] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peter Carlsson
- Department of Molecular Biology, Göteborg University, Box 462, SE-405 30 Göteborg, Sweden.
| | | |
Collapse
|
407
|
Abstract
Many genetic manipulations have created models of obesity, leanness or resistance to dietary obesity in mice, often providing insights into molecular mechanisms that affect energy balance, and new targets for anti-obesity drugs. Since many genes can affect energy balance in mice, polymorphisms in many genes may also contribute to obesity in humans, and there may be many causes of primary leptin resistance. Secondary leptin resistance (due to high leptin levels) can be investigated by combining the ob mutation with other obesity genes. Some transgenic mice have failed to display the expected phenotype, or have even been obese when leanness was expected. Compensatory changes in the expression of other genes during development, or opposing influences of the gene on energy balance, especially in global knockout mice, may offer explanations for such findings. Obesity has been separated from insulin resistance in some transgenic strains, providing new insights into the mechanisms that usually link these phenotypes. It has also been shown that in some transgenic mice, obesity develops without hyperphagia, or leanness without hypophagia, demonstrating that generalised physiological explanations for obesity in individual humans may be inappropriate. Possibly the most important transgenic model of obesity so far created is the Type 1 11beta-hydroxysteroid dehydrogenase over-expressing mouse, since this models the metabolic syndrome in humans. The perspectives into obesity offered by transgenic mouse models should assist clinical researchers in the design and interpretation of their studies in human obesity.
Collapse
Affiliation(s)
- J R S Arch
- Clore Laboratory, University of Buckingham, Buckingham, UK.
| |
Collapse
|
408
|
|
409
|
Berger A, Mutch DM, Bruce German J, Roberts MA. Dietary effects of arachidonate-rich fungal oil and fish oil on murine hepatic and hippocampal gene expression. Lipids Health Dis 2002; 1:2. [PMID: 12617750 PMCID: PMC139963 DOI: 10.1186/1476-511x-1-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2002] [Accepted: 10/21/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The functions, actions, and regulation of tissue metabolism affected by the consumption of long chain polyunsaturated fatty acids (LC-PUFA) from fish oil and other sources remain poorly understood; particularly how LC-PUFAs affect transcription of genes involved in regulating metabolism. In the present work, mice were fed diets containing fish oil rich in eicosapentaenoic acid and docosahexaenoic acid, fungal oil rich in arachidonic acid, or the combination of both. Liver and hippocampus tissue were then analyzed through a combined gene expression- and lipid- profiling strategy in order to annotate the molecular functions and targets of dietary LC-PUFA. RESULTS Using microarray technology, 329 and 356 dietary regulated transcripts were identified in the liver and hippocampus, respectively. All genes selected as differentially expressed were grouped by expression patterns through a combined k-means/hierarchical clustering approach, and annotated using gene ontology classifications. In the liver, groups of genes were linked to the transcription factors PPARalpha, HNFalpha, and SREBP-1; transcription factors known to control lipid metabolism. The pattern of differentially regulated genes, further supported with quantitative lipid profiling, suggested that the experimental diets increased hepatic beta-oxidation and gluconeogenesis while decreasing fatty acid synthesis. Lastly, novel hippocampal gene changes were identified. CONCLUSIONS Examining the broad transcriptional effects of LC-PUFAs confirmed previously identified PUFA-mediated gene expression changes and identified novel gene targets. Gene expression profiling displayed a complex and diverse gene pattern underlying the biological response to dietary LC-PUFAs. The results of the studied dietary changes highlighted broad-spectrum effects on the major eukaryotic lipid metabolism transcription factors. Further focused studies, stemming from such transcriptomic data, will need to dissect the transcription factor signaling pathways to fully explain how fish oils and arachidonic acid achieve their specific effects on health.
