401
|
Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc Natl Acad Sci U S A 2010; 107:22338-43. [PMID: 21135241 DOI: 10.1073/pnas.1016436107] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Stems of dicotyledonous plants consist of an outer epidermis, a cortex, a ring of secondarily thickened vascular bundles and interfascicular cells, and inner pith parenchyma cells with thin primary walls. It is unclear how the different cell layers attain and retain their identities. Here, we show that WRKY transcription factors are in part responsible for the parenchymatous nature of the pith cells in dicotyledonous plants. We isolated mutants of Medicago truncatula and Arabidopsis thaliana with secondary cell wall thickening in pith cells associated with ectopic deposition of lignin, xylan, and cellulose, leading to an ∼50% increase in biomass density in stem tissue of the Arabidopsis mutants. The mutations are caused by disruption of stem-expressed WRKY transcription factor (TF) genes, which consequently up-regulate downstream genes encoding the NAM, ATAF1/2, and CUC2 (NAC) and CCCH type (C3H) zinc finger TFs that activate secondary wall synthesis. Direct binding of WRKY to the NAC gene promoter and repression of three downstream TFs were confirmed by in vitro assays and in planta transgenic experiments. Secondary wall-bearing cells form lignocellulosic biomass that is the source for second generation biofuel production. The discovery of negative regulators of secondary wall formation in pith opens up the possibility of significantly increasing the mass of fermentable cell wall components in bioenergy crops.
Collapse
|
402
|
Mitsuda N, Ikeda M, Takada S, Takiguchi Y, Kondou Y, Yoshizumi T, Fujita M, Shinozaki K, Matsui M, Ohme-Takagi M. Efficient yeast one-/two-hybrid screening using a library composed only of transcription factors in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2010; 51:2145-51. [PMID: 20980269 DOI: 10.1093/pcp/pcq161] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Yeast one-hybrid screening is widely used for the identification of transcription factors (TFs) that interact with specific DNA sequences. However, screening a whole cDNA library is not efficient for the identification of TFs because TF genes represent only a small percentage of clones in a cDNA library. Here, we present the development of an efficient yeast one-hybrid screening system using a prey library composed only of approximately 1,500 TF cDNAs of Arabidopsis thaliana. This library enabled us to isolate a TF that binds to a specific promoter sequence with high efficiency, even when the promoter region of the gene of interest was directly employed as bait. Furthermore, this library was also successfully applied as a yeast two-hybrid library to find TFs that interact with specific proteins. This efficient system will contribute to the elucidation of gene regulatory networks in plants.
Collapse
Affiliation(s)
- Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, 305-8562 Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
403
|
Ohashi-Ito K, Fukuda H. Transcriptional regulation of vascular cell fates. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:670-6. [PMID: 20869293 DOI: 10.1016/j.pbi.2010.08.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/02/2010] [Accepted: 08/27/2010] [Indexed: 05/18/2023]
Abstract
In vascular development, uncommitted cells differentiate into different xylem cells through vascular stem cells, such as procambial cells, during vein formation as well as embryogenesis. Cascades of transcriptional regulation of genes play crucial roles in the progress of vascular development. Auxin, cytokinin, and brassinosteroids also function in procambial cell determination, procambial maintenance, and xylem cell differentiation from procambial cells, respectively, through transcriptional regulation. The positive feedback loop typically shown in auxin-flow-MONOPTEROS-(HD-ZIP IIIs)-PIN1-auxin-flow in procambial precursor cell determination and VND7-ASL/LBD-VND7 in xylem vessel cell determination, may be a crucial mechanism that determines vascular cell fates, which occurs in stages.
Collapse
Affiliation(s)
- Kyoko Ohashi-Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
404
|
Bonawitz ND, Chapple C. The Genetics of Lignin Biosynthesis: Connecting Genotype to Phenotype. Annu Rev Genet 2010; 44:337-63. [PMID: 20809799 DOI: 10.1146/annurev-genet-102209-163508] [Citation(s) in RCA: 395] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicholas D. Bonawitz
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063;
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063;
| |
Collapse
|
405
|
Caño-Delgado A, Lee JY, Demura T. Regulatory Mechanisms for Specification and Patterning of Plant Vascular Tissues. Annu Rev Cell Dev Biol 2010; 26:605-37. [DOI: 10.1146/annurev-cellbio-100109-104107] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana Caño-Delgado
- Molecular Genetics Department, Center for Research in Agricultural Genomics, Barcelona 08034, Spain;
| | - Ji-Young Lee
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853;
- Department of Plant Biology, Cornell University, Ithaca, NY 14853
| | - Taku Demura
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0136, Japan;
| |
Collapse
|
406
|
Zhong R, Lee C, Ye ZH. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. TRENDS IN PLANT SCIENCE 2010; 15:625-32. [PMID: 20833576 DOI: 10.1016/j.tplants.2010.08.007] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/12/2010] [Accepted: 08/16/2010] [Indexed: 05/17/2023]
Abstract
The ability to make secondary cell walls was a pivotal step for vascular plants in their conquest of dry land. Here, we review recent molecular and genetic studies that reveal that a group of Arabidopsis (Arabidopsis thaliana) secondary wall-associated NAC domain transcription factors are master switches regulating a cascade of downstream transcription factors, leading to activation of the secondary wall biosynthetic program. Close homologs of the Arabidopsis secondary wall NACs and their downstream transcription factors exist in diverse taxa of vascular plants and some are functional orthologs of their Arabidopsis counterparts. There is evidence to suggest that the secondary wall NAC-mediated transcriptional regulation of secondary wall biosynthesis is a conserved mechanism throughout vascular plants.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
407
|
Murmu J, Bush MJ, DeLong C, Li S, Xu M, Khan M, Malcolmson C, Fobert PR, Zachgo S, Hepworth SR. Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. PLANT PHYSIOLOGY 2010; 154:1492-504. [PMID: 20805327 PMCID: PMC2971623 DOI: 10.1104/pp.110.159111] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 08/27/2010] [Indexed: 05/18/2023]
Abstract
ROXY1 and ROXY2 are CC-type floral glutaredoxins with redundant functions in Arabidopsis (Arabidopsis thaliana) anther development. We show here that plants lacking the basic leucine-zipper transcription factors TGA9 and TGA10 have defects in male gametogenesis that are strikingly similar to those in roxy1 roxy2 mutants. In tga9 tga10 mutants, adaxial and abaxial anther lobe development is differentially affected, with early steps in anther development blocked in adaxial lobes and later steps affected in abaxial lobes. Distinct from roxy1 roxy2, microspore development in abaxial anther lobes proceeds to a later stage with the production of inviable pollen grains contained within nondehiscent anthers. Histological analysis shows multiple defects in the anther dehiscence program, including abnormal stability and lignification of the middle layer and defects in septum and stomium function. Compatible with these defects, TGA9 and TGA10 are expressed throughout early anther primordia but resolve to the middle and tapetum layers during meiosis of pollen mother cells. Several lines of evidence suggest that ROXY promotion of anther development is mediated in part by TGA9 and TGA10. First, TGA9 and TGA10 expression overlaps with ROXY1/2 during anther development. Second, TGA9/10 and ROXY1/2 operate downstream of SPOROCYTELESS/NOZZLE, where they positively regulate a common set of genes that contribute to tapetal development. Third, TGA9 and TGA10 directly interact with ROXY proteins in yeast and in plant cell nuclei. These findings suggest that activation of TGA9/10 transcription factors by ROXY-mediated modification of cysteine residues promotes anther development, thus broadening our understanding of how redox-regulated TGA factors function in plants.
Collapse
|
408
|
Zhong R, Lee C, Ye ZH. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. MOLECULAR PLANT 2010; 3:1087-103. [PMID: 20935069 DOI: 10.1093/mp/ssq062] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We report the genome-wide analysis of direct target genes of SND1 and VND7, two Arabidopsis thaliana NAC domain transcription factors that are master regulators of secondary wall biosynthesis in fibers and vessels, respectively. Systematic mapping of the SND1 binding sequence using electrophoretic mobility shift assay and transactivation analysis demonstrated that SND1 together with other secondary wall NACs (SWNs), including VND6, VND7, NST1, and NST2, bind to an imperfect palindromic 19-bp consensus sequence designated as secondary wall NAC binding element (SNBE), (T/A)NN(C/T) (T/C/G)TNNNNNNNA(A/C)GN(A/C/T) (A/T), in the promoters of their direct targets. Genome-wide analysis of direct targets of SND1 and VND7 revealed that they directly activate the expression of not only downstream transcription factors, but also a number of non-transcription factor genes involved in secondary wall biosynthesis, cell wall modification, and programmed cell death, the promoters of which all contain multiple SNBE sites. SND1 and VND7 directly regulate the expression of a set of common targets but each of them also preferentially induces a distinct set of direct targets, which is likely attributed to their differential activation strength toward SNBE sites. Complementation study showed that the SWNs were able to rescue the secondary wall defect in the snd1 nst1 mutant, indicating that they are functionally interchangeable. Together, our results provide important insight into the complex transcriptional program and the evolutionary mechanism underlying secondary wall biosynthesis, cell wall modification, and programmed cell death in secondary wall-containing cell types.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
409
|
Kwon SI, Cho HJ, Jung JH, Yoshimoto K, Shirasu K, Park OK. The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:151-64. [PMID: 20659276 DOI: 10.1111/j.1365-313x.2010.04315.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The tracheary elements (TEs) of the xylem serve as the water-conducting vessels of the plant vascular system. To achieve this, TEs undergo secondary cell wall thickening and cell death, during which the cell contents are completely removed. Cell death of TEs is a typical example of developmental programmed cell death that has been suggested to be autophagic. However, little evidence of autophagy in TE differentiation has been provided. The present study demonstrates that the small GTP binding protein RabG3b plays a role in TE differentiation through its function in autophagy. Differentiating wild type TE cells were found to undergo autophagy in an Arabidopsis culture system. Both autophagy and TE formation were significantly stimulated by overexpression of a constitutively active mutant (RabG3bCA), and were inhibited in transgenic plants overexpressing a dominant negative mutant (RabG3bDN) or RabG3b RNAi (RabG3bRNAi), a brassinosteroid insensitive mutant bri1-301, and an autophagy mutant atg5-1. Taken together, our results suggest that autophagy occurs during TE differentiation, and that RabG3b, as a component of autophagy, regulates TE differentiation.
