401
|
Tafessu A, Banaszynski LA. Establishment and function of chromatin modification at enhancers. Open Biol 2020; 10:200255. [PMID: 33050790 PMCID: PMC7653351 DOI: 10.1098/rsob.200255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
How a single genome can give rise to distinct cell types remains a fundamental question in biology. Mammals are able to specify and maintain hundreds of cell fates by selectively activating unique subsets of their genome. This is achieved, in part, by enhancers-genetic elements that can increase transcription of both nearby and distal genes. Enhancers can be identified by their unique chromatin signature, including transcription factor binding and the enrichment of specific histone post-translational modifications, histone variants, and chromatin-associated cofactors. How each of these chromatin features contributes to enhancer function remains an area of intense study. In this review, we provide an overview of enhancer-associated chromatin states, and the proteins and enzymes involved in their establishment. We discuss recent insights into the effects of the enhancer chromatin state on ongoing transcription versus their role in the establishment of new transcription programmes, such as those that occur developmentally. Finally, we highlight the role of enhancer chromatin in new conceptual advances in gene regulation such as condensate formation.
Collapse
Affiliation(s)
| | - Laura A. Banaszynski
- UT Southwestern Medical Center, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, Hamon Center for Regenerative Science and Medicine, Dallas, TX 75390-8511, USA
| |
Collapse
|
402
|
Wang W, Chen Y, Xu A, Cai M, Cao J, Zhu H, Yang B, Shao X, Ying M, He Q. Protein phase separation: A novel therapy for cancer? Br J Pharmacol 2020; 177:5008-5030. [PMID: 32851637 DOI: 10.1111/bph.15242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/18/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, phase separation has been increasingly reported to play a pivotal role in a wide range of biological processes. Due to the close relationships between cancer and disorders in intracellular physiological function, the identification of new mechanisms involved in intracellular regulation has been regarded as a new direction for cancer therapy. Introducing the concept of phase separation into complex descriptions of disease mechanisms may provide many different insights. Here, we review the recent findings on the phase separation of cancer-related proteins, describing the possible relationships between phase separation and key proteins associated with cancer and indicate possible regulatory modalities, especially drug candidates for phase separation, which may provide more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Wei Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingqian Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Aixiao Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minyi Cai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
403
|
Chen YJ, Yang JE. Role of liquid-liquid phase separation in cell physiology and diseases. Shijie Huaren Xiaohua Zazhi 2020; 28:884-890. [DOI: 10.11569/wcjd.v28.i18.884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There are many liquid-like membraneless compartments in eukaryotic cells. Recent studies have shown that these membraneless compartments are formed through liquid-liquid phase separation (LLPS), driven by proteins, nucleic acids, and other biomacromolecules. LLPS is involved in different cell activities such as regulation of gene expression, signal transduction, stress response and so on. It is shown that dysregulation of LLPS is associated with neurodegenerative disease and cancer. This review discusses the formation and regulation of liquid-liquid separation and their roles in cell physiology and diseases.
Collapse
Affiliation(s)
- Ya-Jing Chen
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, China
| | - Jin-E Yang
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, China
| |
Collapse
|
404
|
Agbleke AA, Amitai A, Buenrostro JD, Chakrabarti A, Chu L, Hansen AS, Koenig KM, Labade AS, Liu S, Nozaki T, Ovchinnikov S, Seeber A, Shaban HA, Spille JH, Stephens AD, Su JH, Wadduwage D. Advances in Chromatin and Chromosome Research: Perspectives from Multiple Fields. Mol Cell 2020; 79:881-901. [PMID: 32768408 PMCID: PMC7888594 DOI: 10.1016/j.molcel.2020.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Nucleosomes package genomic DNA into chromatin. By regulating DNA access for transcription, replication, DNA repair, and epigenetic modification, chromatin forms the nexus of most nuclear processes. In addition, dynamic organization of chromatin underlies both regulation of gene expression and evolution of chromosomes into individualized sister objects, which can segregate cleanly to different daughter cells at anaphase. This collaborative review shines a spotlight on technologies that will be crucial to interrogate key questions in chromatin and chromosome biology including state-of-the-art microscopy techniques, tools to physically manipulate chromatin, single-cell methods to measure chromatin accessibility, computational imaging with neural networks and analytical tools to interpret chromatin structure and dynamics. In addition, this review provides perspectives on how these tools can be applied to specific research fields such as genome stability and developmental biology and to test concepts such as phase separation of chromatin.
Collapse
Affiliation(s)
| | - Assaf Amitai
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Aditi Chakrabarti
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Lingluo Chu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kristen M Koenig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; JHDSF Program, Harvard University, Cambridge, MA 02138, USA
| | - Ajay S Labade
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Sirui Liu
- FAS Division of Science, Harvard University, Cambridge, MA 02138, USA
| | - Tadasu Nozaki
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sergey Ovchinnikov
- JHDSF Program, Harvard University, Cambridge, MA 02138, USA; FAS Division of Science, Harvard University, Cambridge, MA 02138, USA
| | - Andrew Seeber
- JHDSF Program, Harvard University, Cambridge, MA 02138, USA; Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA.
| | - Haitham A Shaban
- Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA; Spectroscopy Department, Physics Division, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Jan-Hendrik Spille
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Andrew D Stephens
- Biology Department, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Jun-Han Su
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dushan Wadduwage
- JHDSF Program, Harvard University, Cambridge, MA 02138, USA; Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
405
|
André KM, Sipos EH, Soutourina J. Mediator Roles Going Beyond Transcription. Trends Genet 2020; 37:224-234. [PMID: 32921511 DOI: 10.1016/j.tig.2020.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022]
Abstract
Dysfunctions of nuclear processes including transcription and DNA repair lead to severe human diseases. Gaining an understanding of how these processes operate in the crowded context of chromatin can be particularly challenging. Mediator is a large multiprotein complex conserved in eukaryotes with a key coactivator role in the regulation of RNA polymerase (Pol) II transcription. Despite intensive studies, the molecular mechanisms underlying Mediator function remain to be fully understood. Novel findings have provided insights into the relationship between Mediator and chromatin architecture, revealed its role in connecting transcription with DNA repair and proposed an emerging mechanism of phase separation involving Mediator condensates. Recent developments in the field suggest multiple functions of Mediator going beyond transcriptional processes per se that would explain its involvement in various human pathologies.
Collapse
Affiliation(s)
- Kévin M André
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Eliet H Sipos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Julie Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
406
|
Direct DNA crosslinking with CAP-C uncovers transcription-dependent chromatin organization at high resolution. Nat Biotechnol 2020; 39:225-235. [PMID: 32839564 DOI: 10.1038/s41587-020-0643-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Determining the spatial organization of chromatin in cells mainly relies on crosslinking-based chromosome conformation capture techniques, but resolution and signal-to-noise ratio of these approaches is limited by interference from DNA-bound proteins. Here we introduce chemical-crosslinking assisted proximity capture (CAP-C), a method that uses multifunctional chemical crosslinkers with defined sizes to capture chromatin contacts. CAP-C generates chromatin contact maps at subkilobase (sub-kb) resolution with low background noise. We applied CAP-C to formaldehyde prefixed mouse embryonic stem cells (mESCs) and investigated loop domains (median size of 200 kb) and nonloop domains (median size of 9 kb). Transcription inhibition caused a greater loss of contacts in nonloop domains than loop domains. We uncovered conserved, transcription-state-dependent chromatin compartmentalization at high resolution that is shared from Drosophila to human, and a transcription-initiation-dependent nuclear subcompartment that brings multiple nonloop domains in close proximity. We also showed that CAP-C could be used to detect native chromatin conformation without formaldehyde prefixing.
