401
|
Abstract
The nucleus is the cellular organelle in which the bulk of the genomic information is stored. From studies using fluorescence microscopy with optical sections of fixed cells, a picture of an organized nuclear structure has emerged. Recently, the application of the green fluorescent protein (GFP) as a fluorescent dye allows the visualization of nuclear dynamics in live cells. Using four-dimensional fluorescence microscopy, the nuclear structures within an interphase nucleus are perceived to have dynamic domains. Structural analyses of a living plant nucleus contribute to our understanding of the genome information process in a particular cell in multicelluar systems.
Collapse
Affiliation(s)
- Naohiro Kato
- Biotechnology Center for Agriculture and the Environment, Rutgers, The State University of New Jersey, 59 Dudley Road, Foran Hall, New Brunswick, New Jersey 08901-8520, USA
| |
Collapse
|
402
|
Carrero G, McDonald D, Crawford E, de Vries G, Hendzel MJ. Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods 2003; 29:14-28. [PMID: 12543068 DOI: 10.1016/s1046-2023(02)00288-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fluorescence recovery after photobleaching (FRAP) has become a popular technique to investigate the behavior of proteins in living cells. Although the technique is relatively old, its application to studying endogenous intracellular proteins in living cells is relatively recent and is a consequence of the newly developed fluorescent protein-based living cell protein tags. This is particularly true for nuclear proteins, in which endogenous protein mobility has only recently been studied. Here we examine the experimental design and analysis of FRAP experiments. Mathematical modeling of FRAP data enables the experimentalist to extract information such as the association and dissociation constants, distribution of a protein between mobile and immobilized pools, and the effective diffusion coefficient of the molecule under study. As experimentalists begin to dissect the relative influence of protein domains within individual proteins, this approach will allow a quantitative assessment of the relative influences of different molecular interactions on the steady-state distribution and protein function in vivo.
Collapse
Affiliation(s)
- Gustavo Carrero
- Department of Mathematical and Statistical Sciences, University of Alberta, Alberta, Canada
| | | | | | | | | |
Collapse
|
403
|
|
404
|
Abstract
RNA polymerase II transcribes most eukaryotic genes. Its catalytic subunit was tagged with green fluorescent protein and expressed in Chinese hamster cells bearing a mutation in the same subunit; it complemented the defect and so was functional. Photobleaching revealed two kinetic fractions of polymerase in living nuclei: approximately 75% moved rapidly, but approximately 25% was transiently immobile (association t1/2 approximately 20 min) and transcriptionally active, as incubation with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole eliminated it. No immobile but inactive fraction was detected, providing little support for the existence of a stable holoenzyme, or the slow stepwise assembly of a preinitiation complex on promoters or the nuclear substructure. Actinomycin D decreased the rapidly moving fraction, suggesting that engaged polymerases stall at intercalated molecules while others initiate. When wild-type cells containing only the endogenous enzyme were incubated with [3H]uridine, nascent transcripts became saturated with tritium with similar kinetics (t1/2 approximately 14 min). These data are consistent with a polymerase being mobile for one half to five sixths of a transcription cycle, and rapid assembly into the preinitiation complex. Then, most expressed transcription units would spend significant times unassociated with engaged polymerases.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Sir William Dunn School of Pathology, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
405
|
Sporbert A, Gahl A, Ankerhold R, Leonhardt H, Cardoso MC. DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol Cell 2002; 10:1355-65. [PMID: 12504011 DOI: 10.1016/s1097-2765(02)00729-3] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The spatial and temporal organization of DNA replication was investigated in living cells with a green fluorescent protein fusion to the DNA polymerase clamp PCNA. In situ extractions and photobleaching experiments revealed that PCNA, unlike RPA34, shows little if any turnover at replication sites, suggesting that it remains associated with the replication machinery through multiple rounds of Okazaki fragment synthesis. Photobleaching analyses further showed that the transition from earlier to later replicons occurs by disassembly into a nucleoplasmic pool of rapidly diffusing subcomponents and reassembly at newly activated sites. The fact that these replication sites were de novo assembled in close proximity to earlier ones suggests that activation of neighboring origins may occur by a domino effect possibly involving local changes in chromatin structure and accessibility.
Collapse
Affiliation(s)
- Anje Sporbert
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Advanced Imaging Microscopy, 07745, Jena, Germany
| | | | | | | | | |
Collapse
|
406
|
Lin CY, Li CC, Huang PH, Lee FJS. A developmentally regulated ARF-like 5 protein (ARL5), localized to nuclei and nucleoli, interacts with heterochromatin protein 1. J Cell Sci 2002; 115:4433-45. [PMID: 12414990 DOI: 10.1242/jcs.00123] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ARF-like proteins (ARLs) are distinct group of members of the ARF family of Ras-related GTPases. Although ARLs are very similar in primary structure to ARFs, their functions remain unclear. We cloned mouse (m) and human (h) ARL5 cDNAs to characterize the protein products and their molecular properties. mARL5 mRNA was more abundant in liver than in other adult tissues tested. mARL5, similar to mARL4, was developmentally regulated and localized to nuclei. hARL5 interacted with importin-alpha through its C-terminal bipartite nuclear localization signal. When expressed in COS-7 cells, mutant hARL5(T35N), which is predicted to be GDP bound, was concentrated in nucleoli. The N-terminus of hARL5, like that of ARF, was myristoylated. Yeast two-hybrid screening and in vitro protein-interaction assays showed that hARL5(Q80L), predicted to be GTP bound, interacted with heterochromatin protein 1alpha (HP1alpha), which is known to be associated with telomeres as well as with heterochromatin, and acted as a transcriptional suppressor in mammalian cells. The interaction was reproduced in COS cells, where hARL5(Q80L) was co-immunoprecipitated with HP1alpha. hARL5 interaction with HP1alpha was dependent on the nucleotide bound, and required the MIR-like motif. Moreover, hARL5(Q80L), but not hARL5 lacking the MIR-like motif, was partly co-localized with overexpressed HP1alpha. Our findings suggest that developmentally regulated ARL5, with its distinctive nuclear/nucleolar localization and interaction with HP1alpha, may play a role(s) in nuclear dynamics and/or signaling cascades during embryonic development.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Institute of Molecular Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
407
|
Abstract
Physicists question whether there are 'universals' in biology. One reason is that the prevailing theory of biological evolution postulates a random walk to each new adaptation. In the last 50 years, molecular genetics has revealed features of DNA sequence organization, protein structure and cellular processes of genetic change that suggest evolution by Natural Genetic Engineering. Genomes are hierarchically organized as systems assembled from DNA modules. Each genome is formatted and integrated by repetitive DNA sequence elements that do not code for proteins, much as a computer drive is formatted. These formatting elements constitute codons in multiple genetic codes for distinct functions such as transcription, replication, DNA compaction and genome distribution to daughter cells. Consequently, there is a computation-ready Genome System Architecture for each species. Whole-genome sequencing indicates that rearrangement of genetic modules plus duplication and reuse of existing genomic systems are fundamental events in evolution. Studies of genetic change show that cells possess mobile genetic elements and other natural genetic engineering activities to carry out the necessary DNA reorganizations. Natural genetic engineering functions are sensitive to biological inputs and their non-random operations help explain how novel genome system architectures can arise in evolution.
