401
|
|
402
|
Menolli N, Sánchez-García M. Brazilian fungal diversity represented by DNA markers generated over 20 years. Braz J Microbiol 2020; 51:729-749. [PMID: 31828716 PMCID: PMC7203393 DOI: 10.1007/s42770-019-00206-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022] Open
Abstract
Molecular techniques using fungal DNA barcoding (ITS) and other markers have been key to identifying the biodiversity of different geographic areas, mainly in megadiverse countries. Here, we provide an overview of the fungal diversity in Brazil based on DNA markers of phylogenetic importance generated since 1996. We retrieved fungal sequences of ITS, LSU, SSU, tef1-α, β-tubulin, rpb1, rpb2, actin, chitin synthase, and ATP6 from GenBank using different field keywords that indicated their origin in Brazil. A total of 19,440 sequences were recovered. ITS is the most representative marker (11,209 sequences), with 70.1% belonging to Ascomycota, 18.6% Basidiomycota, 10.2% unidentified, 1.1% Mucoromycota, two sequences of Olpidium bornovanus (Fungi incertae sedis), one sequence of Blastocladiomycota (Allomyces arbusculus), and one sequence of Chytridiomycota (Batrachochytrium dendrobatidis). Considering the sequences of all selected markers, only the phyla Cryptomycota and Entorrhizomycota were not represented. Based on ITS, using a cutoff of 98%, all sequences comprise 3047 OTUs, with the majority being Ascomycota (2088 OTUs) and Basidiomycota (681 OTUs). Previous numbers based mainly on morphological and bibliographical data revealed 5264 fungal species from Brazil, with a predominance of Basidiomycota (2741 spp.) and Ascomycota (1881 spp.). The unidentified ITS sequences not assigned to a higher taxonomic level represent 1.61% of all ITS sequences sampled and correspond to 38 unknown class-level lineages (75% cutoff). A maximum likelihood phylogeny based on LSU illustrates the fungal classes occurring in Brazil.
Collapse
Affiliation(s)
- Nelson Menolli
- Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Câmpus São Paulo, Rua Pedro Vicente 625, São Paulo, SP, 01109-010, Brazil.
- Núcleo de Pesquisa em Micologia, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-012, Brazil.
| | - Marisol Sánchez-García
- Biology Department, Clark University, Worcester, MA, 01610, USA
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75005, Sweden
| |
Collapse
|
403
|
Arraiano-Castilho R, Bidartondo M, Niskanen T, Zimmermann S, Frey B, Brunner I, Senn-Irlet B, Hörandl E, Gramlich S, Suz L. Plant-fungal interactions in hybrid zones: Ectomycorrhizal communities of willows (Salix) in an alpine glacier forefield. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
404
|
Chen GD, Hu D, Gao H, Yao XS. The importance of researches on the fungal bioactive secondary metabolites in developing the comprehensive health industry. Chin J Nat Med 2020; 18:241-242. [PMID: 32402398 DOI: 10.1016/s1875-5364(20)30028-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
405
|
|
406
|
Marcelino VR, Clausen PTLC, Buchmann JP, Wille M, Iredell JR, Meyer W, Lund O, Sorrell TC, Holmes EC. CCMetagen: comprehensive and accurate identification of eukaryotes and prokaryotes in metagenomic data. Genome Biol 2020; 21:103. [PMID: 32345331 PMCID: PMC7189439 DOI: 10.1186/s13059-020-02014-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/13/2020] [Indexed: 01/19/2023] Open
Abstract
There is an increasing demand for accurate and fast metagenome classifiers that can not only identify bacteria, but all members of a microbial community. We used a recently developed concept in read mapping to develop a highly accurate metagenomic classification pipeline named CCMetagen. The pipeline substantially outperforms other commonly used software in identifying bacteria and fungi and can efficiently use the entire NCBI nucleotide collection as a reference to detect species with incomplete genome data from all biological kingdoms. CCMetagen is user-friendly, and the results can be easily integrated into microbial community analysis software for streamlined and automated microbiome studies.
Collapse
Affiliation(s)
- Vanessa R Marcelino
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, 2006, Australia.
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia.
- School of Life & Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Philip T L C Clausen
- National Food Institute, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Jan P Buchmann
- School of Life & Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Jonathan R Iredell
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, 2006, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
- Westmead Hospital (Research and Education Network), Westmead, NSW, 2145, Australia
| | - Wieland Meyer
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, 2006, Australia
- Westmead Hospital (Research and Education Network), Westmead, NSW, 2145, Australia
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| | - Ole Lund
- National Food Institute, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Tania C Sorrell
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, 2006, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life & Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
407
|
Thu ZM, Myo KK, Aung HT, Clericuzio M, Armijos C, Vidari G. Bioactive Phytochemical Constituents of Wild Edible Mushrooms from Southeast Asia. Molecules 2020; 25:E1972. [PMID: 32340227 PMCID: PMC7221775 DOI: 10.3390/molecules25081972] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Mushrooms have a long history of uses for their medicinal and nutritional properties. They have been consumed by people for thousands of years. Edible mushrooms are collected in the wild or cultivated worldwide. Recently, mushroom extracts and their secondary metabolites have acquired considerable attention due to their biological effects, which include antioxidant, antimicrobial, anti-cancer, anti-inflammatory, anti-obesity, and immunomodulatory activities. Thus, in addition to phytochemists, nutritionists and consumers are now deeply interested in the phytochemical constituents of mushrooms, which provide beneficial effects to humans in terms of health promotion and reduction of disease-related risks. In recent years, scientific reports on the nutritional, phytochemical and pharmacological properties of mushroom have been overwhelming. However, the bioactive compounds and biological properties of wild edible mushrooms growing in Southeast Asian countries have been rarely described. In this review, the bioactive compounds isolated from 25 selected wild edible mushrooms growing in Southeast Asia have been reviewed, together with their biological activities. Phytoconstituents with antioxidant and antimicrobial activities have been highlighted. Several evidences indicate that mushrooms are good sources for natural antioxidants and antimicrobial agents.
Collapse
Affiliation(s)
- Zaw Min Thu
- Center of Ningxia Organic Synthesis and Engineering Technology, Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China;
- Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar
| | - Ko Ko Myo
- Center of Ningxia Organic Synthesis and Engineering Technology, Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China;
- Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar
| | - Hnin Thanda Aung
- Department of Chemistry, University of Mandalay, Mandalay 100103, Myanmar;
| | - Marco Clericuzio
- DISIT, Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy;
| | - Chabaco Armijos
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
| | - Giovanni Vidari
- Medical Analysis Department, Faculty of Science, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| |
Collapse
|
408
|
Antioxidant Activity and Role of Culture Condition in the Optimization of Red Pigment Production by Talaromyces purpureogenus KKP Through Response Surface Methodology. Curr Microbiol 2020; 77:1780-1789. [PMID: 32328751 DOI: 10.1007/s00284-020-01995-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
The red pigment production by Talaromyces purpureogenus KKP, a soil isolate, was optimized by response surface methodology (RSM) in the present study. The cultural parameters, such as pH, temperature, dextrose, and peptone concentrations, were optimized for red pigment production using the central composite design (CCD) experimental design. A second-order quadratic model was used to calculate the relationships between the values at different levels of response. The optimum values of the selected variables under coded factors are 6.0, 27 °C, 2.25%, and 1.10% for pH, temperature, dextrose, and peptone, respectively. The selected variables were most effective in the enhancement of red pigment production at optimized culture conditions. In addition to optimization, the antioxidant activity of the pigment isolated in the present study was found to be promising with IC50 value (40 µg/ml). The HRMS data revealed the identification of delphinidin, limonene, 6-hydroxymethyl-7,8-dihydropterin, D-mannose 6-phosphate, and CDP-DG (18:0/18:0). The results of the present investigation will be added to the existing literature of red pigment production and its optimization by T. purpureogenus.
Collapse
|
409
|
Zhang Y, Yang G, Fang M, Deng C, Zhang KQ, Yu Z, Xu J. Comparative Analyses of Mitochondrial Genomes Provide Evolutionary Insights Into Nematode-Trapping Fungi. Front Microbiol 2020; 11:617. [PMID: 32351475 PMCID: PMC7174627 DOI: 10.3389/fmicb.2020.00617] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/19/2020] [Indexed: 01/10/2023] Open
Abstract
Predatory fungi in Orbiliaceae (Ascomycota) have evolved a diversity of trapping devices that enable them to trap and kill nematodes, other small animals, and protozoans. These trapping devices include adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and non-constricting rings. Their diversity and practical importance have attracted significant attention from biologists, making them excellent model organisms for studying adaptative evolution and as biological control agents against parasitic nematodes. The putative origins and evolutionary relationships among these carnivorous fungi have been investigated using nuclear protein-encoding genes, but their patterns of mitogenome relationships and divergences remain unknown. Here we analyze and compare the mitogenomes of 12 fungal strains belonging to eight species, including six species representing all four types of nematode trapping devices and two from related but non-predatory fungi. All 12 analyzed mitogenomes were of circular DNA molecules, with lengths ranging from 146,101 bp to 280,699 bp. Gene synteny analysis revealed several gene rearrangements and intron transfers among the mitogenomes. In addition, the number of protein coding genes (PCGs), GC content, AT skew, and GC skew varied among these mitogenomes. The increased number and total size of introns were the main contributors to the length differences among the mitogenomes. Phylogenetic analyses of the protein-coding genes indicated that mitochondrial and nuclear genomes evolved at different rates, and signals of positive selection were found in several genes involved in energy metabolism. Our study provides novel insights into the evolution of nematode-trapping fungi and shall facilitate further investigations of this ecologically and agriculturally important group of fungi.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Guangzhu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Meiling Fang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Chu Deng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Zefen Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
410
|
Blango MG, Pschibul A, Rivieccio F, Krüger T, Rafiq M, Jia LJ, Zheng T, Goldmann M, Voltersen V, Li J, Panagiotou G, Kniemeyer O, Brakhage AA. Dynamic Surface Proteomes of Allergenic Fungal Conidia. J Proteome Res 2020; 19:2092-2104. [PMID: 32233371 DOI: 10.1021/acs.jproteome.0c00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fungal spores and hyphal fragments play an important role as allergens in respiratory diseases. In this study, we performed trypsin shaving and secretome analyses to identify the surface-exposed proteins and secreted/shed proteins of Aspergillus fumigatus conidia, respectively. We investigated the surface proteome under different conditions, including temperature variation and germination. We found that the surface proteome of resting A. fumigatus conidia is not static but instead unexpectedly dynamic, as evidenced by drastically different surface proteomes under different growth conditions. Knockouts of two abundant A. fumigatus surface proteins, ScwA and CweA, were found to function only in fine-tuning the cell wall stress response, implying that the conidial surface is very robust against perturbations. We then compared the surface proteome of A. fumigatus to other allergy-inducing molds, including Alternaria alternata, Penicillium rubens, and Cladosporium herbarum, and performed comparative proteomics on resting and swollen conidia, as well as secreted proteins from germinating conidia. We detected 125 protein ortholog groups, including 80 with putative catalytic activity, in the extracellular region of all four molds, and 42 nonorthologous proteins produced solely by A. fumigatus. Ultimately, this study highlights the dynamic nature of the A. fumigatus conidial surface and provides targets for future diagnostics and immunotherapy.