Collapse
|
407
|
Liquid-Liquid Phase Separation in Crowded Environments. Int J Mol Sci 2020; 21:ijms21165908. [PMID: 32824618 PMCID: PMC7460619 DOI: 10.3390/ijms21165908] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022] Open
Abstract
Biomolecular condensates play a key role in organizing cellular fluids such as the cytoplasm and nucleoplasm. Most of these non-membranous organelles show liquid-like properties both in cells and when studied in vitro through liquid–liquid phase separation (LLPS) of purified proteins. In general, LLPS of proteins is known to be sensitive to variations in pH, temperature and ionic strength, but the role of crowding remains underappreciated. Several decades of research have shown that macromolecular crowding can have profound effects on protein interactions, folding and aggregation, and it must, by extension, also impact LLPS. However, the precise role of crowding in LLPS is far from trivial, as most condensate components have a disordered nature and exhibit multiple weak attractive interactions. Here, we discuss which factors determine the scope of LLPS in crowded environments, and we review the evidence for the impact of macromolecular crowding on phase boundaries, partitioning behavior and condensate properties. Based on a comparison of both in vivo and in vitro LLPS studies, we propose that phase separation in cells does not solely rely on attractive interactions, but shows important similarities to segregative phase separation.
Collapse
|
408
|
Tan ZW, Fei G, Paulo JA, Bellaousov S, Martin SES, Duveau DY, Thomas CJ, Gygi SP, Boutz PL, Walker S. O-GlcNAc regulates gene expression by controlling detained intron splicing. Nucleic Acids Res 2020; 48:5656-5669. [PMID: 32329777 PMCID: PMC7261177 DOI: 10.1093/nar/gkaa263] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 12/28/2022] Open
Abstract
Intron detention in precursor RNAs serves to regulate expression of a substantial fraction of genes in eukaryotic genomes. How detained intron (DI) splicing is controlled is poorly understood. Here, we show that a ubiquitous post-translational modification called O-GlcNAc, which is thought to integrate signaling pathways as nutrient conditions fluctuate, controls detained intron splicing. Using specific inhibitors of the enzyme that installs O-GlcNAc (O-GlcNAc transferase, or OGT) and the enzyme that removes O-GlcNAc (O-GlcNAcase, or OGA), we first show that O-GlcNAc regulates splicing of the highly conserved detained introns in OGT and OGA to control mRNA abundance in order to buffer O-GlcNAc changes. We show that OGT and OGA represent two distinct paradigms for how DI splicing can control gene expression. We also show that when DI splicing of the O-GlcNAc-cycling genes fails to restore O-GlcNAc homeostasis, there is a global change in detained intron levels. Strikingly, almost all detained introns are spliced more efficiently when O-GlcNAc levels are low, yet other alternative splicing pathways change minimally. Our results demonstrate that O-GlcNAc controls detained intron splicing to tune system-wide gene expression, providing a means to couple nutrient conditions to the cell's transcriptional regime.
Collapse
Affiliation(s)
- Zhi-Wei Tan
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - George Fei
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stanislav Bellaousov
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Sara E S Martin
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Damien Y Duveau
- National Institutes of Health Chemical Genomics Center, Rockville, MD 20850, USA
| | - Craig J Thomas
- National Institutes of Health Chemical Genomics Center, Rockville, MD 20850, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Paul L Boutz
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.,Center for Biomedical Informatics, University of Rochester, Rochester, NY 14642, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
409
|
Lynch CJ, Bernad R, Calvo I, Serrano M. Manipulating the Mediator complex to induce naïve pluripotency. Exp Cell Res 2020; 395:112215. [PMID: 32771524 PMCID: PMC7584500 DOI: 10.1016/j.yexcr.2020.112215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 08/01/2020] [Indexed: 12/26/2022]
Abstract
Human naïve pluripotent stem cells (PSCs) represent an optimal homogenous starting point for molecular interventions and differentiation strategies. This is in contrast to the standard primed PSCs which fluctuate in identity and are transcriptionally heterogeneous. However, despite many efforts, the maintenance and expansion of human naïve PSCs remains a challenge. Here, we discuss our recent strategy for the stabilization of human PSC in the naïve state based on the use of a single chemical inhibitor of the related kinases CDK8 and CDK19. These kinases phosphorylate and negatively regulate the multiprotein Mediator complex, which is critical for enhancer-driven recruitment of RNA Pol II. The net effect of CDK8/19 inhibition is a global stimulation of enhancers, which in turn reinforces transcriptional programs including those related to cellular identity. In the case of pluripotent cells, the presence of CDK8/19i efficiently stabilizes the naïve state. Importantly, in contrast to previous chemical methods to induced the naïve state based on the inhibition of the FGF-MEK-ERK pathway, CDK8/19i-naïve human PSCs are chromosomally stable and retain developmental potential after long-term expansion. We suggest this could be related to the fact that CDK8/19 inhibition does not induce DNA demethylation. These principles may apply to other fate decisions.
Collapse
Affiliation(s)
- Cian J Lynch
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Raquel Bernad
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Isabel Calvo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain.
| |
Collapse
|
410
|
Li W, Hu J, Shi B, Palomba F, Digman MA, Gratton E, Jiang H. Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nat Cell Biol 2020; 22:960-972. [PMID: 32719551 PMCID: PMC7425812 DOI: 10.1038/s41556-020-0550-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 06/24/2020] [Indexed: 12/14/2022]
Abstract
It remains unknown if biophysical or material properties of biomolecular condensates regulate cancer. Here we show that AKAP95, a nuclear protein that regulates transcription and RNA splicing, plays an important role in tumorigenesis by supporting cancer cell growth and suppressing oncogene-induced senescence. AKAP95 forms phase-separated and liquid-like condensates in vitro and in nucleus. Mutations of key residues to different amino acids perturb AKAP95 condensation in opposite directions. Importantly, the activity of AKAP95 in splice regulation is abolished by disruption of condensation, significantly impaired by hardening of condensates, and regained by substituting its condensation-mediating region with other condensation-mediating regions from irrelevant proteins. Moreover, the abilities of AKAP95 in regulating gene expression and supporting tumorigenesis require AKAP95 to form condensates with proper liquidity and dynamicity. These results link phase separation to tumorigenesis and uncover an important role of appropriate biophysical properties of protein condensates in gene regulation and cancer.
Collapse
Affiliation(s)
- Wei Li
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Jing Hu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Bi Shi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Francesco Palomba
- Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Michelle A Digman
- Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Enrico Gratton
- Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
411
|
Affiliation(s)
- Bo Liu
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
412
|
Lu Y, Sun Y, Liu Z, Lu Y, Zhu X, Lan B, Mi Z, Dang L, Li N, Zhan W, Tan L, Pi J, Xiong H, Zhang L, Chen Y. Activation of NRF2 ameliorates oxidative stress and cystogenesis in autosomal dominant polycystic kidney disease. Sci Transl Med 2020; 12:12/554/eaba3613. [DOI: 10.1126/scitranslmed.aba3613] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress is emerging as a crucial contributor to the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD), but the molecular mechanisms underlying the disturbed redox homeostasis in cystic cells remain elusive. Here, we identified the impaired activity of the NRF2 (nuclear factor erythroid 2–related factor 2) antioxidant pathway as a driver of oxidative damage and ADPKD progression. Using a quantitative proteomic approach, together with biochemical analyses, we found that increased degradation of NRF2 protein suppressed the NRF2 antioxidant pathway in ADPKD mouse kidneys. In a cohort of patients with ADPKD, reactive oxygen species (ROS) frequently accumulated, and their production correlated negatively with NRF2 abundance and positively with disease severity. In an orthologous ADPKD mouse model, genetic deletion of Nrf2 further increased ROS generation and promoted cyst growth, whereas pharmacological induction of NRF2 reduced ROS production and slowed cystogenesis and disease progression. Mechanistically, pharmacological induction of NRF2 remodeled enhancer landscapes and activated NRF2-bound enhancer-associated genes in ADPKD cells. The activation domain of NRF2 formed phase-separated condensates with MEDIATOR complex subunit MED16 in vitro, and optimal Mediator recruitment to genomic loci depended on NRF2 in vivo. Together, these findings indicate that NRF2 remodels enhancer landscapes and activates its target genes through a phase separation mechanism and that activation of NRF2 represents a promising strategy for restoring redox homeostasis and combatting ADPKD.