Collapse
|
408
|
Abstract
The notion that the interior of the nucleus is compartmentalized goes back to the discovery of the nucleolus in the 1830s. Today, we know that numerous, discrete domains related to gene expression exist within the interchromatin spaces of the interphase nucleus. These domains might arise from, and thus be positioned by, the transcriptional activity of the chromosomes, themselves tethered to the nuclear envelope, or they might assemble autonomously. Beyond their roles in gene expression or other nuclear functions, the dynamic behaviour of some of these interchromatin domains is providing clues to the modes of mass transport operating in the nucleus, as well as to the long-elusive deep structure of the nucleoplasm.
Collapse
Affiliation(s)
- Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology, and Program in Cell Dynamics University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
409
|
|
410
|
Wang IF, Reddy NM, Shen CKJ. Higher order arrangement of the eukaryotic nuclear bodies. Proc Natl Acad Sci U S A 2002; 99:13583-8. [PMID: 12361981 PMCID: PMC129717 DOI: 10.1073/pnas.212483099] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2002] [Accepted: 08/12/2002] [Indexed: 11/18/2022] Open
Abstract
The nuclei of eukaryotic cells consist of discrete substructures. These substructures include the nuclear bodies, which have been implicated in a number of biological processes such as transcription and splicing. However, for most nuclear bodies, the details of involvement in these processes in relation to their three-dimensional distributions in the nucleus are still unclear. Through the analysis of TDP, a protein functional in both transcriptional repression and alternative splicing, we have identified a new category of nuclear bodies within which the TDP molecules reside. Remarkably, the TDP bodies (TBs) colocalize or overlap with several different types of nuclear bodies previously suggested to function in transcription or splicing. Of these nuclear bodies, the Gemini of coiled bodies (GEM) seems to associate with TB through the interaction between survival motor neuron (SMN) protein and TDP. Furthermore, TB sometimes appears to be the bridge of two or more of these other nuclear bodies. Our data suggest the existence of a hierarchy and possibly functional arrangement of the nuclear bodies within the eukaryotic nuclei.
Collapse
Affiliation(s)
- I-Fan Wang
- Institute of Molecular Biology, Academia Sinica, National Taiwan University, Taipei, Taiwan 115, Republic of China
| | | | | |
Collapse
|
411
|
Wilmut I, Beaujean N, de Sousa PA, Dinnyes A, King TJ, Paterson LA, Wells DN, Young LE. Somatic cell nuclear transfer. Nature 2002; 419:583-6. [PMID: 12374931 DOI: 10.1038/nature01079] [Citation(s) in RCA: 343] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cloning by nuclear transfer from adult somatic cells is a remarkable demonstration of developmental plasticity. When a nucleus is placed in oocyte cytoplasm, the changes in chromatin structure that govern differentiation can be reversed, and the nucleus can be made to control development to term.
Collapse
Affiliation(s)
- I Wilmut
- Roslin Institute, Roslin, Midlothian EH25 9PS, UK.
| | | | | | | | | | | | | | | |
Collapse
|
412
|
Verschure PJ, Van Der Kraan I, Enserink JM, Moné MJ, Manders EMM, Van Driel R. Large-scale chromatin organization and the localization of proteins involved in gene expression in human cells. J Histochem Cytochem 2002; 50:1303-12. [PMID: 12364563 DOI: 10.1177/002215540205001003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Compartmentalization of the interphase nucleus is an important element in the regulation of gene expression. Here we investigated the functional organization of the interphase nucleus of HeLa cells and primary human fibroblasts. The spatial distribution of proteins involved in transcription (TFIIH and RNA polymerase II) and RNA processing and packaging (hnRNP-U) were analyzed in relation to chromosome territories and large-scale chromatin organization. We present evidence that these proteins are present predominantly in the interchromatin space, inside and between chromosome territories, and are largely excluded by domains of condensed chromatin. We show that they are present throughout the active and inactive X-chromosome territories in primary female fibroblasts, indicating that these proteins can freely diffuse throughout the interchromatin compartment in the interphase nucleus. Furthermore, we established that the in vivo spatial distribution of condensed chromatin in the interphase nucleus does not depend on ongoing transcription. Our data support a conceptually simple model for the functional organization of interphase nuclei.
Collapse
Affiliation(s)
- Pernette J Verschure
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
413
|
Abstract
Eukaryotic cells are highly compartmentalized, each compartment being surrounded by a lipid bilayer. This membrane-based organization allows cells to use their volumes to encode information. The lack of intranuclear membranes suggested that the nucleus was largely devoid of structural organization. However, recent work has defined numerous specialized nuclear subdomains. Importantly, RNA processing factors do not display random distribution but cluster in defined nuclear bodies. Although these structures are well characterized morphologically, their function in relation to RNA metabolism remains elusive. In this review, we will discuss the putative participation of nuclear substructures in a quality control step of RNA biogenesis, the nuclear retention of premature RNA.
Collapse
Affiliation(s)
- Olivier Gadal
- Unité de Biologie Cellulaire du Noyau, Institut Pasteur, 25 rue du Docteur Roux, Paris cedex, France.
| | | |
Collapse
|
414
|
Gribbon C, Dahm R, Prescott AR, Quinlan RA. Association of the nuclear matrix component NuMA with the Cajal body and nuclear speckle compartments during transitions in transcriptional activity in lens cell differentiation. Eur J Cell Biol 2002; 81:557-66. [PMID: 12437190 DOI: 10.1078/0171-9335-00275] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcriptional status of cells can be deduced from the staining pattern of various nuclear markers such as the Cajal body, nucleolus and nuclear speckles. In this study we have used these markers to correlate transcriptional status with cell differentiation in the lens. As a closed system with no cell loss and with each stage being spatially preserved, it is particularly well suited to such studies. To confirm that the nuclear markers in lens cells follow the same trends as in other cells, primary bovine lens epithelial cells were cultured and then treated with actinomycin D to inhibit transcription. This reduced the Cajal body markers to one or two foci per nucleus and the nucleoli became compacted as revealed by fibrillarin staining. The nuclear speckles, containing snRNPs (e.g. Sm) and the splicing factor, SC35, also became larger and more numerous while the signal for trimethylguanine (TMG) decreased suggesting a role hierarchy for the various speckle factors during transcriptional shutdown. The signal for survival of motor neurones gene product (SMN) also decreased at this point. In the lens epithelium, postmitotic cells near the equatorial region had one or two Cajal bodies per nucleus, indicating these cells had only basal levels of transcription. Sm was also present as large foci in these cells. Interestingly, both the speckles and Cajal bodies were NuMA-positive in these post-mitotic cells. At the epithelial-fibre cell transition, Cajal body number increased, while their size decreased indicative of increased transcriptional activity. Fibrillarin adopted the open floret pattern indicating increased transcriptional activity. The nuclear speckles adopted a more diffuse nucleoplasmic pattern, although some spots were still observed. All NuMA colocalisation with the Cajal bodies and nuclear speckles was lost at this stage of lens cell differentiation. Transcriptional shutdown occurs at a later stage in fibre cell differentiation, prior to programmed nuclear destruction. In the lens, both the Cajal bodies and nuclear speckles again became NuMA-positive, although separate NuMA spots were also formed during transcriptional shutdown. These data suggest the nuclear matrix is important in the concentration of Cajal body and speckle components into large, distinct spots in transcriptionally inactive nuclei and also suggest a new role for NuMA in post-mitotic cells to assist in these sub-nuclear reorganisations.