Collapse
Affiliation(s)
- Matthew G Blango
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany
| | - Annica Pschibul
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena 07745, Germany
| | - Flora Rivieccio
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena 07745, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany
| | - Muhammad Rafiq
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena 07745, Germany
| | - Lei-Jie Jia
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany
| | - Tingting Zheng
- Department of Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany
| | - Marie Goldmann
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena 07745, Germany
| | - Vera Voltersen
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong S.A.R., China.,School of Data Science, City University of Hong Kong, Kowloon, Hong Kong S.A.R., China
| | - Gianni Panagiotou
- Department of Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena 07745, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena 07745, Germany
| |
Collapse
|
411
|
Götz R, Panzer S, Trinks N, Eilts J, Wagener J, Turrà D, Di Pietro A, Sauer M, Terpitz U. Expansion Microscopy for Cell Biology Analysis in Fungi. Front Microbiol 2020; 11:574. [PMID: 32318047 PMCID: PMC7147297 DOI: 10.3389/fmicb.2020.00574] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Super-resolution microscopy has evolved as a powerful method for subdiffraction-resolution fluorescence imaging of cells and cellular organelles, but requires sophisticated and expensive installations. Expansion microscopy (ExM), which is based on the physical expansion of the cellular structure of interest, provides a cheap alternative to bypass the diffraction limit and enable super-resolution imaging on a conventional fluorescence microscope. While ExM has shown impressive results for the magnified visualization of proteins and RNAs in cells and tissues, it has not yet been applied in fungi, mainly due to their complex cell wall. Here we developed a method that enables reliable isotropic expansion of ascomycetes and basidiomycetes upon treatment with cell wall degrading enzymes. Confocal laser scanning microscopy (CLSM) and structured illumination microscopy (SIM) images of 4.5-fold expanded sporidia of Ustilago maydis expressing fluorescent fungal rhodopsins and hyphae of Fusarium oxysporum or Aspergillus fumigatus expressing either histone H1-mCherry together with Lifeact-sGFP or mRFP targeted to mitochondria, revealed details of subcellular structures with an estimated spatial resolution of around 30 nm. ExM is thus well suited for cell biology studies in fungi on conventional fluorescence microscopes.
Collapse
Affiliation(s)
- Ralph Götz
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Sabine Panzer
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Nora Trinks
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Janna Eilts
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Johannes Wagener
- Institut für Hygiene und Mikrobiologie, Julius-Maximilian-University, Würzburg, Germany
| | - David Turrà
- Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | | | - Markus Sauer
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| |
Collapse
|
412
|
Lee HH, Ke HM, Lin CYI, Lee TJ, Chung CL, Tsai IJ. Evidence of Extensive Intraspecific Noncoding Reshuffling in a 169-kb Mitochondrial Genome of a Basidiomycetous Fungus. Genome Biol Evol 2020; 11:2774-2788. [PMID: 31418013 PMCID: PMC6786477 DOI: 10.1093/gbe/evz181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Comparative genomics of fungal mitochondrial genomes (mitogenomes) have revealed a remarkable pattern of rearrangement between and within major phyla owing to horizontal gene transfer and recombination. The role of recombination was exemplified at a finer evolutionary time scale in basidiomycetes group of fungi as they display a diversity of mitochondrial DNA inheritance patterns. Here, we assembled mitogenomes of six species from the Hymenochaetales order of basidiomycetes and examined 59 mitogenomes from 2 genetic lineages of Phellinus noxius. Gene order is largely collinear, while intergene regions are major determinants of mitogenome size variation. Substantial sequence divergence was found in shared introns consistent with high horizontal gene transfer frequency observed in yeasts, but we also identified a rare case where an intron was retained in five species since speciation. In contrast to the hyperdiversity observed in nuclear genomes of Phellinus noxius, mitogenomes’ intraspecific polymorphisms at protein-coding sequences are extremely low. Phylogeny network based on introns revealed turnover as well as exchange of introns between two lineages. Strikingly, some strains harbor a mosaic origin of introns from both lineages. Analysis of intergenic sequence indicated substantial differences between and within lineages, and an expansion may be ongoing as a result of exchange between distal intergenes. These findings suggest that the evolution in mitochondrial DNAs is usually lineage specific but chimeric mitotypes are frequently observed, thus capturing the possible evolutionary processes shaping mitogenomes in a basidiomycete. The large mitogenome sizes reported in various basidiomycetes appear to be a result of interspecific reshuffling of intergenes.
Collapse
Affiliation(s)
- Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Chan-Yi Ivy Lin
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Tracy J Lee
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan.,Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei City, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei City, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City, Taiwan
| | - Isheng J Tsai
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| |
Collapse
|
413
|
Wallace EWJ, Maufrais C, Sales-Lee J, Tuck LR, de Oliveira L, Feuerbach F, Moyrand F, Natarajan P, Madhani HD, Janbon G. Quantitative global studies reveal differential translational control by start codon context across the fungal kingdom. Nucleic Acids Res 2020; 48:2312-2331. [PMID: 32020195 PMCID: PMC7049704 DOI: 10.1093/nar/gkaa060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic protein synthesis generally initiates at a start codon defined by an AUG and its surrounding Kozak sequence context, but the quantitative importance of this context in different species is unclear. We tested this concept in two pathogenic Cryptococcus yeast species by genome-wide mapping of translation and of mRNA 5' and 3' ends. We observed thousands of AUG-initiated upstream open reading frames (uORFs) that are a major contributor to translation repression. uORF use depends on the Kozak sequence context of its start codon, and uORFs with strong contexts promote nonsense-mediated mRNA decay. Transcript leaders in Cryptococcus and other fungi are substantially longer and more AUG-dense than in Saccharomyces. Numerous Cryptococcus mRNAs encode predicted dual-localized proteins, including many aminoacyl-tRNA synthetases, in which a leaky AUG start codon is followed by a strong Kozak context in-frame AUG, separated by mitochondrial-targeting sequence. Analysis of other fungal species shows that such dual-localization is also predicted to be common in the ascomycete mould, Neurospora crassa. Kozak-controlled regulation is correlated with insertions in translational initiation factors in fidelity-determining regions that contact the initiator tRNA. Thus, start codon context is a signal that quantitatively programs both the expression and the structures of proteins in diverse fungi.
Collapse
Affiliation(s)
- Edward W J Wallace
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, UK
| | - Corinne Maufrais
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
- Institut Pasteur, HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, F-75015 Paris, France
| | - Jade Sales-Lee
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Laura R Tuck
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, UK
| | - Luciana de Oliveira
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| | - Frank Feuerbach
- Institut Pasteur, Unité Génétique des Interactions Macromoléculaire, Département Génome et Génétique, F-75015 Paris, France
| | - Frédérique Moyrand
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| | - Prashanthi Natarajan
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Guilhem Janbon
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| |
Collapse
|
414
|
Coalescence-based species delimitation using genome-wide data reveals hidden diversity in a cosmopolitan group of lichens. ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-019-00424-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
415
|
Boniche C, Rossi SA, Kischkel B, Vieira Barbalho F, Nogueira D’Aurea Moura Á, Nosanchuk JD, Travassos LR, Pelleschi Taborda C. Immunotherapy against Systemic Fungal Infections Based on Monoclonal Antibodies. J Fungi (Basel) 2020; 6:jof6010031. [PMID: 32121415 PMCID: PMC7151209 DOI: 10.3390/jof6010031] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing incidence in systemic fungal infections in humans has increased focus for the development of fungal vaccines and use of monoclonal antibodies. Invasive mycoses are generally difficult to treat, as most occur in vulnerable individuals, with compromised innate and adaptive immune responses. Mortality rates in the setting of our current antifungal drugs remain excessively high. Moreover, systemic mycoses require prolonged durations of antifungal treatment and side effects frequently occur, particularly drug-induced liver and/or kidney injury. The use of monoclonal antibodies with or without concomitant administration of antifungal drugs emerges as a potentially efficient treatment modality to improve outcomes and reduce chemotherapy toxicities. In this review, we focus on the use of monoclonal antibodies with experimental evidence on the reduction of fungal burden and prolongation of survival in in vivo disease models. Presently, there are no licensed monoclonal antibodies for use in the treatment of systemic mycoses, although the potential of such a vaccine is very high as indicated by the substantial promising results from several experimental models.