Collapse
Affiliation(s)
- Soon Il Kwon
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea RIKEN Plant Science Center, Yokohama 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
410
|
Ohashi-Ito K, Oda Y, Fukuda H. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. THE PLANT CELL 2010; 22:3461-73. [PMID: 20952636 PMCID: PMC2990123 DOI: 10.1105/tpc.110.075036] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 09/10/2010] [Accepted: 09/28/2010] [Indexed: 05/17/2023]
Abstract
Xylem consists of three types of cells: tracheary elements (TEs), parenchyma cells, and fiber cells. TE differentiation includes two essential processes, programmed cell death (PCD) and secondary cell wall formation. These two processes are tightly coupled. However, little is known about the molecular mechanisms underlying these processes. Here, we show that VASCULAR-RELATED NAC-DOMAIN6 (VND6), a master regulator of TEs, regulates some of the downstream genes involved in these processes in a coordinated manner. We first identified genes that are expressed downstream of VND6 but not downstream of SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1), a master regulator of xylem fiber cells, using transformed suspension culture cells in microarray experiments. We found that VND6 and SND1 governed distinct aspects of xylem formation, whereas they regulated a number of genes in common, specifically those related to secondary cell wall formation. Genes involved in TE-specific PCD were upregulated only by VND6. Moreover, we revealed that VND6 directly regulated genes that harbor a TE-specific cis-element, TERE, in their promoters. Thus, we found that VND6 is a direct regulator of genes related to PCD as well as to secondary wall formation.
Collapse
Affiliation(s)
- Kyoko Ohashi-Ito
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan.
| | | | | |
Collapse
|
411
|
Sasaki K, Aida R, Yamaguchi H, Shikata M, Niki T, Nishijima T, Ohtsubo N. Functional divergence within class B MADS-box genes TfGLO and TfDEF in Torenia fournieri Lind. Mol Genet Genomics 2010; 284:399-414. [PMID: 20872230 PMCID: PMC2955243 DOI: 10.1007/s00438-010-0574-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/06/2010] [Indexed: 12/03/2022]
Abstract
Homeotic class B genes GLOBOSA (GLO)/PISTILLATA (PI) and DEFICIENS (DEF)/APETALA3 (AP3) are involved in the development of petals and stamens in Arabidopsis. However, functions of these genes in the development of floral organs in torenia are less well known. Here, we demonstrate the unique floral phenotypes of transgenic torenia formed due to the modification of class B genes, TfGLO and TfDEF. TfGLO-overexpressing plants showed purple-stained sepals that accumulated anthocyanins in a manner similar to that of petals. TfGLO-suppressed plants showed serrated petals and TfDEF-suppressed plants showed partially decolorized petals. In TfGLO-overexpressing plants, cell shapes on the surfaces of sepals were altered to petal-like cell shapes. Furthermore, TfGLO- and TfDEF-suppressed plants partially had sepal-like cells on the surfaces of their petals. We isolated putative class B gene-regulated genes and examined their expression in transgenic plants. Three xyloglucan endo-1,4-beta-d-glucanase genes were up-regulated in TfGLO- and TfDEF-overexpressing plants and down-regulated in TfGLO- and TfDEF-suppressed plants. In addition, 10 anthocyanin biosynthesis-related genes, including anthocyanin synthase and chalcone isomerase, were up-regulated in TfGLO-overexpressing plants and down-regulated in TfGLO-suppressed plants. The expression patterns of these 10 genes in TfDEF transgenic plants were diverse and classified into several groups. HPLC analysis indicated that sepals of TfGLO-overexpressing plants accumulate the same type of anthocyanins and flavones as wild-type plants. The difference in phenotypes and expression patterns of the 10 anthocyanin biosynthesis-related genes between TfGLO and TfDEF transgenic plants indicated that TfGLO and TfDEF have partial functional divergence, while they basically work synergistically in torenia.
Collapse
Affiliation(s)
- Katsutomo Sasaki
- National Institute of Floricultural Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8519, Japan
| | | | | | | | | | | | | |
Collapse
|
412
|
Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G. Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC PLANT BIOLOGY 2010; 10:145. [PMID: 20630103 PMCID: PMC3017804 DOI: 10.1186/1471-2229-10-145] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 07/15/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND NAC (NAM, ATAF1/2 and CUC2) domain proteins are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. NAC transcription factors comprise of a large gene family represented by more than 100 members in Arabidopsis, rice and soybean etc. Recently, a preliminary phylogenetic analysis was reported for NAC gene family from 11 plant species. However, no comprehensive study incorporating phylogeny, chromosomal location, gene structure, conserved motifs, and expression profiling analysis has been presented thus far for the model tree species Populus. RESULTS In the present study, a comprehensive analysis of NAC gene family in Populus was performed. A total of 163 full-length NAC genes were identified in Populus, and they were phylogenetically clustered into 18 distinct subfamilies. The gene structure and motif compositions were considerably conserved among the subfamilies. The distributions of 120 Populus NAC genes were non-random across the 19 linkage groups (LGs), and 87 genes (73%) were preferentially retained duplicates that located in both duplicated regions. The majority of NACs showed specific temporal and spatial expression patterns based on EST frequency and microarray data analyses. However, the expression patterns of a majority of duplicate genes were partially redundant, suggesting the occurrence of subfunctionalization during subsequent evolutionary process. Furthermore, quantitative real-time RT-PCR (RT-qPCR) was performed to confirm the tissue-specific expression patterns of 25 NAC genes. CONCLUSION Based on the genomic organizations, we can conclude that segmental duplications contribute significantly to the expansion of Populus NAC gene family. The comprehensive expression profiles analysis provides first insights into the functional divergence among members in NAC gene family. In addition, the high divergence rate of expression patterns after segmental duplications indicates that NAC genes in Populus are likewise to have been retained by substantial subfunctionalization. Taken together, our results presented here would be helpful in laying the foundation for functional characterization of NAC gene family and further gaining an understanding of the structure-function relationship between these family members.
Collapse
Affiliation(s)
- Ruibo Hu
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Guang Qi
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Yingzhen Kong
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
- Current address: Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Dejing Kong
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Qian Gao
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Gongke Zhou
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| |
Collapse
|
413
|
Zhao Q, Gallego-Giraldo L, Wang H, Zeng Y, Ding SY, Chen F, Dixon RA. An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:100-14. [PMID: 20408998 DOI: 10.1111/j.1365-313x.2010.04223.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To identify genes controlling secondary cell wall biosynthesis in the model legume Medicago truncatula, we screened a Tnt1 retrotransposon insertion mutant population for plants with altered patterns of lignin autofluorescence. From more than 9000 R1 plants screened, four independent lines were identified with a total lack of lignin in the interfascicular region. The mutants also showed loss of lignin in phloem fibers, reduced lignin in vascular elements, failure in anther dehiscence and absence of phenolic autofluorescence in stomatal guard cell walls. Microarray and PCR analyses confirmed that the mutations were caused by the insertion of Tnt1 in a gene annotated as encoding a NAM (no apical meristem)-like protein (here designated Medicago truncatula NAC SECONDARY WALL THICKENING PROMOTING FACTOR 1, MtNST1). MtNST1 is the only family member in Medicago, but has three homologs (AtNST1-AtNST3) in Arabidopsis thaliana, which function in different combinations to control cell wall composition in stems and anthers. Loss of MtNST1 function resulted in reduced lignin content, associated with reduced expression of most lignin biosynthetic genes, and a smaller reduction in cell wall polysaccharide content, associated with reduced expression of putative cellulose and hemicellulose biosynthetic genes. Acid pre-treatment and cellulase digestion released significantly more sugars from cell walls of nst1 mutants compared with the wild type. We discuss the implications of these findings for the development of alfalfa (Medicago sativa) as a dedicated bioenergy crop.
Collapse
Affiliation(s)
- Qiao Zhao
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | | | | | |
Collapse
|
414
|
Grant EH, Fujino T, Beers EP, Brunner AM. Characterization of NAC domain transcription factors implicated in control of vascular cell differentiation in Arabidopsis and Populus. PLANTA 2010; 232:337-52. [PMID: 20458494 DOI: 10.1007/s00425-010-1181-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 04/19/2010] [Indexed: 05/05/2023]
Abstract
Wood has a wide variety of uses and is arguably the most important renewable raw material. The composition of xylem cell types in wood determines the utility of different types of wood for distinct commercial applications. Using expression profiling and phylogenetic analysis, we identified many xylem-associated regulatory genes that may control the differentiation of cells involved in wood formation in Arabidopsis and poplar. Prominent among these are NAC domain transcription factors (NACs). We studied NACs with putative involvement as negative (XND1 from Arabidopsis and its poplar orthologs PopNAC118, PopNAC122, PopNAC128, PopNAC129), or positive (SND2 and SND3 from Arabidopsis and their poplar orthologs PopNAC105, PopNAC154, PopNAC156, PopNAC157) regulators of secondary cell wall synthesis. Using quantitative PCR and in situ hybridization, we evaluated expression of these Populus NACs in a developmental gradient and in association with reaction wood and found that representatives from both groups were associated with wood-forming tissue and phloem fibers. Additionally, XND1 orthologs were expressed in mesophyll cells of developing leaves. We prepared transgenic Arabidopsis and poplar plants for overexpression of selected NACs. XND1 overexpression in poplar resulted in severe stunting. Additionally, poplar XND1 overexpressors lacked phloem fibers and showed reductions in cell size and number, vessel number, and frequency of rays in the xylem. Overexpression of PopNAC122, an XND1 ortholog, yielded an analogous phenotype in Arabidopsis. Overexpression of PopNAC154 in poplar reduced height growth and increased the relative proportion of bark versus xylem.