Collapse
Affiliation(s)
- Chris Gribbon
- School of Life Sciences, MSIWTB, University of Dundee, UK
| | | | | | | |
Collapse
|
415
|
Dou Y, Bowen J, Liu Y, Gorovsky MA. Phosphorylation and an ATP-dependent process increase the dynamic exchange of H1 in chromatin. J Cell Biol 2002; 158:1161-70. [PMID: 12356861 PMCID: PMC2173238 DOI: 10.1083/jcb.200202131] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In Tetrahymena cells, phosphorylation of linker histone H1 regulates transcription of specific genes. Phosphorylation acts by creating a localized negative charge patch and phenocopies the loss of H1 from chromatin, suggesting that it affects transcription by regulating the dissociation of H1 from chromatin. To test this hypothesis, we used FRAP of GFP-tagged H1 to analyze the effects of mutations that either eliminate or mimic phosphorylation on the binding of H1 to chromatin both in vivo and in vitro. We demonstrate that phosphorylation can increase the rate of dissociation of H1 from chromatin, providing a mechanism by which it can affect H1 function in vivo. We also demonstrate a previously undescribed ATP-dependent process that has a global effect on the dynamic binding of linker histone to chromatin.
Collapse
Affiliation(s)
- Yali Dou
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | |
Collapse
|
416
|
Cammas F, Oulad-Abdelghani M, Vonesch JL, Huss-Garcia Y, Chambon P, Losson R. Cell differentiation induces TIF1β association with centromeric heterochromatin via an HP1 interaction. J Cell Sci 2002; 115:3439-48. [PMID: 12154074 DOI: 10.1242/jcs.115.17.3439] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcriptional intermediary factor 1 (TIF1) family protein TIF1βis a corepressor for Krüppel-associated box (KRAB)-domain-containing zinc finger proteins and plays a critical role in early embryogenesis. Here, we examined TIF1β distribution in the nucleus of mouse embryonic carcinoma F9 cells during retinoic-acid-induced primitive endodermal differentiation. Using confocal immunofluorescence microscopy, we show that, although TIF1β is diffusely distributed throughout the nucleoplasm of undifferentiated cells, it relocates and concentrates into distinct foci of centromeric heterochromatin in differentiated cells characterized by a low proliferation rate and a well developed cytokeratin network. This relocation was not observed in isoleucine-deprived cells, which are growth arrested, or in compound RXRα-/-/RARγ-/- null mutant cells, which are resistant to RA-induced differentiation. Amino-acid substitutions in the PxVxL motif of TIF1β, which abolish interaction with members of the heterochromatin protein 1 (HP1) family, prevent its centromeric localization in differentiated cells. Collectively, these data provide compelling evidence for a dynamic nuclear compartmentalization of TIF1βthat is regulated during cell differentiation through a mechanism that requires HP1 interaction.
Collapse
Affiliation(s)
- Florence Cammas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, BP163, 67404 Illkirch-Cedex, France
| | | | | | | | | | | |
Collapse
|
417
|
Abstract
Chromosomes occupy distinct territories in the interphase cell nucleus. These chromosome territories are non-randomly arranged within the nuclear space. We are only just uncovering how chromosome territories are organized, what determines their position and how their spatial organization affects the expression of genes and genomes. Here, we discuss emerging models of non-random nuclear chromosome organization and consider the functional implications of chromosome positioning for gene expression and genome stability.
Collapse
Affiliation(s)
- Luis Parada
- National Cancer Inst., NIH, 20892, Bethesda, MD, USA
| | | |
Collapse
|
418
|
Teixeira MT, Dujon B, Fabre E. Genome-wide nuclear morphology screen identifies novel genes involved in nuclear architecture and gene-silencing in Saccharomyces cerevisiae. J Mol Biol 2002; 321:551-61. [PMID: 12206772 DOI: 10.1016/s0022-2836(02)00652-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Organisation of the cell nucleus is crucial for the regulation of gene expression but little is known about how nuclei are structured. To address this issue, we designed a genomic screen to identify factors involved in nuclear architecture in Saccharomyces cerevisiae. This screen is based on microscopic monitoring of nuclear pore complexes and nucleolar proteins fused with the green fluorescent protein in a collection of approximately 400 individual deletion mutants. Among the 12 genes identified by this screen, most affect both the nuclear envelope and the nucleolar morphology. Corresponding gene products are localised preferentially to the nucleus or close to the nuclear periphery. Interestingly, these nuclear morphology alterations were associated with chromatin-silencing defects. These genes provide a molecular context to explore the functional link between nuclear architecture and gene silencing.
Collapse
Affiliation(s)
- Maria Teresa Teixeira
- Département de Structure et Dynamique des Génomes, Unité de Génétique Moléculaire des Levures, URA 2171 CNRS and UFR 927 Univ. P. M Curie, Institut Pasteur, 25 Rue du Docteur Roux, 75724 Cedex 15, Paris, France
| | | | | |
Collapse
|
419
|
Li J, Kinoshita T, Pandey S, Ng CKY, Gygi SP, Shimazaki KI, Assmann SM. Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase. Nature 2002; 418:793-7. [PMID: 12181571 DOI: 10.1038/nature00936] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinases are involved in stress signalling in both plant and animal systems. The hormone abscisic acid mediates the responses of plants to stresses such as drought, salinity and cold. Abscisic-acid-activated protein kinase (AAPK -- found in guard cells, which control stomatal pores -- has been shown to regulate plasma membrane ion channels. Here we show that AAPK-interacting protein 1 (AKIP1), with sequence homology to heterogeneous nuclear RNA-binding protein A/B, is a substrate of AAPK. AAPK-dependent phosphorylation is required for the interaction of AKIP1 with messenger RNA that encodes dehydrin, a protein implicated in cell protection under stress conditions. AAPK and AKIP1 are present in the guard-cell nucleus, and in vivo treatment of such cells with abscisic acid enhances the partitioning of AKIP1 into subnuclear foci which are reminiscent of nuclear speckles. These results show that phosphorylation-regulated RNA target discrimination by heterogeneous nuclear RNA-binding proteins may be a general phenomenon in eukaryotes, and implicate a plant hormone in the regulation of protein dynamics during rapid subnuclear reorganization.
Collapse
Affiliation(s)
- Jiaxu Li
- Biology Department, The Pennsylvania State University, 208 Mueller Laboratory, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
420
|
Karvonen U, Jänne OA, Palvimo JJ. Pure antiandrogens disrupt the recruitment of coactivator GRIP1 to colocalize with androgen receptor in nuclei. FEBS Lett 2002; 523:43-7. [PMID: 12123801 DOI: 10.1016/s0014-5793(02)02929-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have used confocal microscopy to elucidate the effects of antiandrogens on nuclear localization of the androgen receptor (AR) with its transcriptional coactivator GRIP1. We show that the agonist-activated AR recruits GRIP1 to colocalize with the receptor in the nucleoplasm. By contrast, AR complexed to the antiandrogens hydroxyflutamide and bicalutamide fails to influence nuclear distribution of GRIP1. Likewise, the non-steroidal antiandrogens prevent the agonist-induced AR-GRIP1 colocalization from occurring. Androgen antagonists affect nuclear redistribution of AR-GRIP1 in a fashion that parallels their effects on the transcriptional activity of AR, in that the pure antagonists block GRIP1-dependent activation of AR function, whereas the mixed antagonist/agonist cyproterone acetate promotes both AR-driven redistribution of GRIP1 and activation of AR by GRIP1.