Collapse
Affiliation(s)
- Camila Boniche
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Suélen Andreia Rossi
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Brenda Kischkel
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Filipe Vieira Barbalho
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Ágata Nogueira D’Aurea Moura
- Tropical Medicine Institute, Department of Dermatology, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil;
| | - Joshua D. Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Luiz R. Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, Sao Paulo 04021-001, Brazil;
| | - Carlos Pelleschi Taborda
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
- Tropical Medicine Institute, Department of Dermatology, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil;
- Correspondence:
| |
Collapse
|
416
|
Frisch A, Moen VS, Grube M, Bendiksby M. Integrative taxonomy confirms three species of Coniocarpon (Arthoniaceae) in Norway. MycoKeys 2020; 62:27-51. [PMID: 32025188 PMCID: PMC6992689 DOI: 10.3897/mycokeys.62.48480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 11/12/2022] Open
Abstract
We have studied the highly oceanic genus Coniocarpon in Norway. Our aim has been to delimit species of Coniocarpon in Norway based on an integrative taxonomic approach. The material studied comprises 120 specimens of Coniocarpon, obtained through recent collecting efforts (2017 and 2018) or received from major fungaria in Denmark, Finland, Norway and Sweden, as well as from private collectors. We have assessed (1) species delimitations and relationships based on Bayesian and maximum likelihood phylogenetic analyses of three genetic markers (mtSSU, nucITS and RPB2), (2) morphology and anatomy using standard light microscopy, and (3) secondary lichen chemistry using high-performance thin-layer chromatography. The results show three genetically distinct lineages of Coniocarpon, representing C.cinnabarinum, C.fallax and C.cuspidans comb. nov. The latter was originally described as Arthoniacinnabarinaf.cuspidans and is herein raised to species level. All three species are supported by morphological, anatomical and chemical data.
Collapse
Affiliation(s)
- Andreas Frisch
- NTNU University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Victoria Stornes Moen
- NTNU University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Martin Grube
- Institute of Plant Sciences, Karl-Franzens-University Graz, Holteigasse 6, 8010 Graz, Austria
| | - Mika Bendiksby
- NTNU University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
417
|
Kinge TR, Goldman G, Jacobs A, Ndiritu GG, Gryzenhout M. A first checklist of macrofungi for South Africa. MycoKeys 2020; 63:1-48. [PMID: 32089638 PMCID: PMC7015970 DOI: 10.3897/mycokeys.63.36566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022] Open
Abstract
Macrofungi are considered as organisms that form large fruiting bodies above or below the ground that are visible without the aid of a microscope. These fungi include most basidiomycetes and a small number of ascomycetes. Macrofungi have different ecological roles and uses, where some are edible, medicinal, poisonous, decomposers, saprotrophs, predators and pathogens, and they are often used for innovative biotechnological, medicinal and ecological applications. However, comprehensive checklists, and compilations on the diversity and distribution of mushrooms are lacking for South Africa, which makes regulation, conservation and inclusion in national biodiversity initiatives difficult. In this review, we compiled a checklist of macrofungi for the first time (excluding lichens). Data were compiled based on available literature in journals, books and fungorium records from the National Collection of Fungi. Even if the list is not complete due to numerous unreported species present in South Africa, it still represents an overview of the current knowledge of the macromycetes of South Africa. The list of names enables the assessment of gaps in collections and knowledge on the fungal biodiversity of South Africa, and downstream applications such as defining residency status of species. It provides a foundation for new names to be added in future towards developing a list that will be as complete as possible, and that can be used by a wide audience including scientists, authorities and the public.
Collapse
Affiliation(s)
- Tonjock Rosemary Kinge
- Department of Genetics, University of the Free State, Bloemfontein, PO Box 339, Bloemfontein 9300, Republic of South AfricaUniversity of the Free StateBloemfonteinSouth Africa
- Department of Biological Sciences, Faculty of Science, University of Bamenda, P.O. Box 39, Bambili, North West Region, CameroonUniversity of BamendaBambiliCambodia
| | - Gary Goldman
- MushroomFundi, Cape Town, South AfricaMushroomFundiCape TownSouth Africa
| | - Adriaana Jacobs
- National Collection of Fungi, Mycology Unit, Plant Health and Protection, Agricultural Research Council, Pretoria, South AfricaNational Collection of FungiPretoriaSouth Africa
| | - George Gatere Ndiritu
- School of Natural Resources and Environmental Studies, Karatina University, P.O. Box 1957, Karatina 10101, KenyaKaratina UniversityKaratinaKenya
| | - Marieka Gryzenhout
- Department of Genetics, University of the Free State, Bloemfontein, PO Box 339, Bloemfontein 9300, Republic of South AfricaUniversity of the Free StateBloemfonteinSouth Africa
| |
Collapse
|
418
|
Li AH, Yuan FX, Groenewald M, Bensch K, Yurkov AM, Li K, Han PJ, Guo LD, Aime MC, Sampaio JP, Jindamorakot S, Turchetti B, Inacio J, Fungsin B, Wang QM, Bai FY. Diversity and phylogeny of basidiomycetous yeasts from plant leaves and soil: Proposal of two new orders, three new families, eight new genera and one hundred and seven new species. Stud Mycol 2020; 96:17-140. [PMID: 32206137 PMCID: PMC7082220 DOI: 10.1016/j.simyco.2020.01.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nearly 500 basidiomycetous yeast species were accepted in the latest edition of The Yeasts: A Taxonomic Study published in 2011. However, this number presents only the tip of the iceberg of yeast species diversity in nature. Possibly more than 99 % of yeast species, as is true for many groups of fungi, are yet unknown and await discovery. Over the past two decades nearly 200 unidentified isolates were obtained during a series of environmental surveys of yeasts in phyllosphere and soils, mainly from China. Among these isolates, 107 new species were identified based on the phylogenetic analyses of nuclear ribosomal DNA (rDNA) [D1/D2 domains of the large subunit (LSU), the small subunit (SSU), and the internal transcribed spacer region including the 5.8S rDNA (ITS)] and protein-coding genes [both subunits of DNA polymerase II (RPB1 and RPB2), the translation elongation factor 1-α (TEF1) and the mitochondrial gene cytochrome b (CYTB)], and physiological comparisons. Forty-six of these belong to 16 genera in the Tremellomycetes (Agaricomycotina). The other 61 are distributed in 26 genera in the Pucciniomycotina. Here we circumscribe eight new genera, three new families and two new orders based on the multi-locus phylogenetic analyses combined with the clustering optimisation analysis and the predicted similarity thresholds for yeasts and filamentous fungal delimitation at genus and higher ranks. Additionally, as a result of these analyses, three new combinations are proposed and 66 taxa are validated.
Collapse
Key Words
- Apiotrichum xylopini S.O. Suh, C.F. Lee, Gujjari & J.J. Zhou ex Kachalkin, Yurkov & Boekhout
- Bannozyma arctica Vishniac & M. Takash. ex Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout
- Basidiomycetous yeasts
- Begerowomyces Q.M. Wang & F.Y. Bai
- Begerowomyces foliicola Q.M. Wang, F.Y. Bai & A.H. Li
- Bensingtonia pseudorectispora Q.M. Wang, F.Y. Bai & A.H. Li
- Bensingtonia wuzhishanensis Q.M. Wang, F.Y. Bai & A.H. Li
- Boekhoutia Q.M. Wang & F.Y. Bai
- Boekhoutia sterigmata Q.M. Wang, F.Y. Bai & A.H. Li
- Bulleribasidium cremeum Q.M. Wang, F.Y. Bai & A.H. Li
- Bulleribasidium elongatum Q.M. Wang, F.Y. Bai & A.H. Li
- Bulleribasidium panici Fungsin, M. Takash. & Nakase ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Bulleribasidium phyllophilum Q.M. Wang, F.Y. Bai & A.H. Li
- Bulleribasidium phyllostachydis Q.M. Wang, F.Y. Bai & A.H. Li
- Bulleribasidium pseudopanici Q.M. Wang, F.Y. Bai & A.H. Li
- Bulleribasidium siamense Fungsin, M. Takash. & Nakase ex Q.M. Wang, F.Y. Bai, Boekhout & Nakase
- Carcinomyces arundinariae Fungsin, M. Takash. & Nakase ex Yurkov
- Carlosrosaea foliicola Q.M. Wang, F.Y. Bai & A.H. Li
- Carlosrosaea simaoensis Q.M. Wang, F.Y. Bai & A.H. Li
- Chrysozyma cylindrica Q.M. Wang, F.Y. Bai & A.H. Li
- Chrysozyma flava Q.M. Wang, F.Y. Bai & A.H. Li
- Chrysozyma fusiformis Q.M. Wang, F.Y. Bai & A.H. Li
- Chrysozyma iridis Q.M. Wang, F.Y. Bai & A.H. Li
- Chrysozyma pseudogriseoflava Q.M. Wang, F.Y. Bai & A.H. Li
- Chrysozyma rhododendri Q.M. Wang, F.Y. Bai & A.H. Li
- Chrysozyma sambuci Q.M. Wang, F.Y. Bai & A.H. Li
- Chrysozyma sorbariae Q.M. Wang, F.Y. Bai & A.H. Li
- Colacogloea aletridis Q.M. Wang, F.Y. Bai & A.H. Li
- Colacogloea hydrangeae Q.M. Wang, F.Y. Bai & A.H. Li
- Colacogloea rhododendri Q.M. Wang, F.Y. Bai & A.H. Li
- Colacogloea subericola (Belloch, Villa-Carv., Á;lv.-Rodríg. & Coque) Q.M. Wang, & F.Y. Bai