Collapse
Affiliation(s)
- Yi Lu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yongzhan Sun
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhiheng Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yumei Lu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xu Zhu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Bingxue Lan
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zeyun Mi
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lin Dang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Na Li
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wenlei Zhan
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lu Tan
- Department of Laboratory Animal Science and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Hui Xiong
- Department of Urology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250001, China
| | - Lirong Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yupeng Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
413
|
Taylor K, Sobczak K. Intrinsic Regulatory Role of RNA Structural Arrangement in Alternative Splicing Control. Int J Mol Sci 2020; 21:ijms21145161. [PMID: 32708277 PMCID: PMC7404189 DOI: 10.3390/ijms21145161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing is a highly sophisticated process, playing a significant role in posttranscriptional gene expression and underlying the diversity and complexity of organisms. Its regulation is multilayered, including an intrinsic role of RNA structural arrangement which undergoes time- and tissue-specific alterations. In this review, we describe the principles of RNA structural arrangement and briefly decipher its cis- and trans-acting cellular modulators which serve as crucial determinants of biological functionality of the RNA structure. Subsequently, we engage in a discussion about the RNA structure-mediated mechanisms of alternative splicing regulation. On one hand, the impairment of formation of optimal RNA structures may have critical consequences for the splicing outcome and further contribute to understanding the pathomechanism of severe disorders. On the other hand, the structural aspects of RNA became significant features taken into consideration in the endeavor of finding potential therapeutic treatments. Both aspects have been addressed by us emphasizing the importance of ongoing studies in both fields.
Collapse
|
414
|
Nozawa RS, Yamamoto T, Takahashi M, Tachiwana H, Maruyama R, Hirota T, Saitoh N. Nuclear microenvironment in cancer: Control through liquid-liquid phase separation. Cancer Sci 2020; 111:3155-3163. [PMID: 32594560 PMCID: PMC7469853 DOI: 10.1111/cas.14551] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
The eukaryotic nucleus is not a homogenous single‐spaced but a highly compartmentalized organelle, partitioned by various types of membraneless structures, including nucleoli, PML bodies, paraspeckles, DNA damage foci and RNA clouds. Over the past few decades, these nuclear structures have been implicated in biological reactions such as gene regulation and DNA damage response and repair, and are thought to provide “microenvironments,” facilitating these reactions in the nucleus. Notably, an altered morphology of these nuclear structures is found in many cancers, which may relate to so‐called “nuclear atypia” in histological examinations. While the diagnostic significance of nuclear atypia has been established, its nature has remained largely enigmatic and awaits characterization. Here, we review the emerging biophysical principles that govern biomolecular condensate assembly in the nucleus, namely, liquid‐liquid phase separation (LLPS), to investigate the nature of the nuclear microenvironment. In the nucleus, LLPS is typically driven by multivalent interactions between proteins with intrinsically disordered regions, and is also facilitated by protein interaction with nucleic acids, including nuclear non–coding RNAs. Importantly, an altered LLPS leads to dysregulation of nuclear events and epigenetics, and often to tumorigenesis and tumor progression. We further note the possibility that LLPS could represent a new therapeutic target for cancer intervention.
Collapse
Affiliation(s)
- Ryu-Suke Nozawa
- Division of Experimental Pathology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Tatsuro Yamamoto
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Motoko Takahashi
- Division of Experimental Pathology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Hiroaki Tachiwana
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, The Cancer Institute of JFCR, Tokyo, Japan
| | - Toru Hirota
- Division of Experimental Pathology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, Japan
| |
Collapse
|
415
|
Esgleas M, Falk S, Forné I, Thiry M, Najas S, Zhang S, Mas-Sanchez A, Geerlof A, Niessing D, Wang Z, Imhof A, Götz M. Trnp1 organizes diverse nuclear membrane-less compartments in neural stem cells. EMBO J 2020; 39:e103373. [PMID: 32627867 PMCID: PMC7429739 DOI: 10.15252/embj.2019103373] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/09/2022] Open
Abstract
TMF1‐regulated nuclear protein 1 (Trnp1) has been shown to exert potent roles in neural development affecting neural stem cell self‐renewal and brain folding, but its molecular function in the nucleus is still unknown. Here, we show that Trnp1 is a low complexity protein with the capacity to phase separate. Trnp1 interacts with factors located in several nuclear membrane‐less organelles, the nucleolus, nuclear speckles, and condensed chromatin. Importantly, Trnp1 co‐regulates the architecture and function of these nuclear compartments in vitro and in the developing brain in vivo. Deletion of a highly conserved region in the N‐terminal intrinsic disordered region abolishes the capacity of Trnp1 to regulate nucleoli and heterochromatin size, proliferation, and M‐phase length; decreases the capacity to phase separate; and abrogates most of Trnp1 protein interactions. Thus, we identified Trnp1 as a novel regulator of several nuclear membrane‐less compartments, a function important to maintain cells in a self‐renewing proliferative state.
Collapse
Affiliation(s)
- Miriam Esgleas
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians Universitaet Muenchen, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sven Falk
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians Universitaet Muenchen, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ignasi Forné
- Protein Analysis Unit, BioMedical Center (BMC), Ludwig-Maximilians-Universitaet Muenchen, Planegg/Munich, Germany
| | - Marc Thiry
- Cell and Tissue Biology Unit, GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman, Liege, Belgium
| | - Sonia Najas
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians Universitaet Muenchen, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sirui Zhang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aina Mas-Sanchez
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians Universitaet Muenchen, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Dierk Niessing
- Group Intracellular Transport and RNA Biology at the Institute of Structural Biology, Helmholtz Zentrum Muenchen, Neuherberg, Germany.,Department of Cell Biology, BioMedical Center (BMC), Ludwig-Maximilians-Universitaet Muenchen, Planegg/Munich, Germany
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Axel Imhof
- Protein Analysis Unit, BioMedical Center (BMC), Ludwig-Maximilians-Universitaet Muenchen, Planegg/Munich, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, BioMedical Center (BMC), Ludwig-Maximilians-Universitaet Muenchen, Planegg/Munich, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians Universitaet Muenchen, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, BioMedical Center (BMC), Ludwig-Maximilians-Universitaet Muenchen, Planegg/Munich, Germany
| |
Collapse
|
416
|
Conte M, Fiorillo L, Bianco S, Chiariello AM, Esposito A, Nicodemi M. Polymer physics indicates chromatin folding variability across single-cells results from state degeneracy in phase separation. Nat Commun 2020; 11:3289. [PMID: 32620890 PMCID: PMC7335158 DOI: 10.1038/s41467-020-17141-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/10/2020] [Indexed: 11/15/2022] Open
Abstract
The spatial organization of chromosomes has key functional roles, yet how chromosomes fold remains poorly understood at the single-molecule level. Here, we employ models of polymer physics to investigate DNA loci in human HCT116 and IMR90 wild-type and cohesin depleted cells. Model predictions on single-molecule structures are validated against single-cell imaging data, providing evidence that chromosomal architecture is controlled by a thermodynamics mechanism of polymer phase separation whereby chromatin self-assembles in segregated globules by combinatorial interactions of chromatin factors that include CTCF and cohesin. The thermodynamics degeneracy of single-molecule conformations results in broad structural and temporal variability of TAD-like contact patterns. Globules establish stable environments where specific contacts are highly favored over stochastic encounters. Cohesin depletion reverses phase separation into randomly folded states, erasing average interaction patterns. Overall, globule phase separation appears to be a robust yet reversible mechanism of chromatin organization where stochasticity and specificity coexist.
Collapse
Affiliation(s)
- Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Luca Fiorillo
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy.
- Berlin Institute for Medical Systems Biology, Max-Delbrück Centre (MDC) for Molecular Medicine, Berlin, Germany.