Collapse
Affiliation(s)
- U Karvonen
- Biomedicum Helsinki, Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014, Helsinki, Finland
| | | | | |
Collapse
|
421
|
Abstract
Protein dynamics is crucial for protein function. Proteins in living systems are not isolated, but operate in networks and in a carefully regulated environment. Understanding the external control of protein dynamics is consequently important. Hydration and solvent viscosity are among the salient properties of the environment. Dehydrated proteins and proteins in a rigid environment do not function properly. It is consequently important to understand the effect of hydration and solvent viscosity in detail. We discuss experiments that separate the two effects. These experiments have predominantly been performed with wild-type horse and sperm whale myoglobin, using the binding of carbon monoxide over a broad range of temperatures as a tool. The experiments demonstrate that data taken only in the physiological temperature range are not sufficient to understand the effect of hydration and solvent on protein relaxation and function. While the actual data come from myoglobin, it is expected that the results apply to most or all globular proteins.
Collapse
Affiliation(s)
- Hans Frauenfelder
- Center for Non-linear Studies, MS B258, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | |
Collapse
|
422
|
Platani M, Goldberg I, Lamond AI, Swedlow JR. Cajal body dynamics and association with chromatin are ATP-dependent. Nat Cell Biol 2002; 4:502-8. [PMID: 12068306 DOI: 10.1038/ncb809] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cajal bodies (CBs) are nuclear organelles that contain factors required for splicing, ribosome biogenesis and transcription. Our previous analysis in living cells showed that CBs are dynamic structures. Here, we show that CB mobility is described by anomalous diffusion and that bodies alternate between association with chromatin and diffusion within the interchromatin space. CB mobility increases after ATP depletion and inhibition of transcription, suggesting that the association of CB and chromatin requires ATP and active transcription. This behaviour is fundamentally different from the ATP-dependent mobility observed for chromatin and suggests that a novel mechanism governs CB, and possibly other, nuclear body dynamics.
Collapse
Affiliation(s)
- Melpomeni Platani
- School of Life Sciences, Division of Gene Regulation and Expression, University of Dundee, Medical Sciences Institute/Wellcome Trust Biocentre, Dow street, Dundee, DD1 5EH, Scotland
| | | | | | | |
Collapse
|
423
|
Lam YW, Lyon CE, Lamond AI. Large-scale isolation of Cajal bodies from HeLa cells. Mol Biol Cell 2002; 13:2461-73. [PMID: 12134083 PMCID: PMC117327 DOI: 10.1091/mbc.02-03-0034] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Revised: 02/20/2002] [Accepted: 04/05/2002] [Indexed: 11/11/2022] Open
Abstract
The Cajal body (CB) is a conserved, dynamic nuclear structure that is implicated in various cellular processes, such as the maturation of splicing small nuclear ribonucleoproteins and the assembly of transcription complexes. Here, we report the first procedure for the large-scale purification of CBs from HeLa cell nuclei, resulting in an approximately 750-fold enrichment of the CB marker protein p80-coilin. Immunofluorescence, immunoblotting, and mass spectrometric analyses showed that the composition of the isolated CBs was similar to that of CBs in situ. The morphology and structure of the isolated CBs, as judged by transmission and scanning electron microscopy analysis, are also similar to those of CBs in situ. This protocol demonstrates the feasibility of isolating intact distinct classes of subnuclear bodies from cultured cells in sufficient yield and purity to allow detailed characterization of their molecular composition, structure, and properties.
Collapse
Affiliation(s)
- Yun Wah Lam
- Wellcome Trust Biocentre, MSI/WTB Complex, University of Dundee, Dundee DD1 4HN, Scotland, United Kingdom
| | | | | |
Collapse
|
424
|
Abstract
Mortality that results from the common forms of cancer is still unacceptably high. Despite immense advances in the understanding of the mechanisms of carcinogenesis, in bringing potent new drugs to the clinic and in treating several relatively rare forms of cancer, overall mortality statistics are unlikely to change in a fundamental way until there has been a re-orientation of emphasis in cancer research that will direct greater resources towards prevention of new disease, rather than treatment of end-stage disease.
Collapse
Affiliation(s)
- Michael B Sporn
- Department of Pharmacology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | |
Collapse
|
425
|
Aspegren A, Bridge E. Release of snRNP and RNA from transcription sites in adenovirus-infected cells. Exp Cell Res 2002; 276:273-83. [PMID: 12027457 DOI: 10.1006/excr.2002.5530] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small nuclear ribonucleoprotein (snRNP) splicing factors colocalize with nascent RNA in the nucleus of adenovirus-infected cells in a pattern that appears as a series of rings surrounding viral replication centers. We have studied the release of snRNP and RNA from transcription sites following transcription inhibition by actinomycin D. SnRNP, poly(A) RNA, and viral RNA were no longer detected in the ring pattern following transcription inhibition and were instead detected in nuclear clusters. Release of snRNP from transcription sites was blocked when transcription was inhibited at 4 degrees C, suggesting that release requires temperature-dependent processes. Release of snRNP was also inhibited when transcription was blocked in the presence of 9-beta-D-arabinofuranosyladenine, to inhibit 3'-end cleavage and polyadenylation, or staurosporine, to inhibit kinases. By contrast, release of snRNP was not inhibited when transcription was blocked in the presence of cordycepin, to inhibit RNA polyadenylation without affecting 3'-end cleavage, or okadaic acid, to inhibit phosphatase activity. Our results suggest that temperature-dependent processes involved in the release of splicing factors from transcription sites could include 3'-end cleavage of pre-mRNA and phosphorylation events inhibited by stauropsorine.
Collapse
Affiliation(s)
- Anders Aspegren
- Department of Genetics and Pathology, Uppsala University, Sweden
| | | |
Collapse
|
426
|
Lim JH, Bustin M, Ogryzko VV, Postnikov YV. Metastable macromolecular complexes containing high mobility group nucleosome-binding chromosomal proteins in HeLa nuclei. J Biol Chem 2002; 277:20774-82. [PMID: 11909857 DOI: 10.1074/jbc.m200404200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High mobility group nucleosome-binding (HMGN) proteins belong to a family of nuclear proteins that bind to nucleosomes and enhance transcription from chromatin templates by altering the structure of the chromatin fiber. The intranuclear organization of these proteins is dynamic and related to the metabolic state of the cell. Here we report that approximately 50% of the HMGN proteins are organized into macromolecular complexes in a fashion that is similar to that of other nuclear activities that modify the structure of the chromatin fiber. We identify several distinct HMGN-containing complexes that are relatively unstable and find that the inclusion of HMGN in the complexes varies according to the metabolic state of the cell. The nucleosome binding ability of HMGN in the complex is stronger than that of the free HMGN. We suggest that the inclusion of HMGN proteins into metastable multiprotein complexes serves to target the HMGN proteins to specific sites in chromatin and enhances their interaction with nucleosomes.
Collapse
Affiliation(s)
- Jae-Hwan Lim
- Protein Section, CCR, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
427
|
de Krom M, van de Corput M, von Lindern M, Grosveld F, Strouboulis J. Stochastic patterns in globin gene expression are established prior to transcriptional activation and are clonally inherited. Mol Cell 2002; 9:1319-26. [PMID: 12086628 DOI: 10.1016/s1097-2765(02)00558-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have undertaken a detailed characterization of mouse globin gene expression patterns in the nucleus and cytoplasm of single erythroid cells. We demonstrate an imbalance of alpha- versus beta-globin expression in a significant proportion of cells both in nuclear transcription patterns and cytoplasmic mRNA levels. Clonal cell analysis showed these expression patterns to be clonally inherited, while analysis of a multicopy transgenic locus showed an all-or-none effect in the activation of all the genes in one locus. These data provide strong evidence for a stochastic basis of globin gene activation resulting in heritable all-or-none expression patterns.