- Cystobasidium alpinum Turchetti, Selbmann, Onofri & Buzzini
- Cystobasidium portillonense Laich, Vaca & R. Chávez ex Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout
- Cystobasidium raffinophilum Q.M. Wang, F.Y. Bai & A.H. Li
- Cystobasidium terricola Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces bifurcus Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces cylindricus F.Y. Bai, Q.M. Wang & M. Takash. ex F.Y. Bai & Q.M. Wang
- Derxomyces elongatus Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces hubeiensis F.Y. Bai, Q.M. Wang & M. Takash. ex F.Y. Bai & Q.M. Wang
- Derxomyces longicylindricus Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces longiovatus Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces melastomatis Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces nakasei F.Y. Bai, Q.M. Wang & M. Takash. ex F.Y. Bai & Q.M. Wang
- Derxomyces napiformis Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces ovatus Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces polymorphus Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces pseudoboekhoutii Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces pseudoyunnanensis Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces taiwanicus Q.M. Wang, F.Y. Bai & A.H. Li
- Derxomyces xingshanicus Q.M. Wang, F.Y. Bai & A.H. Li
- Dioszegia heilongjiangensis Q.M. Wang, F.Y. Bai & A.H. Li
- Dioszegia kandeliae Q.M. Wang, F.Y. Bai, L.D. Guo & A.H. Li
- Dioszegia maotaiensis Q.M. Wang, F.Y. Bai & A.H. Li
- Dioszegia milinica Q.M. Wang, F.Y. Bai & A.H. Li
- Dioszegia ovata Q.M. Wang, F.Y. Bai & A.H. Li
- Dioszegia zsoltii F.Y. Bai, M. Takash. & Nakase
- F.Y. Bai, M. Groenew. & Boekhout
- Filobasidium dingjieense Q.M. Wang, F.Y. Bai & A.H. Li
- Filobasidium globosum Q.M. Wang, F.Y. Bai & A.H. Li
- Filobasidium mali Q.M. Wang, F.Y. Bai & A.H. Li
- Filobasidium mucilaginum Q.M. Wang, F.Y. Bai & A.H. Li
- Genolevuria bromeliarum Landell & P. Valente ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Genolevuria pseudoamylolytica Q.M. Wang, F.Y. Bai & A.H. Li
- Glaciozyma Turchetti, Connell, Thomas-Hall & Boekhout ex M. Groenew. & Q.M. Wang
- Glaciozyma antarctica (Fell, Statzell, I.L. Hunter & Phaff) M. Groenew. & Q.M. Wang
- Glaciozyma martinii Turchetti, Connell, Thomas-Hall & Boekhout
- Glaciozyma watsonii Turchetti, Connell, Thomas-Hall & Boekhout
- Heitmania cylindrica Q.M. Wang, F.Y. Bai & A.H. Li
- Heitmania tridentata Q.M. Wang, F.Y. Bai & A.H. Li
- Heitmaniaceae Q.M. Wang & F.Y. Bai
- Heitmaniales Q.M. Wang & F.Y. Bai
- Holtermannia saccardoi Q.M. Wang, F.Y. Bai & A.H. Li
- Jianyuniaceae Q.M. Wang & F.Y. Bai
- Kockovaella haikouensis Q.M. Wang, F.Y. Bai & A.H. Li
- Kockovaella ischaemi Q.M. Wang, F.Y. Bai & A.H. Li
- Kockovaella mexicana Lopandić, O. Molnár & Prillinger ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Kockovaella nitrophila Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa arboricola Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa chamaenerii Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa cylindrica Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa daliangziensis Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa foliicola Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa lulangica Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa myxariophila Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa rhododendri Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa ribitophobia Q.M. Wang, F.Y. Bai & A.H. Li
- Kondoa thailandica Fungsin, Hamam. & Nakase ex Q.M. Wang, M. Groenew., F.Y. Bai & Boekhout
- Kwoniella newhampshirensis K. Sylvester, Q.M. Wang & C.T. Hittinger
- Kwoniella ovata Q.M. Wang, F.Y. Bai & A.H. Li
- Kwoniella shandongensis R. Chen, Y.M. Jiang & S.C. Wei ex M. Groenew. & Q.M. Wang
- Leucosporidium creatinivorum (Golubev) M. Groenew. & Q.M. Wang
- Leucosporidium fragarium (J.A. Barnett & Buhagiar) M. Groenew. & Q.M. Wang
- Leucosporidium intermedium (Nakase & M. Suzuki) M. Groenew. & Q.M. Wang
- Leucosporidium muscorum (Di Menna) M. Groenew. & Q.M. Wang
- Leucosporidium yakuticum (Golubev) M. Groenew. & Q.M. Wang
- Meniscomyces Q.M. Wang & F.Y. Bai
- Meniscomyces layueensis Q.M. Wang, F.Y. Bai & A.H. Li
- Microbotryozyma swertiae Q.M. Wang, F.Y. Bai & A.H. Li
- Microsporomyces ellipsoideus Q.M. Wang, F.Y. Bai & A.H. Li
- Microsporomyces pseudomagnisporus Q.M. Wang, F.Y. Bai & A.H. Li
- Microsporomyces rubellus Q.M. Wang, F.Y. Bai & A.H. Li
- Molecular phylogeny
- Naganishia onofrii Turchetti, Selbmann & Zucconi ex Yurkov
- Naganishia vaughanmartiniae Turchetti, Blanchette & Arenz ex Yurkov
- Nielozyma Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Nielozyma formosana Nakase, Tsuzuki, F.L. Lee & M. Takash. ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Nielozyma melastomatis Nakase, Tsuzuki, F.L. Lee & M. Takash. ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Oberwinklerozyma dicranopteridis Q.M. Wang, F.Y. Bai & A.H. Li
- Oberwinklerozyma nepetae Q.M. Wang, F.Y. Bai & A.H. Li
- Oberwinklerozyma silvestris Golubev & Scorzetti ex Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout
- Oberwinklerozyma straminea Golubev & Scorzetti ex Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout
- Papiliotrema aspenensis (Ferreira-Paim, et al.) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Papiliotrema baii Yurkov, M.A. Guerreiro & Á;. Fonseca ex Yurkov
- Papiliotrema frias V. de García, Zalar, Brizzio, Gunde-Cim. & Van Broock ex Yurkov
- Papiliotrema hoabinhensis D.T. Luong, M. Takash., Ty, Dung & Nakase ex Yurkov
- Papiliotrema japonica J.P. Samp., Fonseca & Fell ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Papiliotrema terrestris Crestani, Landell, Faganello, Vainstein, Vishniac & P. Valente ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Papiliotrema wisconsinensis K. Sylvester, Q.M. Wang & Hittinger ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Phaeotremella lactea Q.M. Wang, F.Y. Bai & A.H. Li
- Phaeotremella ovata Q.M. Wang, F.Y. Bai & A.H. Li
- Phaffia aurantiaca Q.M. Wang, F.Y. Bai & A.H. Li
- Phyllozyma aceris Q.M. Wang, F.Y. Bai & A.H. Li
- Phyllozyma jiayinensis Q.M. Wang, F.Y. Bai & A.H. Li
- Piskurozyma fildesensis T.T. Zhang & Li Y. Yu ex Yurkov
- Piskurozyma taiwanensis Nakase, Tsuzuki & M. Takash. ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Pseudobensingtonia fusiformis Q.M. Wang, F.Y. Bai & A.H. Li
- Pseudohyphozyma hydrangeae Q.M. Wang, F.Y. Bai & A.H. Li
- Pseudohyphozyma lulangensis Q.M. Wang, F.Y. Bai & A.H. Li
- Pseudoleucosporidium V. de García, et al. ex M. Groenew. & Q.M. Wang
- Pseudoleucosporidium fasciculatum (Babeva & Lisichk.) M. Groenew. & Q.M. Wang
- Pseudosterigmatospora Q.M. Wang & F.Y. Bai
- Pseudosterigmatospora motuoensis Q.M. Wang, F.Y. Bai & A.H. Li
- Pseudotremella lacticolour Satoh & Makimura ex Yurkov
- Rhodosporidiobolus fuzhouensis Q.M. Wang, F.Y. Bai & A.H. Li
- Rhodosporidiobolus jianfalingensis Q.M. Wang, F.Y. Bai & A.H. Li
- Rhodosporidiobolus platycladi Q.M. Wang, F.Y. Bai & A.H. Li
- Rhynchogastrema complexa (Landell, et al.) Xin Zhan Liu, F.Y. Bai, M. Groenew., Boekhout & Yurkov
- Rhynchogastrema fermentans (C.F. Lee) Xin Zhan Liu, F.Y. Bai, M. Groenew., Boekhout & Yurkov
- Rhynchogastrema glucofermentans (S.O. Suh & M. Blackw.) Xin Zhan Liu, F.Y. Bai, M. Groenew., Boekhout & Yurkov
- Rhynchogastrema nanyangensis F.L. Hui & Q.H. Niu ex Xin Zhan Liu, F.Y. Bai, M. Groenew., Boekhout & Yurkov
- Rhynchogastrema tunnelae (Boekhout, Fell, Scorzetti & Theelen) Xin Zhan Liu, F.Y. Bai, M. Groenew., Boekhout & Yurkov
- Rhynchogastrema visegradensis (G. Péter & Dlauchy) Xin Zhan Liu, F.Y. Bai, M. Groenew., Boekhout &Yurkov
- Robertozyma Q.M. Wang & F.Y. Bai
- Robertozyma ningxiaensis Q.M. Wang, F.Y. Bai & A.H. Li
- Rosettozyma Q.M. Wang & F.Y. Bai
- Rosettozyma cystopteridis Q.M. Wang, F.Y. Bai & A.H. Li
- Rosettozyma motuoensis Q.M. Wang, F.Y. Bai & A.H. Li
- Rosettozyma petaloides Q.M. Wang, F.Y. Bai & A.H. Li
- Rosettozymaceae Q.M. Wang & F.Y. Bai
- Rosettozymales Q.M. Wang & F.Y. Bai
- Ruinenia bangxiensis Q.M. Wang, F.Y. Bai & A.H. Li
- Ruinenia diospyri Nakase, Tsuzuki, F.L. Lee, Jindam. & M. Takash. ex Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout
- Ruinenia fanjingshanensis Q.M. Wang, F.Y. Bai & A.H. Li
- Ruinenia lunata Q.M. Wang, F.Y. Bai & A.H. Li
- Ruinenia pyrrosiae Nakase, Tsuzuki, F.L. Lee, Jindam. & M. Takash. ex Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout
- Saitozyma ninhbinhensis (D.T. Luong, M. Takash., Dung & Nakase)Yurkov
- Saitozyma paraflava Golubev & J.P. Samp. ex Xin Zhan Liu
- Saitozyma pseudoflava Q.M. Wang, F.Y. Bai & A.H. Li
- Sakaguchia melibiophila M. Groenew., Q.M. Wang & F.Y. Bai
- Slooffia globosa Q.M. Wang, F.Y. Bai & A.H. Li
- Solicoccozyma gelidoterrea Q.M. Wang, F.Y. Bai & A.H. Li
- Species diversity
- Sporobolomyces cellobiolyticus Q.M. Wang, F.Y. Bai & A.H. Li
- Sporobolomyces ellipsoideus Q.M. Wang, F.Y. Bai & A.H. Li
- Sporobolomyces primogenomicus Q.M. Wang & F.Y. Bai
- Sporobolomyces reniformis Q.M. Wang, F.Y. Bai & A.H. Li
- Sterigmatospora Q.M. Wang & F.Y. Bai
- Sterigmatospora layueensis Q.M. Wang, F.Y. Bai & A.H. Li
- Symmetrospora oryzicola (Nakase & M. Suzuki) Q.M. Wang & F.Y. Bai
- Symmetrospora rhododendri Q.M. Wang, F.Y. Bai & A.H. Li
