401
|
Krüger J, Thomas CM, Golstein C, Dixon MS, Smoker M, Tang S, Mulder L, Jones JDG. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 2002; 296:744-7. [PMID: 11976458 DOI: 10.1126/science.1069288] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Little is known of how plant disease resistance (R) proteins recognize pathogens and activate plant defenses. Rcr3 is specifically required for the function of Cf-2, a Lycopersicon pimpinellifolium gene bred into cultivated tomato (Lycopersicon esculentum) for resistance to Cladosporium fulvum. Rcr3 encodes a secreted papain-like cysteine endoprotease. Genetic analysis shows Rcr3 is allelic to the L. pimpinellifolium Ne gene, which suppresses the Cf-2-dependent autonecrosis conditioned by its L. esculentum allele, ne (necrosis). Rcr3 alleles from these two species encode proteins that differ by only seven amino acids. Possible roles of Rcr3 in Cf-2-dependent defense and autonecrosis are discussed.
Collapse
Affiliation(s)
- Julia Krüger
- The Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, UK
| | | | | | | | | | | | | | | |
Collapse
|
402
|
Ameisen JC. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 2002; 9:367-93. [PMID: 11965491 DOI: 10.1038/sj.cdd.4400950] [Citation(s) in RCA: 397] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Revised: 08/31/2001] [Accepted: 08/31/2001] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death is a genetically regulated process of cell suicide that is central to the development, homeostasis and integrity of multicellular organisms. Conversely, the dysregulation of mechanisms controlling cell suicide plays a role in the pathogenesis of a wide range of diseases. While great progress has been achieved in the unveiling of the molecular mechanisms of programmed cell death, a new level of complexity, with important therapeutic implications, has begun to emerge, suggesting (i) that several different self-destruction pathways may exist and operate in parallel in our cells, and (ii) that molecular effectors of cell suicide may also perform other functions unrelated to cell death induction and crucial to cell survival. In this review, I will argue that this new level of complexity, implying that there may be no such thing as a 'bona fide' genetic death program in our cells, might be better understood when considered in an evolutionary context. And a new view of the regulated cell suicide pathways emerges when one attempts to ask the question of when and how they may have become selected during evolution, at the level of ancestral single-celled organisms.
Collapse
Affiliation(s)
- J C Ameisen
- EMI-U 9922 INSERM/Université Paris 7, IFR 02, Hôpital Bichat-Claude Bernard, AP-HP, 46 rue Henri Huchard, 75877 Paris cedex 18, France.
| |
Collapse
|
403
|
Tiwari BS, Belenghi B, Levine A. Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. PLANT PHYSIOLOGY 2002; 128:1271-81. [PMID: 11950976 PMCID: PMC154255 DOI: 10.1104/pp.010999] [Citation(s) in RCA: 317] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2001] [Accepted: 01/18/2002] [Indexed: 05/17/2023]
Abstract
Mitochondria constitute a major source of reactive oxygen species and have been proposed to integrate the cellular responses to stress. In animals, it was shown that mitochondria can trigger apoptosis from diverse stimuli through the opening of MTP, which allows the release of the apoptosis-inducing factor and translocation of cytochrome c into the cytosol. Here, we analyzed the role of the mitochondria in the generation of oxidative burst and induction of programmed cell death in response to brief or continuous oxidative stress in Arabidopsis cells. Oxidative stress increased mitochondrial electron transport, resulting in amplification of H(2)O(2) production, depletion of ATP, and cell death. The increased generation of H(2)O(2) also caused the opening of the MTP and the release of cytochrome c from mitochondria. The release of cytochrome c and cell death were prevented by a serine/cysteine protease inhibitor, Pefablock. However, addition of inhibitor only partially inhibited the H(2)O(2) amplification and the MTP opening, suggesting that protease activation is a necessary step in the cell death pathway after mitochondrial damage.
Collapse
Affiliation(s)
- Budhi Sagar Tiwari
- Department of Plant Sciences, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| | | | | |
Collapse
|
404
|
Serafini-Fracassini D, Del Duca S, Monti F, Poli F, Sacchetti G, Bregoli AM, Biondi S, Della Mea M. Transglutaminase activity during senescence and programmed cell death in the corolla of tobacco (Nicotiana tabacum) flowers. Cell Death Differ 2002; 9:309-21. [PMID: 11859413 DOI: 10.1038/sj.cdd.4400954] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2000] [Revised: 07/31/2001] [Accepted: 09/11/2001] [Indexed: 12/20/2022] Open
Abstract
Corolla life span of undetached flowers of Nicotiana tabacum was divided into stages from the closed corolla (stage 1) through anthesis (stage 5) to death (stage 9). Senescence began around stage 6 in the proximal part, concomitantly with DNA laddering. Nuclear blebbing, DNA laddering, cell wall modification, decline in protein, water, pigment content and membrane integrity were observed during senescence and PCD. Transglutaminase activity was measured as mono- and bis-derivatives of putrescine (mono-PU; bis-PU) and bis-derivatives of spermidine (bis-SD). Bis-derivatives decreased with the progression of senescence, while mono-PU increased during early senescence; derivatives were present in different amounts in the proximal and distal parts of the corolla. In excised flowers, exogenous spermine delayed senescence and PCD, and caused an increase in free and acid-soluble conjugated PA levels. Bis-PU was the most abundant PA-derivative before DNA laddering stage; thereafter, bis-PU generally decreased and mono-PU became the most abundant derivative.
Collapse
Affiliation(s)
- D Serafini-Fracassini
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
405
|
Ramanjulu S, Bartels D. Drought- and desiccation-induced modulation of gene expression in plants. PLANT, CELL & ENVIRONMENT 2002; 25:141-151. [PMID: 11841659 DOI: 10.1046/j.0016-8025.2001.00764.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Desiccation is the extreme form of dehydration. Tolerance of desiccation is acquired by seeds and in resurrection plants, a small group of angiosperms. Desiccation tolerance is the result of a complex cascade of molecular events, which can be divided into signal perception, signal transduction, gene activation and biochemical alterations leading to acquisition of tolerance. Many of these molecular processes are also observed during the dehydration of non-tolerant plants. Here we try to give an overview of the gene expression programmes that are triggered by dehydration, with particular reference to protective molecules and the regulation of their expression. Potential transgenic approaches to manipulating stress tolerance are discussed.
Collapse
Affiliation(s)
- S. Ramanjulu
- Institute of Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | | |
Collapse
|
406
|
Levine A, Belenghi B, Damari-Weisler H, Granot D. Vesicle-associated membrane protein of Arabidopsis suppresses Bax-induced apoptosis in yeast downstream of oxidative burst. J Biol Chem 2001; 276:46284-9. [PMID: 11551960 DOI: 10.1074/jbc.m107375200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Programmed cell death (PCD) in many systems is controlled by relative amounts of the apoptosis-regulating proteins Bax and Bcl-2 through homo- or heterodimerization. Here we show that Bax-induced PCD of yeast was suppressed by transformation with a vesicle-associated membrane protein from Arabidopsis (AtVAMP), which was isolated by screening a cDNA expression library against sugar-induced cell death in yeast. AtVAMP expression blocked Bax-induced PCD downstream of oxidative burst. AtVAMP also prevented H(2)O(2)-induced apoptosis in yeast and in Arabidopsis cells. Reduced oxidation of lipids and plasma membrane proteins was detected in the AtVAMP-transformed yeast, suggesting improved membrane repair. Inhibition of intracellular vesicle trafficking by brefeldin A induced apoptosis from a sublethal concentration of H(2)O(2). No protection occurred by overexpression of the yeast homolog SCN2. However, efficient suppression of yeast PCD occurred by expression of a chimeric gene, composed of the conserved domains from yeast, fused to the variable N-terminal domain from Arabidopsis, resulting in exchange of the proline-rich N-terminal domain of SCN2 with a proline-poor Arabidopsis sequence. Our results suggest that intracellular vesicle traffic can regulate execution of apoptosis by affecting the rate of membrane recycling and that the proline-rich N-terminal domain of VAMP inhibited this process.
Collapse
Affiliation(s)
- A Levine
- Department of Plant Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel.
| | | | | | | |
Collapse
|
407
|
Reis EM, Margis R. Sugarcane phytocystatins: Identification, classification and expression pattern analysis. Genet Mol Biol 2001. [DOI: 10.1590/s1415-47572001000100038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cystatins are tightly binding, but reversible, inhibitors of cysteine proteinases, which constitute a superfamily of evolutionary related proteins. They have been subdivided into three families: the cystatin family which contain two disulfide bonds, the stefin family which lack disulfide bonds, and the kininogen family composed of large glycoproteins containing three repeats similar to those found in the cystatin family. Members of the cystatin superfamily occurring in plants are currently known as phytocystatins, defined as proteins lacking disulfide bonds but possessing a conserved N-terminal amino acid sequence (L-A-R-[FY]-A-[VI]-X(3)-N). We have used the protein sequence deduced from seven phytocystatins (from the Arabidopsis thaliana genome project) and from the SUgarCane EST project (SUCEST) database to identify 25 possible sugarcane phytocystatins. Phylogenetic analysis has allowed us to cluster these phytocystatins into four distinct groups: (i) those with a characteristic N-terminal consensus, (ii) those with the same consensus plus a long C-terminal extension; (iii) those that lack the consensus but contain the highly conserved QxVxG motif found in all members of the superfamily and (iv) those that lack both the consensus and the QxVxG motif.