Collapse
Affiliation(s)
- Emily H Grant
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
415
|
McCarthy RL, Zhong R, Fowler S, Lyskowski D, Piyasena H, Carleton K, Spicer C, Ye ZH. The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis. PLANT & CELL PHYSIOLOGY 2010; 51:1084-90. [PMID: 20427511 DOI: 10.1093/pcp/pcq064] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Dicot wood is mainly composed of cellulose, xylan and lignin, and its formation requires the coordinated regulation of their biosynthesis. In this report, we demonstrate that the poplar wood-associated MYB transcriptional activators, PtrMYB3 and PtrMYB20, activate the biosynthetic pathways of cellulose, xylan and lignin when overexpressed in Arabidopsis and they are also able to activate the promoter activities of poplar wood biosynthetic genes. We also show that PtrMYB3 and PtrMYB20 are functional orthologs of Arabidopsis MYB46 and MYB83, and their expression is directly activated by poplar PtrWND2, suggesting their involvement in the regulation of wood formation in poplar.
Collapse
Affiliation(s)
- Ryan L McCarthy
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
416
|
Hirano K, Kotake T, Kamihara K, Tsuna K, Aohara T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S. Rice BRITTLE CULM 3 (BC3) encodes a classical dynamin OsDRP2B essential for proper secondary cell wall synthesis. PLANTA 2010; 232:95-108. [PMID: 20369251 DOI: 10.1007/s00425-010-1145-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 02/25/2010] [Indexed: 05/02/2023]
Abstract
"Brittle culm" mutants found in Gramineae crops are suitable materials to study the mechanism of secondary cell wall formation. Through positional cloning, we have identified a gene responsible for the brittle culm phenotype in rice, brittle culm 3 (bc3). BC3 encodes a member of the classical dynamin protein family, a family known to function widely in membrane dynamics. The bc3 mutation resulted in reductions of 28-36% in cellulose contents in culms, leaves, and roots, while other cell wall components remained unaffected. Reductions of cell wall thickness and birefringence were observed in both fiber (sclerenchyma) and parenchymal cells, together with blurring of the wall's layered structures. From promoter-GUS analyses, it was suggested that BC3 expression is directly correlated with active secondary cell wall synthesis. These results suggest that BC3 is tightly involved in the synthesis of cellulose and is essential for proper secondary cell wall construction.
Collapse
Affiliation(s)
- Ko Hirano
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
417
|
Yang SS, Xu WW, Tesfaye M, Lamb JFS, Jung HJG, VandenBosch KA, Vance CP, Gronwald JW. Transcript profiling of two alfalfa genotypes with contrasting cell wall composition in stems using a cross-species platform: optimizing analysis by masking biased probes. BMC Genomics 2010; 11:323. [PMID: 20497574 PMCID: PMC2893600 DOI: 10.1186/1471-2164-11-323] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 05/24/2010] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The GeneChip(R) Medicago Genome Array, developed for Medicago truncatula, is a suitable platform for transcript profiling in tetraploid alfalfa [Medicago sativa (L.) subsp. sativa]. However, previous research involving cross-species hybridization (CSH) has shown that sequence variation between two species can bias transcript profiling by decreasing sensitivity (number of expressed genes detected) and the accuracy of measuring fold-differences in gene expression. RESULTS Transcript profiling using the Medicago GeneChip(R) was conducted with elongating stem (ES) and post-elongation stem (PES) internodes from alfalfa genotypes 252 and 1283 that differ in stem cell wall concentrations of cellulose and lignin. A protocol was developed that masked probes targeting inter-species variable (ISV) regions of alfalfa transcripts. A probe signal intensity threshold was selected that optimized both sensitivity and accuracy. After masking for both ISV regions and previously identified single-feature polymorphisms (SFPs), the number of differentially expressed genes between the two genotypes in both ES and PES internodes was approximately 2-fold greater than the number detected prior to masking. Regulatory genes, including transcription factor and receptor kinase genes that may play a role in development of secondary xylem, were significantly over-represented among genes up-regulated in 252 PES internodes compared to 1283 PES internodes. Several cell wall-related genes were also up-regulated in genotype 252 PES internodes. Real-time quantitative RT-PCR of differentially expressed regulatory and cell wall-related genes demonstrated increased sensitivity and accuracy after masking for both ISV regions and SFPs. Over 1,000 genes that were differentially expressed in ES and PES internodes of genotypes 252 and 1283 were mapped onto putative orthologous loci on M. truncatula chromosomes. Clustering simulation analysis of the differentially expressed genes suggested co-expression of some neighbouring genes on Medicago chromosomes. CONCLUSIONS The problems associated with transcript profiling in alfalfa stems using the Medicago GeneChip as a CSH platform were mitigated by masking probes targeting ISV regions and SFPs. Using this masking protocol resulted in the identification of numerous candidate genes that may contribute to differences in cell wall concentration and composition of stems of two alfalfa genotypes.
Collapse
Affiliation(s)
- S Samuel Yang
- USDA-Agricultural Research Service, Plant Science Research Unit, St. Paul, MN 55108, USA
| | - Wayne Wenzhong Xu
- Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mesfin Tesfaye
- Department of Plant Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - JoAnn FS Lamb
- USDA-Agricultural Research Service, Plant Science Research Unit, St. Paul, MN 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Hans-Joachim G Jung
- USDA-Agricultural Research Service, Plant Science Research Unit, St. Paul, MN 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | | | - Carroll P Vance
- USDA-Agricultural Research Service, Plant Science Research Unit, St. Paul, MN 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - John W Gronwald
- USDA-Agricultural Research Service, Plant Science Research Unit, St. Paul, MN 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
418
|
Kato H, Motomura T, Komeda Y, Saito T, Kato A. Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:571-7. [PMID: 19962211 DOI: 10.1016/j.jplph.2009.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/07/2009] [Accepted: 11/07/2009] [Indexed: 05/02/2023]
Abstract
NAC proteins comprise one of the largest families of transcription factors in the plant genome. They are known to be involved in various aspects of plant development, but the functions of most of them have not yet been determined. ANAC036, a member of the Arabidopsis NAC transcription factor family, contains unique sequences that are conserved among various NAC proteins found in other plant species. Expression analysis of the ANAC036 gene indicated that this gene was strongly expressed in leaves. Transgenic plants overexpressing the ANAC036 gene showed a semidwarf phenotype. The lengths of leaf blades, petioles and stems of these plants were smaller than those in wild-type plants. Microscopy revealed that cell sizes in leaves and stems of these plants were smaller than those in wild-type plants. These findings suggested that ANAC036 and its orthologues are involved in the growth of leaf cells.
Collapse
Affiliation(s)
- Hiroaki Kato
- Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | |
Collapse
|
419
|
Hinchliffe DJ, Meredith WR, Yeater KM, Kim HJ, Woodward AW, Chen ZJ, Triplett BA. Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1347-66. [PMID: 20087569 DOI: 10.1007/s00122-010-1260-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 12/27/2009] [Indexed: 05/10/2023]
Abstract
Gene expression profiles of developing cotton (Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis. Fiber samples were collected from field plots in a randomized, complete block design, with three spatially distinct biological replications for each NIL at each time point. Microarray hybridizations were performed in a loop experimental design that allowed comparisons of fiber gene expression profiles as a function of time between the two NILs. Overall, developmental expression patterns revealed by the microarray experiment agreed with previously reported cotton fiber gene expression patterns for specific genes. Additionally, genes expressed coordinately with the onset of SCW biosynthesis in cotton fiber correlated with gene expression patterns of other SCW-producing plant tissues. Functional classification and enrichment analysis of differentially expressed genes between the two NILs revealed that genes associated with SCW biosynthesis were significantly up-regulated in fibers of the high-fiber quality line at the transition stage of cotton fiber development. For independent corroboration of the microarray results, 15 genes were selected for quantitative reverse transcription PCR analysis of fiber gene expression. These analyses, conducted over multiple field years, confirmed the temporal difference in fiber gene expression between the two NILs. We hypothesize that the loci conferring temporal differences in fiber gene expression between the NILs are important regulatory sequences that offer the potential for more targeted manipulation of cotton fiber quality.
Collapse
Affiliation(s)
- Doug J Hinchliffe
- USDA-ARS-SRRC, 1100 Robert E. Lee Blvd., New Orleans, LA, 70124, USA.
| | | | | | | | | | | | | |
Collapse
|
420
|
Zhong R, Ye ZH. The poplar PtrWNDs are transcriptional activators of secondary cell wall biosynthesis. PLANT SIGNALING & BEHAVIOR 2010; 5:469-72. [PMID: 20383071 PMCID: PMC2958599 DOI: 10.4161/psb.5.4.11400] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/17/2023]
Abstract
Secondary cell walls, consisting of cellulose, hemicelluloses and lignin, make up the bulk of wood biomass. It is therefore expected that dissection of the molecular mechanisms underlying secondary wall biosynthesis and its regulation will be instrumental to unravel the process of wood formation in tree species. Wood formation requires the coordinated activation of genes in the secondary wall biosynthetic program that is essential for the biosynthesis and assembly of wood components. It has recently been discovered that a group of poplar (Populus trichocarpa) wood-associated NAC domain transcription factors, PtrWNDs, which are functional orthologs of the Arabidopsis SND1, are capable of turning on the entire secondary wall biosynthetic program when expressed in Arabidopsis. In addition, two of the PtrWNDs were found to be able to activate the promoters of poplar wood biosynthetic genes and a number of other poplar wood-associated transcription factors. Further testing reveals that the promoters of these poplar wood-associated transcription factors are also activated by other PtrWNDs. It is therefore proposed that PtrWNDs are master transcriptional switches regulating a cascade of downstream transcription factors and thereby mediate the coordinated activation of wood biosynthetic genes during wood formation.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
421
|
Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, Demura T. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. THE PLANT CELL 2010; 22:1249-63. [PMID: 20388856 PMCID: PMC2879754 DOI: 10.1105/tpc.108.064048] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Arabidopsis thaliana NAC domain transcription factor VASCULAR-RELATED NAC-DOMAIN7 (VND7) acts as a master regulator of xylem vessel differentiation. To understand the mechanism by which VND7 regulates xylem vessel differentiation, we used a yeast two-hybrid system to screen for proteins that interact with VND7 and identified cDNAs encoding two NAC domain proteins, VND-INTERACTING1 (VNI1) and VNI2. Binding assays demonstrated that VNI2 effectively interacts with VND7 and the VND family proteins, VND1-5, as well as with other NAC domain proteins at lower affinity. VNI2 is expressed in both xylem and phloem cells in roots and inflorescence stems. The expression of VNI2 overlaps with that of VND7 in elongating vessel precursors in roots. VNI2 contains a predicted PEST motif and a C-terminally truncated VNI2 protein, which lacks part of the PEST motif, is more stable than full-length VNI2. Transient reporter assays showed that VNI2 is a transcriptional repressor and can repress the expression of vessel-specific genes regulated by VND7. Expression of C-terminally truncated VNI2 under the control of the VND7 promoter inhibited the normal development of xylem vessels in roots and aerial organs. These data suggest that VNI2 regulates xylem cell specification as a transcriptional repressor that interacts with VND proteins and possibly also with other NAC domain proteins.