- Berlin Institute of Health (BIH), MDC-Berlin, Berlin, Germany.
| |
Collapse
|
417
|
Beato M, Wright RHG, Dily FL. 90 YEARS OF PROGESTERONE: Molecular mechanisms of progesterone receptor action on the breast cancer genome. J Mol Endocrinol 2020; 65:T65-T79. [PMID: 32485671 PMCID: PMC7354705 DOI: 10.1530/jme-19-0266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Gene regulation by steroid hormones has been at the forefront in elucidating the intricacies of transcriptional regulation in eukaryotes ever since the discovery by Karlson and Clever that the insect steroid hormone ecdysone induces chromatin puffs in giant chromosomes. After the successful cloning of the hormone receptors toward the end of the past century, detailed mechanistic insight emerged in some model systems, in particular the MMTV provirus. With the arrival of next generation DNA sequencing and the omics techniques, we have gained even further insight into the global cellular response to steroid hormones that in the past decades also extended to the function of the 3D genome topology. More recently, advances in high resolution microcopy, single cell genomics and the new vision of liquid-liquid phase transitions in the context of nuclear space bring us closer than ever to unravelling the logic of gene regulation and its complex integration of global cellular signaling networks. Using the function of progesterone and its cellular receptor in breast cancer cells, we will briefly summarize the history and describe the present extent of our knowledge on how regulatory proteins deal with the chromatin structure to gain access to DNA sequences and interpret the genomic instructions that enable cells to respond selectively to external signals by reshaping their gene regulatory networks.
Collapse
Affiliation(s)
- Miguel Beato
- Centre de Regulació Genomica (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roni H G Wright
- Centre de Regulació Genomica (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, Spain
| | - François Le Dily
- Centre de Regulació Genomica (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, Spain
| |
Collapse
|
418
|
Frank L, Rippe K. Repetitive RNAs as Regulators of Chromatin-Associated Subcompartment Formation by Phase Separation. J Mol Biol 2020; 432:4270-4286. [DOI: 10.1016/j.jmb.2020.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
|
419
|
Quintero-Cadena P, Lenstra TL, Sternberg PW. RNA Pol II Length and Disorder Enable Cooperative Scaling of Transcriptional Bursting. Mol Cell 2020; 79:207-220.e8. [DOI: 10.1016/j.molcel.2020.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/09/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
|
420
|
Klein IA, Boija A, Afeyan LK, Hawken SW, Fan M, Dall'Agnese A, Oksuz O, Henninger JE, Shrinivas K, Sabari BR, Sagi I, Clark VE, Platt JM, Kar M, McCall PM, Zamudio AV, Manteiga JC, Coffey EL, Li CH, Hannett NM, Guo YE, Decker TM, Lee TI, Zhang T, Weng JK, Taatjes DJ, Chakraborty A, Sharp PA, Chang YT, Hyman AA, Gray NS, Young RA. Partitioning of cancer therapeutics in nuclear condensates. Science 2020; 368:1386-1392. [PMID: 32554597 PMCID: PMC7735713 DOI: 10.1126/science.aaz4427] [Citation(s) in RCA: 330] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/24/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022]
Abstract
The nucleus contains diverse phase-separated condensates that compartmentalize and concentrate biomolecules with distinct physicochemical properties. Here, we investigated whether condensates concentrate small-molecule cancer therapeutics such that their pharmacodynamic properties are altered. We found that antineoplastic drugs become concentrated in specific protein condensates in vitro and that this occurs through physicochemical properties independent of the drug target. This behavior was also observed in tumor cells, where drug partitioning influenced drug activity. Altering the properties of the condensate was found to affect the concentration and activity of drugs. These results suggest that selective partitioning and concentration of small molecules within condensates contributes to drug pharmacodynamics and that further understanding of this phenomenon may facilitate advances in disease therapy.
Collapse
Affiliation(s)
- Isaac A Klein
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ann Boija
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Lena K Afeyan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susana Wilson Hawken
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mengyang Fan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Ozgur Oksuz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Krishna Shrinivas
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin R Sabari
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ido Sagi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Victoria E Clark
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jesse M Platt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mrityunjoy Kar
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Patrick M McCall
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Alicia V Zamudio
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John C Manteiga
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eliot L Coffey
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles H Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Yang Eric Guo
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tim-Michael Decker
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Arup Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard Medical School, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Phillip A Sharp
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Young Tae Chang
- Department of Chemistry, Pohang University of Science and Technology, and Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technical University of Dresden, 01062 Dresden, Germany
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|
421
|
Razin SV, Gavrilov AA. The Role of Liquid–Liquid Phase Separation in the Compartmentalization of Cell Nucleus and Spatial Genome Organization. BIOCHEMISTRY (MOSCOW) 2020; 85:643-650. [DOI: 10.1134/s0006297920060012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
422
|
Wuputra K, Ku CC, Wu DC, Lin YC, Saito S, Yokoyama KK. Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells. J Exp Clin Cancer Res 2020; 39:100. [PMID: 32493501 PMCID: PMC7268627 DOI: 10.1186/s13046-020-01584-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Human pluripotent embryonic stem cells have two special features: self-renewal and pluripotency. It is important to understand the properties of pluripotent stem cells and reprogrammed stem cells. One of the major problems is the risk of reprogrammed stem cells developing into tumors. To understand the process of differentiation through which stem cells develop into cancer cells, investigators have attempted to identify the key factors that generate tumors in humans. The most effective method for the prevention of tumorigenesis is the exclusion of cancer cells during cell reprogramming. The risk of cancer formation is dependent on mutations of oncogenes and tumor suppressor genes during the conversion of stem cells to cancer cells and on the environmental effects of pluripotent stem cells. Dissecting the processes of epigenetic regulation and chromatin regulation may be helpful for achieving correct cell reprogramming without inducing tumor formation and for developing new drugs for cancer treatment. This review focuses on the risk of tumor formation by human pluripotent stem cells, and on the possible treatment options if it occurs. Potential new techniques that target epigenetic processes and chromatin regulation provide opportunities for human cancer modeling and clinical applications of regenerative medicine.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda University Research Institute for Science and Engineering, Shinjuku, Tokyo, 162-8480, Japan.
- Saito Laboratory of Cell Technology Institute, Yaita, Tochigi, 329-1571, Japan.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Waseda University Research Institute for Science and Engineering, Shinjuku, Tokyo, 162-8480, Japan.
| |
Collapse
|
423
|
Zidovska A. The self-stirred genome: large-scale chromatin dynamics, its biophysical origins and implications. Curr Opin Genet Dev 2020; 61:83-90. [PMID: 32497955 DOI: 10.1016/j.gde.2020.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 01/02/2023]
Abstract
The organization and dynamics of human genome govern all cellular processes - directly impacting the central dogma of biology - yet are poorly understood, especially at large length scales. Chromatin, the functional form of DNA in cells, undergoes frequent local remodeling and rearrangements to accommodate processes such as transcription, replication and DNA repair. How these local activities contribute to nucleus-wide coherent chromatin motion, where micron-scale regions of chromatin move together over several seconds, remains unclear. Activity of nuclear enzymes was found to drive the coherent chromatin dynamics, however, its biological nature and physical mechanism remain to be revealed. The coherent dynamics leads to a perpetual stirring of the genome, leading to collective gene dynamics over microns and seconds, thus likely contributing to local and global gene-expression patterns. Hence, a possible biological role of chromatin coherence may involve gene regulation.
Collapse
Affiliation(s)
- Alexandra Zidovska
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA.
| |
Collapse
|
424
|
Selective Mediator dependence of cell-type-specifying transcription. Nat Genet 2020; 52:719-727. [PMID: 32483291 PMCID: PMC7610447 DOI: 10.1038/s41588-020-0635-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/24/2020] [Indexed: 12/15/2022]
Abstract
The Mediator complex directs signals from DNA-binding transcription factors to RNA polymerase (Pol) II. Despite this pivotal position, mechanistic understanding of Mediator in human cells remains incomplete. Here, we quantified Mediator-controlled Pol II kinetics by coupling rapid subunit degradation with orthogonal experimental readouts. Consistent with a model of condensate-driven transcription initiation, large clusters of hypo-phosphorylated Pol II rapidly disassembled upon Mediator degradation. This was accompanied by a selective and pronounced disruption of cell type-specifying transcriptional circuits, whose constituent genes featured exceptionally high rates of Pol II turnover. Notably, transcriptional output of most other genes was largely unaffected by acute Mediator ablation. Maintenance of transcriptional activity at these genes was linked to an unexpected, CDK9-dependent compensatory feedback loop that elevated Pol II pause release rates genome-wide. Collectively, our work positions human Mediator as a globally acting coactivator that selectively safeguards the functionality of cell type-specifying transcriptional networks.