Collapse
Affiliation(s)
- Alvin Berger
- Metabolic and Genomic Regulation, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
- Current Address: Cytochroma, Inc., Manager Lipidomics™, 330 Cochrane Drive, Markham, Ontario, Canada
| | - David M Mutch
- Metabolic and Genomic Regulation, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
- Institut de Biologie Animale, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - J Bruce German
- External Scientific Network, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
- Department of Food Science, University of California, Davis, CA 95616, USA
| | - Matthew A Roberts
- Metabolic and Genomic Regulation, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| |
Collapse
|
410
|
Brice G, Mansour S, Bell R, Collin JRO, Child AH, Brady AF, Sarfarazi M, Burnand KG, Jeffery S, Mortimer P, Murday VA. Analysis of the phenotypic abnormalities in lymphoedema-distichiasis syndrome in 74 patients with FOXC2 mutations or linkage to 16q24. J Med Genet 2002; 39:478-83. [PMID: 12114478 PMCID: PMC1735188 DOI: 10.1136/jmg.39.7.478] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Lymphoedema-distichiasis syndrome (LD) (OMIM 153400) is a rare, primary lymphoedema of pubertal onset, associated with distichiasis. Causative mutations have now been described in FOXC2, a forkhead transcription factor gene. Numerous clinical associations have been reported with this condition, including congenital heart disease, ptosis, varicose veins, cleft palate, and spinal extradural cysts. SUBJECTS We report clinical findings in 74 affected subjects from 18 families and six isolated cases. All of them were shown to have mutations in FOXC2 with the exception of one family who had two affected subjects with lymphoedema and distichiasis and linkage consistent with the 16q24 locus. RESULTS The presence of lymphoedema was highly penetrant. Males had an earlier onset of lymphoedema and a significantly increased risk of complications. Lymphatic imaging confirmed the earlier suggestion that LD is associated with a normal or increased number of lymphatic vessels rather than the hypoplasia or aplasia seen in other forms of primary lymphoedema. Distichiasis was 94.2% penetrant, but not always symptomatic. Associated findings included ptosis (31%), congenital heart disease (6.8%), and cleft palate (4%). Other than distichiasis, the most commonly occurring anomaly was varicose veins of early onset (49%). This has not been previously reported and suggests a possible developmental role for FOXC2 in both venous and lymphatic systems. This is the first gene that has been implicated in the aetiology of varicose veins. CONCLUSION Unlike previous publications, the thorough clinical characterisation of our patients permits more accurate prediction of various phenotypic abnormalities likely to manifest in subjects with FOXC2 mutations.
Collapse
Affiliation(s)
- G Brice
- Department of Cardiological Sciences, St George's Medical School, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
411
|
Dahle MK, Grønning LM, Cederberg A, Blomhoff HK, Miura N, Enerbäck S, Taskén KA, Taskén K. Mechanisms of FOXC2- and FOXD1-mediated regulation of the RI alpha subunit of cAMP-dependent protein kinase include release of transcriptional repression and activation by protein kinase B alpha and cAMP. J Biol Chem 2002; 277:22902-8. [PMID: 11943768 DOI: 10.1074/jbc.m200131200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have reported recently that mice overexpressing the forkhead/winged helix transcription factor FOXC2 are lean and show increased responsiveness to insulin due to sensitization of the beta-adrenergic cAMP-PKA(+) pathway and increased levels of the RI alpha subunit of cAMP-dependent protein kinase (PKA) (Cederberg, A., Grønning, L. M., Ahren, B., Taskén, K., Carlsson, P., and Enerbäck, S. (2001) Cell 106, 563-573). In this present study, we reveal that FOXC2 and a related factor, FOXD1, specifically activate the 1b promoter of the RI alpha gene in adipocytes and testicular Sertoli cells, respectively. By deletional mapping, we discovered two different mechanisms by which the Fox proteins activated expression from the RI alpha 1b promoter. In 3T3-L1 adipocytes, an upstream region represses promoter activity under basal conditions. Bandshift experiments indicate that overexpression of FOXC2 promotes the release of a potential repressor from this region. In Sertoli cells, sequences downstream of the transcription start sites mediate the activating effect of FOXD1, and protein kinase B alpha/Akt1 strongly induces this effect. Furthermore, we show that an inactive FOXD1 mutant lowers the cAMP-mediated induction of the RI alpha 1b reporter construct. In summary, winged helix transcription factors of the FOXC/FOXD families function as regulators of the RI alpha subunit of PKA and may integrate hormonal signals acting through protein kinase B and cAMP in a cell-specific manner.
Collapse
Affiliation(s)
- Maria K Dahle
- Department of Medical Biochemistry, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
412
|
Dahle MK, Taskén K, Taskén KA. USF2 inhibits C/EBP-mediated transcriptional regulation of the RIIbeta subunit of cAMP-dependent protein kinase. BMC Mol Biol 2002; 3:10. [PMID: 12086590 PMCID: PMC117135 DOI: 10.1186/1471-2199-3-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Accepted: 06/21/2002] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cyclic AMP-dependent protein kinase (PKA) plays a central role in regulation of energy metabolism. Upon stimulation of testicular Sertoli cells by follicle stimulating hormone (FSH), glycolysis is activated to increase the production of nutrients for the germ cells, and a new regulatory subunit of cAMP-dependent protein kinase, RIIbeta, is induced. We have previously shown that production of the transcription factor C/EBPbeta is rapidly increased by FSH and cAMP in primary Sertoli cell cultures, and that C/EBPbeta induces the RIIbeta promoter. RESULTS In this work we show that USF1, USF2 and truncated USF isoforms bind to a conserved E-box in the RIIbeta gene. Interestingly, overexpression of USF2, but not USF1, led to inhibition of both cAMP- and C/EBPbeta-mediated induction of RIIbeta. Furthermore, Western blots show that a novel USF1 isoform is induced by cAMP in Sertoli cells. CONCLUSIONS These results indicate that the expression of various USF isoforms may be regulated by cAMP, and that the interplay between USF and C/EBPbeta is important for cAMP-mediated regulation of RIIbeta expression. The counteracting effects of USF2 and C/EBPbeta observed on the RIIbeta promoter is in accordance with the hypothesis that C/EBP and USF play opposite roles in regulation of glucose metabolism.