Collapse
Affiliation(s)
- Mariken de Krom
- Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, PO Box 1738, 3000DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
428
|
Abstract
DNA topoisomerases are the magicians of the DNA world by allowing DNA strands or double helices to pass through each other, they can solve all of the topological problems of DNA in replication, transcription and other cellular transactions. Extensive biochemical and structural studies over the past three decades have provided molecular models of how the various subfamilies of DNA topoisomerase manipulate DNA. In this review, the cellular roles of these enzymes are examined from a molecular point of view.
Collapse
Affiliation(s)
- James C Wang
- Department of Molecular and Cellular Biology, Harvard University, Fairchild Building, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
429
|
Leung AKL, Lamond AI. In vivo analysis of NHPX reveals a novel nucleolar localization pathway involving a transient accumulation in splicing speckles. J Cell Biol 2002; 157:615-29. [PMID: 12011111 PMCID: PMC2173864 DOI: 10.1083/jcb.200201120] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The NHPX protein is a nucleolar factor that binds directly to a conserved RNA target sequence found in nucleolar box C/D snoRNAs and in U4 snRNA. Using enhanced yellow fluorescent protein (EYFP)- and enhanced cyan fluorescent protein-NHPX fusions, we show here that NHPX is specifically accumulated in both nucleoli and Cajal bodies (CBs) in vivo. The fusion proteins display identical localization patterns and RNA binding specificities to the endogenous NHPX. Analysis of a HeLa cell line stably expressing EYFP-NHPX showed that the nucleolar accumulation of NHPX was preceded by its transient accumulation in splicing speckles. Only newly expressed NHPX accumulated in speckles, and the nucleolar pool of NHPX did not interchange with the pool in speckles, consistent with a unidirectional pathway. The transient accumulation of NHPX in speckles prior to nucleoli was observed in multiple cell lines, including primary cells that lack CBs. Inhibitor studies indicated that progression of newly expressed NHPX from speckles to nucleoli was dependent on RNA polymerase II transcription, but not on RNA polymerase I activity. The data show a specific temporal pathway involving the sequential and directed accumulation of NHPX in distinct subnuclear compartments, and define a novel mechanism for nucleolar localization.
Collapse
Affiliation(s)
- Anthony K L Leung
- Wellcome Trust Biocentre, MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | |
Collapse
|
430
|
Christensen MO, Barthelmes HU, Feineis S, Knudsen BR, Andersen AH, Boege F, Mielke C. Changes in mobility account for camptothecin-induced subnuclear relocation of topoisomerase I. J Biol Chem 2002; 277:15661-5. [PMID: 11907023 DOI: 10.1074/jbc.c200066200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerase I is a nucleolar protein, which relocates to the nucleoplasm in response to drugs stabilizing topoisomerase I.DNA intermediates (e.g. camptothecin). Here we demonstrate that this phenomenon is solely caused by the drug's impact on the interplay between mobility and localization of topoisomerase I in a living cell nucleus. We show by photobleaching of cells expressing biofluorescent topoisomerase I-chimera that the enzyme moves continuously between nucleoli and nucleoplasm. Complex kinetics of fluorescence recovery after photobleaching indicates that two enzyme fractions with different mobility coexist in nucleoli and nucleoplasm. However, the whole complement of topoisomerase I is in continuous flux between these compartments and nucleolar accumulation can plausibly explained by the enzyme's 2-fold lesser overall mobility in nucleoli versus nucleoplasm. Upon addition of camptothecin, topoisomerase I relocates within 30 s from the nucleoli to radial nucleoplasmic structures. At these sites, the enzyme becomes retarded in a dose-dependent manner. Inside nucleoli the mobility of topoisomerase I is much less affected by camptothecin. Thus, the enzyme's distribution equilibrium is shifted toward the nucleoplasm, which causes nucleolar delocalization. In general, topoisomerase I is an entirely mobile nuclear component, unlikely to require specific signaling for movements between nuclear compartments.
Collapse
Affiliation(s)
- Morten O Christensen
- Department of Clinical Chemistry, Medizinische Poliklinik, University of Würzburg, Klinikstrasse 6-8, D-97070 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
431
|
Sokhansanj BA, Rodrigue GR, Fitch JP, Wilson DM. A quantitative model of human DNA base excision repair. I. Mechanistic insights. Nucleic Acids Res 2002; 30:1817-25. [PMID: 11937636 PMCID: PMC113225 DOI: 10.1093/nar/30.8.1817] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Base excision repair (BER) is a multistep process involving the sequential activity of several proteins that cope with spontaneous and environmentally induced mutagenic and cytotoxic DNA damage. Quantitative kinetic data on single proteins of BER have been used here to develop a mathematical model of the BER pathway. This model was then employed to evaluate mechanistic issues and to determine the sensitivity of pathway throughput to altered enzyme kinetics. Notably, the model predicts considerably less pathway throughput than observed in experimental in vitro assays. This finding, in combination with the effects of pathway cooperativity on model throughput, supports the hypothesis of cooperation during abasic site repair and between the apurinic/apyrimidinic (AP) endonuclease, Ape1, and the 8-oxoguanine DNA glycosylase, Ogg1. The quantitative model also predicts that for 8-oxoguanine and hydrolytic AP site damage, short-patch Polbeta-mediated BER dominates, with minimal switching to the long-patch subpathway. Sensitivity analysis of the model indicates that the Polbeta-catalyzed reactions have the most control over pathway throughput, although other BER reactions contribute to pathway efficiency as well. The studies within represent a first step in a developing effort to create a predictive model for BER cellular capacity.
Collapse
Affiliation(s)
- Bahrad A Sokhansanj
- Biology and Biotechnology Research Program, L-441, University of California, Lawrence Livermore National Laboratory, Livermore, CA 94551-9900, USA
| | | | | | | |
Collapse
|
432
|
Riechmann JL. Transcriptional regulation: a genomic overview. THE ARABIDOPSIS BOOK 2002; 1:e0085. [PMID: 22303220 PMCID: PMC3243377 DOI: 10.1199/tab.0085] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The availability of the Arabidopsis thaliana genome sequence allows a comprehensive analysis of transcriptional regulation in plants using novel genomic approaches and methodologies. Such a genomic view of transcription first necessitates the compilation of lists of elements. Transcription factors are the most numerous of the different types of proteins involved in transcription in eukaryotes, and the Arabidopsis genome codes for more than 1,500 of them, or approximately 6% of its total number of genes. A genome-wide comparison of transcription factors across the three eukaryotic kingdoms reveals the evolutionary generation of diversity in the components of the regulatory machinery of transcription. However, as illustrated by Arabidopsis, transcription in plants follows similar basic principles and logic to those in animals and fungi. A global view and understanding of transcription at a cellular and organismal level requires the characterization of the Arabidopsis transcriptome and promoterome, as well as of the interactome, the localizome, and the phenome of the proteins involved in transcription.