Collapse
|
425
|
Basu S, Mackowiak SD, Niskanen H, Knezevic D, Asimi V, Grosswendt S, Geertsema H, Ali S, Jerković I, Ewers H, Mundlos S, Meissner A, Ibrahim DM, Hnisz D. Unblending of Transcriptional Condensates in Human Repeat Expansion Disease. Cell 2020; 181:1062-1079.e30. [PMID: 32386547 PMCID: PMC7261253 DOI: 10.1016/j.cell.2020.04.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/16/2020] [Accepted: 04/13/2020] [Indexed: 11/27/2022]
Abstract
Expansions of amino acid repeats occur in >20 inherited human disorders, and many occur in intrinsically disordered regions (IDRs) of transcription factors (TFs). Such diseases are associated with protein aggregation, but the contribution of aggregates to pathology has been controversial. Here, we report that alanine repeat expansions in the HOXD13 TF, which cause hereditary synpolydactyly in humans, alter its phase separation capacity and its capacity to co-condense with transcriptional co-activators. HOXD13 repeat expansions perturb the composition of HOXD13-containing condensates in vitro and in vivo and alter the transcriptional program in a cell-specific manner in a mouse model of synpolydactyly. Disease-associated repeat expansions in other TFs (HOXA13, RUNX2, and TBP) were similarly found to alter their phase separation. These results suggest that unblending of transcriptional condensates may underlie human pathologies. We present a molecular classification of TF IDRs, which provides a framework to dissect TF function in diseases associated with transcriptional dysregulation.
Collapse
Affiliation(s)
- Shaon Basu
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sebastian D Mackowiak
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Henri Niskanen
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Dora Knezevic
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Vahid Asimi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Stefanie Grosswendt
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Hylkje Geertsema
- Institute for Chemistry and Biochemistry, Free University Berlin, 14195 Berlin, Germany
| | - Salaheddine Ali
- RG Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, 10178 Berlin, Germany
| | - Ivana Jerković
- RG Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Free University Berlin, 14195 Berlin, Germany
| | - Stefan Mundlos
- RG Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, 10178 Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Daniel M Ibrahim
- RG Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, 10178 Berlin, Germany
| | - Denes Hnisz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
426
|
Loyer P, Trembley JH. Roles of CDK/Cyclin complexes in transcription and pre-mRNA splicing: Cyclins L and CDK11 at the cross-roads of cell cycle and regulation of gene expression. Semin Cell Dev Biol 2020; 107:36-45. [PMID: 32446654 DOI: 10.1016/j.semcdb.2020.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Abstract
Cyclin Dependent Kinases (CDKs) represent a large family of serine/threonine protein kinases that become active upon binding to a Cyclin regulatory partner. CDK/cyclin complexes recently identified, as well as "canonical" CDK/Cyclin complexes regulating cell cycle, are implicated in the regulation of gene expression via the phosphorylation of key components of the transcription and pre-mRNA processing machineries. In this review, we summarize the role of CDK/cyclin-dependent phosphorylation in the regulation of transcription and RNA splicing and highlight recent findings that indicate the involvement of CDK11/cyclin L complexes at the cross-roads of cell cycle, transcription and RNA splicing. Finally, we discuss the potential of CDK11 and Cyclins L as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Pascal Loyer
- INSERM, INRAE, Univ Rennes, NuMeCan, Nutrition Metabolisms and Cancer, Rennes, France.
| | - Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
427
|
Lyons DE, McMahon S, Ott M. A combinatorial view of old and new RNA polymerase II modifications. Transcription 2020; 11:66-82. [PMID: 32401151 DOI: 10.1080/21541264.2020.1762468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The production of mRNA is a dynamic process that is highly regulated by reversible post-translational modifications of the C-terminal domain (CTD) of RNA polymerase II. The CTD is a highly repetitive domain consisting mostly of the consensus heptad sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Phosphorylation of serine residues within this repeat sequence is well studied, but modifications of all residues have been described. Here, we focus on integrating newly identified and lesser-studied CTD post-translational modifications into the existing framework. We also review the growing body of work demonstrating crosstalk between different CTD modifications and the functional consequences of such crosstalk on the dynamics of transcriptional regulation.
Collapse
Affiliation(s)
- Danielle E Lyons
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | - Sarah McMahon
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco , San Francisco, CA, USA
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco , San Francisco, CA, USA
| |
Collapse
|
428
|
Therapeutic Targeting of the General RNA Polymerase II Transcription Machinery. Int J Mol Sci 2020; 21:ijms21093354. [PMID: 32397434 PMCID: PMC7246882 DOI: 10.3390/ijms21093354] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022] Open
Abstract
Inhibitors targeting the general RNA polymerase II (RNAPII) transcription machinery are candidate therapeutics in cancer and other complex diseases. Here, we review the molecular targets and mechanisms of action of these compounds, framing them within the steps of RNAPII transcription. We discuss the effects of transcription inhibitors in vitro and in cellular models (with an emphasis on cancer), as well as their efficacy in preclinical and clinical studies. We also discuss the rationale for inhibiting broadly acting transcriptional regulators or RNAPII itself in complex diseases.
Collapse
|
429
|
Hildebrand EM, Dekker J. Mechanisms and Functions of Chromosome Compartmentalization. Trends Biochem Sci 2020; 45:385-396. [PMID: 32311333 PMCID: PMC7275117 DOI: 10.1016/j.tibs.2020.01.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 01/23/2023]
Abstract
Active and inactive chromatin are spatially separated in the nucleus. In Hi-C data, this is reflected by the formation of compartments, whose interactions form a characteristic checkerboard pattern in chromatin interaction maps. Only recently have the mechanisms that drive this separation come into view. Here, we discuss new insights into these mechanisms and possible functions in genome regulation. Compartmentalization can be understood as a microphase-segregated block co-polymer. Microphase separation can be facilitated by chromatin factors that associate with compartment domains, and that can engage in liquid-liquid phase separation to form subnuclear bodies, as well as by acting as bridging factors between polymer sections. We then discuss how a spatially segregated state of the genome can contribute to gene regulation, and highlight experimental challenges for testing these structure-function relationships.
Collapse
Affiliation(s)
- Erica M Hildebrand
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
430
|
Fan Z, Devlin JR, Hogg SJ, Doyle MA, Harrison PF, Todorovski I, Cluse LA, Knight DA, Sandow JJ, Gregory G, Fox A, Beilharz TH, Kwiatkowski N, Scott NE, Vidakovic AT, Kelly GP, Svejstrup JQ, Geyer M, Gray NS, Vervoort SJ, Johnstone RW. CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. SCIENCE ADVANCES 2020; 6:eaaz5041. [PMID: 32917631 PMCID: PMC7190357 DOI: 10.1126/sciadv.aaz5041] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/10/2020] [Indexed: 05/04/2023]
Abstract
The RNA polymerase II (POLII)-driven transcription cycle is tightly regulated at distinct checkpoints by cyclin-dependent kinases (CDKs) and their cognate cyclins. The molecular events underpinning transcriptional elongation, processivity, and the CDK-cyclin pair(s) involved remain poorly understood. Using CRISPR-Cas9 homology-directed repair, we generated analog-sensitive kinase variants of CDK12 and CDK13 to probe their individual and shared biological and molecular roles. Single inhibition of CDK12 or CDK13 induced transcriptional responses associated with cellular growth signaling pathways and/or DNA damage, with minimal effects on cell viability. In contrast, dual kinase inhibition potently induced cell death, which was associated with extensive genome-wide transcriptional changes including widespread use of alternative 3' polyadenylation sites. At the molecular level, dual kinase inhibition resulted in the loss of POLII CTD phosphorylation and greatly reduced POLII elongation rates and processivity. These data define substantial redundancy between CDK12 and CDK13 and identify both as fundamental regulators of global POLII processivity and transcription elongation.