Collapse
Affiliation(s)
| | - Rogério Margis
- Universidade Federal do Rio de Janeiro, Brazil; Universidade Federal do Rio de Janeiro, Brazil
| |
Collapse
|
408
|
Xu ZF, Qi WQ, Ouyang XZ, Yeung E, Chye ML. A proteinase inhibitor II of Solanum americanum is expressed in phloem. PLANT MOLECULAR BIOLOGY 2001; 47:727-738. [PMID: 11785934 DOI: 10.1023/a:1013623628857] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although proteinase inhibitor proteins are known to confer insect resistance in transgenic plants, their endogenous roles remain undefined. Here, we describe the expression of a proteinase inhibitor II (PIN2) protein from Solanum americanum in phloem of stems, roots and leaves suggesting a novel endogenous role for PIN2 in phloem. The phloem consists of parenchyma cells, sieve elements (SE), and companion cells (CC) which are in close association with SE. We isolated two cDNAs encoding PIN2, SaPIN2a and SaPIN2b, from a S. americanum cDNA library using a tomato PIN2 cDNA as hybridization probe. SaPIN2a shows 73.6% identity to SaPIN2b. Southern blot analysis confirmed that two genes occur in S. americanum. Northern blot analysis showed that both are wound-inducible and are expressed in flowers. Unlike SaPIN2b and other previously characterized plant PIN2 proteins, SaPlN2a is abundantly expressed in stems. In situ hybridization studies on stem sections showed that SaPIN2a mRNA is expressed in CC and some SE, likely the immature developing SE. of external and internal phloem. Western blot analysis using SaPIN2a-specific antibodies showed SaPIN2a accumulation in stems, leaf midribs and fruits. Immunohistochemical localization, using these antibodies, revealed SaPIN2a expression in external and internal phloem of stem. Immunoelectron microscopy of stem, root and leaf sections further localized SaPIN2a to the CC and predominantly to the SE, particularly the parietal cytoplasm adjacent to the cell wall, the lumen and the sieve-area pores. These results suggest that, other than a possible role in plant defense, SaPIN2a could be involved in regulating proteolysis in the SE.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Northern
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Gene Expression Regulation, Plant
- In Situ Hybridization
- Microscopy, Electron
- Molecular Sequence Data
- Phylogeny
- Plant Proteins/genetics
- Plant Stems/genetics
- Plant Structures/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Serine Proteinase Inhibitors/genetics
- Solanaceae/genetics
- Solanaceae/ultrastructure
- Tissue Distribution
Collapse
Affiliation(s)
- Z F Xu
- Department of Botany, University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
409
|
Hückelhoven R, Dechert C, Trujillo M, Kogel KH. Differential expression of putative cell death regulator genes in near-isogenic, resistant and susceptible barley lines during interaction with the powdery mildew fungus. PLANT MOLECULAR BIOLOGY 2001; 47:739-748. [PMID: 11785935 DOI: 10.1023/a:1013635427949] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We analysed pathogenesis-related expression of genes, that are assumed to be involved in ubiquitous plant defence mechanisms like the oxidative burst, the hypersensitive cell death reaction (HR) and formation of localized cell wall appositions (papillae). We carried out comparative northern blot and RT-PCR studies with near-isogenic barley (Hordeum vulgareL. cv. Pallas) lines (NILs) resistant or susceptible to the powdery mildew fungus race A6 (Blumeria graminis f.sp. hordei, BghA6). The NILs carrying one of the R-genes Mla12, Mlg or the mlo mutant allele mlo5 arrest fungal development by cell wall appositions (mlo5) or a HR (Mla12) or both (Mlg). Expression of an aspartate protease gene, an ascorbate peroxidase gene and a newly identified cysteine protease gene was up-regulated after inoculation with BghA6, whereas the constitutive expression-level of a BAS gene, that encodes an alkyl hydroperoxide reductase, was reduced. Expression of a newly identified barley homologue of a mammalian cell death regulator, Bax inhibitor 1, was enhanced after powdery mildew inoculation. An oxalate oxidase-like protein was stronger expressed in NILS expressing penetration resistance. A so far unknown gene that putatively encodes the large subunit of a superoxide generating NADPH oxidases was constitutively expressed in barley leaves and its expression pattern did not change after inoculation. A newly identified barley Rac1 homologue was expressed constitutively, such as the functionally linked NADPH oxidase gene. Gene expression patterns are discussed with regard to defence mechanisms and signal transduction.
Collapse
Affiliation(s)
- R Hückelhoven
- Institute of Phytopathology and Applied Zoology, Justus-Liebig-Universität Giessen, Germany.
| | | | | | | |
Collapse
|
410
|
Yao N, Tada Y, Park P, Nakayashiki H, Tosa Y, Mayama S. Novel evidence for apoptotic cell response and differential signals in chromatin condensation and DNA cleavage in victorin-treated oats. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:13-26. [PMID: 11696183 DOI: 10.1046/j.1365-313x.2001.01109.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Histological and cytological evidence of where and when apoptotic cells occur in Pc-2/Vb oat cells treated with victorin was obtained by observing DNA strand breaks at both light (LM) and electron microscope (EM) levels using TUNEL techniques. DNA from leaf segments that had been floated on victorin solution with the abaxial epidermis removed showed typical ladders on agarose gels. Nuclear chromatin condensation, followed by cell collapse, started in the mesophyll cells closest to the victorin solution. LM-TUNEL was positive in the non-collapsed cells but not in the collapsed cells in the treated leaves. However, the EM-TUNEL assay was positive in the nuclei of the non-collapsed as well as the collapsed cells where nuclear fragments dispersed into the cytoplasm, and the immunogold density was much higher than that in the cells killed by a high concentration of H2O2, suggesting that the victorin-treated collapsed cells are in the last stage of apoptotic cell death. The immunogold labelling in the victorin-treated non-collapsed cells was restricted to condensed heterochromatin, indicating that chromatin condensation is associated with DNA cleavage. Pharmacological studies indicated that proteases and nucleases may play a role in the apoptotic response. However, the EM-TUNEL assay indicated that EGTA co-incubated with victorin blocked DNA cleavage, but failed to prevent chromatin condensation. Moreover, protein kinases were involved in chromatin condensation, but did not affect DNA digestion, suggesting that chromatin condensation and DNA cleavage are differentially regulated in the death process in oats.
Collapse
Affiliation(s)
- N Yao
- Laboratory of Plant Pathology, The Graduate School of Science and Technology, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
411
|
Desikan R, A-H-Mackerness S, Hancock JT, Neill SJ. Regulation of the Arabidopsis transcriptome by oxidative stress. PLANT PHYSIOLOGY 2001; 127:159-72. [PMID: 11553744 PMCID: PMC117972 DOI: 10.1104/pp.127.1.159] [Citation(s) in RCA: 512] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2001] [Revised: 05/19/2001] [Accepted: 06/11/2001] [Indexed: 05/17/2023]
Abstract
Oxidative stress, resulting from an imbalance in the accumulation and removal of reactive oxygen species such as hydrogen peroxide (H(2)O(2)), is a challenge faced by all aerobic organisms. In plants, exposure to various abiotic and biotic stresses results in accumulation of H(2)O(2) and oxidative stress. Increasing evidence indicates that H(2)O(2) functions as a stress signal in plants, mediating adaptive responses to various stresses. To analyze cellular responses to H(2)O(2), we have undertaken a large-scale analysis of the Arabidopsis transcriptome during oxidative stress. Using cDNA microarray technology, we identified 175 non-redundant expressed sequence tags that are regulated by H(2)O(2). Of these, 113 are induced and 62 are repressed by H(2)O(2). A substantial proportion of these expressed sequence tags have predicted functions in cell rescue and defense processes. RNA-blot analyses of selected genes were used to verify the microarray data and extend them to demonstrate that other stresses such as wilting, UV irradiation, and elicitor challenge also induce the expression of many of these genes, both independently of, and, in some cases, via H(2)O(2).