Collapse
Affiliation(s)
- Masatoshi Yamaguchi
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Misato Ohtani
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Biomass Engineering Program, Yokohama, Kanagawa 230-0045, Japan
| | - Nobutaka Mitsuda
- Research Institute of Genome-Based Biofactory, National Insitute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan
| | - Minoru Kubo
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Masaru Ohme-Takagi
- Research Institute of Genome-Based Biofactory, National Insitute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Taku Demura
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- RIKEN Biomass Engineering Program, Yokohama, Kanagawa 230-0045, Japan
- Address correspondence to
| |
Collapse
|
422
|
Harris D, DeBolt S. Synthesis, regulation and utilization of lignocellulosic biomass. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:244-62. [PMID: 20070874 DOI: 10.1111/j.1467-7652.2009.00481.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Increasing the range of fuels and bioproducts that are derived from lignocellulosic biomass and the efficiency at which they are produced hinges on a detailed understanding of the cell wall biosynthetic process. Herein, we review the structure and biosynthesis of lignocellulosic biomass and also highlight recent breakthroughs that demonstrate a complex regulatory system of transcription factors, small interfering RNAs and phosphorylation that ultimately dictate the development of the polyalaminate cell wall. Finally, we provide an update on cases where plant biotechnology has been used to improve lignocellulosic biomass utilization as a second-generation biofuel source.
Collapse
Affiliation(s)
- Darby Harris
- Department of Horticulture, Plant Physiology/Biochemistry and Molecular Biology Program, University of Kentucky, N-318 Agricultural Science Center, North Lexington, KY, USA
| | | |
Collapse
|
423
|
Alvarez-Buylla ER, Benítez M, Corvera-Poiré A, Chaos Cador Á, de Folter S, Gamboa de Buen A, Garay-Arroyo A, García-Ponce B, Jaimes-Miranda F, Pérez-Ruiz RV, Piñeyro-Nelson A, Sánchez-Corrales YE. Flower development. THE ARABIDOPSIS BOOK 2010; 8:e0127. [PMID: 22303253 PMCID: PMC3244948 DOI: 10.1199/tab.0127] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies.
Collapse
Affiliation(s)
- Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Mariana Benítez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Corvera-Poiré
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Álvaro Chaos Cador
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Stefan de Folter
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alicia Gamboa de Buen
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Fabiola Jaimes-Miranda
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Rigoberto V. Pérez-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alma Piñeyro-Nelson
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Yara E. Sánchez-Corrales
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| |
Collapse
|
424
|
Bennett T, van den Toorn A, Sanchez-Perez GF, Campilho A, Willemsen V, Snel B, Scheres B. SOMBRERO, BEARSKIN1, and BEARSKIN2 regulate root cap maturation in Arabidopsis. THE PLANT CELL 2010; 22:640-54. [PMID: 20197506 PMCID: PMC2861445 DOI: 10.1105/tpc.109.072272] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/29/2010] [Accepted: 02/11/2010] [Indexed: 05/18/2023]
Abstract
The root cap has a central role in root growth, determining the growth trajectory and facilitating penetration into the soil. Root cap cells have specialized functions and morphologies, and border cells are released into the rhizosphere by specific cell wall modifications. Here, we demonstrate that the cellular maturation of root cap is redundantly regulated by three genes, SOMBRERO (SMB), BEARSKIN1 (BRN1), and BRN2, which are members of the Class IIB NAC transcription factor family, together with the VASCULAR NAC DOMAIN (VND) and NAC SECONDARY WALL THICKENING PROMOTING FACTOR (NST) genes that regulate secondary cell wall synthesis in specialized cell types. Lateral cap cells in smb-3 mutants continue to divide and fail to detach from the root, phenotypes that are independent of FEZ upregulation in smb-3. In brn1-1 brn2-1 double mutants, columella cells fail to detach, while in triple mutants, cells fail to mature in all parts of the cap. This complex genetic redundancy involves differences in expression, protein activity, and target specificity. All three genes have very similar overexpression phenotypes to the VND/NST genes, indicating that members of this family are largely functionally equivalent. Our results suggest that Class IIB NAC proteins regulate cell maturation in cells that undergo terminal differentiation with strong cell wall modifications.
Collapse
Affiliation(s)
- Tom Bennett
- Department of Molecular Genetics, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Albert van den Toorn
- Department of Molecular Genetics, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Gabino F. Sanchez-Perez
- Department of Molecular Genetics, University of Utrecht, 3584 CH Utrecht, The Netherlands
- Theoretical Biology and Bioinformatics, University of Utrecht, and Netherlands Consortium for Systems Biology, 3584 CH Utrecht, The Netherlands
| | - Ana Campilho
- Department of Molecular Genetics, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Viola Willemsen
- Department of Molecular Genetics, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, University of Utrecht, and Netherlands Consortium for Systems Biology, 3584 CH Utrecht, The Netherlands
| | - Ben Scheres
- Department of Molecular Genetics, University of Utrecht, 3584 CH Utrecht, The Netherlands
- Address correspondence to
| |
Collapse
|
425
|
Hirsch AM, Lee A, Deng W, Tucker SC. An open-flower mutant of Melilotus alba: Potential for floral-dip transformation of a papilionoid legume with a short life cycle? AMERICAN JOURNAL OF BOTANY 2010; 97:395-404. [PMID: 21622403 DOI: 10.3732/ajb.0900152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This paper describes an open-flower mutant, designated opf, that we discovered in a genetic screen of fast neutron bombardment mutants in an attempt at floral-dip transformation of Melilotus alba (Fabaceae; white sweetclover), an alternative papilionoid legume host for Sinorhizobium meliloti. The opf mutant developed flowers with reflexed sepals and petals, thereby exposing the stamens and carpel, whereas wild-type sweetclover inflorescences developed closed flowers where the young stamens and carpel remain covered during the early stages of flower development. Based on crosses with the wild type, the mutant segregated as a single, Mendelian recessive. Crosses were successful only when the opf mutant served as the female parent, suggesting that the mutant was male sterile. However, no obvious differences from wild-type stamen development were observed in the opf mutant. The anther defect was due to indehiscence. However, as the plants approached the end of their life cycle, the frequency of selfing increased. We also investigated whether the opf mutant could be transformed via Agrobacterium tumefaciens floral-dip infiltration because open flowers like those of Arabidopsis appear to be more readily transformable. However, similar to wild-type M. alba, the opf mutant is refractory to floral-dip transformation by Agrobacterium tumefaciens.
Collapse
Affiliation(s)
- Ann M Hirsch
- Department of Molecular, Cell and Developmental Biology
| | | | | | | |
Collapse
|
426
|
The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochem J 2010; 426:183-96. [PMID: 19995345 DOI: 10.1042/bj20091234] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TFs (transcription factors) are modular proteins minimally containing a DBD (DNA-binding domain) and a TRD (transcription regulatory domain). NAC [for NAM (no apical meristem), ATAF, CUC (cup-shaped cotyledon)] proteins comprise one of the largest plant TF families. They are key regulators of stress perception and developmental programmes, and most share an N-terminal NAC domain. On the basis of analyses of gene expression data and the phylogeny of Arabidopsis thaliana NAC TFs we systematically decipher structural and functional specificities of the conserved NAC domains and the divergent C-termini. Nine of the ten NAC domains analysed bind a previously identified conserved DNA target sequence with a CGT[GA] core, although with different affinities. Likewise, all but one of the NAC proteins analysed is dependent on the C-terminal region for transactivational activity. In silico analyses show that the NAC TRDs contain group-specific sequence motifs and are characterized by a high degree of intrinsic disorder. Furthermore, ANAC019 was identified as a new positive regulator of ABA (abscisic acid) signalling, conferring ABA hypersensitivity when ectopically expressed in plants. Interestingly, ectopic expression of the ANAC019 DBD or TRD alone also resulted in ABA hypersensitivity. Expression of stress-responsive marker genes [COR47 (cold-responsive 47), RD29b (responsive-to-desiccation 29b) and ERD11 (early-responsive-to-dehydration 11)] were also induced by full-length and truncated ANAC019. Domain-swapping experiments were used to analyse the specificity of this function. Chimaeric proteins, where the NAC domain of ANAC019 was replaced with the analogous regions from other NAC TFs, also have the ability to positively regulate ABA signalling. In contrast, replacing the ANAC019 TRD with other TRDs abolished ANAC019-mediated ABA hypersensitivity. In conclusion, our results demonstrate that the biochemical and functional specificity of NAC TFs is associated with both the DBDs and the TRDs.
Collapse
|
427
|
Zhong R, Lee C, Ye ZH. Functional characterization of poplar wood-associated NAC domain transcription factors. PLANT PHYSIOLOGY 2010; 152:1044-55. [PMID: 19965968 PMCID: PMC2815876 DOI: 10.1104/pp.109.148270] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 11/29/2009] [Indexed: 05/15/2023]
Abstract
Wood is the most abundant biomass produced by land plants. Dissection of the molecular mechanisms underlying the transcriptional regulation of wood formation is a fundamental issue in plant biology and has important implications in tree biotechnology. Although a number of transcription factors in tree species have been shown to be associated with wood formation and some of them are implicated in lignin biosynthesis, none of them have been demonstrated to be key regulators of the biosynthesis of all three major components of wood. In this report, we have identified a group of NAC domain transcription factors, PtrWNDs, that are preferentially expressed in developing wood of poplar (Populus trichocarpa). Expression of PtrWNDs in the Arabidopsis (Arabidopsis thaliana) snd1 nst1 double mutant effectively complemented the secondary wall defects in fibers, indicating that PtrWNDs are capable of activating the entire secondary wall biosynthetic program. Overexpression of PtrWND2B and PtrWND6B in Arabidopsis induced the expression of secondary wall-associated transcription factors and secondary wall biosynthetic genes and, concomitantly, the ectopic deposition of cellulose, xylan, and lignin. Furthermore, PtrWND2B and PtrWND6B were able to activate the promoter activities of a number of poplar wood-associated transcription factors and wood biosynthetic genes. Together, these results demonstrate that PtrWNDs are functional orthologs of SND1 and suggest that PtrWNDs together with their downstream transcription factors form a transcriptional network involved in the regulation of wood formation in poplar.