- Taxonomy
- Teunia Q.M. Wang & F.Y. Bai
- Teunia betulae K. Sylvester, Q.M. Wang & Hittinger ex Q.M. Wang, F.Y. Bai & A.H. Li
- Teunia cuniculi (K.S. Shin & Y.H. Park) Q.M. Wang, F.Y. Bai & A.H. Li
- Teunia globosa Q.M. Wang, F.Y. Bai & A.H. Li
- Teunia helanensis Q.M. Wang, F.Y. Bai & A.H. Li
- Teunia korlaensis Q.M. Wang, F.Y. Bai & A.H. Li
- Teunia tronadorensis V. de Garcia, Zalar, Brizzio, Gunde-Cim. & van Brook ex Q.M. Wang, F.Y. Bai & A.H. Li
- Tremella basidiomaticola Xin Zhan Liu & F.Y. Bai
- Tremella shuangheensis Q.M. Wang, F.Y. Bai & A.H. Li
- Trimorphomyces sakaeraticus Fungsin, M. Takash. & Nakase ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Vanrija meifongana C.F. Lee ex Kachalkin Yurkov & Boekhout
- Vanrija nantouana C.F. Lee ex Kachalkin Yurkov & Boekhout
- Vanrija thermophila Vogelmann, S. Chaves & C. Hertel ex Kachalkin Yurkov & Boekhout
- Vishniacozyma europaea Q.M. Wang, F.Y. Bai & A.H. Li
- Vishniacozyma foliicola Q.M. Wang & F.Y. Bai ex Yurkov
- Vishniacozyma heimaeyensis Vishniac ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Vishniacozyma melezitolytica Q.M. Wang, F.Y. Bai & A.H. Li
- Vishniacozyma pseudopenaeus Q.M. Wang, F.Y. Bai & A.H. Li
- Vishniacozyma psychrotolerans V. de García, Zalar, Brizzio, Gunde-Cim. & Van Broock ex Yurkov
- Vishniacozyma taibaiensis Q.M. Wang & F.Y. Bai ex Yurkov
- Vishniacozyma tephrensis Vishniac ex Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout
- Yamadamyces Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout
- Yamadamyces rosulatus Golubev & Scorzetti ex Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout
- Yamadamyces terricola Q.M. Wang, F.Y. Bai & A.H. Li
- Yurkovia longicylindrica Q.M. Wang, F.Y. Bai & A.H. Li
Collapse
Affiliation(s)
- A-H Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,China General Microbiological Culture Collection Center and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - F-X Yuan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,North Minzu University, Yinchuan, Ningxia, 750030, China
| | - M Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - K Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A M Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, 38124, Germany
| | - K Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - P-J Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - L-D Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - M C Aime
- Purdue University, Department of Botany and Plant Pathology, West Lafayette, IN, 47901, USA
| | - J P Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,PYCC - Portuguese Yeast Culture Collection, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - S Jindamorakot
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - B Turchetti
- Department of Agriculture, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, Perugia, 74 - I-06121, Italy
| | - J Inacio
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - B Fungsin
- TISTR Culture Collection, Thailand Institute of Scientific and Technological Research (TISTR), 35 M 3, Technopolis, Khlong Ha, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Q-M Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, Hebei University, Baoding, Hebei Province, 071002, China
| | - F-Y Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
419
|
Xu H, Yang Y, Tian Y, Xu R, Zhong Y, Liao H. Rhizobium Inoculation Drives the Shifting of Rhizosphere Fungal Community in a Host Genotype Dependent Manner. Front Microbiol 2020; 10:3135. [PMID: 32038569 PMCID: PMC6985466 DOI: 10.3389/fmicb.2019.03135] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022] Open
Abstract
Rhizosphere microorganisms play important roles in plant health and nutrition, and interactions among plants and microorganisms are important for establishment of root microbiomes. As yet, plant-microbe and microbe-microbe interactions in the rhizosphere remain largely mysterious. In this study, rhizosphere fungal community structure was first studied in a field experiment with two soybean cultivars contrasting in nodulation grown in two rhizobium inoculation treatments. Following this, recombinant inbred lines (RILs) contrasting in markers across three QTLs for biological nitrogen fixation (BNF) were evaluated for effects of genotype and rhizobium inoculation to the rhizosphere fungal community as assessed using ITS1 amplicon sequencing. The soybean plants tested herein not only hosted rhizosphere fungal communities that were distinct from bulk soils, but also specifically recruited and enriched Cladosporium from bulk soils. The resulting rhizosphere fungal communities varied among soybean genotypes, as well as, between rhizobium inoculation treatments. Besides, Cladosporium were mostly enriched in the rhizospheres of soybean genotypes carrying two or three favorable BNF QTLs, suggesting a close association between soybean traits associated with nodulation and those affecting the rhizosphere fungal community. This inference was bolstered by the observation that introduction of exogenous rhizobia significantly altered rhizosphere fungal communities to the point that these communities could be distinguished based on the combination of soybean genotype and whether exogenous rhizobia was applied. Interestingly, grouping of host plants by BNF QTLs also distinguished fungal community responses to rhizobium inoculation. Taken together, these results reveal that complex cross-kingdom interactions exist among host plants, symbiotic N2 fixing bacteria and fungal communities in the soybean rhizosphere.
Collapse
Affiliation(s)
| | | | | | | | - Yongjia Zhong
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | | |
Collapse
|
420
|
Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 2020; 17:95-109. [PMID: 30442909 DOI: 10.1038/s41579-018-0116-y] [Citation(s) in RCA: 444] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fungi are major ecological players in both terrestrial and aquatic environments by cycling organic matter and channelling nutrients across trophic levels. High-throughput sequencing (HTS) studies of fungal communities are redrawing the map of the fungal kingdom by hinting at its enormous - and largely uncharted - taxonomic and functional diversity. However, HTS approaches come with a range of pitfalls and potential biases, cautioning against unwary application and interpretation of HTS technologies and results. In this Review, we provide an overview and practical recommendations for aspects of HTS studies ranging from sampling and laboratory practices to data processing and analysis. We also discuss upcoming trends and techniques in the field and summarize recent and noteworthy results from HTS studies targeting fungal communities and guilds. Our Review highlights the need for reproducibility and public data availability in the study of fungal communities. If the associated challenges and conceptual barriers are overcome, HTS offers immense possibilities in mycology and elsewhere.
Collapse
Affiliation(s)
- R Henrik Nilsson
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Sten Anslan
- Zoological Institute, Braunschweig University of Technology, Braunschweig, Germany
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic
| | - Leho Tedersoo
- Natural History Museum of Tartu University, Tartu, Estonia
| |
Collapse
|
421
|
Green Biological Synthesis of Nanoparticles and Their Biomedical Applications. NANOTECHNOLOGY IN THE LIFE SCIENCES 2020. [DOI: 10.1007/978-3-030-44176-0_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
422
|
Kollerov V, Shutov A, Kazantsev A, Donova M. Biotransformation of androstenedione and androstadienedione by selected Ascomycota and Zygomycota fungal strains. PHYTOCHEMISTRY 2020; 169:112160. [PMID: 31600654 DOI: 10.1016/j.phytochem.2019.112160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/30/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Filamentous fungi is a huge phylum of lower eukaryotes with diverse activities towards various substrates, however, their biocatalytic potential towards steroids remains greatly underestimated. In this study, more than forty Ascomycota and Zygomycota fungal strains of 23 different genera were screened for the ability to catalyze structural modifications of 3-oxo-androstane steroids, - androst-4-ene-3,17-dione (AD) and androsta-1,4-diene-3,17-dione (ADD). Previously unexplored for these purposes strains of Absidia, Acremonium, Beauveria, Cunninghamella, Doratomyces, Drechslera, Fusarium, Gibberella genera were revealed capable of producing in a good yield valuable 7α-, 7β-, 11α- and 14α-hydroxylated derivatives, as well as 17β-reduced and 1(2)-dehydrogenated androstanes. The bioconversion routes of AD and ADD were proposed based on the key intermediates identification and time courses of the bioprocesses. Six ascomycete strains were discovered to provide effective 7β-hydroxylation of ADD which has not been so far reported. The structures of major products and intermediates were confirmed by HPLC, mass-spectrometry (MS), 1H and 13C NMR analyses. The results contribute to the knowledge on the functional diversity of steroid-transforming filamentous fungi. Previously unexplored fungal biocatalysts capable of effective performing structural modification of AD and ADD can be applied for industrial bioprocesses of new generation.