Collapse
Affiliation(s)
- R Desikan
- Centre for Research in Plant Science, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | | | | | | |
Collapse
|
412
|
Xiao F, Tang X, Zhou JM. Expression of 35S::Pto globally activates defense-related genes in tomato plants. PLANT PHYSIOLOGY 2001; 126:1637-45. [PMID: 11500562 PMCID: PMC117163 DOI: 10.1104/pp.126.4.1637] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Revised: 04/27/2001] [Accepted: 05/14/2001] [Indexed: 05/20/2023]
Abstract
The tomato (Lycopersicon esculentum) resistance gene Pto confers resistance to the bacterial pathogen Pseudomonas syringae pv tomato carrying the avirulent gene avrPto. Overexpressing Pto under the control of the cauliflower mosaic virus 35S promoter constitutively activates defense responses in the absence of pathogen infection and nonspecifically enhances disease resistance. To elucidate the mechanisms underlying this resistance, we isolated cDNAs corresponding to transcripts that accumulated in 35S::Pto plants. By using suppression subtractive hybridization, we isolated 82 unique cDNA clones, most of which corresponded to differentially expressed transcripts. Most of the genes examined were also induced by pathogen inoculation. Sequence analysis showed that a large number of genes encode defense-related proteins, and most had not been previously isolated from tomato. The isolated cDNAs also include those with a putative role in the oxidative burst, proteolysis, the hypersensitive response, signal transduction, and a number of genes with unknown functions. The isolation of these cDNAs of diverse functions will assist in the characterization of defense pathways activated during disease resistance.
Collapse
Affiliation(s)
- F Xiao
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
413
|
Houot V, Etienne P, Petitot AS, Barbier S, Blein JP, Suty L. Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner. JOURNAL OF EXPERIMENTAL BOTANY 2001. [PMID: 11479338 DOI: 10.1093/jxb/52.361.1721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Active oxygen species (AOS), especially hydrogen peroxide, play a critical role in the defence of plants against invading pathogens and in the hypersensitive response (HR). This is characterized by the induction of a massive production of AOS and the rapid appearance of necrotic lesions is considered as a programmed cell death (PCD) process during which a limited number of cells die at the site of infection. This work was aimed at investigating the mode of cell death observed in cultures of BY-2 tobacco cells exposed to H(2)O(2). It was shown that H(2)O(2) is able to induce various morphological cell death features in cultured tobacco BY-2 cells. The hallmarks of cell death observed with fluorescent and electron microscopy differed greatly with the amount of H(2)O(2) added to the cell culture. The appearance of nuclear fragmentation similar to 'apoptotic bodies' associated with a fragmentation of the nuclear DNA into small fragments appear for almost 18% of the cells treated with 12.5 mM H(2)O(2). The early stages of the induction of this PCD process consisted in cell shrinkage and chromatin condensation at the periphery of the nucleus. Above 50 mM, H(2)O(2) induces high necrotic cell death. These data suggest that H(2)O(2)-induced cell damage is associated with the induction of various cell death processes that could be involved differently in plant defence reactions.
Collapse
Affiliation(s)
- V Houot
- UMR INRA-Université de Bourgogne, Phytopharmacie et Biochimie des Interactions Cellulaires, INRA BP 86510, 21065 Dijon cedex, France
| | | | | | | | | | | |
Collapse
|
414
|
Pan JW, Zhu MY, Chen H. Aluminum-induced cell death in root-tip cells of barley. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2001; 46:71-79. [PMID: 11378174 DOI: 10.1016/s0098-8472(01)00083-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Aluminum-induced cell death was investigated in root-tip cells of barley (Hordeum vulgare). The growth of roots in 0.1-50 mM Al treatments was inhibited after 8 h treatments, and could not be recovered after 24 h recovery culture without Al. Viable detection with fluorescein diacetate-propidium iodide (FDA-PI) staining shows that most of the root-tip cells have lost viability. These results suggest that the irreversible inhibition of root growth after 8 h Al treatments or 24 h recovery culture is mainly caused by cell death. DNA ladders occurred in root tips only after 8 h Al treatments (0.1-1.0 mM), but no apoptotic bodies in root tips were observed. Thus, the cell death caused by Al stress is likely to be Al-induced programmed cell death (PCD). The reactive oxygen species (ROS) in root-tip cells measured by ultraweak luminescence indicated that the oxidation status in root-tip cells basically ceased after exposure to 10-50 mM Al for 24 h, but was very violent in the root-tip cells treated with 0.1-1.0 mM for 24 h. Exposure to 0.1-1.0 mM Al for 3-12 h led to ROS burst. Therefore, our results suggest that 0.1-1.0 mM Al treatments for 8 h induce cell death (Al-induced PCD) possibly via a ROS-activated signal transduction pathway, whereas 10-50 mM Al treatments may cause necrosis in the root-tip cells. These results have an important role for further studies on the mechanism of Al toxicity in plants.
Collapse
Affiliation(s)
- J -w. Pan
- College of Life Sciences, Zhejiang University, 310012, Hangzhou, People's Republic of China
| | | | | |
Collapse
|
415
|
Yamada T, Kondo A, Ohta H, Masuda T, Shimada H, Takamiya K. Isolation of the protease component of maize cysteine protease-cystatin complex: release of cystatin is not crucial for the activation of the cysteine protease. PLANT & CELL PHYSIOLOGY 2001; 42:710-716. [PMID: 11479377 DOI: 10.1093/pcp/pce089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The maize cysteine protease complex, which required SDS for its activation in vitro, is a 179 kDa trimeric complex (P-I)3 of a cysteine protease (P) [EC 3.4.22] and a cysteine protease inhibitor (I), cystatin [Yamada et al. (1998) Plant Cell Physiol. 39: 106, Yamada et al. (2000) Plant Cell Physiol. 41: 185]. Here, we show the mechanism of the SDS-dependent activation of the trimeric (P-I) complex and stabilization of the activated protease by its specific substrates. The cystatin-free cysteine protease isolated by preparative SDS-PAGE was still specifically activated by SDS, and its profile of SDS-dependency was exactly the same as that of the trimeric (P-I) complex. It is, therefore, evident that an SDS-dependent conformational change of the protease itself, rather than the release of cystatin from the complex, is crucial for the activation. Pre-treatment analysis with SDS revealed that SDS was required for the initiation of the activation of the trimeric (P-I) complex. Furthermore, we found that once the protease was activated, if there was no substrate, it was rapidly inactivated under optimum conditions of proteolysis, and showed that such inactivation was not due to autolysis of the protease. In contrast, addition of specific substrates prevented the inactivation, and thus we presumed that the activity of the cysteine protease is regulated by both activation by conformational change and rapid inactivation after consumption of substrates.
Collapse
Affiliation(s)
- T Yamada
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| | | | | | | | | | | |
Collapse
|
416
|
Lam E, Kato N, Lawton M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 2001; 411:848-53. [PMID: 11459068 DOI: 10.1038/35081184] [Citation(s) in RCA: 540] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The plant response to attempted infection by microbial pathogens is often accompanied by rapid cell death in and around the initial infection site, a reaction known as the hypersensitive response. This response is associated with restricted pathogen growth and represents a form of programmed cell death (PCD). Recent pharmacological and molecular studies have provided functional evidence for the conservation of some of the basic regulatory mechanisms underlying the response to pathogens and the activation of PCD in animal and plant systems. In animals, the mitochondrion integrates diverse cellular stress signals and initiates the death execution pathway, and studies indicate a similar involvement for mitochondria in regulating PCD in plants. But many of the cell-death regulators that have been characterized in humans, worms and flies are absent from the Arabidopsis genome, indicating that plants probably use other regulators to control this process.
Collapse
Affiliation(s)
- E Lam
- Biotechnology Center for Agriculture and the Environment, Rutgers University, New Brunswick, New Jersey 08901-8520, USA.
| | | | | |
Collapse
|
417
|
Dickman MB, Park YK, Oltersdorf T, Li W, Clemente T, French R. Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci U S A 2001; 98:6957-62. [PMID: 11381106 PMCID: PMC34460 DOI: 10.1073/pnas.091108998] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2001] [Accepted: 03/05/2001] [Indexed: 02/01/2023] Open
Abstract
An emerging topic in plant biology is whether plants display analogous elements of mammalian programmed cell death during development and defense against pathogen attack. In many plant-pathogen interactions, plant cell death occurs in both susceptible and resistant host responses. For example, specific recognition responses in plants trigger formation of the hypersensitive response and activation of host defense mechanisms, resulting in restriction of pathogen growth and disease development. Several studies indicate that cell death during hypersensitive response involves activation of a plant-encoded pathway for cell death. Many susceptible interactions also result in host cell death, although it is not clear how or if the host participates in this response. We have generated transgenic tobacco plants to express animal genes that negatively regulate apoptosis. Plants expressing human Bcl-2 and Bcl-xl, nematode CED-9, or baculovirus Op-IAP transgenes conferred heritable resistance to several necrotrophic fungal pathogens, suggesting that disease development required host-cell death pathways. In addition, the transgenic tobacco plants displayed resistance to a necrogenic virus. Transgenic tobacco harboring Bcl-xl with a loss-of-function mutation did not protect against pathogen challenge. We also show that discrete DNA fragmentation (laddering) occurred in susceptible tobacco during fungal infection, but does not occur in transgenic-resistant plants. Our data indicate that in compatible plant-pathogen interactions apoptosis-like programmed cell death occurs. Further, these animal antiapoptotic genes function in plants and should be useful to delineate resistance pathways. These genes also have the potential to generate effective disease resistance in economically important crops.