Collapse
Affiliation(s)
| | | | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
428
|
Thompson EP, Wilkins C, Demidchik V, Davies JM, Glover BJ. An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:439-51. [PMID: 19995827 PMCID: PMC2803208 DOI: 10.1093/jxb/erp312] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 05/17/2023]
Abstract
FLOWER FLAVONOID TRANSPORTER (FFT) encodes a multidrug and toxin efflux family transporter in Arabidopsis thaliana. FFT (AtDTX35) is highly transcribed in floral tissues, the transcript being localized to epidermal guard cells, including those of the anthers, stigma, siliques and nectaries. Mutant analysis demonstrates that the absence of FFT transcript affects flavonoid levels in the plant and that the altered flavonoid metabolism has wide-ranging consequences. Root growth, seed development and germination, and pollen development, release and viability are all affected. Spectrometry of mutant versus wild-type flowers shows altered levels of a glycosylated flavonol whereas anthocyanin seems unlikely to be the substrate as previously speculated. Thus, as well as adding FFT to the incompletely described flavonoid transport network, it is found that correct reproductive development in Arabidopsis is perturbed when this particular transporter is missing.
Collapse
|
429
|
Shikata M, Koyama T, Mitsuda N, Ohme-Takagi M. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. PLANT & CELL PHYSIOLOGY 2009; 50:2133-45. [PMID: 19880401 DOI: 10.1093/pcp/pcp148] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lateral organ traits in higher plants, such as lamina shape and trichome distribution, change gradually in association with shoot maturation. Regulation of this shoot maturation process in the vegetative phase has been extensively investigated, and members of the SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box family of transcription factors have been shown to be involved in this process. However, little is known about the regulation of shoot maturation in the reproductive phase. We analyzed SPL10, SPL11 and SPL2, which are closely related members of the SBP-box family in Arabidopsis. While cauline leaves had oblong lamina and few trichomes emerged on cauline leaves and flowers in wild-type plants, transgenic plants expressing a dominant repressor version of SPL10/11/2 had wide cauline leaves and many trichomes on their cauline leaves and flowers. These traits were similar to those observed at an earlier reproductive phase in wild-type plants. Loss-of-function mutants for spl10/11/2 showed similar phenotypes, indicating that SPL10, SPL11 and SPL2 redundantly control proper development of lateral organs in association with shoot maturation in the reproductive phase. In the vegetative phase, lamina shape was affected in SPL10 transgenic plants, while trichome distribution was not altered. This suggests partial regulation of shoot development in the vegetative phase by SPL10. Meanwhile, the wide cauline leaves observed in the transgenic plants and the mutants were similar to those of fruitfull (ful) mutants. We found that FUL expression in leaves increased with shoot maturation and changed in SPL10 transgenic plants. FUL may function in shoot maturation under the control of SBP-box proteins.
Collapse
Affiliation(s)
- Masahito Shikata
- Research Institute of Genome-Based Biofactory, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8562, Japan
| | | | | | | |
Collapse
|
430
|
Peng H, Cheng HY, Chen C, Yu XW, Yang JN, Gao WR, Shi QH, Zhang H, Li JG, Ma H. A NAC transcription factor gene of Chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1934-45. [PMID: 19595478 DOI: 10.1016/j.jplph.2009.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 05/12/2009] [Accepted: 05/28/2009] [Indexed: 05/08/2023]
Abstract
NAC transcription factors have been found to play important roles in plant development and responses to environmental stresses. Based on two cDNA libraries constructed from the PEG-treated and -nontreated seedling leaves of chickpea, a NAC gene, CarNAC3, was isolated and characterized. The results indicated that CarNAC3 contained 285 amino acids and had a conserved NAC domain. It was localized in the nucleus and possessed trans-activation activity in the C-terminus. Phylogenetic analysis showed that CarNAC3 belonged to the NAP (NAC-like, activated by APETALA3/PISTILLATA) subgroup of the NAC protein family. CarNAC3 exhibited organ-specific expression and its induction was strongly dependent on leaf age. CarNAC3 showed differential expression patterns during seed development and germination, and could be significantly induced by drought stress, abscisic acid (ABA), ethephon (Et) and indole-3-acetic acid (IAA), but was inhibited by N-6-benzyl-adenine (6-BA). Our data suggest that CarNAC3 may be a transcriptional activator involved in drought stress response and various developmental processes.
Collapse
Affiliation(s)
- Hui Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
431
|
Aohara T, Kotake T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S. Rice BRITTLE CULM 5 (BRITTLE NODE) is involved in secondary cell wall formation in the sclerenchyma tissue of nodes. PLANT & CELL PHYSIOLOGY 2009; 50:1886-97. [PMID: 19812064 PMCID: PMC2775960 DOI: 10.1093/pcp/pcp133] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Several brittle culm (bc) mutants known in grasses are considered excellent materials to study the process of secondary cell wall formation. The brittle phenotype of the rice bc5 (brittle node) mutant appears exclusively in the developed nodes, which is distinct from other bc mutants (bc1, 2, 3, 4, 6 and 7) that show the brittle phenotype in culms and leaves. To address the defects of the rice bc5 mutant in node-specific cell wall formation, we analyzed tissue morphology and cell wall composition. The bc5 mutation was found to affect the cell wall deposition of node sclerenchyma tissues at 1 week after heading, the stage at which the cell wall sugar content is reduced, in the bc5 nodes, compared with wild-type nodes. Moreover, decreased accumulation of lignin and thickness of cell walls in the sclerenchyma tissues were also observed in the bc5 nodes. The amounts of cellulose and hemicellulose were reduced to 53 and 65% of those in the wild-type plants, respectively. Sugar composition and glycosidic linkage analyses of the hemicellulose showed that the accumulation of glucuronosyl arabinoxylan in bc5 nodes was perturbed by the mutation. The bc5 locus was narrowed to an approximately 3.1 Mb region of chromosome 2, where none of the other bc genes is located. The bc5 mutation appeared to reduce the expression levels of the OsCesA genes in the nodes after heading. The results indicate that the BC5 gene regulates the development of secondary cell walls of node sclerenchyma tissues.
Collapse
Affiliation(s)
- Tsutomu Aohara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
| | - Yasuko Kaneko
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
- Faculty of Education, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
| | - Hiroshi Takatsuji
- Plant Science Division, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan
| | - Yoichi Tsumuraya
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
| | - Shinji Kawasaki
- Plant Science Division, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan
- *Corresponding author: E-mail, ; Fax, +81-29-838-7416
| |
Collapse
|
432
|
Ko JH, Kim WC, Han KH. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:649-65. [PMID: 19674407 DOI: 10.1111/j.1365-313x.2009.03989.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
MYB46 functions as a transcriptional switch that turns on the genes necessary for secondary wall biosynthesis. Elucidating the transcriptional regulatory network immediately downstream of MYB46 is crucial to our understanding of the molecular and biochemical processes involved in the biosynthesis and deposition of secondary walls in plants. To gain insights into MYB46-mediated transcriptional regulation, we first established an inducible secondary wall thickening system in Arabidopsis by expressing MYB46 under the control of dexamethasone-inducible promoter. Then, we used an ATH1 GeneChip microarray and Illumina digital gene expression system to obtain a series of transcriptome profiles with regard to the induction of secondary wall development. These analyses allowed us to identify a group of transcription factors whose expression coincided with or preceded the induction of secondary wall biosynthetic genes. A transient transcriptional activation assay was used to confirm the hierarchical relationships among the transcription factors in the network. The in vivo assay showed that MYB46 transcriptionally activates downstream target transcription factors, three of which (AtC3H14, MYB52 and MYB63) were shown to be able to activate secondary wall biosynthesis genes. AtC3H14 activated the transcription of all of the secondary wall biosynthesis genes tested, suggesting that AtC3H14 may be another master regulator of secondary wall biosynthesis. The transcription factors identified here may include direct activators of secondary wall biosynthesis genes. The present study discovered novel hierarchical relationships among the transcription factors involved in the transcriptional regulation of secondary wall biosynthesis, and generated several testable hypotheses.
Collapse
Affiliation(s)
- Jae-Heung Ko
- Department of Forestry, Michigan State University, East Lansing, MI 48824-1222, USA
| | | | | |
Collapse
|
433
|
McCarthy RL, Zhong R, Ye ZH. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. PLANT & CELL PHYSIOLOGY 2009; 50:1950-64. [PMID: 19808805 DOI: 10.1093/pcp/pcp139] [Citation(s) in RCA: 330] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
It has been proposed that the transcriptional regulation of secondary wall biosynthesis in Arabidopsis is controlled by a transcriptional network mediated by SND1 and its close homologs. Uncovering all the transcription factors and deciphering their interrelationships in the network are essential for our understanding of the molecular mechanisms underlying the transcriptional regulation of biosynthesis of secondary walls, the major constituent of wood and fibers. Here, we present functional evidence that the MYB83 transcription factor is another molecular switch in the SND1-mediated transcriptional network regulating secondary wall biosynthesis. MYB83 is specifically expressed in fibers and vessels where secondary wall thickening occurs. Its expression is directly activated by SND1 and its close homologs, including NST1, NST2, VND6 and VND7, indicating that MYB83 is their direct target. MYB83 overexpression is able to activate a number of the biosynthetic genes of cellulose, xylan and lignin and concomitantly induce ectopic secondary wall deposition. In addition, its overexpression upregulates the expression of several transcription factors involved in regulation of secondary wall biosynthesis. Dominant repression of MYB83 functions or simultaneous RNAi inhibition of MYB83 and MYB46 results in a reduction in secondary wall thickening in fibers and vessels and a deformation of vessels. Furthermore, double T-DNA knockout mutations of MYB83 and MYB46 cause a lack of secondary walls in vessels and an arrest in plant growth. Together, these results demonstrate that MYB83 and MYB46, both of which are SND1 direct targets, function redundantly in the transcriptional regulatory cascade leading to secondary wall formation in fibers and vessels.