Collapse
Affiliation(s)
- Maria Krudtaa Dahle
- Department of Medical Biochemistry, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Kjetil Taskén
- Department of Medical Biochemistry, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Kristin Austlid Taskén
- Department of Medical Biochemistry, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| |
Collapse
|
413
|
Flachs P, Novotný J, Baumruk F, Bardová K, Bourová L, Miksík I, Sponarová J, Svoboda P, Kopecký J. Impaired noradrenaline-induced lipolysis in white fat of aP2-Ucp1 transgenic mice is associated with changes in G-protein levels. Biochem J 2002; 364:369-76. [PMID: 12023879 PMCID: PMC1222581 DOI: 10.1042/bj20011438] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In vitro experiments suggest that stimulation of lipolysis by catecholamines in adipocytes depends on the energy status of these cells. We tested whether mitochondrial uncoupling proteins (UCPs) that control the efficiency of ATP production could affect lipolysis and noradrenaline signalling in white fat in vivo. The lipolytic effect of noradrenaline was lowered by ectopic UCP1 in white adipocytes of aP2-Ucp1 transgenic mice, overexpressing the UCP1 gene from the aP2 gene promoter, reflecting the magnitude of UCP1 expression, the impaired stimulation of cAMP levels by noradrenaline and the reduction of the ATP/ADP ratio in different fat depots. Thus only subcutaneous but not epididymal fat was affected. UCP1 also down-regulated the expression of hormone-sensitive lipase and lowered its activity, and altered the expression of trimeric G-proteins in adipocytes. The adipose tissue content of the stimulatory G-protein alpha subunit was increased while that of the inhibitory G-protein alpha subunits decreased in response to UCP1 expression. Our results support the idea that the energy status of cells, and the ATP/ADP ratio in particular, modulates the lipolytic effects of noradrenaline in adipose tissue in vivo. They also demonstrate changes at the G-protein level that tend to overcome the reduction of lipolysis when ATP level in adipocytes is low. Therefore, respiratory uncoupling may exert a broad effect on hormonal signalling in adipocytes.
Collapse
Affiliation(s)
- Pavel Flachs
- Department of Adipose Tissue Biology and Center for Integrated Genomics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1803, 142 20 Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
414
|
Valet P, Tavernier G, Castan-Laurell I, Saulnier-Blache JS, Langin D. Understanding adipose tissue development from transgenic animal models. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30458-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
415
|
Abstract
Obesity and lipoatrophy are major risks for insulin resistance, type 2 diabetes and cardiovascular diseases. The molecular links between adipocyte dysfunction and metabolic disorders were elusive until the discovery that adipose tissue operates as an endocrine organ and releases factors targeting a wide range of organs. This article attempts to review the more recent advances from research on the transcriptional control of adipogenesis and on new adipocyte-secreted proteins that have been proposed as molecular links between adipose tissue and insulin resistance.
Collapse
Affiliation(s)
- Dorte Holst
- Institute of Signaling, Developmental Biology and Cancer, Center for Biochemistry, UFR Sciences, Parc Valrose, Nice, France
| | | |
Collapse
|
416
|
Crowley VEF, Yeo GSH, O'Rahilly S. Obesity therapy: altering the energy intake-and-expenditure balance sheet. Nat Rev Drug Discov 2002; 1:276-86. [PMID: 12120279 DOI: 10.1038/nrd770] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is associated with numerous health complications, which range from non-fatal debilitating conditions such as osteoarthritis, to life-threatening chronic diseases such as coronary heart disease, diabetes and certain cancers. The psychological consequences of obesity can range from lowered self-esteem to clinical depression. Despite the high prevalence of obesity and the many advances in our understanding of how it develops, current therapies have persistently failed to achieve long-term success. This review focuses on how fat mass can be reduced by altering the balance between energy intake and expenditure.