Collapse
Affiliation(s)
- José Luis Riechmann
- Mendel Biotechnology, 21375 Cabot Blvd., Hayward, CA 94545, USA
- California Institute of Technology, Division of Biology 156-29, Pasadena, CA 91125
| |
Collapse
|
433
|
Griffis ER, Altan N, Lippincott-Schwartz J, Powers MA. Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol Biol Cell 2002; 13:1282-97. [PMID: 11950939 PMCID: PMC102269 DOI: 10.1091/mbc.01-11-0538] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nucleoporin 98 (Nup98), a glycine-leucine-phenylalanine-glycine (GLFG) amino acid repeat-containing nucleoporin, plays a critical part in nuclear trafficking. Injection of antibodies to Nup98 into the nucleus blocks the export of most RNAs. Nup98 contains binding sites for several transport factors; however, the mechanism by which this nucleoporin functions has remained unclear. Multiple subcellular localizations have been suggested for Nup98. Here we show that Nup98 is indeed found both at the nuclear pore complex and within the nucleus. Inside the nucleus, Nup98 associates with a novel nuclear structure that we term the GLFG body because the GLFG domain of Nup98 is required for targeting to this structure. Photobleaching of green fluorescent protein-Nup98 in living cells reveals that Nup98 is mobile and moves between these different localizations. The rate of recovery after photobleaching indicates that Nup98 interacts with other, less mobile, components in the nucleoplasm. Strikingly, given the previous link to nuclear export, the mobility of Nup98 within the nucleus and at the pore is dependent on ongoing transcription by RNA polymerases I and II. These data give rise to a model in which Nup98 aids in direction of RNAs to the nuclear pore and provide the first potential mechanism for the role of a mobile nucleoporin.
Collapse
Affiliation(s)
- Eric R Griffis
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
434
|
Abstract
The classic view of a transcriptional initiation complex is that of an assembly of factors with many protein-protein contacts, leading to a multi-component complex whose existence is a result of the stabilizing influence of the many intermolecular interactions. Recent findings from protein mobility experiments in living cells indicate that many kinds of nuclear factors move rapidly and exchange quickly with multiple targets. Two countervailing views of factor/regulatory site interactions emerge from the current literature.
Collapse
Affiliation(s)
- Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Building 41, B602, 41 Library Drive, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA.
| | | | | |
Collapse
|
435
|
Christensen MO, Larsen MK, Barthelmes HU, Hock R, Andersen CL, Kjeldsen E, Knudsen BR, Westergaard O, Boege F, Mielke C. Dynamics of human DNA topoisomerases IIalpha and IIbeta in living cells. J Cell Biol 2002; 157:31-44. [PMID: 11927602 PMCID: PMC2173268 DOI: 10.1083/jcb.200112023] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DNA topoisomerase (topo) II catalyses topological genomic changes essential for many DNA metabolic processes. It is also regarded as a structural component of the nuclear matrix in interphase and the mitotic chromosome scaffold. Mammals have two isoforms (alpha and beta) with similar properties in vitro. Here, we investigated their properties in living and proliferating cells, stably expressing biofluorescent chimera of the human isozymes. Topo IIalpha and IIbeta behaved similarly in interphase but differently in mitosis, where only topo IIalpha was chromosome associated to a major part. During interphase, both isozymes joined in nucleolar reassembly and accumulated in nucleoli, which seemed not to involve catalytic DNA turnover because treatment with teniposide (stabilizing covalent catalytic DNA intermediates of topo II) relocated the bulk of the enzymes from the nucleoli to nucleoplasmic granules. Photobleaching revealed that the entire complement of both isozymes was completely mobile and free to exchange between nuclear subcompartments in interphase. In chromosomes, topo IIalpha was also completely mobile and had a uniform distribution. However, hypotonic cell lysis triggered an axial pattern. These observations suggest that topo II is not an immobile, structural component of the chromosomal scaffold or the interphase karyoskeleton, but rather a dynamic interaction partner of such structures.
Collapse
Affiliation(s)
- Morten O Christensen
- Department of Clinical Chemistry, Medizinische Poliklinik, University of Würzburg, D-97070 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
436
|
Abstract
Recent developments in live-cell imaging are challenging our stereotyped view of the fixed cell nucleus. The emerging picture is that nuclear processes may rely on a constant flow of molecules between dynamic compartments created by relatively immobile binding or assembly sites. This article discusses current views on the origins of nuclear compartments and their roles in gene expression.
Collapse
Affiliation(s)
- Maria Carmo-Fonseca
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| |
Collapse
|
437
|
Sporn MB. Hobson's choice and the need for combinations of new agents for the prevention and treatment of breast cancer. J Natl Cancer Inst 2002; 94:242-3. [PMID: 11854381 DOI: 10.1093/jnci/94.4.242] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
438
|
Catez F, Erard M, Schaerer-Uthurralt N, Kindbeiter K, Madjar JJ, Diaz JJ. Unique motif for nucleolar retention and nuclear export regulated by phosphorylation. Mol Cell Biol 2002; 22:1126-39. [PMID: 11809804 PMCID: PMC134639 DOI: 10.1128/mcb.22.4.1126-1139.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By microinjecting purified glutathione S-transferase linked to all or parts of herpes simplex virus type 1 US11 protein into either the nucleus or the cytoplasm, we have demonstrated that this nucleolar protein exhibits a new type of localization signal controlling both retention in nucleoli and export to the cytoplasm. Saturated mutagenesis combined with computer modeling allowed us to draw the fine-structure map of this domain, revealing a new proline-rich motif harboring both activities, which are temperature dependent and regulated by phosphorylation. Finally, crossing the nuclear pore complex from the cytoplasm to the nucleus is an energy-dependent process for US11 protein, while getting to nucleoli through the nucleoplasm is energy independent.
Collapse
Affiliation(s)
- Frédéric Catez
- INSERM U369, Faculté de Médecine Lyon-René Théophile Hyacinthe Laennec, 69372 Lyon Cedex 08, France
| | | | | | | | | | | |
Collapse
|
439
|
Muratani M, Gerlich D, Janicki SM, Gebhard M, Eils R, Spector DL. Metabolic-energy-dependent movement of PML bodies within the mammalian cell nucleus. Nat Cell Biol 2002; 4:106-10. [PMID: 11753375 DOI: 10.1038/ncb740] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Promyelocytic leukaemia (PML) nuclear bodies are present in most mammalian cell nuclei. PML bodies are disrupted by PML retinoic acid receptor alpha (RAR alpha) oncoproteins in acute promyelocytic leukaemia. These bodies contain numerous proteins, including Sp100, SUMO-1, HAUSP(USP7), CBP and BLM, and they have been implicated in aspects of transcriptional regulation or as nuclear storage depots. Here, we show that three classes of PML nuclear bodies can be distinguished, on the basis of their dynamic properties in living cells. One class of PML bodies is particularly noteworthy in that it moves by a metabolic-energy-dependent mechanism. This represents the first example of metabolic-energy-dependent transport of a nuclear body within the mammalian cell nucleus.
Collapse
Affiliation(s)
- Masafumi Muratani
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | |
Collapse
|
440
|
Andersen JS, Lyon CE, Fox AH, Leung AKL, Lam YW, Steen H, Mann M, Lamond AI. Directed proteomic analysis of the human nucleolus. Curr Biol 2002; 12:1-11. [PMID: 11790298 DOI: 10.1016/s0960-9822(01)00650-9] [Citation(s) in RCA: 759] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The nucleolus is a subnuclear organelle containing the ribosomal RNA gene clusters and ribosome biogenesis factors. Recent studies suggest it may also have roles in RNA transport, RNA modification, and cell cycle regulation. Despite over 150 years of research into nucleoli, many aspects of their structure and function remain uncharacterized. RESULTS We report a proteomic analysis of human nucleoli. Using a combination of mass spectrometry (MS) and sequence database searches, including online analysis of the draft human genome sequence, 271 proteins were identified. Over 30% of the nucleolar proteins were encoded by novel or uncharacterized genes, while the known proteins included several unexpected factors with no previously known nucleolar functions. MS analysis of nucleoli isolated from HeLa cells in which transcription had been inhibited showed that a subset of proteins was enriched. These data highlight the dynamic nature of the nucleolar proteome and show that proteins can either associate with nucleoli transiently or accumulate only under specific metabolic conditions. CONCLUSIONS This extensive proteomic analysis shows that nucleoli have a surprisingly large protein complexity. The many novel factors and separate classes of proteins identified support the view that the nucleolus may perform additional functions beyond its known role in ribosome subunit biogenesis. The data also show that the protein composition of nucleoli is not static and can alter significantly in response to the metabolic state of the cell.