Collapse
Affiliation(s)
- Ryan L McCarthy
- Department of Plant Biology, University of Georgia, 2502 Miller Plant Sciences, Athens, GA 30602, USA
| | | | | |
Collapse
|
434
|
Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. THE PLANT CELL 2009; 21:3493-505. [PMID: 19897670 PMCID: PMC2798335 DOI: 10.1105/tpc.109.069997] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/24/2009] [Accepted: 10/18/2009] [Indexed: 05/18/2023]
Abstract
Most transcription factors act either as activators or repressors, and no such factors with dual function have been unequivocally identified and characterized in plants. We demonstrate here that the Arabidopsis thaliana protein WUSCHEL (WUS), which regulates the maintenance of stem cell populations in shoot meristems, is a bifunctional transcription factor that acts mainly as a repressor but becomes an activator when involved in the regulation of the AGAMOUS (AG) gene. We show that the WUS box, which is conserved among WOX genes, is the domain that is essential for all the activities of WUS, namely, for regulation of stem cell identity and size of floral meristem. All the known activities of WUS were eliminated by mutation of the WUS box, including the ability of WUS to induce the expression of AG. The mutation of the WUS box was complemented by fusion of an exogenous repression domain, with resultant induction of somatic embryogenesis in roots and expansion of floral meristems as observed upon ectopic expression of WUS. By contrast, fusion of an exogenous activation domain did not result in expanded floral meristems but induced flowers similar to those induced by the ectopic expression of AG. Our results demonstrate that WUS acts mainly as a repressor and that its function changes from that of a repressor to that of an activator in the case of regulation of the expression of AG.
Collapse
|
435
|
Zhong R, Ye ZH. Transcriptional regulation of lignin biosynthesis. PLANT SIGNALING & BEHAVIOR 2009; 4:1028-34. [PMID: 19838072 PMCID: PMC2819510 DOI: 10.4161/psb.4.11.9875] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 08/19/2009] [Indexed: 05/17/2023]
Abstract
Lignin is the second most abundant plant biopolymer mainly present in the secondary walls of tracheary elements and fibers in wood. Understanding how lignin is biosynthesized has long been an interest to plant biologists and will have a significant impact on tree biotechnology. Lignin is polymerized from monolignols that are synthesized through the lignin biosynthetic pathway. To make lignin, all the genes in the lignin biosynthetic pathway need to be coordinately turned on. It has been shown that a common cis-element, namely the AC element, is present in the majority of the lignin biosynthetic genes and required for their expression in lignifying cells. Important progress has been made in the identification of transcription factors that bind to the AC elements and are potentially involved in the coordinated regulation of lignin biosynthesis. The Arabidopsis MYB58 and MYB63 as well as their poplar ortholog PtrMYB28 are transcriptional activators of the lignin biosynthetic pathway, whereas the eucalyptus EgMYB2 and pine PtMYB4 transcription factors are likely Arabidopsis MYB46 orthologs involved in the regulation of the entire secondary wall biosynthetic program. It was found that the transcriptional regulation of lignin biosynthesis is under the control of the same transcriptional network regulating the biosynthesis of other secondary wall components, including cellulose and xylan. The identification of transcription factors directly activating lignin biosynthetic genes provides unprecedented tools to potentially manipulate the amount of lignin in wood and other plant products based on our needs.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
436
|
Peng H, Cheng HY, Yu XW, Shi QH, Zhang H, Li JG, Ma H. Characterization of a chickpea (Cicer arietinum L.) NAC family gene, CarNAC5, which is both developmentally- and stress-regulated. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:1037-45. [PMID: 19800808 DOI: 10.1016/j.plaphy.2009.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/21/2009] [Accepted: 09/06/2009] [Indexed: 05/09/2023]
Abstract
It has been documented that the plant-specific NAC (for NAM, ATAF1,2 and CUC2) transcription factors play an important role in plant development and stress responses. In this study, a chickpea NAC gene CarNAC5 (for Cicer arietinum L. NAC gene 5) was isolated from a cDNA library from chickpea leaves treated by polyethylene glycol (PEG). CarNAC5, as a single/low copy gene, contained three exons and two introns within genomic DNA sequence and encoded a polypeptide with 291 amino acids. CarNAC5 protein had a conserved NAC domain in the N-terminus and showed high similarity to other NACs, especially ATAF subgroup members. The CarNAC5:GFP fusion protein was localized in the nucleus of onion epidermal cells. Furthermore, CarNAC5 protein activated the reporter genes LacZ and HIS3 in yeast. The transactivation activity was mapped to the C-terminal region. The transcripts of CarNAC5 appeared in many chickpea tissues including seedling leaves, stems, roots, flowers, seeds and pods, but mostly accumulated in flowers. Meanwhile, CarNAC5 was strongly expressed during seed maturation and in embryos of the early germinating seeds. It was also significantly induced by drought, heat, wounding, salicylic acid (SA), and indole-3-acetic acid (IAA) treatments. Our results suggest that CarNAC5 encodes a novel NAC-domain protein and acts as a transcriptional activator involved in plant developmental regulation and various stress responses.
Collapse
Affiliation(s)
- Hui Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
437
|
Wang X, Basnayake BMVS, Zhang H, Li G, Li W, Virk N, Mengiste T, Song F. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1227-38. [PMID: 19737096 DOI: 10.1094/mpmi-22-10-1227] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transcription factors of the NAC family are known to be involved in various growth or developmental processes and in regulation of response to environmental stresses. In the present study, we report that Arabidopsis ATAF1 is a negative regulator of defense responses against both necrotrophic fungal and bacterial pathogens. Expression of ATAF1 was downregulated after infection with Botrytis cinerea or Pseudomonas syringae pv. tomato or after treatment with salicylic acid (SA), jasmonic acid, and 1-amino cyclopropane-1-carboxylic acid (the precursor of ethylene biosynthesis). Transgenic plants that overexpress the ATAF1 gene (ATAF1-OE) showed increased susceptibility while expression of an ATAF1 chimeric repressor construct (ATAF1-SRDX) exhibited enhanced resistance to P. syringae pv. tomato DC3000, B. cinerea, and Alternaria brassicicola. The ataf1 mutant plants showed no significant resistance against the pathogens tested. After inoculation with B. cinerea or P. syringae pv. tomato DC3000, expressions of defense-related genes PR-1, PR-5. and PDF1.2 were upregulated in the ATAF1-SRDX plants but attenuated or unchanged in the ATAF1-OE plants. In ATAF1-OE plants, SA-induced expression of pathogenesis-related genes and disease resistance against P. syringae pv. tomato DC3000 was partially suppressed. Increased levels of reactive oxygen species (i.e., H(2)O(2) and superoxide anion) accumulated only in the ATAF1-OE but not in the ATAF1-SRDX plants after Botrytis spp. infection. Our studies provide direct genetic evidence for the role of ATAF1 as a negative regulator of defense response against different type of pathogens.
Collapse
Affiliation(s)
- Xiao'e Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University-Huajiachi Campus, Hangzhou, Zhejiang 310029, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
438
|
Gutiérrez J, López Núñez-Flores MJ, Gómez-Ros LV, Novo Uzal E, Esteban Carrasco A, Díaz J, Sottomayor M, Cuello J, Ros Barceló A. Hormonal regulation of the basic peroxidase isoenzyme from Zinnia elegans. PLANTA 2009; 230:767-78. [PMID: 19626339 DOI: 10.1007/s00425-009-0982-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 07/06/2009] [Indexed: 05/08/2023]
Abstract
Xylem differentiation in plants is under strict hormonal regulation. Auxins and cytokinins, together with brassinosteroids (BRs), appear to be the main hormones controlling vascular differentiation. In this report, we study the effect of these hormones on the basic peroxidase isoenzyme from Zinnia elegans (ZePrx), an enzyme involved in lignin biosynthesis. Results showed that auxins and cytokinins induce ZePrx, similarly to the way in which they induce seedling secondary growth (in particular, metaxylem differentiation). Likewise, the exogenous application of BR reduces the levels of ZePrx, in a similar way to their capacity to inhibit seedling secondary growth. Consistent with this notion, the exogenous application of BR reverses the auxin/cytokinin-induced ZePrx expression, but has no effect on the auxin/cytokinin-induced secondary growth. This differential hormonal response is supported by the analysis of the ZePrx promoter, which contains (a) cis-elements directly responsive to these hormones and (b) cis-elements targets of the plethora of transcription factors, such as NAC, MYB, AP2, MADS and class III HD Zip, which are up-regulated during the auxin- and cytokinin-induced secondary growth. Taken together, these results suggest that ZePrx is directly and indirectly regulated by the plethora of hormones that control xylem differentiation, supporting the role of ZePrx in xylem lignification.
Collapse
Affiliation(s)
- Jorge Gutiérrez
- Department of Plant Biology, University of La Coruña, 15071 La Coruña, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
439
|
Mitsuda N, Ohme-Takagi M. Functional analysis of transcription factors in Arabidopsis. PLANT & CELL PHYSIOLOGY 2009; 50:1232-48. [PMID: 19478073 PMCID: PMC2709548 DOI: 10.1093/pcp/pcp075] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 05/26/2009] [Indexed: 05/17/2023]
Abstract
Transcription factors (TFs) regulate the expression of genes at the transcriptional level. Modification of TF activity dynamically alters the transcriptome, which leads to metabolic and phenotypic changes. Thus, functional analysis of TFs using 'omics-based' methodologies is one of the most important areas of the post-genome era. In this mini-review, we present an overview of Arabidopsis TFs and introduce strategies for the functional analysis of plant TFs, which include both traditional and recently developed technologies. These strategies can be assigned to five categories: bioinformatic analysis; analysis of molecular function; expression analysis; phenotype analysis; and network analysis for the description of entire transcriptional regulatory networks.