Collapse
Affiliation(s)
- Vyacheslav Kollerov
- Federal Research Center «Pushchino Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, 142290, Pushchino, Moscow Region, Russia; Pharmins Ltd., Institutskaya ul, 4, 142290, Pushchino, Moscow Region, Russia.
| | - Andrei Shutov
- Federal Research Center «Pushchino Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, 142290, Pushchino, Moscow Region, Russia; Pharmins Ltd., Institutskaya ul, 4, 142290, Pushchino, Moscow Region, Russia
| | - Alexey Kazantsev
- Moscow State University, GSP-1, Leninskiye Gori, 1, Chemical Department, Moscow, Russia
| | - Marina Donova
- Federal Research Center «Pushchino Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, 142290, Pushchino, Moscow Region, Russia; Pharmins Ltd., Institutskaya ul, 4, 142290, Pushchino, Moscow Region, Russia
| |
Collapse
|
423
|
Zhao J, Gao Q, Zhou J, Wang M, Liang Y, Sun B, Chu H, Yang Y. The scale dependence of fungal community distribution in paddy soil driven by stochastic and deterministic processes. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
424
|
Zeng X, Kong S, Zheng S, Cheng Y, Wu F, Niu Z, Yan Q, Wu J, Zheng H, Zheng M, Zeng XC, Chen N, Xu K, Zhu B, Yan Y, Qi S. Variation of airborne DNA mass ratio and fungal diversity in fine particles with day-night difference during an entire winter haze evolution process of Central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133802. [PMID: 31756794 DOI: 10.1016/j.scitotenv.2019.133802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Airborne fungi are a primary component of bioaerosols and proved to impact human health and climatic change. Deoxyribonucleic acid (DNA) is the essential component of most living organisms with relatively stable physicochemical properties. Little is known about day-night and pollution-episode differences of DNA mass ratio and fungal community in fine particles (PM2.5) during serious winter haze events in China. Here we collected twenty-nine PM2.5 samples every day and night during an entire winter haze evolution process in a megacity of Central China, Wuhan. DNA extraction and high-throughput sequencing methods were adopted to analyze fungal community. Results showed that mass ratio of DNA in PM2.5 (RD/P %) changed with pollution process and showed significant negative correlations with PM2.5 concentration (r = -0.72, P < 0.05) and temperature (r = -0.74, P < 0.05). RD/P became lower (4.40 × 10-4%) after haze episodes than before (7.16 × 10-4%). RD/P of night-samples (1.98 × 10-4-4.97 × 10-4%) were all lower than those for day-samples (3.05 × 10-4-9.99 × 10-4%) for the same period. The fungal species richness became much lower (76 operational taxonomic units (OTUs)) after haze episodes than before (198 OTUs). The species richness of night-samples (119-537 OTUs) were all higher than those of day-samples (71-198 OTUs) for the same period. The OTUs specially owned by night-samples were also more than those by day-samples. Fungal community diversity showed random variations. The fungal community composition of each sample was classified from phylum to genus level. Pathogenic fungi accounted for 8.60% of the entire fungal community. The significantly enriched fungal taxa in the night-sample group (29 taxa) were also much more than that in the day-sample group (9 taxa), which could explain the higher species richness of airborne fungi community in the night during the haze evolution episodes. These findings may serve as an important reference or inspiration to other aerosol studies focusing on human health and behavior of aerosols in the atmosphere.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Atmospheric Science, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China; Department of Environmental Science and Technology, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China
| | - Shaofei Kong
- Department of Atmospheric Science, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China.
| | - Shurui Zheng
- Department of Atmospheric Science, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China
| | - Yi Cheng
- Department of Atmospheric Science, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China
| | - Fangqi Wu
- Department of Atmospheric Science, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China
| | - Zhenzhen Niu
- Department of Atmospheric Science, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China
| | - Qin Yan
- Department of Atmospheric Science, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China; Department of Environmental Science and Technology, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China
| | - Jian Wu
- Department of Atmospheric Science, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China; Department of Environmental Science and Technology, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China
| | - Huang Zheng
- Department of Atmospheric Science, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China; Department of Environmental Science and Technology, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China
| | - Mingming Zheng
- Department of Environmental Science and Technology, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China; Hubei Environmental Monitoring Centre, Wuhan 430072, China
| | - Xian-Chun Zeng
- Department of Environmental Science and Technology, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China
| | - Nan Chen
- Hubei Environmental Monitoring Centre, Wuhan 430072, China
| | - Ke Xu
- Hubei Environmental Monitoring Centre, Wuhan 430072, China
| | - Bo Zhu
- Hubei Environmental Monitoring Centre, Wuhan 430072, China
| | - Yingying Yan
- Department of Atmospheric Science, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China
| | - Shihua Qi
- Department of Environmental Science and Technology, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
425
|
Identification and Characterization of Aspergillus nidulans Mutants Impaired in Asexual Development under Phosphate Stress. Cells 2019; 8:cells8121520. [PMID: 31779253 PMCID: PMC6952808 DOI: 10.3390/cells8121520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 01/04/2023] Open
Abstract
The transcription factor BrlA plays a central role in the production of asexual spores (conidia) in the fungus Aspergillus nidulans. BrlA levels are controlled by signal transducers known collectively as UDAs. Furthermore, it governs the expression of CDP regulators, which control most of the morphological transitions leading to the production of conidia. In response to the emergence of fungal cells in the air, the main stimulus triggering conidiation, UDA mutants such as the flbB deletant fail to induce brlA expression. Nevertheless, ΔflbB colonies conidiate profusely when they are cultured on a medium containing high H2PO4− concentrations, suggesting that the need for FlbB activity is bypassed. We used this phenotypic trait and an UV-mutagenesis procedure to isolate ΔflbB mutants unable to conidiate under these stress conditions. Transformation of mutant FLIP166 with a wild-type genomic library led to the identification of the putative transcription factor SocA as a multicopy suppressor of the FLIP (Fluffy, aconidial, In Phosphate) phenotype. Deregulation of socA altered both growth and developmental patterns. Sequencing of the FLIP166 genome enabled the identification and characterization of PmtCP282L as the recessive mutant form responsible for the FLIP phenotype. Overall, results validate this strategy for identifying genes/mutations related to the control of conidiation.
Collapse
|
426
|
Population Structure and Genetic Diversity among Isolates of Coccidioides posadasii in Venezuela and Surrounding Regions. mBio 2019; 10:mBio.01976-19. [PMID: 31772050 PMCID: PMC6879716 DOI: 10.1128/mbio.01976-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Coccidioides posadasii is a pathogenic fungus that causes coccidioidomycosis in many arid regions of the Americas. One of these regions is bordered by the Caribbean Sea, and the surrounding landscape may play an important role in the dispersion of C. posadasii across South America through southeastern Mexico, Honduras, Guatemala, and Venezuela. Comparative phylogenomic analyses of C. posadasii reveal that clinical strains from Venezuela are genetically distinct from the North American populations found in (i) Arizona and (ii) Texas, Mexico, and the rest of South America (TX/MX/SA). We find evidence for admixture between the Venezuela and the North American populations of C. posadasii in Central America. Additionally, the proportion of Venezuelan alleles in the admixed population decreases as latitude (and distance from Venezuela) increases. Our results indicate that the population in Venezuela may have been subjected to a recent bottleneck and shows a strong population structure. This analysis provides insight into potential for Coccidioides spp. to invade new regions.IMPORTANCE Valley Fever is a fungal disease caused by two species of fungi: Coccidioides immitis and C. posadasii These fungi are found throughout the arid regions of North and South America; however, our understanding of genetic diversity and disease in South America is limited. In this report, we analyze 10 new genomes of Coccidioides posadasii from regions bordering the Caribbean Sea. We show that these populations are distinct and that isolates from Venezuela are likely a result of a recent bottleneck. These data point to patterns that might be observed when investigating recently established populations.
Collapse
|
427
|
Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, Busby PE, Christian N, Cornwell WK, Crowther TW, Flores-Moreno H, Floudas D, Gazis R, Hibbett D, Kennedy P, Lindner DL, Maynard DS, Milo AM, Nilsson RH, Powell J, Schildhauer M, Schilling J, Treseder KK. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol Rev Camb Philos Soc 2019; 95:409-433. [PMID: 31763752 DOI: 10.1111/brv.12570] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022]
Abstract
Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro-organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function. Trait-based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and -omics-based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun ). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait-based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.