Collapse
Affiliation(s)
- M B Dickman
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0722, USA.
| | | | | | | | | | | |
Collapse
|
418
|
Harrak H, Azelmat S, Baker EN, Tabaeizadeh Z. Isolation and characterization of a gene encoding a drought-induced cysteine protease in tomato (Lycopersicon esculentum). Genome 2001; 44:368-74. [PMID: 11444695 DOI: 10.1139/g01-007] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a previous study, a 65 kDa protein, TDI-65, was found to be accumulated in the leaves of drought-stressed tomato (Lycopersicon esculentum cv. Starfire) plants. The protein level returns to control level when the drought-stressed plants are rewatered. Antibodies raised against the purified protein were used to elucidate the subcellular localization of the protein. The protein was found to be mainly localized in the nuclei and chloroplasts of drought-stressed leaf cells. To identify the nature of the protein, a cDNA library was constructed and screened by the purified anti-TDI-65 antibody. A cDNA clone designated tdi-65 was isolated and characterized. The deduced amino acid sequences of tdi-65 protein has extensive homology with known cysteine proteases such as actinidin and papain. Northern blot analysis revealed that tdi-65 mRNA is 10-fold higher in drought-stressed plants as compared to control and rewatered plants. Similar results were observed in the tomato cultivar Ailsa and its near isogenic abscisic acid (ABA)-deficient mutant line, flacca, suggesting that the gene does not require ABA for its expression under drought conditions. Based on the previous immunolocalization findings we suggest that tdi-65 encoded cysteine protease functions in relation to drought-induced senescence and programmed cell death.
Collapse
Affiliation(s)
- H Harrak
- Department of Biological Sciences, University of Quebec in Montreal, Canada
| | | | | | | |
Collapse
|
419
|
Tada Y, Hata S, Takata Y, Nakayashiki H, Tosa Y, Mayama S. Induction and signaling of an apoptotic response typified by DNA laddering in the defense response of oats to infection and elicitors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:477-486. [PMID: 11310735 DOI: 10.1094/mpmi.2001.14.4.477] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cells in the primary leaves of oats displayed internucleosomal DNA cleavage in response to incompatible crown rust infection. DNA laddering also was evident in leaves treated with calcium ionophore A23187, nonspecific elicitors such as chitin and chitosan oligomers, and victorin, which functions as a specific elicitor in Pc-2/Vb containing oat leaves. The nuclei in a victorin-treated susceptible oat line were positive for the TUNEL assay. These elicitors clearly induced a 28-kDa nuclease (p28) in addition to three constitutive nucleases of 33, 24, and 22 kDa. Activation of p28 preceded the appearance of DNA laddering and possibly was mediated by de novo synthesis and/or cysteine protease activity. Pharmacological studies showed that the induction of DNA laddering was associated with oxidative stress, Ca2+ influx, and serine and cysteine proteases. Protein kinase and calmodulin activities did not seem to be involved in the induction of DNA laddering by victorin, whereas kinase-mediated signals were involved in DNA laddering induced by A23187. Protein kinase, calmodulin, G-protein activities, and Ca2+ influx, however, are involved in phytoalexin production. Our results imply that p28 is a possible nuclease candidate responsible for the induction of DNA laddering. The results also demonstrated that the mediators involved in the induction of apoptosis depended on the type of stimuli, whereas p28 and serine and cysteine proteases commonly are associated with each elicitor-induced apoptosis.
Collapse
Affiliation(s)
- Y Tada
- Graduate School of Natural Science and Technology, Kobe University, Japan
| | | | | | | | | | | |
Collapse
|
420
|
Cai X, Takken FL, Joosten MH, De Wit PJ. Specific recognition of AVR4 and AVR9 results in distinct patterns of hypersensitive cell death in tomato, but similar patterns of defence-related gene expression. MOLECULAR PLANT PATHOLOGY 2001; 2:77-86. [PMID: 20572994 DOI: 10.1046/j.1364-3703.2001.00053.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Summary Hypersensitive cell death occurs in tomato seedlings that are derived from a cross between plants that express a resistance (Cf) gene against the pathogenic fungus Cladosporium fulvum and plants that contain the matching avirulence (Avr) gene originating from this fungus. The pattern of Cf-9/Avr9- and Cf-4/Avr4-induced necrosis in these F(1) seedlings was found to differ significantly. Macroscopic observation revealed that in F(1) tomato seedlings containing both Cf-9 and Avr9, numerous necrotic spots developed that were scattered over the entire cotyledon, while the midvein and primary veins remained unaffected. In seedlings containing both Cf-4 and Avr4, however, initially only one or a few necrotic spots developed on each cotyledon, in most cases in the midvein and occasionally in primary veins. Subsequently, these spots turned rapidly into lesions that enlarged along the midvein and primary veins, eventually causing the cotyledons to wilt and abscise. These observations were confirmed by detailed histological studies. Production of the AVR proteins in adult tomato plants carrying the matching Cf gene, employing potato virus X, resulted in similar patterns of necrosis. RNA gel blot analysis demonstrated that both Avr4 and Avr9, controlled by the CaMV 35S promoter, were highly expressed in seedlings already at one day post-emergence, indicating that the distinct necrotic patterns are not due to differences in Avr expression levels. We have analysed the expression of many genes involved in defence signalling pathways and the defence response itself, during the onset of the Cf/Avr-initiated hypersensitive response (HR). Although most of the genes were expressed stronger and faster in Cf-4/Avr4 seedlings than in Cf-9/Avr9 seedlings at the onset of HR, no significant qualitative differences in the expression of genes involved in downstream signalling were observed when Cf-4/Avr4- and Cf-9/Avr9-induced defence responses were compared.
Collapse
Affiliation(s)
- X Cai
- Department of Plant Protection, Zhejiang University, HuaJiaChi Campus, 268 Kaixuan Road, Hangzhou 310029, P.R. China; Laboratory of Phytopathology, Wageningen University, Binnenhaven 9, 6709 PD Wageningen, The Netherlands
| | | | | | | |
Collapse
|
421
|
van Dam NM, Horn M, Mares M, Baldwin IT. Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuata. J Chem Ecol 2001; 27:547-68. [PMID: 11441445 DOI: 10.1023/a:1010341022761] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Protease inhibitors (PIs) are plant compounds that can inhibit proteases of mammal, insect, or pathogen origin and are frequently induced by mechanical wounding, insect feeding, or pathogen infection. Nicotiana attenuata is a species that induces nicotine, volatiles, and phenolics in response to damage. Here we examine the distribution of PIs in N. attenuata to determine if they are part of the induced response in this species and if this response is ontogenetically constrained. We found that N. attenuata shoot extracts inhibited trypsin (Tryp) and chymotrypsin (Chym) activities, while root extracts inhibited Tryp, Chym, and the bacterial protease subtilisin (Sub). The highest TrypPI levels were found at midday in the source-sink transition leaf, while older or younger leaves contained lower TrypPI levels and did not show significant diurnal fluctuations. Rosette plants, bolting plants, and flowering plants all contained TrypPIs in leaves, stems, and flowers, while seed capsules, seeds, and young seedlings did not contain any PIs. PIs in N. attenuata rosette plants were induced by Manduca sexta larval feeding, methyl jasmonate (MeJA) treatment, wounding, and application of M. sexta oral secretion and regurgitant. The response to MeJA application was stronger and longer lasting than to mechanical wounding. The direction and magnitude of the systemic response to mechanical wounding or larval damage depended on the age of the leaf that was damaged and the frequency of wounding. The systemic signal for TrypPI induction appears to follow source-sink relations in the plant and to be regulated by the octadecanoid pathway. Interestingly, by the time plants reach the flowering stage, they had lost the ability to increase PI levels after MeJA treatment. We concluded that plant ontogeny constrains both constitutive and inducible PI production in N. attenuata.