Collapse
Affiliation(s)
- Zheng Fan
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3052 VIC, Australia
| | - Jennifer R Devlin
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3052 VIC, Australia
| | - Simon J Hogg
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
| | - Maria A Doyle
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3052 VIC, Australia
| | - Paul F Harrison
- Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
- Monash Bioinformatics Platform, Monash University, Clayton, 3800 VIC, Australia
| | - Izabela Todorovski
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3052 VIC, Australia
| | - Leonie A Cluse
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
| | - Deborah A Knight
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3052 VIC, Australia
| | - Gareth Gregory
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
| | - Andrew Fox
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
| | - Traude H Beilharz
- Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Nicholas Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nichollas E Scott
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Parkville, 3052 VIC, Australia
| | | | - Gavin P Kelly
- Bioinformatics and Biostatistics, The Francis Crick Institute, London NW1 1AT, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Stephin J Vervoort
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3052 VIC, Australia
| | - Ricky W Johnstone
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3052 VIC, Australia
| |
Collapse
|
431
|
Kethoxal-assisted single-stranded DNA sequencing captures global transcription dynamics and enhancer activity in situ. Nat Methods 2020; 17:515-523. [PMID: 32251394 PMCID: PMC7205578 DOI: 10.1038/s41592-020-0797-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Transcription is a highly dynamic process that generates single-stranded DNA (ssDNA) in the genome as ‘transcription bubbles’. Here we describe a kethoxal-assisted single-stranded DNA sequencing (KAS-seq) approach, based on the fast and specific reaction between N3-kethoxal and guanines in ssDNA in live cells and mouse tissues. KAS-seq enables rapid (within 5 min), sensitive, and genome-wide capture and mapping of ssDNA produced by transcriptionally active RNA polymerases or other processes in situ by using as few as 1,000 cells. KAS-seq defines a group of enhancers that are single-stranded, which enrich unique sequence motifs and are associated with specific transcription factor binding and more enhancer-promotor interactions. Under protein condensation inhibition conditions, KAS-seq uncovers a rapid release of RNA polymerase II (Pol II) from a group of promotors. KAS-seq thus facilitates fast, comprehensive, and accurate analysis of transcription dynamics and enhancer activities simultaneously in a low input and high-throughput manner.
Collapse
|
432
|
Abstract
RNA polymerase II (Pol II) transcribes all protein-coding genes and many noncoding RNAs in eukaryotic genomes. Although Pol II is a complex, 12-subunit enzyme, it lacks the ability to initiate transcription and cannot consistently transcribe through long DNA sequences. To execute these essential functions, an array of proteins and protein complexes interact with Pol II to regulate its activity. In this review, we detail the structure and mechanism of over a dozen factors that govern Pol II initiation (e.g., TFIID, TFIIH, and Mediator), pausing, and elongation (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis for Pol II transcription regulation has advanced rapidly in the past decade, largely due to technological innovations in cryoelectron microscopy. Here, we summarize a wealth of structural and functional data that have enabled a deeper understanding of Pol II transcription mechanisms; we also highlight mechanistic questions that remain unanswered or controversial.
Collapse
Affiliation(s)
- Allison C Schier
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
433
|
Guo C, Che Z, Yue J, Xie P, Hao S, Xie W, Luo Z, Lin C. ENL initiates multivalent phase separation of the super elongation complex (SEC) in controlling rapid transcriptional activation. SCIENCE ADVANCES 2020; 6:eaay4858. [PMID: 32270036 PMCID: PMC7112754 DOI: 10.1126/sciadv.aay4858] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 01/08/2020] [Indexed: 05/14/2023]
Abstract
Release of paused RNA polymerase II (Pol II) requires incorporation of the positive transcription elongation factor b (P-TEFb) into the super elongation complex (SEC), thus resulting in rapid yet synchronous transcriptional activation. However, the mechanism underlying dynamic transition of P-TEFb from inactive to active state remains unclear. Here, we found that the SEC components are able to compartmentalize and concentrate P-TEFb via liquid-liquid phase separation from the soluble inactive HEXIM1 containing the P-TEFb complex. Specifically, ENL or its intrinsically disordered region is sufficient to initiate the liquid droplet formation of SEC. AFF4 functions together with ENL in fluidizing SEC droplets. SEC droplets are fast and dynamically formed upon serum exposure and required for rapid transcriptional induction. We also found that the fusion of ENL with MLL can boost SEC phase separation. In summary, our results suggest a critical role of multivalent phase separation of SEC in controlling transcriptional pause release.
Collapse
Affiliation(s)
- Chenghao Guo
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Zhuanzhuan Che
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Junjie Yue
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Peng Xie
- Southeast University-Allen Institute Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, China
| | - Shaohua Hao
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wei Xie
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
- Southeast University-Allen Institute Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Zhuojuan Luo
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Corresponding author. (C.L.); (Z.L.)
| | - Chengqi Lin
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Corresponding author. (C.L.); (Z.L.)
| |
Collapse
|
434
|
Yokoshi M, Segawa K, Fukaya T. Visualizing the Role of Boundary Elements in Enhancer-Promoter Communication. Mol Cell 2020; 78:224-235.e5. [DOI: 10.1016/j.molcel.2020.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
|
435
|
Yoshizawa T, Nozawa RS, Jia TZ, Saio T, Mori E. Biological phase separation: cell biology meets biophysics. Biophys Rev 2020; 12:519-539. [PMID: 32189162 PMCID: PMC7242575 DOI: 10.1007/s12551-020-00680-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Progress in development of biophysical analytic approaches has recently crossed paths with macromolecule condensates in cells. These cell condensates, typically termed liquid-like droplets, are formed by liquid-liquid phase separation (LLPS). More and more cell biologists now recognize that many of the membrane-less organelles observed in cells are formed by LLPS caused by interactions between proteins and nucleic acids. However, the detailed biophysical processes within the cell that lead to these assemblies remain largely unexplored. In this review, we evaluate recent discoveries related to biological phase separation including stress granule formation, chromatin regulation, and processes in the origin and evolution of life. We also discuss the potential issues and technical advancements required to properly study biological phase separation.
Collapse
Affiliation(s)
- Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ryu-Suke Nozawa
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Tomohide Saio
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
436
|
Boettiger A, Murphy S. Advances in Chromatin Imaging at Kilobase-Scale Resolution. Trends Genet 2020; 36:273-287. [PMID: 32007290 PMCID: PMC7197267 DOI: 10.1016/j.tig.2019.12.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
Abstract
It is now widely appreciated that the spatial organization of the genome is nonrandom, and its complex 3D folding has important consequences for many genome processes. Recent developments in multiplexed, super-resolution microscopy have enabled an unprecedented view of the polymeric structure of chromatin - from the loose folds of whole chromosomes to the detailed loops of cis-regulatory elements that regulate gene expression. Facilitated by the use of robotics, microfluidics, and improved approaches to super-resolution, thousands to hundreds of thousands of individual cells can now be analyzed in an individual experiment. This has led to new insights into the nature of genomic structural features identified by sequencing, such as topologically associated domains (TADs), and the nature of enhancer-promoter interactions underlying transcriptional regulation. We review these recent improvements.