Collapse
Affiliation(s)
- Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
441
|
Abstract
BACKGROUND The cell nucleus contains distinct classes of subnuclear bodies, including nucleoli, splicing speckles, Cajal bodies, gems, and PML bodies. Many nuclear proteins are known to interact dynamically with one or other of these bodies, and disruption of the specific organization of nuclear proteins can result in defects in cell functions and may cause molecular disease. RESULTS A proteomic study of purified human nucleoli has identified novel proteins, including Paraspeckle Protein 1 (PSP1) (see accompanying article, this issue of Current Biology). Here we show that PSP1 accumulates in a new nucleoplasmic compartment, termed paraspeckles, that also contains at least two other protein components: PSP2 and p54/nrb. A similar pattern of typically 10 to 20 paraspeckles was detected in all human cell types analyzed, including primary and transformed cells. Paraspeckles correspond to discrete bodies in the interchromatin nucleoplasmic space that are often located adjacent to splicing speckles. A stable cell line expressing YFP-PSP1 has been established and used to demonstrate that PSP1 interacts dynamically with nucleoli and paraspeckles in living cells. The three paraspeckle proteins relocalize quantitatively to unique cap structures at the nucleolar periphery when transcription is inhibited. CONCLUSIONS We have identified a novel nuclear compartment, termed paraspeckles, found in both primary and transformed human cells. Paraspeckles contain at least three RNA binding proteins that all interact dynamically with the nucleolus in a transcription-dependent fashion.
Collapse
Affiliation(s)
- Archa H Fox
- Wellcome Trust Biocentre, MSI/WTB Complex, University of Dundee, DD1 4HN, Dundee, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
442
|
Dunn GA, Dobbie IM, Monypenny J, Holt MR, Zicha D. Fluorescence localization after photobleaching (FLAP): a new method for studying protein dynamics in living cells. J Microsc 2002; 205:109-12. [PMID: 11856387 DOI: 10.1046/j.0022-2720.2001.001007.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
FLAP is a new method for localized photo-labelling and subsequent tracking of specific molecules within living cells. It is simple in principle, easy to implement and has a wide potential application. The molecule to be located carries two fluorophores: one to be photobleached and the other to act as a reference label. Unlike the related methods of fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP), the use of a reference fluorophore permits the distribution of the photo-labelled molecules themselves to be tracked by simple image differencing. In effect, FLAP is therefore comparable with methods of photoactivation. Its chief advantage over the method of caged fluorescent probes is that it can be used to track chimaeric fluorescent proteins directly expressed by the cells. Although methods are being developed to track fluorescent proteins by direct photoactivation, these still have serious drawbacks. In order to demonstrate FLAP, we have used nuclear microinjection of cDNA fusion constructs of beta-actin with yellow (YFP) and cyan (CFP) fluorescent proteins to follow both the fast relocation dynamics of monomeric (globular) G-actin and the much slower dynamics of filamentous F-actin simultaneously in living cells.
Collapse
Affiliation(s)
- G A Dunn
- MRC Muscle and Cell Motility Unit, The Randall Centre, New Hunt's House, King's College London, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
443
|
Brown K. Visualizing nuclear proteins together with transcribed and inactive genes in structurally preserved cells. Methods 2002; 26:10-8. [PMID: 12054900 DOI: 10.1016/s1046-2023(02)00003-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recent data support the idea that the mammalian nucleus is organized in a functionally significant way. Immunocytochemistry has revealed the existence of diverse nuclear "bodies" and compartments. Fluorescence in situ hybridization (FISH) has shown that chromosomes change their spatial relationships during dynamic cell cycle progression and that nuclear organization can change during development and differentiation when patterns of gene expression are established or modified. To determine the relationship between nuclear organization and genome function is an important goal for biology. This article describes an immunoFISH technique, which is a useful tool for investigating the functional organization of the nucleus. It combines immunocytochemistry with FISH to allow associations between proteins, DNA, and RNA to be visualized in a single-step analysis using confocal microscopy. Immunocytochemistry and FISH were thought incompatible since cell preparation flattens nuclei and the harsh DNA denaturation treatment required for FISH destroys proteins. The immunoFISH technique successfully overcomes these problems and can reveal interactions between nuclear components not readily detectable using other experimental approaches. The interactions of single-copy, endogenous loci with nuclear proteins or bodies can be seen, as can spatial compartmentalization of these loci, in cells preserved in three dimensions, representative of the situation in vivo. Allelic differences in transcription can be related to nuclear location and protein interactions of the individual alleles since genes, RNA and proteins can be visualized together. Chromosome behavior can be followed through mitosis to investigate centromere activity or vector segregation efficiency, for example. Visual data obtained using the immunoFISH technique have provided insight into the functional significance of nuclear organization and its role in cell biology.
Collapse
Affiliation(s)
- Karen Brown
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK.
| |
Collapse
|
444
|
Gaudin V, Libault M, Pouteau S, Juul T, Zhao G, Lefebvre D, Grandjean O. Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis. Development 2001; 128:4847-58. [PMID: 11731464 DOI: 10.1242/dev.128.23.4847] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In plants, recent studies have demonstrated links between the regulation of developmental processes and chromatin dynamics and organisation. Analysis of new mutations affecting overall plant architecture, leaf development and flowering time in Arabidopsis has allowed us to clone and characterise LHP1, the Drosophila heterochromatin protein 1 (HP1) homologue. LHP1 has the chromo and chromo shadow domains central to the function of animal proteins. Yeast two hybrid studies and in planta deletion experiments suggest similar modes of action in plants and animals via homodimer formation. In vivo localisation experiments revealed a specific subnuclear protein distribution in foci throughout the nucleus. Our data suggest that LHP1 may act as a main regulator of gene expression in plants, through formation of heterochromatin-like repressive complexes, to control developmental pathways involved in organ and cell size, and the vegetative to reproductive phase transition.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis Proteins/chemistry
- Arabidopsis Proteins/genetics
- Base Sequence
- Cell Nucleus/genetics
- Chromobox Protein Homolog 5
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/genetics
- Cloning, Molecular
- Conserved Sequence
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Dimerization
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant
- Molecular Sequence Data
- Mutation
- Plant Leaves/growth & development
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- V Gaudin
- Laboratoire de Biologie Cellulaire, INRA, route de St Cyr, 78026 Versailles cedex, France.
| | | | | | | | | | | | | |
Collapse
|
445
|
Abstract
The ability to visualize protein dynamics and biological processes by in vivo microscopy is revolutionizing many areas of biology. These methods generate large, kinetically complex data sets, which often cannot be intuitively interpreted. The combination of dynamic imaging and computational modelling is emerging as a powerful tool for the quantitation of biophysical properties of molecules and processes. The new discipline of computational cell biology will be essential in uncovering the pathways, mechanisms and controls of biological processes and systems as they occur in vivo.