Collapse
Affiliation(s)
- N M van Dam
- Max-Planck-Institute for Chemical Ecology, Carl-Zeiss-Promenade 10, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
422
|
Matile P. Senescence and Cell Death in Plant Development: Chloroplast Senescence and its Regulation. REGULATION OF PHOTOSYNTHESIS 2001. [DOI: 10.1007/0-306-48148-0_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
423
|
Abstract
Xylogenesis is a complex developmental process culminating in programmed cell death as a truly terminal differentiation event. In Arabidopsis, the availability of vascular-patterning mutants, and the identification of genes and their products that are involved in cell specification, secondary-wall deposition and lignification, are providing clues to the functions of some of the sequences in the large expressed sequence tag databases derived from the xylem-rich tissues of trees. An in vitro system, the Zinnia mesophyll cell system, provides an alternative system for those cell-biological experiments that are difficult to tackle in intact plants. In particular, a combination of molecular-genetic and cell-biological approaches has made possible the elucidation of some of the features of plant programmed cell death.
Collapse
Affiliation(s)
- K Roberts
- Department of Cell Biology, John Innes Centre, Norwich Research Park, Colney, NR4 7UH, Norwich, UK.
| | | |
Collapse
|
424
|
Naito Y, Fujie M, Usami S, Murooka Y, Yamada T. The involvement of a cysteine proteinase in the nodule development in Chinese milk vetch infected with Mesorhizobium huakuii subsp. rengei. PLANT PHYSIOLOGY 2000; 124:1087-96. [PMID: 11080286 PMCID: PMC59208 DOI: 10.1104/pp.124.3.1087] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2000] [Accepted: 08/10/2000] [Indexed: 05/21/2023]
Abstract
Cys proteinases play important roles in plant cell development and senescence. A cDNA, AsNODf32, obtained by differential screening of a nodule cDNA library of the leguminous plant Chinese milk vetch (Astragalus sinicus), represents a nodule-specific Cys proteinase similar to that reported for the actinorhizal Alnus glutinosa-Flankia symbiosis. A characteristic feature of this proteinase is the presence of a putative vacuolar targetting signal, LQDA, within its propeptide. Expression of the AsNODf32 gene, which was studied on northern blots and in situ hybridization, showed good correlation with the onset of nodule senescence. In situ hybridization studies revealed that AsNODf32 was expressed in senescent-infected tissue at the base of the nodule, as well as in interzone II-III of the infected nodules. In addition to degrading old nodule tissues and bacteroids, AsNODf32 protein may be required as a component of tissue remodeling during nodule development.
Collapse
Affiliation(s)
- Y Naito
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | | | | | | | | |
Collapse
|
425
|
Ueda T, Seo S, Ohashi Y, Hashimoto J. Circadian and senescence-enhanced expression of a tobacco cysteine protease gene. PLANT MOLECULAR BIOLOGY 2000; 44:649-57. [PMID: 11198425 DOI: 10.1023/a:1026546004942] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A cDNA clone encoding a cysteine protease was isolated from a tobacco cDNA library, utilizing as a probe a PCR fragment obtained from degenerated primers based on the conserved sequences of plant cysteine protease genes. A putative protein encoded by the clone NTCP-23 had an amino acid sequence with significant similarities to those of plant senescence-associated cysteine proteases and mammalian cathepsin H. Northern blot analysis showed that NTCP-23 mRNA is expressed in all organs and the mRNA and protein expression is enhanced during natural senescence. We propose that NTCP-23 is responsible for amino acid remobilization especially in senescencing leaves. Furthermore, it was found that the mRNA expression follows a circadian rhythm and is reduced by continuous darkness, wounding and hypersensitive reaction (HR). NTCP-23 is the first cysteine protease whose mRNA expression has been shown to be temporarily reduced by wounding.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Northern
- Circadian Rhythm/physiology
- Cloning, Molecular
- Cysteine Endopeptidases/genetics
- Cysteine Endopeptidases/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Phylogeny
- Plant Diseases/genetics
- Plant Diseases/virology
- Plant Leaves/enzymology
- Plant Leaves/genetics
- Plants, Toxic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Stress, Mechanical
- Tissue Distribution
- Nicotiana/enzymology
- Nicotiana/genetics
- Nicotiana/growth & development
- Tobacco Mosaic Virus/growth & development
Collapse
Affiliation(s)
- T Ueda
- National Institute of Agrobiological Resources, Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
426
|
Iulek J, Franco OL, Silva M, Slivinski CT, Bloch C, Rigden DJ, Grossi de Sá MF. Purification, biochemical characterisation and partial primary structure of a new alpha-amylase inhibitor from Secale cereale (rye). Int J Biochem Cell Biol 2000; 32:1195-204. [PMID: 11137459 DOI: 10.1016/s1357-2725(00)00053-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Plant alpha-amylase inhibitors show great potential as tools to engineer resistance of crop plants against pests. Their possible use is, however, complicated by the observed variations in specificity of enzyme inhibition, even within closely related families of inhibitors. Better understanding of this specificity depends on modelling studies based on ample structural and biochemical information. A new member of the alpha-amylase inhibitor family of cereal endosperm has been purified from rye using two ionic exchange chromatography steps. It has been characterised by mass spectrometry, inhibition assays and N-terminal protein sequencing. The results show that the inhibitor has a monomer molecular mass of 13,756 Da, is capable of dimerisation and is probably glycosylated. The inhibitor has high homology with the bifunctional alpha-amylase/trypsin inhibitors from barley and wheat, but much poorer homology with other known inhibitors from rye. Despite the homology with bifunctional inhibitors, this inhibitor does not show activity against mammalian or insect trypsin, although activity against porcine pancreatic, human salivary, Acanthoscelides obtectus and Zabrotes subfasciatus alpha-amylases was observed. The inhibitor is more effective against insect alpha-amylases than against mammalian enzymes. It is concluded that rye contains a homologue of the bifunctional alpha-amylase/trypsin inhibitor family without activity against trypsins. The necessity of exercising caution in assigning function based on sequence comparison is emphasised.
Collapse
Affiliation(s)
- J Iulek
- Universidade Estadual de Ponta Grossa, Departamento de Química, Av. Carlos Cavalcanti, 4748 Uvarans 84030-000, Ponta Grossa, Brazil.
| | | | | | | | | | | | | |
Collapse
|
427
|
Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 2000; 97:11655-60. [PMID: 11027363 PMCID: PMC17256 DOI: 10.1073/pnas.97.21.11655] [Citation(s) in RCA: 810] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disease resistance is associated with a plant defense response that involves an integrated set of signal transduction pathways. Changes in the expression patterns of 2,375 selected genes were examined simultaneously by cDNA microarray analysis in Arabidopsis thaliana after inoculation with an incompatible fungal pathogen Alternaria brassicicola or treatment with the defense-related signaling molecules salicylic acid (SA), methyl jasmonate (MJ), or ethylene. Substantial changes (up- and down-regulation) in the steady-state abundance of 705 mRNAs were observed in response to one or more of the treatments, including known and putative defense-related genes and 106 genes with no previously described function or homology. In leaf tissue inoculated with A. brassicicola, the abundance of 168 mRNAs was increased more than 2.5-fold, whereas that of 39 mRNAs was reduced. Similarly, the abundance of 192, 221, and 55 mRNAs was highly (>2.5-fold) increased after treatment with SA, MJ, and ethylene, respectively. Data analysis revealed a surprising level of coordinated defense responses, including 169 mRNAs regulated by multiple treatments/defense pathways. The largest number of genes coinduced (one of four induced genes) and corepressed was found after treatments with SA and MJ. In addition, 50% of the genes induced by ethylene treatment were also induced by MJ treatment. These results indicated the existence of a substantial network of regulatory interactions and coordination occurring during plant defense among the different defense signaling pathways, notably between the salicylate and jasmonate pathways that were previously thought to act in an antagonistic fashion.
Collapse
Affiliation(s)
- P M Schenk
- Cooperative Research Centre for Tropical Plant Pathology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
428
|
Abstract
In plants most instances of programmed cell death (PCD) occur in a number of related, or neighbouring, cells in specific tissues. However, recent research with plant cell cultures has demonstrated that PCD can be induced in single cells. The uniformity, accessibility and reduced complexity of cell cultures make them ideal research tools to investigate the regulation of PCD in plants. PCD has now been induced in cell cultures from a wide range of species including many of the so-called model species. We will discuss the establishment of cell cultures, the fractionation of single cells and isolation of protoplasts, and consider the characteristic features of PCD in cultured cells. We will review the wide range of methods to induce cell death in cell cultures ranging from abiotic stress, absence of survival signals, manipulation of signal pathway intermediates, through the induction of defence-related PCD and developmentally induced cell death.