Collapse
Affiliation(s)
- Alistair Boettiger
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Sedona Murphy
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
437
|
Greig JA, Nguyen TA, Lee M, Holehouse AS, Posey AE, Pappu RV, Jedd G. Arginine-Enriched Mixed-Charge Domains Provide Cohesion for Nuclear Speckle Condensation. Mol Cell 2020; 77:1237-1250.e4. [PMID: 32048997 PMCID: PMC10715173 DOI: 10.1016/j.molcel.2020.01.025] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/04/2019] [Accepted: 01/23/2020] [Indexed: 12/29/2022]
Abstract
Low-complexity protein domains promote the formation of various biomolecular condensates. However, in many cases, the precise sequence features governing condensate formation and identity remain unclear. Here, we investigate the role of intrinsically disordered mixed-charge domains (MCDs) in nuclear speckle condensation. Proteins composed exclusively of arginine-aspartic acid dipeptide repeats undergo length-dependent condensation and speckle incorporation. Substituting arginine with lysine in synthetic and natural speckle-associated MCDs abolishes these activities, identifying a key role for multivalent contacts through arginine's guanidinium ion. MCDs can synergize with a speckle-associated RNA recognition motif to promote speckle specificity and residence. MCD behavior is tunable through net-charge: increasing negative charge abolishes condensation and speckle incorporation. Contrastingly, increasing positive charge through arginine leads to enhanced condensation, speckle enlargement, decreased splicing factor mobility, and defective mRNA export. Together, these results identify key sequence determinants of MCD-promoted speckle condensation and link the dynamic material properties of speckles with function in mRNA processing.
Collapse
Affiliation(s)
- Jamie A Greig
- Temasek Life Sciences Laboratory and Department of Biological Sciences, The National University of Singapore, Singapore 117604, Singapore
| | - Tu Anh Nguyen
- Temasek Life Sciences Laboratory and Department of Biological Sciences, The National University of Singapore, Singapore 117604, Singapore
| | - Michelle Lee
- Temasek Life Sciences Laboratory and Department of Biological Sciences, The National University of Singapore, Singapore 117604, Singapore
| | - Alex S Holehouse
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ammon E Posey
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Gregory Jedd
- Temasek Life Sciences Laboratory and Department of Biological Sciences, The National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
438
|
|
439
|
Abstract
High-throughput sequencing-based methods and their applications in the study of transcriptomes have revolutionized our understanding of alternative splicing. Networks of functionally coordinated and biologically important alternative splicing events continue to be discovered in an ever-increasing diversity of cell types in the context of physiologically normal and disease states. These studies have been complemented by efforts directed at defining sequence codes governing splicing and their cognate trans-acting factors, which have illuminated important combinatorial principles of regulation. Additional studies have revealed critical roles of position-dependent, multivalent protein-RNA interactions that direct splicing outcomes. Investigations of evolutionary changes in RNA binding proteins, splice variants, and associated cis elements have further shed light on the emergence, mechanisms, and functions of splicing networks. Progress in these areas has emphasized the need for a coordinated, community-based effort to systematically address the functions of individual splice variants associated with normal and disease biology.
Collapse
|
440
|
Beato M, Sharma P. Peptidyl Arginine Deiminase 2 (PADI2)-Mediated Arginine Citrullination Modulates Transcription in Cancer. Int J Mol Sci 2020; 21:ijms21041351. [PMID: 32079300 PMCID: PMC7072959 DOI: 10.3390/ijms21041351] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Protein arginine deimination leading to the non-coded amino acid citrulline remains a key question in the field of post-translational modifications ever since its discovery by Rogers and Simmonds in 1958. Citrullination is catalyzed by a family of enzymes called peptidyl arginine deiminases (PADIs). Initially, increased citrullination was associated with autoimmune diseases, including rheumatoid arthritis and multiple sclerosis, as well as other neurological disorders and multiple types of cancer. During the last decade, research efforts have focused on how citrullination contributes to disease pathogenesis by modulating epigenetic events, pluripotency, immunity and transcriptional regulation. However, our knowledge regarding the functional implications of citrullination remains quite limited, so we still do not completely understand its role in physiological and pathological conditions. Here, we review the recently discovered functions of PADI2-mediated citrullination of the C-terminal domain of RNA polymerase II in transcriptional regulation in breast cancer cells and the proposed mechanisms to reshape the transcription regulatory network that promotes cancer progression.
Collapse
Affiliation(s)
- Miguel Beato
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (M.B.); (P.S.)
| | - Priyanka Sharma
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Correspondence: (M.B.); (P.S.)
| |
Collapse
|
441
|
Phillips AH, Kriwacki RW. Intrinsic protein disorder and protein modifications in the processing of biological signals. Curr Opin Struct Biol 2020; 60:1-6. [DOI: 10.1016/j.sbi.2019.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
|
442
|
Feodorova Y, Falk M, Mirny LA, Solovei I. Viewing Nuclear Architecture through the Eyes of Nocturnal Mammals. Trends Cell Biol 2020; 30:276-289. [PMID: 31980345 DOI: 10.1016/j.tcb.2019.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023]
Abstract
The cell nucleus is a remarkably well-organized organelle with membraneless but distinct compartments of various functions. The largest of them, euchromatin and heterochromatin, are spatially segregated in such a way that the transcriptionally active genome occupies the nuclear interior, whereas silent genomic loci are preferentially associated with the nuclear envelope. This rule is broken by rod photoreceptor cells of nocturnal mammals, in which the two major compartments have inverted positions. The inversion and dense compaction of heterochromatin converts these nuclei into microlenses that focus light and facilitate nocturnal vision. As is often the case in biology, when a mutation helps to understand normal processes and structures, inverted nuclei have served as a tool to unravel general principles of nuclear organization, including mechanisms of heterochromatin tethering to the nuclear envelope, autonomous behavior of small genomic segments, and euchromatin-heterochromatin segregation.
Collapse
Affiliation(s)
- Yana Feodorova
- Biozentrum, Ludwig-Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany; Department of Medical Biology, Medical University-Plovdiv, Boulevard Vasil Aprilov 15A, Plovdiv 4000, Bulgaria
| | - Martin Falk
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physics, University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Leonid A Mirny
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Irina Solovei
- Biozentrum, Ludwig-Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
443
|
Arnold PR, Wells AD, Li XC. Diversity and Emerging Roles of Enhancer RNA in Regulation of Gene Expression and Cell Fate. Front Cell Dev Biol 2020; 7:377. [PMID: 31993419 PMCID: PMC6971116 DOI: 10.3389/fcell.2019.00377] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
Abstract
Enhancers are cis-regulatory elements in the genome that cooperate with promoters to control target gene transcription. Unlike promoters, enhancers are not necessarily adjacent to target genes and can exert their functions regardless of enhancer orientations, positions and spatial segregations from target genes. Thus, for a long time, the question as to how enhancers act in a temporal and spatial manner attracted considerable attention. The recent discovery that enhancers are also abundantly transcribed raises interesting questions about the exact roles of enhancer RNA (eRNA) in gene regulation. In this review, we highlight the process of enhancer transcription and the diverse features of eRNA. We review eRNA functions, which include enhancer-promoter looping, chromatin modifying, and transcription regulating. As eRNA are transcribed from active enhancers, they exhibit tissue and lineage specificity, and serve as markers of cell state and function. Finally, we discuss the unique relationship between eRNA and super enhancers in phase separation wherein eRNA may contribute significantly to cell fate decisions.