Collapse
Affiliation(s)
- Amy E Zanne
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, U.S.A
| | - Kessy Abarenkov
- Natural History Museum, University of Tartu, Vanemuise 46, Tartu, 51014, Estonia
| | - Michelle E Afkhami
- Department of Biology, University of Miami, Coral Gables, FL, 33146, U.S.A
| | - Carlos A Aguilar-Trigueros
- Freie Universität-Berlin, Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Scott Bates
- Department of Biological Sciences, Purdue University Northwest, Westville, IN, 46391, U.S.A
| | | | - Posy E Busby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97330, U.S.A
| | - Natalie Christian
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, U.S.A.,Department of Biology, University of Louisville, Louisville, KY 40208, U.S.A
| | - William K Cornwell
- Evolution & Ecology Research Centre, School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Thomas W Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Habacuc Flores-Moreno
- Department of Ecology, Evolution, and Behavior, and Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Dimitrios Floudas
- Microbial Ecology Group, Department of Biology, Lund University, Lund, Sweden
| | - Romina Gazis
- Department of Plant Pathology, Tropical Research & Education Center, University of Florida, Homestead, FL, 33031, U.S.A
| | - David Hibbett
- Biology Department, Clark University, Worcester, MA, 01610, U.S.A
| | - Peter Kennedy
- Plant & Microbial Biology, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Daniel L Lindner
- US Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, Wisconsin, WI, 53726, U.S.A
| | - Daniel S Maynard
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Amy M Milo
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, U.S.A
| | - Rolf Henrik Nilsson
- University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, Box 461, 405 30, Göteborg, Sweden
| | - Jeff Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Mark Schildhauer
- National Center for Ecological Analysis and Synthesis, 735 State Street, Suite 300, Santa Barbara, CA, 93101, U.S.A
| | - Jonathan Schilling
- Plant & Microbial Biology, University of Minnesota, St. Paul, MN, 55108, U.S.A
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, U.S.A
| |
Collapse
|
428
|
Osono T. Functional diversity of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 2019. [DOI: 10.1111/1440-1703.12063] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Takashi Osono
- Faculty of Science and Engineering Doshisha University Kyotanabe Kyoto Japan
| |
Collapse
|
429
|
Becker P, Bosschaerts M, Chaerle P, Daniel HM, Hellemans A, Olbrechts A, Rigouts L, Wilmotte A, Hendrickx M. Public Microbial Resource Centers: Key Hubs for Findable, Accessible, Interoperable, and Reusable (FAIR) Microorganisms and Genetic Materials. Appl Environ Microbiol 2019; 85:e01444-19. [PMID: 31471301 PMCID: PMC6803313 DOI: 10.1128/aem.01444-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In the context of open science, the availability of research materials is essential for knowledge accumulation and to maximize the impact of scientific research. In microbiology, microbial domain biological resource centers (mBRCs) have long-standing experience in preserving and distributing authenticated microbial strains and genetic materials (e.g., recombinant plasmids and DNA libraries) to support new discoveries and follow-on studies. These culture collections play a central role in the conservation of microbial biodiversity and have expertise in cultivation, characterization, and taxonomy of microorganisms. Information associated with preserved biological resources is recorded in databases and is accessible through online catalogues. Legal expertise developed by mBRCs guarantees end users the traceability and legality of the acquired material, notably with respect to the Nagoya Protocol. However, awareness of the advantages of depositing biological materials in professional repositories remains low, and the necessity of securing strains and genetic resources for future research must be emphasized. This review describes the unique position of mBRCs in microbiology and molecular biology through their history, evolving roles, expertise, services, challenges, and international collaborations. It also calls for an increased deposit of strains and genetic resources, a responsibility shared by scientists, funding agencies, and publishers. Journal policies requesting a deposit during submission of a manuscript represent one of the measures to make more biological materials available to the broader community, hence fully releasing their potential and improving openness and reproducibility in scientific research.
Collapse
Affiliation(s)
- P Becker
- BCCM/IHEM Fungi Collection, Mycology and Aerobiology, Sciensano, Brussels, Belgium
| | - M Bosschaerts
- BCCM Coordination Cell, Belgian Science Policy, Brussels, Belgium
| | - P Chaerle
- BCCM/DCG Diatoms Collection, Ghent University, Ghent, Belgium
| | - H-M Daniel
- BCCM/MUCL, Mycothèque de l'Université Catholique de Louvain, Earth and Life Institute, Mycology Laboratory, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - A Hellemans
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Faculty of Science, Ghent University, Ghent, Belgium
| | - A Olbrechts
- BCCM/GeneCorner Plasmid Collection, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - L Rigouts
- BCCM/ITM Mycobacteria Collection, Institute of Tropical Medicine, Antwerp, Belgium
| | - A Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBios-Centre for Protein Engineering, Université de Liège, Liège, Belgium
| | - M Hendrickx
- BCCM/IHEM Fungi Collection, Mycology and Aerobiology, Sciensano, Brussels, Belgium
| |
Collapse
|
430
|
Sande D, Oliveira GPD, Moura MAFE, Martins BDA, Lima MTNS, Takahashi JA. Edible mushrooms as a ubiquitous source of essential fatty acids. Food Res Int 2019; 125:108524. [DOI: 10.1016/j.foodres.2019.108524] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022]
|
431
|
Collado E, Bonet JA, Camarero JJ, Egli S, Peter M, Salo K, Martínez-Peña F, Ohenoja E, Martín-Pinto P, Primicia I, Büntgen U, Kurttila M, Oria-de-Rueda JA, Martínez-de-Aragón J, Miina J, de-Miguel S. Mushroom productivity trends in relation to tree growth and climate across different European forest biomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:602-615. [PMID: 31279206 DOI: 10.1016/j.scitotenv.2019.06.471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Although it is logical to think that mycorrhizal mushroom production should be somehow related to the growth of the trees from which the fungi obtain carbohydrates, little is known about how mushroom yield patterns are related to tree performance. In this study, we delved into the understanding of the relationships between aboveground fungal productivity, tree radial growth patterns and climatic conditions across three latitudinally different bioclimatic regions encompassing Mediterranean, temperate and boreal forest ecosystems in Europe. For this purpose, we used a large assemblage of long-term data of weekly or biweekly mushroom yield monitoring in Spain, Switzerland and Finland. We analysed the relationships between annual mushroom yield (considering both biomass and number of sporocarps per unit area), tree ring features (tree ring, earlywood and latewood widths), and meteorological conditions (i.e. precipitation and temperature of summer and autumn) from different study sites and forest ecosystems, using both standard and partial correlations. Moreover, we fitted predictive models to estimate mushroom yield from mycorrhizal and saprotrophic fungal guilds based on climatic and dendrochronological variables. Significant synchronies between mushroom yield and climatic and dendrochronological variables were mostly found in drier Mediterranean sites, while few or no significant correlations were found in the boreal and temperate regions. We observed positive correlations between latewood growth and mycorrhizal mushroom biomass only in some Mediterranean sites, this relationship being mainly mediated by summer and autumn precipitation. Under more water-limited conditions, both the seasonal wood production and the mushroom yield are more sensitive to precipitation events, resulting in higher synchrony between both variables. This comparative study across diverse European forest biomes and types provides new insights into the relationship between mushroom productivity, tree growth and weather conditions.
Collapse
Affiliation(s)
- E Collado
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain.
| | - J A Bonet
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
| | - J J Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain
| | - S Egli
- Swiss Federal Research Institute WSL, Zurcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - M Peter
- Swiss Federal Research Institute WSL, Zurcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - K Salo
- Natural Resources Institute Finland (Luke), Yliopistokatu 6, FI-80100 Joensuu, Finland
| | - F Martínez-Peña
- European Mycological Institute EGTC-EMI, 42003 Soria, Spain; Agrifood Research and Technology Centre of Aragon CITA, Montañana 930, 50059 Zaragoza, Spain
| | - E Ohenoja
- Biodiversity Unit/Botanical Museum, P.O.B. 3000, FI-90014, University of Oulu, Finland
| | - P Martín-Pinto
- Instituto Universitario de Gestión Forestal Sostenible (UVA-INIA), Avda. Madrid, s/n, E-34004 Palencia, Spain; Escuela Técnica Superior de Ingenierías Agrarias de Palencia (ETSIIA), Universidad de Valladolid (UVA), Avda. Madrid, s/n, E-34004 Palencia, Spain
| | - I Primicia
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain
| | - U Büntgen
- Swiss Federal Research Institute WSL, Zurcherstrasse 111, 8903 Birmensdorf, Switzerland; Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK; Global Change Research Centre and Masaryk University Brno, Bělidla 986/4a, 61300 Brno, Czech Republic
| | - M Kurttila
- Natural Resources Institute Finland (Luke), Yliopistokatu 6, FI-80100 Joensuu, Finland
| | - J A Oria-de-Rueda
- Instituto Universitario de Gestión Forestal Sostenible (UVA-INIA), Avda. Madrid, s/n, E-34004 Palencia, Spain; Escuela Técnica Superior de Ingenierías Agrarias de Palencia (ETSIIA), Universidad de Valladolid (UVA), Avda. Madrid, s/n, E-34004 Palencia, Spain
| | - J Martínez-de-Aragón
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
| | - J Miina
- Natural Resources Institute Finland (Luke), Yliopistokatu 6, FI-80100 Joensuu, Finland
| | - S de-Miguel
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
| |
Collapse
|
432
|
|
433
|
Zhang S, Zhang YJ. Proposal of a new nomenclature for introns in protein-coding genes in fungal mitogenomes. IMA Fungus 2019; 10:15. [PMID: 32647619 PMCID: PMC7325650 DOI: 10.1186/s43008-019-0015-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022] Open
Abstract
Fungal mitochondrial genes are often invaded by group I or II introns, which represent an ideal marker for understanding fungal evolution. A standard nomenclature of mitochondrial introns is needed to avoid confusion when comparing different fungal mitogenomes. Currently, there has been a standard nomenclature for introns present in rRNA genes, but there is a lack of a standard nomenclature for introns present in protein-coding genes. In this study, we propose a new nomenclature system for introns in fungal mitochondrial protein-coding genes based on (1) three-letter abbreviation of host scientific name, (2) host gene name, (3), one capital letter P (for group I introns), S (for group II introns), or U (for introns with unknown types), and (4) intron insertion site in the host gene according to the cyclosporin-producing fungus Tolypocladium inflatum. The suggested nomenclature was proved feasible by naming introns present in mitogenomes of 16 fungi of different phyla, including both basal and higher fungal lineages although minor adjustment of the nomenclature is needed to fit certain special conditions. The nomenclature also had the potential to name plant/protist/animal mitochondrial introns. We hope future studies follow the proposed nomenclature to ensure direct comparison across different studies.
Collapse
Affiliation(s)
- Shu Zhang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006 China
| | - Yong-Jie Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006 China
| |
Collapse
|
434
|
Nawaz A, Purahong W, Herrmann M, Küsel K, Buscot F, Wubet T. DNA- and RNA- Derived Fungal Communities in Subsurface Aquifers Only Partly Overlap but React Similarly to Environmental Factors. Microorganisms 2019; 7:microorganisms7090341. [PMID: 31514383 PMCID: PMC6780912 DOI: 10.3390/microorganisms7090341] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Recent advances in high-throughput sequencing (HTS) technologies have revolutionized our understanding of microbial diversity and composition in relation to their environment. HTS-based characterization of metabolically active (RNA-derived) and total (DNA-derived) fungal communities in different terrestrial habitats has revealed profound differences in both richness and community compositions. However, such DNA- and RNA-based HTS comparisons are widely missing for fungal communities of groundwater aquifers in the terrestrial biogeosphere. Therefore, in this study, we extracted DNA and RNA from groundwater samples of two pristine aquifers in the Hainich CZE and employed paired-end Illumina sequencing of the fungal nuclear ribosomal internal transcribed spacer 2 (ITS2) region to comprehensively test difference/similarities in the “total” and “active” fungal communities. We found no significant differences in the species richness between the DNA- and RNA-derived fungal communities, but the relative abundances of various fungal operational taxonomic units (OTUs) appeared to differ. We also found the same set of environmental parameters to shape the “total” and “active” fungal communities in the targeted aquifers. Furthermore, our comparison also underlined that about 30%–40% of the fungal OTUs were only detected in RNA-derived communities. This implies that the active fungal communities analyzed by HTS methods in the subsurface aquifers are actually not a subset of supposedly total fungal communities. In general, our study highlights the importance of differentiating the potential (DNA-derived) and expressed (RNA-derived) members of the fungal communities in aquatic ecosystems.