Collapse
Affiliation(s)
- P F McCabe
- Department of Plant Sciences, University of Oxford, UK.
| | | |
Collapse
|
429
|
Fath A, Bethke P, Lonsdale J, Meza-Romero R, Jones R. Programmed cell death in cereal aleurone. PLANT MOLECULAR BIOLOGY 2000. [PMID: 11199387 DOI: 10.1023/a:1026584207143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Progress in understanding programmed cell death (PCD) in the cereal aleurone is described. Cereal aleurone cells are specialized endosperm cells that function to synthesize and secrete hydrolytic enzymes that break down reserves in the starchy endosperm. Unlike the cells of the starchy endosperm, aleurone cells are viable in mature grain but undergo PCD when germination is triggered or when isolated aleurone layers or protoplasts are incubated in gibberellic acid (GA). Abscisic acid (ABA) slows down the process of aleurone cell death and isolated aleurone protoplasts can be kept alive in media containing ABA for up to 6 months. Cell death in barley aleurone occurs only after cells become highly vacuolated and is manifested in an abrupt loss of plasma membrane integrity. Aleurone cell death does not follow the apoptotic pathway found in many animal cells. The hallmarks of apoptosis, including internucleosomal DNA cleavage, plasma membrane and nuclear blebbing and formation of apoptotic bodies, are not observed in dying aleurone cells. PCD in barley aleurone cells is accompanied by the accumulation of a spectrum of nuclease and protease activities and the loss of organelles as a result of cellular autolysis.
Collapse
Affiliation(s)
- A Fath
- Department of Plant and Microbial Biology, University of California, Berkeley 94720-3102, USA
| | | | | | | | | |
Collapse
|
430
|
Fath A, Bethke P, Lonsdale J, Meza-Romero R, Jones R. Programmed cell death in cereal aleurone. PLANT MOLECULAR BIOLOGY 2000; 44:255-66. [PMID: 11199387 DOI: 10.1023/a:1026584207243] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Progress in understanding programmed cell death (PCD) in the cereal aleurone is described. Cereal aleurone cells are specialized endosperm cells that function to synthesize and secrete hydrolytic enzymes that break down reserves in the starchy endosperm. Unlike the cells of the starchy endosperm, aleurone cells are viable in mature grain but undergo PCD when germination is triggered or when isolated aleurone layers or protoplasts are incubated in gibberellic acid (GA). Abscisic acid (ABA) slows down the process of aleurone cell death and isolated aleurone protoplasts can be kept alive in media containing ABA for up to 6 months. Cell death in barley aleurone occurs only after cells become highly vacuolated and is manifested in an abrupt loss of plasma membrane integrity. Aleurone cell death does not follow the apoptotic pathway found in many animal cells. The hallmarks of apoptosis, including internucleosomal DNA cleavage, plasma membrane and nuclear blebbing and formation of apoptotic bodies, are not observed in dying aleurone cells. PCD in barley aleurone cells is accompanied by the accumulation of a spectrum of nuclease and protease activities and the loss of organelles as a result of cellular autolysis.
Collapse
Affiliation(s)
- A Fath
- Department of Plant and Microbial Biology, University of California, Berkeley 94720-3102, USA
| | | | | | | | | |
Collapse
|
431
|
Beers EP, Woffenden BJ, Zhao C. Plant proteolytic enzymes: possible roles during programmed cell death. PLANT MOLECULAR BIOLOGY 2000; 44:399-415. [PMID: 11199397 DOI: 10.1023/a:1026556928624] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Proteolytic enzymes are known to be associated with developmentally programmed cell death during organ senescence and tracheary element differentiation. Recent evidence also links proteinases with some types of pathogen- and stress-induced cell suicide. The precise roles of proteinases in these and other plant programmed cell death processes are not understood, however. To provide a framework for consideration of the importance of proteinases during plant cell suicide, characteristics of the best-known proteinases from plants including subtilisin-type and papain-type enzymes, phytepsins, metalloproteinases and the 26S proteasome are summarized. Examples of serine, cysteine, aspartic, metallo- and threonine proteinases linked to animal programmed cell death are cited and the potential for plant proteinases to act as mediators of signal transduction and as effectors of programmed cell death is discussed.
Collapse
Affiliation(s)
- E P Beers
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA.
| | | | | |
Collapse
|
432
|
Abstract
The often rapid and synchronous programmed death of petal cells provides a model system to study molecular aspects of organ senescence. The death of petal cells is preceded by a loss of membrane permeability, due in part to increases in reactive oxygen species that are in turn related to up-regulation of oxidative enzymes and to a decrease in activity of certain protective enzymes. The senescence process also consists of a loss of proteins caused by activation of various proteinases, a loss of nucleic acids as nucleases are activated, and enzyme-mediated alterations of carbohydrate polymers. Many of the genes for these senescence-associated enzymes have been cloned. In some flowers, the degradative changes of petal cells are initiated by ethylene; in others, abscisic acid may play a role. External factors such as pollination, drought and temperature stress also affect senescence, perhaps by interacting with hormones normally produced by the flowers. Signal transduction may involve G-proteins, calcium activity changes and the regulation of protein phosphorylation and dephosphorylation. The efficacy of the floral system as well as the research tools now available make it likely that important information will soon be added to our knowledge of the molecular mechanisms involved in petal cell death.
Collapse
Affiliation(s)
- B Rubinstein
- Biology Department and Plant Biology Graduate Program, University of Massachusetts, Amherst 01003-5810, USA.
| |
Collapse
|
433
|
Abstract
Reproductive development is a rich arena to showcase programmed cell death in plants. After floral induction, the first act of reproductive development in some plants is the selective killing of cells destined to differentiate into an unwanted sexual organ. Production of functional pollen grains relies significantly on deterioration and death of the anther tapetum, a tissue whose main function appears to nurture and decorate the pollen grains with critical surface molecules. Degeneration and death in a number of anther tissues result ultimately in anther rupture and dispersal of pollen grains. Female sporogenesis frequently begins with the death of all but one of the meiotic derivatives, with surrounding nucellar cells degenerating in concert with embryo sac expansion. Female tissues that interact with pollen undergo dramatic degeneration, including death, to ensure the encounter of compatible male and female gametes. Pollen and pistil interact to kill invading pollen from an incompatible source. Most observations on cell death in reproductive tissues have been on the histological and cytological levels. We discuss various cell death phenomena in reproductive development with a view towards understanding the biochemical and molecular mechanisms that underlie these processes.
Collapse
Affiliation(s)
- H M Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003, USA
| | | |
Collapse
|
434
|
Rao MV, Koch JR, Davis KR. Ozone: a tool for probing programmed cell death in plants. PLANT MOLECULAR BIOLOGY 2000; 44:345-358. [PMID: 11199393 DOI: 10.1023/a:1026548726807] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- M V Rao
- Department of Plant Biology and the Plant Biotechnology Center, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
435
|
Danon A, Delorme V, Mailhac N, Gallois P. Plant programmed cell death: A common way to die. PLANT PHYSIOLOGY AND BIOCHEMISTRY 2000. [PMID: 0 DOI: 10.1016/s0981-9428(00)01178-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
436
|
Rao MV, Lee H, Creelman RA, Mullet JE, Davis KR. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. THE PLANT CELL 2000; 12:1633-46. [PMID: 11006337 PMCID: PMC149075 DOI: 10.1105/tpc.12.9.1633] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2000] [Accepted: 06/12/2000] [Indexed: 05/17/2023]
Abstract
Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.
Collapse
Affiliation(s)
- M V Rao
- Plant Biotechnology Center, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
437
|
Chen HM, Zhou J, Dai YR. Cleavage of lamin-like proteins in in vivo and in vitro apoptosis of tobacco protoplasts induced by heat shock. FEBS Lett 2000; 480:165-8. [PMID: 11034321 DOI: 10.1016/s0014-5793(00)01912-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Apoptosis in heat shock-treated tobacco protoplasts was evidenced by DNA fragmentation, flow cytometric analysis and activation of caspase 3-like protease. Furthermore, an in vitro apoptosis system was established which reproduced the apoptotic events. Western blotting analysis using an antibody against lamin A and C showed that in both in vivo and in vitro systems lamin-like proteins were cleaved into a 35-kDa fragment, and that lamin-like protein degradation precedes DNA fragmentation. Moreover, we found a 22.8-fold increase in caspase 6-like activity in cytosol of heat-treated protoplasts as compared with the control.