Collapse
Affiliation(s)
- Vivion E F Crowley
- University Departments of Medicine and Clinical Biochemistry, Addenbrooke's Hospital, Cambridge CB2 2QR, UK
| | | | | |
Collapse
|
417
|
Havel PJ. Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr Opin Lipidol 2002; 13:51-9. [PMID: 11790963 DOI: 10.1097/00041433-200202000-00008] [Citation(s) in RCA: 377] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adipose tissue performs complex metabolic and endocrine functions. This review will focus on the recent literature on the biology and actions of three adipocyte hormones involved in the control of energy homeostasis and insulin action, leptin, acylation-stimulating protein, and adiponectin, and mechanisms regulating their production. Results from studies of individuals with absolute leptin deficiency (or receptor defects), and more recently partial leptin deficiency, reveal leptin's critical role in the normal regulation of appetite and body adiposity in humans. The primary biological role of leptin appears to be adaptation to low energy intake rather than a brake on overconsumption and obesity. Leptin production is mainly regulated by insulin-induced changes of adipocyte metabolism. Consumption of fat and fructose, which do not initiate insulin secretion, results in lower circulating leptin levels, a consequence which may lead to overeating and weight gain in individuals or populations consuming diets high in energy derived from these macronutrients. Acylation-stimulating protein acts as a paracrine signal to increase the efficiency of triacylglycerol synthesis in adipocytes, an action that results in more rapid postprandial lipid clearance. Genetic knockout of acylation-stimulating protein leads to reduced body fat, obesity resistance and improved insulin sensitivity in mice. The primary regulator of acylation-stimulating protein production appears to be circulating dietary lipid packaged as chylomicrons. Adiponectin increases insulin sensitivity, perhaps by increasing tissue fat oxidation resulting in reduced circulating fatty acid levels and reduced intramyocellular or liver triglyceride content. Adiponectin and leptin together normalize insulin action in severely insulin-resistant animals that have very low levels of adiponectin and leptin due to lipoatrophy. Leptin also improves insulin resistance and reduces hyperlipidemia in lipoatrophic humans. Adiponectin production is stimulated by agonists of peroxisome proliferator-activated receptor-gamma; an action may contribute to the insulin-sensitizing effects of this class of compounds. The production of all three hormones is influenced by nutritional status. These adipocyte hormones, the pathways controlling their production, and their receptors represent promising targets for managing obesity, hyperlipidemia, and insulin resistance.
Collapse
Affiliation(s)
- Peter J Havel
- Department of Nutrition, University of California, Davis, California 95616, USA.
| |
Collapse
|
418
|
Dahle MK, Knutsen HK, Taskén KA, Pilz R, Taskén K. Cyclic AMP regulates expression of the RI alpha subunit of cAMP-dependent protein kinase through an alternatively spliced 5' UTR. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5920-9. [PMID: 11722580 DOI: 10.1046/j.0014-2956.2001.02542.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study examines novel mechanisms that regulate levels of the RI alpha subunit of cAMP-dependent protein kinase. We found that RI alpha protein is induced threefold by 8-(4-chlorophenyl)thio-cAMP in hormone responsive rat Sertoli cells, while total RI alpha mRNA is not correspondingly induced. Two RI alpha mRNA isoforms with different 5' untranslated sequences (RI alpha 1a and RI alpha 1b) are produced from the RI alpha gene in Sertoli cells. Deletion/mutation analysis of the cAMP-response-element-containing promoter upstream of the RI alpha exon 1b revealed that while mutation of the cAMP response element had no effects on cAMP-mediated induction, a 73-bp region of the RI alpha exon 1b itself conferred a fivefold to eightfold induction of reporter activity to homologous and heterologous promoters. The responsiveness of this region was dependent on a sense orientation downstream of the promoter start sites and had no effect on reporter mRNA, indicating that the cAMP-mediated induction occurs at the post-transcriptional level. Modeling of the RI alpha 1b 5' UTR secondary structure revealed a 5' CAP-proximal, strong stem-loop presenting an element similar to multiple start-site element downstream-1 (GCTCGG) in the loop region. RNA-EMSAs performed with the labeled RI alpha 1b 5' UTR showed stabilization of a protein/RNA complex in extracts from 8-(4-chlorophenyl)thio-cAMP stimulated Sertoli cells. This complex was abolished by mutation of the multiple start-site element downstream-1-like element. Our findings indicate that there is a cAMP-mediated induction of RI alpha expression at the post-transcriptional level, dependent on the 5' UTR of RI alpha 1b mRNA.
Collapse
Affiliation(s)
- M K Dahle
- Department of Medical Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Norway.
| | | | | | | | | |
Collapse
|