Collapse
Affiliation(s)
- R D Phair
- BioInformatics Services, Rockville, Maryland 20854, USA.
| | | |
Collapse
|
446
|
Ward TH, Polishchuk RS, Caplan S, Hirschberg K, Lippincott-Schwartz J. Maintenance of Golgi structure and function depends on the integrity of ER export. J Cell Biol 2001; 155:557-70. [PMID: 11706049 PMCID: PMC2198855 DOI: 10.1083/jcb.200107045] [Citation(s) in RCA: 345] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Golgi apparatus comprises an enormous array of components that generate its unique architecture and function within cells. Here, we use quantitative fluorescence imaging techniques and ultrastructural analysis to address whether the Golgi apparatus is a steady-state or a stable organelle. We found that all classes of Golgi components are dynamically associated with this organelle, contrary to the prediction of the stable organelle model. Enzymes and recycling components are continuously exiting and reentering the Golgi apparatus by membrane trafficking pathways to and from the ER, whereas Golgi matrix proteins and coatomer undergo constant, rapid exchange between membrane and cytoplasm. When ER to Golgi transport is inhibited without disrupting COPII-dependent ER export machinery (by brefeldin A treatment or expression of Arf1[T31N]), the Golgi structure disassembles, leaving no residual Golgi membranes. Rather, all Golgi components redistribute into the ER, the cytoplasm, or to ER exit sites still active for recruitment of selective membrane-bound and peripherally associated cargos. A similar phenomenon is induced by the constitutively active Sar1[H79G] mutant, which has the additional effect of causing COPII-associated membranes to cluster to a juxtanuclear region. In cells expressing Sar1[T39N], a constitutively inactive form of Sar1 that completely disrupts ER exit sites, Golgi glycosylation enzymes, matrix, and itinerant proteins all redistribute to the ER. These results argue against the hypothesis that the Golgi apparatus contains stable components that can serve as a template for its biogenesis. Instead, they suggest that the Golgi complex is a dynamic, steady-state system, whose membranes can be nucleated and are maintained by the activities of the Sar1-COPII and Arf1-coatomer systems.
Collapse
Affiliation(s)
- T H Ward
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
447
|
Katsumi S, Kobayashi N, Imoto K, Nakagawa A, Yamashina Y, Muramatsu T, Shirai T, Miyagawa S, Sugiura S, Hanaoka F, Matsunaga T, Nikaido O, Mori T. In situ visualization of ultraviolet-light-induced DNA damage repair in locally irradiated human fibroblasts. J Invest Dermatol 2001; 117:1156-61. [PMID: 11710927 DOI: 10.1046/j.0022-202x.2001.01540.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have developed a novel method that uses a microfilter mask to produce ultraviolet-induced DNA lesions in localized areas of the cell nucleus. This technique allows us to visualize localized DNA repair in situ using immunologic probes. Two major types of DNA photoproducts [cyclobutane pyrimidine dimers and (6-4) photoproducts] were indeed detected in several foci per nucleus in normal human fibroblasts. They were repaired at those localized sites at different speeds, indicating that DNA photoproducts remain in relatively fixed nuclear positions during repair. A nucleotide excision repair protein, proliferating cell nuclear antigen, was recruited to the sites of DNA damage within 30 min after ultraviolet exposure. The level of proliferating cell nuclear antigen varied with DNA repair activity and diminished within 24 h. In contrast, almost no proliferating cell nuclear antigen fluorescence was observed within 3 h in xeroderma pigmentosum fibroblasts, which could not repair either type of photolesion. These results demonstrate that this technique is useful for visualizing the normal nucleotide excision repair process in vivo. Interestingly, however, in xeroderma pigmentosum cells, proliferating cell nuclear antigen appeared at ultraviolet damage sites after a delay and persisted as late as 72 h after ultraviolet exposure. This result suggests that this technique is also valuable for examining an incomplete or stalled nucleotide excision repair process caused by the lack of a single functional nucleotide excision repair protein. Thus, the technique provides a powerful approach to understanding the temporal and spatial interactions between DNA damage and damage-binding proteins in vivo.
Collapse
Affiliation(s)
- S Katsumi
- Radioisotope Research Center, Department of Dermatology, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Abstract
In vivo microscopy has recently revealed the dynamic nature of many cellular organelles. The dynamic properties of several cellular structures are consistent with a role for self-organization in their formation, maintenance, and function; therefore, self-organization might be a general principle in cellular organization.
Collapse
Affiliation(s)
- T Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
449
|
Hebert MD, Szymczyk PW, Shpargel KB, Matera AG. Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein. Genes Dev 2001; 15:2720-9. [PMID: 11641277 PMCID: PMC312817 DOI: 10.1101/gad.908401] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Spinal muscular atrophy (SMA) is a genetic disorder caused by mutations in the human survival of motor neuron 1 gene, SMN1. SMN protein is part of a large complex that is required for biogenesis of various small nuclear ribonucleoproteins (snRNPs). Here, we report that SMN interacts directly with the Cajal body signature protein, coilin, and that this interaction mediates recruitment of the SMN complex to Cajal bodies. Mutation or deletion of specific RG dipeptide residues within coilin inhibits the interaction both in vivo and in vitro. Interestingly, GST-pulldown experiments show that coilin also binds directly to SmB'. Competition studies show that coilin competes with SmB' for binding sites on SMN. Ectopic expression of SMN and coilin constructs in mouse embryonic fibroblasts lacking endogenous coilin confirms that recruitment of SMN and splicing snRNPs to Cajal bodies depends on the coilin C-terminal RG motif. A cardinal feature of SMA patient cells is a defect in the targeting of SMN to nuclear foci; our results uncover a role for coilin in this process.
Collapse
Affiliation(s)
- M D Hebert
- Department of Genetics and Program in Cell Biology, Case Western Reserve University, Cleveland, Ohio 44106-4955, USA
| | | | | | | |
Collapse
|
450
|
Dreger M, Bengtsson L, Schöneberg T, Otto H, Hucho F. Nuclear envelope proteomics: novel integral membrane proteins of the inner nuclear membrane. Proc Natl Acad Sci U S A 2001; 98:11943-8. [PMID: 11593002 PMCID: PMC59747 DOI: 10.1073/pnas.211201898] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nuclear envelope (NE) is one of the least characterized structures of eukaryotic cells. The study of its functional roles is hampered by the small number of proteins known to be specifically located to it. Here, we present a comprehensive characterization of the NE proteome. We applied different fractionation procedures and isolated protein subsets derived from distinct NE compartments. We identified 148 different proteins by 16-benzyl dimethyl hexadecyl ammonium chloride (16-BAC) gel electrophoresis and matrix-assisted laser desorption ionization (MALDI) mass spectrometry; among them were 19 previously unknown or noncharacterized. The identification of known proteins in particular NE fractions enabled us to assign novel proteins to NE substructures. Thus, our subcellular proteomics approach retains the screening character of classical proteomic studies, but also allows a number of predictions about subcellular localization and interactions of previously noncharacterized proteins. We demonstrate this result by showing that two novel transmembrane proteins, a 100-kDa protein with similarity to Caenorhabditis elegans Unc-84A and an unrelated 45-kDa protein we named LUMA, reside in the inner nuclear membrane and likely interact with the nuclear lamina. The utility of our approach is not restricted to the investigation of the NE. Our approach should be applicable to the analysis of other complex membrane structures of the cell as well.
Collapse
Affiliation(s)
- M Dreger
- Institute for Chemistry/Biochemistry, Free University Berlin, Thielallee 63, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|