Collapse
Affiliation(s)
- H M Chen
- Department of Biology, Tsinghua University, Beijing, PR China
| | | | | |
Collapse
|
438
|
Sasabe M, Takeuchi K, Kamoun S, Ichinose Y, Govers F, Toyoda K, Shiraishi T, Yamada T. Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5005-13. [PMID: 10931182 DOI: 10.1046/j.1432-1327.2000.01553.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We characterized pharmacologically the hypersensitive cell death of tobacco BY-2 cells that followed treatments with Escherichia coli preparations of INF1, the major secreted elicitin of the late blight pathogen Phytophthora infestans. INF1 elicitin treatments resulted in fragmentation and 180 bp laddering of tobacco DNA as early as 3 h post-treatment. INF1 elicitin also induced rapid accumulation of H2O2 typical of oxidative burst, and the expression of defense genes such as phenylalanine ammonia-lyase (PAL) gene at 1 h and 3 h after elicitin treatment, respectively. To investigate the involvement of the oxidative burst and/or the expression of defense genes in the signal transduction pathways leading to hypersensitive cell death, we analyzed the effect of several chemical inhibitors of signal transduction pathways on the various responses. The results indicated that (a) the cell death required serine proteases, Ca2+ and protein kinases, (b) the oxidative burst was involved in Ca2+ and protein kinase mediated pathways, but elicitin-induced AOS was neither necessary nor sufficient for cell death and PAL gene expression, and (c) the signaling pathway of PAL gene expression required protein kinases. These results suggest that the three signal transduction pathways leading to cell death, oxidative burst and expression of defense genes branch in the early stages that follow elicitin recognition by tobacco cells.
Collapse
Affiliation(s)
- M Sasabe
- Science and Technology for Energy Conversion, Graduate School of Natural Science and Technology, and Laboratory of Plant Pathology & Genetic Engineering, Faculty of Agriculture, Okayama University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
439
|
Park KS, Cheong JJ, Lee SJ, Suh MC, Choi D. A novel proteinase inhibitor gene transiently induced by tobacco mosaic virus infection. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:509-12. [PMID: 11004521 DOI: 10.1016/s0167-4781(00)00126-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A gene (NgPI) encoding a novel proteinase inhibitor (PI) has been isolated from tobacco leaves. Protein encoded by the gene consists of 241 amino acid residues having a predicted molecular mass of 26.7 kDa and a calculated pI of 8.7. A predicted N-terminal signal sequence followed by a vacuolar targeting signal and a peptide conserved in the Kunitz type PIs were identified. The deduced NgPI protein has sequence homology with aspartic and cysteine protease inhibitors. The gene is present as double copies in the Nicotiana glutinosa genome. Expression of the NgPI gene is rapidly and transiently induced by tobacco mosaic virus infection at a time earlier than apparent lesions of hypersensitive responses appear on the leaves.
Collapse
Affiliation(s)
- K S Park
- Plant Cell Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology, P.O. Box 115, Yusung, 305-600, Taejon, South Korea
| | | | | | | | | |
Collapse
|
440
|
Pechan T, Ye L, Chang Y, Mitra A, Lin L, Davis FM, Williams WP, Luthe DS. A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other Lepidoptera. THE PLANT CELL 2000; 12:1031-40. [PMID: 10899972 PMCID: PMC149047 DOI: 10.1105/tpc.12.7.1031] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2000] [Accepted: 05/04/2000] [Indexed: 05/18/2023]
Abstract
Plants respond to insect feeding with a number of defense mechanisms. Using maize genotypes derived from Antiquan germ plasm that are resistant to Lepidoptera, we have demonstrated that a unique 33-kD cysteine proteinase accumulates in the whorl in response to larval feeding. The abundance of the proteinase increased dramatically at the site of larval feeding after 1 hr of infestation and continued to accumulate for as long as 7 days. The 33-kD cysteine proteinase was most abundant in the yellow-green portion of the whorl-the normal site of larval feeding and the tissue that has the greatest inhibitory effect on larval growth in bioassays. The proteinase was expressed in response to wounding and was found in senescent leaves. It may be a marker of programmed cell death. The gene coding for the proteinase, mir1, has been transformed into Black Mexican Sweet callus. When larvae were reared on callus expressing the proteinase, their growth was inhibited approximately 60 to 80%. The expression of a cysteine proteinase, instead of a cysteine proteinase inhibitor, may be a novel insect defense mechanism in plants.
Collapse
Affiliation(s)
- T Pechan
- Department of Biochemistry, Mississippi State University, Mississippi State 39762, USA
| | | | | | | | | | | | | | | |
Collapse
|
441
|
Xu P, Roossinck MJ. Cucumber mosaic virus D satellite RNA-induced programmed cell death in tomato. THE PLANT CELL 2000; 12:1079-92. [PMID: 10899975 PMCID: PMC149050 DOI: 10.1105/tpc.12.7.1079] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2000] [Accepted: 05/11/2000] [Indexed: 05/18/2023]
Abstract
D satellite RNA (satRNA) with its helper virus, namely, cucumber mosaic virus, causes systemic necrosis in tomato. The infected plant exhibits a distinct spatial and temporal cell death pattern. The distinct features of chromatin condensation and nuclear DNA fragmentation indicate that programmed cell death is involved. In addition, satRNA localization and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling show that cell death is initiated from the infected phloem or cambium cells and spreads to other nearby infected cells. Timing of the onset of necrosis after inoculation implicates the involvement of cell developmental processes in initiating tomato cell death. Analysis of the accumulation of minus- and plus-strand satRNAs in the infected plants indicates a correlation between high amounts of minus-strand satRNA and tomato cell death.
Collapse
Affiliation(s)
- P Xu
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73402, USA
| | | |
Collapse
|
442
|
Zhao C, Johnson BJ, Kositsup B, Beers EP. Exploiting secondary growth in Arabidopsis. Construction of xylem and bark cDNA libraries and cloning of three xylem endopeptidases. PLANT PHYSIOLOGY 2000; 123:1185-96. [PMID: 10889267 PMCID: PMC59081 DOI: 10.1104/pp.123.3.1185] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/1999] [Accepted: 03/27/2000] [Indexed: 05/18/2023]
Abstract
The root-hypocotyl of Arabidopsis produces a relatively large amount of secondary vascular tissue when senescence is delayed by the removal of inflorescences, and plants are grown at low population density. Peptidase zymograms prepared from isolated xylem and phloem revealed the existence of distinct proteolytic enzyme profiles within these tissues. cDNA libraries were constructed from isolated xylem and bark of the root-hypocotyl and screened for cDNAs coding for cysteine, serine, and aspartic peptidases. Three cDNAs, two putative papain-type cysteine peptidases (XCP1 and XCP2) and one putative subtilisin-type serine peptidase (XSP1), were identified from the xylem library for further analysis. Using RNA gel blots it was determined that these peptidases were expressed in the xylem and not in the bark. Quantitative reverse transcriptase-polymerase chain reaction confirmed the RNA gel-blot results and revealed high levels of XCP1 and XCP2 mRNA in stems and flowers of the infloresence. A poly-histidine-tagged version of XCP1 was purified from Escherichia coli by denaturing metal-chelate chromatography. Following renaturation, the 40-kD recombinant XCP1 was not proteolytically active. Activation was achieved by incubation of recombinant XCP1 at pH 5.5 and was dependent on proteolytic processing of the 40-kD inactive polypeptide to a 26-kD active peptidase.
Collapse
Affiliation(s)
- C Zhao
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
443
|
Korthout HA, Berecki G, Bruin W, van Duijn B, Wang M. The presence and subcellular localization of caspase 3-like proteinases in plant cells. FEBS Lett 2000; 475:139-44. [PMID: 10858505 DOI: 10.1016/s0014-5793(00)01643-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Caspases play a very important role in initiating and executing apoptotic processes in animal cells. In this study we show that plant mitochondria were able to initiate the activation of caspase 3 in a Xenopus cell free system. Caspase 3-like activity was found to be present in plant cells and could only be inhibited by the specific caspase 3 inhibitor N-acetyl-Asp-Glu-Val-Asp-fluoromethylketone (Ac-DEVD-fmk) and not by cysteine protease inhibitors. By micro-injection of the caspase 3 substrate in living Chara cells we showed that caspase 3-like activity was mainly present in the cytosol rather than in the vacuole. This is the first time that in vivo caspase 3-like activity has been demonstrated in plants.
Collapse
Affiliation(s)
- H A Korthout
- Center for Phytotechnology UL/TNO, TNO Department of Applied Plant Sciences, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
444
|
Hansen G. Evidence for Agrobacterium-induced apoptosis in maize cells. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:649-657. [PMID: 10830264 DOI: 10.1094/mpmi.2000.13.6.649] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Agrobacterium spp. can genetically transform most dicotyledonous plant cells whereas many monocot species are recalcitrant to Agrobacterium-mediated transformation. One major obstacle is that co-cultivation of Agrobacterium spp. with plant tissues often results in cell death. Report here is that, in maize tissues, this process resembles apoptosis, with characteristic DNA cleavage into oligonucleosomal fragments and morphological changes. Two anti-apoptotic genes from baculovirus, p35 and iap, had the ability to prevent the onset of apoptosis triggered by Agrobacterium spp. in maize tissues. p35 is reported to act as a direct inhibitor of a certain class of proteases (caspase) whereas i.a.p. may act upstream to prevent their activation. This evidence raises the possibility that caspase-like proteases may also be involved in the apoptotic pathway in plant cells.