Collapse
Affiliation(s)
| | - Masaru Ohme-Takagi
- Research Institute of Genome-Based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, 305-8562 Japan
| |
Collapse
|
440
|
Al-Ghazi Y, Bourot S, Arioli T, Dennis ES, Llewellyn DJ. Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality. PLANT & CELL PHYSIOLOGY 2009; 50:1364-1381. [PMID: 19520671 DOI: 10.1093/pcp/pcp084] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A global gene expression profiling study at different stages of fiber development was undertaken on two cotton species cultivated for fiber, Gossypium hirsutum (L.) and G. barbadense (L.). A large proportion of the genome was expressed during both fiber elongation and subsequent secondary cell wall thickening. There was a major shift in abundance of transcripts for gene regulation, cell organization and metabolism between fiber elongation and fiber thickening that was fundamentally similar in both species. Each stage had its own distinctive features represented by specific metabolic and regulatory genes, a number of which have been noted previously. Many of the genes expressed in the fibers were of a similar type and developmental expression to those seen in other fiber-producing plants, indicating a conservation of mechanisms of cell elongation and wall thickening across diverse plant genera. Secondary metabolism and pectin synthesis and modification genes were amongst the most statistically significant differentially expressed categories between the two species during fiber elongation. The gene profiles of the fiber thickening stage, however, were almost identical between the two species, suggesting that their different final fiber quality properties may be established at earlier stages of fiber development. Expression levels of representative phenylpropanoid and pectin modification genes showed high correlations with specific fiber properties in an inter-specific cotton recombinant inbred line (RIL) population, supporting a role in determining fiber quality.
Collapse
|
441
|
Tran LSP, Quach TN, Guttikonda SK, Aldrich DL, Kumar R, Neelakandan A, Valliyodan B, Nguyen HT. Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genomics 2009; 281:647-64. [PMID: 19277718 DOI: 10.1007/s00438-009-0436-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
Drought is detrimental to plant growth and development, and often results in significant losses to the yields of economically important crops such as soybeans (Glycine max L.). NAC transcription factors (TFs), which consist of a large family of plant-specific TFs, have been reported to enhance drought tolerance in a number of plants. In this study, 31 unigenes that contain the complete open reading frames encoding GmNAC proteins were identified and cloned from soybean. Analysis of C-terminal regulatory domain using yeast one-hybrid system indicated that among 31 GmNAC proteins, 28 have transcriptional activation activity. Expression analysis of these GmNAC genes showed that they are differentially expressed in different organs, suggesting that they have diverse functions during plant growth and development. To search for the drought-inducible GmNAC genes, we prescreened and re-confirmed by quantitative real-time PCR analysis that nine GmNAC genes are induced by dehydration stress with differential induction levels in both shoot and root. The expression profiles of these nine GmNAC genes were also examined under other stresses such as high salinity, cold and with abscisic acid hormone treatments. Phylogenetic analysis of the GmNAC proteins with previously reported drought-inducible NAC proteins of Arabidopsis and rice revealed that the nine drought-inducible GmNAC proteins belong to the "stress-inducible" NAC group. The results of this systematic analysis of the GmNAC family will provide novel tools and resources for the development of improved drought tolerant transgenic soybean cultivars.
Collapse
Affiliation(s)
- Lam-Son Phan Tran
- Division of Plant Sciences, National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | |
Collapse
|
442
|
Courtois-Moreau CL, Pesquet E, Sjödin A, Muñiz L, Bollhöner B, Kaneda M, Samuels L, Jansson S, Tuominen H. A unique program for cell death in xylem fibers of Populus stem. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:260-74. [PMID: 19175765 DOI: 10.1111/j.1365-313x.2008.03777.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Maturation of the xylem elements involves extensive deposition of secondary cell-wall material and autolytic processes resulting in cell death. We describe here a unique type of cell-death program in xylem fibers of hybrid aspen (Populus tremula x P. tremuloides) stems, including gradual degradative processes in both the nucleus and cytoplasm concurrently with the phase of active cell-wall deposition. Nuclear DNA integrity, as determined by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) and Comet (single-cell gel electrophoresis) assays, was compromised early during fiber maturation. In addition, degradation of the cytoplasmic contents, as detected by electron microscopy of samples fixed by high-pressure freezing/freeze substitution (HPF-FS), was gradual and resulted in complete loss of the cytoplasmic contents well before the loss of vacuolar integrity, which is considered to be the moment of death. This type of cell death differs significantly from that seen in xylem vessels. The loss of vacuolar integrity, which is thought to initiate cell degradative processes in the xylem vessels, is one of the last processes to occur before the final autolysis of the remaining cell contents in xylem fibers. High-resolution microarray analysis in the vascular tissues of Populus stem, combined with in silico analysis of publicly available data repositories, suggests the involvement of several previously uncharacterized transcription factors, ethylene, sphingolipids and light signaling as well as autophagy in the control of fiber cell death.
Collapse
|
443
|
Rengel D, Clemente HS, Servant F, Ladouce N, Paux E, Wincker P, Couloux A, Sivadon P, Grima-Pettenati J. A new genomic resource dedicated to wood formation in Eucalyptus. BMC PLANT BIOLOGY 2009; 9:36. [PMID: 19327132 PMCID: PMC2670833 DOI: 10.1186/1471-2229-9-36] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 03/27/2009] [Indexed: 05/17/2023]
Abstract
BACKGROUND Renowned for their fast growth, valuable wood properties and wide adaptability, Eucalyptus species are amongst the most planted hardwoods in the world, yet they are still at the early stages of domestication because conventional breeding is slow and costly. Thus, there is huge potential for marker-assisted breeding programs to improve traits such as wood properties. To this end, the sequencing, analysis and annotation of a large collection of expressed sequences tags (ESTs) from genes involved in wood formation in Eucalyptus would provide a valuable resource. RESULTS We report here the normalization and sequencing of a cDNA library from developing Eucalyptus secondary xylem, as well as the construction and sequencing of two subtractive libraries (juvenile versus mature wood and vice versa). A total of 9,222 high quality sequences were collected from about 10,000 cDNA clones. The EST assembly generated a set of 3,857 wood-related unigenes including 2,461 contigs (Cg) and 1,396 singletons (Sg) that we named 'EUCAWOOD'. About 65% of the EUCAWOOD sequences produced matches with poplar, grapevine, Arabidopsis and rice protein sequence databases. BlastX searches of the Uniref100 protein database allowed us to allocate gene ontology (GO) and protein family terms to the EUCAWOOD unigenes. This annotation of the EUCAWOOD set revealed key functional categories involved in xylogenesis. For instance, 422 sequences matched various gene families involved in biosynthesis and assembly of primary and secondary cell walls. Interestingly, 141 sequences were annotated as transcription factors, some of them being orthologs of regulators known to be involved in xylogenesis. The EUCAWOOD dataset was also mined for genomic simple sequence repeat markers, yielding a total of 639 putative microsatellites. Finally, a publicly accessible database was created, supporting multiple queries on the EUCAWOOD dataset. CONCLUSION In this work, we have identified a large set of wood-related Eucalyptus unigenes called EUCAWOOD, thus creating a valuable resource for functional genomics studies of wood formation and molecular breeding in this economically important genus. This set of publicly available annotated sequences will be instrumental for candidate gene approaches, custom array development and marker-assisted selection programs aimed at improving and modulating wood properties.
Collapse
Affiliation(s)
- David Rengel
- UMR CNRS/Université Toulouse III 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617 Auzeville, 31326 Castanet Tolosan, France
| | - Hélène San Clemente
- UMR CNRS/Université Toulouse III 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617 Auzeville, 31326 Castanet Tolosan, France
| | - Florence Servant
- UMR CNRS/Université Toulouse III 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617 Auzeville, 31326 Castanet Tolosan, France
- Current address : Syngenta Seeds SAS, BP27, 31790 Saint Sauveur, France
| | - Nathalie Ladouce
- UMR CNRS/Université Toulouse III 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617 Auzeville, 31326 Castanet Tolosan, France
| | - Etienne Paux
- UMR CNRS/Université Toulouse III 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617 Auzeville, 31326 Castanet Tolosan, France
- Current address : INRA-UBP, UMR 1095, INRA Site de Crouël, 234 avenue du Brézet, 63100 Clermont-Ferrand, France
| | - Patrick Wincker
- Génoscope, CNRS, UMR 8030 and Université d'Evry, 91057 Evry, France
| | - Arnaud Couloux
- Génoscope, CNRS, UMR 8030 and Université d'Evry, 91057 Evry, France
| | - Pierre Sivadon
- UMR CNRS/Université Toulouse III 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617 Auzeville, 31326 Castanet Tolosan, France
- Current address : Université de Pau et des Pays de l'Adour, UMR CNRS 5254 IPREM, IBEAS – BP1155, 64013 Pau Cedex, France
| | - Jacqueline Grima-Pettenati
- UMR CNRS/Université Toulouse III 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617 Auzeville, 31326 Castanet Tolosan, France
| |
Collapse
|
444
|
Dettmer J, Elo A, Helariutta Y. Hormone interactions during vascular development. PLANT MOLECULAR BIOLOGY 2009; 69:347-60. [PMID: 18654740 DOI: 10.1007/s11103-008-9374-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 07/01/2008] [Indexed: 05/08/2023]
Abstract
Vascular tissue in plants is unique due to its diverse and dynamic cellular patterns. Signals controlling vascular development have only recently started to emerge through biochemical, genetic, and genomic approaches in several organisms, such as Arabidopsis, Populus, and Zinnia. These signals include hormones (auxin, brassinosteroids, and cytokinins, in particular), other small regulatory molecules, their transporters, receptors, and various transcriptional regulators. In recent years it has become apparent that plant growth regulators rarely act alone, but rather their signaling pathways are interlocked in complex networks; for example, polar auxin transport (PAT) regulates vascular development during various stages and an emerging theme is its modulation by other growth regulators, depending on the developmental context. Also, several synergistic or antagonistic interactions between various growth regulators have been described. Furthermore, shoot-root interactions appear to be important for this signal integration.