Collapse
Affiliation(s)
- Preston R Arnold
- Texas A&M Health Science Center, College of Medicine, Bryan, TX, United States.,Immunobiology and Transplant Sciences, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| | - Andrew D Wells
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xian C Li
- Immunobiology and Transplant Sciences, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
444
|
Pan Y, Ballance H, Meng H, Gonzalez N, Kim SM, Abdurehman L, York B, Chen X, Schnytzer Y, Levy O, Dacso CC, McClung CA, O’Malley BW, Liu S, Zhu B. 12-h clock regulation of genetic information flow by XBP1s. PLoS Biol 2020; 18:e3000580. [PMID: 31935211 PMCID: PMC6959563 DOI: 10.1371/journal.pbio.3000580] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Our group recently characterized a cell-autonomous mammalian 12-h clock independent from the circadian clock, but its function and mechanism of regulation remain poorly understood. Here, we show that in mouse liver, transcriptional regulation significantly contributes to the establishment of 12-h rhythms of mRNA expression in a manner dependent on Spliced Form of X-box Binding Protein 1 (XBP1s). Mechanistically, the motif stringency of XBP1s promoter binding sites dictates XBP1s’s ability to drive 12-h rhythms of nascent mRNA transcription at dawn and dusk, which are enriched for basal transcription regulation, mRNA processing and export, ribosome biogenesis, translation initiation, and protein processing/sorting in the Endoplasmic Reticulum (ER)-Golgi in a temporal order consistent with the progressive molecular processing sequence described by the central dogma information flow (CEDIF). We further identified GA-binding proteins (GABPs) as putative novel transcriptional regulators driving 12-h rhythms of gene expression with more diverse phases. These 12-h rhythms of gene expression are cell autonomous and evolutionarily conserved in marine animals possessing a circatidal clock. Our results demonstrate an evolutionarily conserved, intricate network of transcriptional control of the mammalian 12-h clock that mediates diverse biological pathways. We speculate that the 12-h clock is coopted to accommodate elevated gene expression and processing in mammals at the two rush hours, with the particular genes processed at each rush hour regulated by the circadian and/or tissue-specific pathways. Distinct from the well-known 24-hour circadian clock, this study shows that the mammalian 12-hour clock upregulates genetic information flow capacity during the two "rush hours" (dawn and dusk) in a manner dependent on the transcription factor XBP1s.
Collapse
Affiliation(s)
- Yinghong Pan
- UPMC Genome Center, Pittsburgh, Pennsylvania, United States of America
| | - Heather Ballance
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Huan Meng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Naomi Gonzalez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sam-Moon Kim
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Leymaan Abdurehman
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yisrael Schnytzer
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Oren Levy
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Clifford C. Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, United States of America
- * E-mail: (SL); (BZ)
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, United States of America
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (SL); (BZ)
| |
Collapse
|
445
|
Abstract
The cellular response to heat shock requires massive adaptation of gene expression driven by the transcription factor HSF1, which assembles in nuclear stress bodies together with human satellite III RNA and numerous splicing factors. In this issue of The EMBO Journal, Ninomiya et al demonstrate that nuclear stress bodies serve as a platform for phosphorylation of the SR protein SRSF9 by the CLK1 kinase, which promotes retention of a large number of introns during the recovery phase from heat shock.
Collapse
Affiliation(s)
- Sylvia Erhardt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Georg Stoecklin
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
446
|
Chen JY, Lim DH, Fu XD. Mechanistic Dissection of RNA-Binding Proteins in Regulated Gene Expression at Chromatin Levels. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:55-66. [PMID: 31900328 PMCID: PMC7332398 DOI: 10.1101/sqb.2019.84.039222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Eukaryotic genomes are known to prevalently transcribe diverse classes of RNAs, virtually all of which, including nascent RNAs from protein-coding genes, are now recognized to have regulatory functions in gene expression, suggesting that RNAs are both the products and the regulators of gene expression. Their functions must enlist specific RNA-binding proteins (RBPs) to execute their regulatory activities, and recent evidence suggests that nearly all biochemically defined chromatin regions in the human genome, whether defined for gene activation or silencing, have the involvement of specific RBPs. Interestingly, the boundary between RNA- and DNA-binding proteins is also melting, as many DNA-binding proteins traditionally studied in the context of transcription are able to bind RNAs, some of which may simultaneously bind both DNA and RNA to facilitate network interactions in three-dimensional (3D) genome. In this review, we focus on RBPs that function at chromatin levels, with particular emphasis on their mechanisms of action in regulated gene expression, which is intended to facilitate future functional and mechanistic dissection of chromatin-associated RBPs.
Collapse
Affiliation(s)
- Jia-Yu Chen
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Do-Hwan Lim
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
447
|
Mishra K, Kanduri C. Understanding Long Noncoding RNA and Chromatin Interactions: What We Know So Far. Noncoding RNA 2019; 5:ncrna5040054. [PMID: 31817041 PMCID: PMC6958424 DOI: 10.3390/ncrna5040054] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
With the evolution of technologies that deal with global detection of RNAs to probing of lncRNA-chromatin interactions and lncRNA-chromatin structure regulation, we have been updated with a comprehensive repertoire of chromatin interacting lncRNAs, their genome-wide chromatin binding regions and mode of action. Evidence from these new technologies emphasize that chromatin targeting of lncRNAs is a prominent mechanism and that these chromatin targeted lncRNAs exert their functionality by fine tuning chromatin architecture resulting in an altered transcriptional readout. Currently, there are no unifying principles that define chromatin association of lncRNAs, however, evidence from a few chromatin-associated lncRNAs show presence of a short common sequence for chromatin targeting. In this article, we review how technological advancements contributed in characterizing chromatin associated lncRNAs, and discuss the potential mechanisms by which chromatin associated lncRNAs execute their functions.
Collapse
Affiliation(s)
- Kankadeb Mishra
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
- Department of Cell Biology, Memorial Sloan Kettering Cancer Centre, Rockefeller Research Laboratory, 430 East 67th Street, RRL 445, New York, NY 10065, USA
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
- Correspondence:
| |
Collapse
|
448
|
McSwiggen DT, Mir M, Darzacq X, Tjian R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev 2019; 33:1619-1634. [PMID: 31594803 PMCID: PMC6942051 DOI: 10.1101/gad.331520.119] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The idea that liquid-liquid phase separation (LLPS) may be a general mechanism by which molecules in the complex cellular milieu may self-organize has generated much excitement and fervor in the cell biology community. While this concept is not new, its rise to preeminence has resulted in renewed interest in the mechanisms that shape and drive diverse cellular self-assembly processes from gene expression to cell division to stress responses. In vitro biochemical data have been instrumental in deriving some of the fundamental principles and molecular grammar by which biological molecules may phase separate, and the molecular basis of these interactions. Definitive evidence is lacking as to whether the same principles apply in the physiological environment inside living cells. In this Perspective, we analyze the evidence supporting phase separation in vivo across multiple cellular processes. We find that the evidence for in vivo LLPS is often phenomenological and inadequate to discriminate between phase separation and other possible mechanisms. Moreover, the causal relationship and functional consequences of LLPS in vivo are even more elusive. We underscore the importance of performing quantitative measurements on proteins in their endogenous state and physiological abundance, as well as make recommendations for experiments that may yield more conclusive results.
Collapse
Affiliation(s)
- David T McSwiggen
- Department of Molecular and Cell Biology, University of California Berkeley, California 94720, USA
- California Institute of Regenerative Medicine Center of Excellence, University of California Berkeley, California 94720, USA
| | - Mustafa Mir
- Department of Molecular and Cell Biology, University of California Berkeley, California 94720, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California Berkeley, California 94720, USA
- California Institute of Regenerative Medicine Center of Excellence, University of California Berkeley, California 94720, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California Berkeley, California 94720, USA
| |
Collapse
|
449
|
Portz B, Shorter J. Switching Condensates: The CTD Code Goes Liquid. Trends Biochem Sci 2019; 45:1-3. [PMID: 31734037 DOI: 10.1016/j.tibs.2019.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 10/25/2022]
Abstract
Condensates containing RNA polymerase II (Pol II) materialize at sites of active transcription. Young and coworkers now establish that C-terminal domain phosphorylation regulates Pol II partitioning into distinct condensates connected with transcription initiation or splicing. This advance hints that distinct condensates with specialized functional compositions might choreograph distinct stages of transcription.
Collapse
Affiliation(s)
- Bede Portz
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
450
|
Maita H, Nakagawa S. What is the switch for coupling transcription and splicing? RNA Polymerase II C‐terminal domain phosphorylation, phase separation and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1574. [DOI: 10.1002/wrna.1574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Hiroshi Maita
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences Hokkaido University Sapporo Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences Hokkaido University Sapporo Japan
| |
Collapse
|