Collapse
Affiliation(s)
- G Hansen
- Novartis Agribusiness Biotechnology, Inc. (NABRI), Durham, NC 27709, USA.
| |
Collapse
|
445
|
Tian RH, Zhang GY, Yan CH, Dai YR. Involvement of poly(ADP-ribose) polymerase and activation of caspase-3-like protease in heat shock-induced apoptosis in tobacco suspension cells. FEBS Lett 2000; 474:11-5. [PMID: 10828442 DOI: 10.1016/s0014-5793(00)01561-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cleavage of poly(ADP-ribose) polymerase (PARP) by caspase (casp)-3 is an essential link in the apoptotic pathway in animal cells. In plant cells, however, there is no authentic evidence for the similar role that PARP may play during apoptosis. Using a heat shock (HS)-induced apoptosis system of tobacco cells, we found that immediately after a 4 h heat treatment, PARP was cleaved to form an 89 kDa signature fragment, while DNA laddering appeared only after a 20 h recovery following the HS. An activation of casp-3-like protease was also observed. The results suggest that apoptosis in plants and animals may share common mechanisms. On the other hand, when cells were preincubated with 4 mM 3-aminobenzamide or 2-8 mM nicotinamide, the specific inhibitors of PARP, before HS treatment, apoptotic cell death was reduced significantly. Our results thus imply that PARP may also be involved in apoptosis in a different way from the casp-related events.
Collapse
Affiliation(s)
- R h Tian
- Department of Biology, Tsinghua University, 100084, Beijing, China
| | | | | | | |
Collapse
|
446
|
LoSchiavo F, Baldan B, Compagnin D, Ganz R, Mariani P, Terzi M. Spontaneous and induced apoptosis in embryogenic cell cultures of carrot (Daucus carota L.) in different physiological states. Eur J Cell Biol 2000; 79:294-8. [PMID: 10826497 DOI: 10.1078/s0171-9335(04)70032-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Programmed cell death (apoptosis) in plants - and plant cells in culture - has received much less attention than its animal counterpart. In the present work, using agents producing biotic or abiotic stress on cultivated cells from carrot - and, in a few experiments, Arabidopsis -, we show that DNA fragmentation, random or oligonucleosomal, can be induced by different treatments. Moreover, we demonstrate that the same cultures may or may not respond to the inducing signal according to their physiological state. In particular, stationary cells are more responsive to the inducing signal than actively proliferating ones, and cells growing in an unorganized way are more responsive than cells carrying out the embryogenic programme. Senescent cells in culture also appear to die by apoptosis, but healthy cells can also be induced to die apoptotically if exposed to the medium conditioned by senescent cells of the same or different species.
Collapse
Affiliation(s)
- F LoSchiavo
- Dipartimento di Biologia, Università, Padova, Italy
| | | | | | | | | | | |
Collapse
|
447
|
Xu Y, Hanson MR. Programmed cell death during pollination-induced petal senescence in petunia. PLANT PHYSIOLOGY 2000; 122:1323-33. [PMID: 10759529 PMCID: PMC58968 DOI: 10.1104/pp.122.4.1323] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/1999] [Accepted: 12/21/1999] [Indexed: 05/20/2023]
Abstract
Petal senescence, one type of programmed cell death (PCD) in plants, is a genetically controlled sequence of events comprising its final developmental stage. We characterized the pollination-induced petal senescence process in Petunia inflata using a number of cell performance markers, including fresh/dry weight, protein amount, RNA amount, RNase activity, and cellular membrane leakage. Membrane disruption and DNA fragmentation with preferential oligonucleosomal cleavage, events characteristic of PCD, were found to be present in the advanced stage of petal senescence, indicating that plant and animal cell death phenomena share one of the molecular events in the execution phase. As in apoptosis in animals, both single-stranded DNase and double-stranded DNase activities are induced during petal cell death and are enhanced by Ca(2+). In contrast, the release of cytochrome c from mitochondria, one commitment step in signaling of apoptosis in animal cells, was found to be dispensable in petal cell death. Some components of the signal transduction pathway for PCD in plants are likely to differ from those in animal cells.
Collapse
Affiliation(s)
- Y Xu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
448
|
Pernas M, Sánchez-Monge R, Salcedo G. Biotic and abiotic stress can induce cystatin expression in chestnut. FEBS Lett 2000; 467:206-10. [PMID: 10675539 DOI: 10.1016/s0014-5793(00)01157-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A cysteine proteinase inhibitor (cystatin) from chestnut (Castanea sativa) seeds, designated CsC, has been previously characterized. Its antifungal, acaricide and inhibitory activities have allowed to involve CsC in defence mechanisms. The CsC transcription levels decreased during seed maturation and increased throughout germination, an opposite behavior to that shown by most phytocystatins. No inhibition of endogenous proteinase activity by purified CsC was found during the seed maturation or germination processes. CsC message accumulation was induced in chestnut leaves after fungal infection, as well as by wounding and jasmonic acid treatment. Induction in roots was also observed by the last two treatments. Furthermore, CsC transcript levels strongly raised, both in roots and leaves, when chestnut plantlets were subjected to cold- and saline-shocks, and also in roots by heat stress. All together, these data suggest that chestnut cystatin is not only involved in defence responses to pests and pathogen invasion, but also in those related to abiotic stress.
Collapse
Affiliation(s)
- M Pernas
- Unidad de Bioquímica, Departamento de Biotecnología, E.T.S. Ingenieros Agrónomos, Ciudad Universitaria, 28040, Madrid, Spain
| | | | | |
Collapse
|
449
|
Ho SL, Tong WF, Yu SM. Multiple mode regulation of a cysteine proteinase gene expression in rice. PLANT PHYSIOLOGY 2000; 122:57-66. [PMID: 10631249 PMCID: PMC58844 DOI: 10.1104/pp.122.1.57] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/1999] [Accepted: 09/23/1999] [Indexed: 05/18/2023]
Abstract
In many plants, cysteine proteinases play essential roles in a variety of developmental and physiological processes. In rice (Oryza sativa), REP-1 is a primary cysteine proteinase responsible for the digestion of seed storage proteins to provide nutrients to support the growth of young seedlings. In the present study, the gene encoding REP-1 was isolated, characterized, and designated as OsEP3A. An OsEP3A-specific DNA probe was used to study the effect of various factors on the expression of OsEP3A in germinating seeds and vegetative tissues of rice. The expression of OsEP3A is hormonally regulated in germinating seeds, spatially and temporally regulated in vegetative tissues, and nitrogen-regulated in suspension-cultured cells. The OsEP3A promoter was linked to the coding sequence of the reporter gene, gusA, which encodes beta-glucuronidase (GUS), and the chimeric gene was introduced into the rice genome. The OsEP3A promoter is sufficient to confer nitrogen regulation of GUS expression in suspension-cultured cells. Histochemical studies also indicate that the OsEP3A promoter is sufficient to confer the hormonal regulation of GUS expression in germinating seeds. These studies demonstrate that in rice the REP-1 protease encoded by OsEP3A may play a role in various physiological responses and processes, and that multiple mechanisms regulate the expression of OsEP3A.
Collapse
Affiliation(s)
- S L Ho
- Department of Biology, National Taiwan Normal University, Taipei 11650, Taiwan, Republic of China
| | | | | |
Collapse
|
450
|
Young TE, Gallie DR. Regulation of programmed cell death in maize endosperm by abscisic acid. PLANT MOLECULAR BIOLOGY 2000; 42:397-414. [PMID: 10794539 DOI: 10.1023/a:1006333103342] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cereal endosperm undergoes programmed cell death (PCD) during its development, a process that is controlled, in part, by ethylene. Whether other hormones influence endosperm PCD has not been investigated. Abscisic acid (ABA) plays an essential role during late seed development that enables an embryo to survive desiccation. To examine whether ABA is also involved in regulating the onset of PCD during endosperm development, we have used genetic and biochemical means to disrupt ABA biosynthesis or perception during maize kernel development. The onset and progression of cell death, as determined by viability staining and the appearance of internucleosomal DNA fragmentation, was accelerated in developing endosperm of ABA-insensitive vp1 and ABA-deficient vp9 mutants. Ethylene was synthesized in vp1 and vp9 mutant kernels at levels that were 2-4-fold higher than in wild-type kernels. Moreover, the increase and timing of ethylene production correlated with the premature onset and accelerated progression of internucleosomal fragmentation in these mutants. Treatment of developing wild-type endosperm with fluridone, an inhibitor of ABA biosynthesis, recapitulated the increase in ethylene production and accelerated execution of the PCD program that was observed in the ABA mutant kernels. These data suggest that a balance between ABA and ethylene establishes the appropriate onset and progression of programmed cell death during maize endosperm development.
Collapse
Affiliation(s)
- T E Young
- Department of Biochemistry, University of California, Riverside 92521-0129, USA
| | | |
Collapse
|