Collapse
Affiliation(s)
- Jan Dettmer
- Plant Molecular Biology Laboratory, Department of Biological and Environmental Sciences, Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | | | | |
Collapse
|
445
|
van Esse HP, Fradin EF, de Groot PJ, de Wit PJGM, Thomma BPHJ. Tomato transcriptional responses to a foliar and a vascular fungal pathogen are distinct. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:245-58. [PMID: 19245319 DOI: 10.1094/mpmi-22-3-0245] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant activation of host defense against pathogenic microbes requires significant host transcriptional reprogramming. In this study, we compared transcriptional changes in tomato during compatible and incompatible interactions with the foliar fungal pathogen Cladosporium fulvum and the vascular fungal pathogen Verticillium dahliae. Although both pathogens colonize different host tissues, they display distinct commonalities in their infection strategy; both pathogens penetrate natural openings and grow strictly extracellular. Furthermore, resistance against both pathogens is conveyed by the same class of resistance proteins, the receptor-like proteins. For each individual pathogen, the expression profile of the compatible and incompatible interaction largely overlaps. However, when comparing between the two pathogens, the C. fulvum-induced transcriptional changes show little overlap with those induced by V. dahliae. Moreover, within the subset of genes that are regulated by both pathogens, many genes show inverse regulation. With pathway reconstruction, networks of tomato genes implicated in photorespiration, hypoxia, and glycoxylate metabolism were identified that are repressed upon infection with C. fulvum and induced by V. dahliae. Similarly, auxin signaling is differentially affected by the two pathogens. Thus, differentially regulated pathways were identified with novel strategies that allowed the use of state-of-the-art tools, even though tomato is not a genetic model organism.
Collapse
Affiliation(s)
- H Peter van Esse
- Laboratory of Phytopathology, Centre for BioSystems Genomics (CBSG), Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
446
|
Kurasawa K, Matsui A, Yokoyama R, Kuriyama T, Yoshizumi T, Matsui M, Suwabe K, Watanabe M, Nishitani K. The AtXTH28 gene, a xyloglucan endotransglucosylase/hydrolase, is involved in automatic self-pollination in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2009; 50:413-22. [PMID: 19139039 PMCID: PMC2642609 DOI: 10.1093/pcp/pcp003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 01/04/2009] [Indexed: 05/22/2023]
Abstract
Successful automatic self-pollination in flowering plants is dependent on the correct development of reproductive organs. In the stamen, the appropriate growth of the filament, which largely depends on the mechanical properties of the cell wall, is required to position the anther correctly close to the stigma at the pollination stage. Xyloglucan endotransglucosylase/hydrolases (XTHs) are a family of enzymes that mediate the construction and restructuring of xyloglucan cross-links, thereby controlling the extensibility or mechanical properties of the cell wall in a wide variety of plant tissues. Our reverse genetic analysis has revealed that a loss-of-function mutation of an Arabidopsis XTH family gene, AtXTH28, led to a decrease in capability for self-pollination, probably due to inhibition of stamen filament growth. Our results also suggest that the role of AtXTH28 in the development of the stamen is not functionally redundant with its closest paralog, AtXTH27. Thus, our finding indicates that AtXTH28 is specifically involved in the growth of stamen filaments, and is required for successful automatic self-pollination in certain flowers in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kasumi Kurasawa
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Akihiro Matsui
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Ryusuke Yokoyama
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Tomoko Kuriyama
- Plant Functional Genomics Research Team, Plant Functional Genomics Research Group, Plant Science Center, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Takeshi Yoshizumi
- Plant Functional Genomics Research Team, Plant Functional Genomics Research Group, Plant Science Center, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Minami Matsui
- Plant Functional Genomics Research Team, Plant Functional Genomics Research Group, Plant Science Center, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Keita Suwabe
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Masao Watanabe
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
- The 21st Century Center of Excellence Program, Iwate University, Morioka, 020-8550 Japan
| | - Kazuhiko Nishitani
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| |
Collapse
|
447
|
Wilson ZA, Zhang DB. From Arabidopsis to rice: pathways in pollen development. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1479-92. [PMID: 19321648 DOI: 10.1093/jxb/erp095] [Citation(s) in RCA: 269] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The control of male fertility is of vital importance for crop breeding, hybrid generation, and the control of pollen release. Recent development in the analysis of Arabidopsis male sterile mutants has meant that there is a greater understanding of the gene regulatory networks controlling maternal development of the anther and the resultant sporophytes. With the advent of the genome sequence and tools to allow the analysis of gene function, this knowledge base is now extending into the monocot crop rice. This has shown high levels of similarity between the networks of pollen development in Arabidopsis and rice, which will serve as valuable tools to understand and manipulate this developmental pathway further in plants.
Collapse
Affiliation(s)
- Zoe A Wilson
- University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK.
| | | |
Collapse
|
448
|
Zhou J, Lee C, Zhong R, Ye ZH. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. THE PLANT CELL 2009; 21:248-66. [PMID: 19122102 PMCID: PMC2648072 DOI: 10.1105/tpc.108.063321] [Citation(s) in RCA: 545] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/02/2008] [Accepted: 12/09/2008] [Indexed: 05/17/2023]
Abstract
It has previously been shown that SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) is a key transcription factor regulating secondary cell wall formation, including the biosynthesis of cellulose, xylan, and lignin. In this study, we show that two closely related SND1-regulated MYB transcription factors, MYB58 and MYB63, are transcriptional regulators specifically activating lignin biosynthetic genes during secondary wall formation in Arabidopsis thaliana. MYB58 and MYB63 are phylogenetically distinct from previously characterized MYBs shown to be associated with secondary wall formation or phenylpropanoid metabolism. Expression studies showed that MYB58 and MYB63 are specifically expressed in fibers and vessels undergoing secondary wall thickening. Dominant repression of their functions led to a reduction in secondary wall thickening and lignin content. Overexpression of MYB58 and MYB63 resulted in specific activation of lignin biosynthetic genes and concomitant ectopic deposition of lignin in cells that are normally unlignified. MYB58 was able to activate directly the expression of lignin biosynthetic genes and a secondary wall-associated laccase (LAC4) gene. Furthermore, the expression of MYB58 and MYB63 was shown to be regulated by the SND1 close homologs NST1, NST2, VND6, and VND7 and their downstream target MYB46. Together, our results indicate that MYB58 and MYB63 are specific transcriptional activators of lignin biosynthesis in the SND1-mediated transcriptional network regulating secondary wall formation.
Collapse
Affiliation(s)
- Jianli Zhou
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
449
|
Mitsuda N, Ohme-Takagi M. NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:768-78. [PMID: 18657234 DOI: 10.1111/j.1365-313x.2008.03633.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Three distinct pattern elements of the silique are thought to contribute to its dehiscence: a separation layer, cells with a secondary wall adjacent to the separation layer, and a valve endocarp layer with secondary wall. However, the role of the secondary wall has not been proven, and the factors that regulate its formation in siliques remain to be characterized. We show here that secondary wall formation in siliques is necessary for dehiscence, and that two plant-specific transcription factors, NAC SECONDARY WALL THICKENING PROMOTING FACTOR 1 and 3 (NST1 and NST3), regulate its formation in siliques of Arabidopsis. The promoters of the NST1 and NST3 genes were active in the valve endocarp layer and in cells surrounding vascular vessels in the replum, and NST1 promoter activity only was faintly detectable at valve margins. In nst1 mutants, specific loss of secondary walls was evident at valve margins, while nst1 nst3 double mutants lacked secondary walls in all parts of the siliques, with the exception of vascular vessels. These siliques were similarly indehiscent. The promoters of two tissue-identity genes, INDEHISCENT (IND) and SHATTERPROOF2 (SHP2), were as active in the nst1 nst3 mutant as in the wild-type. Moreover, the ectopic secondary wall formation that occurs in the fruitfull (ful) mutant was absent in the ful nst1 double mutant. We propose that secondary walls in valve margins are required for dehiscence, and that NST1 and NST3 regulate their formation in siliques in a partially redundant manner after the establishment of tissue identity.
Collapse
Affiliation(s)
- Nobutaka Mitsuda
- Research Institute of Genome-Based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba 305-8562, Japan
| | | |
Collapse
|
450
|
Lasserre E, Jobet E, Llauro C, Delseny M. AtERF38 (At2g35700), an AP2/ERF family transcription factor gene from Arabidopsis thaliana, is expressed in specific cell types of roots, stems and seeds that undergo suberization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:1051-1061. [PMID: 18723362 DOI: 10.1016/j.plaphy.2008.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 06/30/2008] [Accepted: 07/08/2008] [Indexed: 05/26/2023]
Abstract
An inverse genetic approach was used to gain insight into the role of AP2/ERF-type transcription factors genes during plant development in Arabidopsis thaliana. Here we show that the expression pattern of AtERF38, which is, among the organs tested, more intensively expressed in mature siliques and floral stems, is closely associated with tissues that undergo secondary cell wall modifications. Firstly, public microarray data sets analysis indicates that AtERF38 is coregulated with several genes involved in secondary wall thickening. Secondly, this was experimentally confirmed in different types of cells expressing a Pro(AtERF38)::GUS fusion: histochemical analysis revealed strong and specific GUS activity in outer integument cells of mature seeds, endodermal cells of the roots in the primary developmental stage and some sclerified cells of mature inflorescence stems. All of these cells are known or shown here to be characterized by a reinforced wall. The latter, which have not been well characterized to date in Arabidopsis and may be suberized, could benefit of the use of AtERF38 as a specific marker. We were not able to detect any phenotype in an insertion line in which ectopic expression of AtERF38 is caused by the insertion of a T-DNA in its promoter. Nevertheless, AtERF28 may be considered as a candidate regulator of secondary wall metabolism in particular cell types that are not reinforced by the typical deposition of lignin and cellulose, but that have at least in common accumulation of suberin-like lipid polyesters in their walls.
Collapse
Affiliation(s)
- Eric Lasserre
- Laboratoire Génome et Dévelopement des Plantes, Université de Perpignan, CNRS, IRD; 52 avenue P. Alduy 66860 Perpignan, France.
| | | | | | | |
Collapse
|