Collapse
Affiliation(s)
- Ali Nawaz
- Helmholtz Centre for Environmental Research-UFZ, Department of Soil Ecology, 06120 Halle (Saale), Germany.
- Helmholtz Centre for Environmental Research-UFZ, Department of Community Ecology, 06120 Halle (Saale), Germany.
- Institute of Biology, University of Leipzig, 04103 Leipzig, Germany.
| | - Witoon Purahong
- Helmholtz Centre for Environmental Research-UFZ, Department of Soil Ecology, 06120 Halle (Saale), Germany.
| | - Martina Herrmann
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
| | - Kirsten Küsel
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
| | - François Buscot
- Helmholtz Centre for Environmental Research-UFZ, Department of Soil Ecology, 06120 Halle (Saale), Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
| | - Tesfaye Wubet
- Helmholtz Centre for Environmental Research-UFZ, Department of Soil Ecology, 06120 Halle (Saale), Germany.
- Helmholtz Centre for Environmental Research-UFZ, Department of Community Ecology, 06120 Halle (Saale), Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
| |
Collapse
|
435
|
Retter A, Nilsson RH, Bourlat SJ. Exploring the taxonomic composition of two fungal communities on the Swedish west coast through metabarcoding. Biodivers Data J 2019; 7:e35332. [PMID: 31871405 PMCID: PMC6739426 DOI: 10.3897/bdj.7.e35332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Fungi are heterotrophic, unicellular or filamentous organisms that exhibit a wide range of different lifestyles as, e.g., symbionts, parasites, and saprotrophs. Mycologists have traditionally considered fungi to be a nearly exclusively terrestrial group of organisms, but it is now known that fungi have a significant presence in aquatic environments as well. We know little about most fungi in limnic and marine systems, including aspects of their taxonomy, ecology, and geographic distribution. The present study seeks to improve our knowledge of fungi in the marine environment. The fungal communities of two coastal marine environments of the Kattegat sea, Sweden, were explored with metabarcoding techniques using the nuclear ribosomal internal transcribed spacer 2 (ITS2) metabarcode. Our data add new information to the current picture of fungal community composition in benthic and coastal habitats in Northern Europe. NEW INFORMATION The dataset describes the number of operational taxonomic units (OTUs) and their taxonomic affiliations in two littoral gradients sampled on the Swedish west coast, Gothenburg municipality. Our data include basic diversity indices as well as chemical and edaphic sediment/soil parameters of the sampling sites. From the sites, 3470 and 4315 fungal OTUs, respectively, were recovered. The number of reads were 673,711 and 779,899, respectively, after quality filtering. Within the benthic sites, more than 80% of the sequences could not be classified taxonomically. The phylum composition of the classifiable sequences was dominated in both localities by Dikarya, which made up around 33% of the OTUs. Within Dikarya, Ascomycota was the dominant phylum. Guild assignment failed for more than half of the classifiable OTUs, with undefined saprotrophs being the most common resolved guild. This guild classification was slightly more common in the ocean sediment samples than in the terrestrial ones. Our metadata indicated that ocean sites contain organisms at a lower trophic level and that there are predominantly endophytic, parasitic, and pathogenic fungi in the marine environments. This hints at the presence of interesting and currently poorly understood fungus-driven ecological processes. It is also clear from our results that a very large number of marine fungi are in urgent need of taxonomic study and formal description.
Collapse
Affiliation(s)
- Alice Retter
- University of Vienna, Vienna, AustriaUniversity of ViennaViennaAustria
| | - R. Henrik Nilsson
- University of Gothenburg, Göteborg, SwedenUniversity of GothenburgGöteborgSweden
- Gothenburg Global Biodiversity Centre, Gothenburg, SwedenGothenburg Global Biodiversity CentreGothenburgSweden
| | - Sarah J. Bourlat
- Zoological Research Museum Alexander Koenig, Bonn, GermanyZoological Research Museum Alexander KoenigBonnGermany
| |
Collapse
|
436
|
Beatrix Potter, Author, Naturalist, Mycologist. Emerg Infect Dis 2019. [PMCID: PMC6711238 DOI: 10.3201/eid2509.ac2509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
437
|
Heeger F, Wurzbacher C, Bourne EC, Mazzoni CJ, Monaghan MT. Combining the 5.8S and ITS2 to improve classification of fungi. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13266] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Felix Heeger
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Berlin Center for Genomics in Biodiversity Research Berlin Germany
| | - Christian Wurzbacher
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Berlin Center for Genomics in Biodiversity Research Berlin Germany
- Chair of Urban Water Systems Engineering Technical University of Munich Garching Germany
| | - Elizabeth C. Bourne
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Berlin Center for Genomics in Biodiversity Research Berlin Germany
| | - Camila J. Mazzoni
- Berlin Center for Genomics in Biodiversity Research Berlin Germany
- Department of Evolutionary Genetics Leibniz Institute of Zoo‐ and Wildlife Research (IZW) Berlin Germany
| | - Michael T. Monaghan
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Berlin Center for Genomics in Biodiversity Research Berlin Germany
- Institut für Biologie Freie Universität Berlin Berlin Germany
| |
Collapse
|
438
|
Marcelino VR, Irinyi L, Eden JS, Meyer W, Holmes EC, Sorrell TC. Metatranscriptomics as a tool to identify fungal species and subspecies in mixed communities - a proof of concept under laboratory conditions. IMA Fungus 2019; 10:12. [PMID: 32355612 PMCID: PMC7184889 DOI: 10.1186/s43008-019-0012-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
High-throughput sequencing (HTS) enables the generation of large amounts of genome sequence data at a reasonable cost. Organisms in mixed microbial communities can now be sequenced and identified in a culture-independent way, usually using amplicon sequencing of a DNA barcode. Bulk RNA-seq (metatranscriptomics) has several advantages over DNA-based amplicon sequencing: it is less susceptible to amplification biases, it captures only living organisms, and it enables a larger set of genes to be used for taxonomic identification. Using a model mock community comprising 17 fungal isolates, we evaluated whether metatranscriptomics can accurately identify fungal species and subspecies in mixed communities. Overall, 72.9% of the RNA transcripts were classified, from which the vast majority (99.5%) were correctly identified at the species level. Of the 15 species sequenced, 13 were retrieved and identified correctly. We also detected strain-level variation within the Cryptococcus species complexes: 99.3% of transcripts assigned to Cryptococcus were classified as one of the four strains used in the mock community. Laboratory contaminants and/or misclassifications were diverse, but represented only 0.44% of the transcripts. Hence, these results show that it is possible to obtain accurate species- and strain-level fungal identification from metatranscriptome data as long as taxa identified at low abundance are discarded to avoid false-positives derived from contamination or misclassifications. This study highlights both the advantages and current challenges in the application of metatranscriptomics in clinical mycology and ecological studies.
Collapse
Affiliation(s)
- Vanesa R Marcelino
- 1Marie Bashir Institute for Infectious Diseases and Biosecurity and Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW 2006 Australia.,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145 Australia.,4School of Life & Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
| | - Laszlo Irinyi
- 1Marie Bashir Institute for Infectious Diseases and Biosecurity and Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW 2006 Australia.,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
| | - John-Sebastian Eden
- 1Marie Bashir Institute for Infectious Diseases and Biosecurity and Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW 2006 Australia.,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
| | - Wieland Meyer
- 1Marie Bashir Institute for Infectious Diseases and Biosecurity and Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW 2006 Australia.,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145 Australia.,3Westmead Hospital (Research and Education Network), Westmead, NSW 2145 Australia
| | - Edward C Holmes
- 1Marie Bashir Institute for Infectious Diseases and Biosecurity and Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW 2006 Australia.,4School of Life & Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
| | - Tania C Sorrell
- 1Marie Bashir Institute for Infectious Diseases and Biosecurity and Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW 2006 Australia.,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
| |
Collapse
|
439
|
García-Bastidas FA, Van der Veen AJT, Nakasato-Tagami G, Meijer HJG, Arango-Isaza RE, Kema GHJ. An Improved Phenotyping Protocol for Panama Disease in Banana. FRONTIERS IN PLANT SCIENCE 2019; 10:1006. [PMID: 31447871 PMCID: PMC6691145 DOI: 10.3389/fpls.2019.01006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/18/2019] [Indexed: 05/06/2023]
Abstract
Fusarium oxysporum (Fo) belongs to a group of soil-borne hyphomycetes that are taxonomically collated in the Fusarium oxysporum Species Complex (FOSC). Hitherto, those infecting bananas were placed in the forma specialis cubense (Foc). Recently, however, these genetically different Foc lineages were recognized as new Fusarium spp. placed in the Fusarium of Banana Complex (FOBC). A member of this complex F. odoratissimum II-5 that uniquely comprises the so-called Tropical Race 4 (TR4), is a major problem sweeping through production zones of Cavendish banana in several regions of the world. Because of this, there is an urgent need for a phenotyping method that allows the screening for resistance to TR4 of large numbers of banana genotypes. Most Fusarium species produce three types of spores: macroconidia, microconidia and the persistent chlamydospores that can contaminate soils for many years. Inoculum production has been an important bottleneck for efficient phenotyping due to the low or variable number of conidia and the elaborate laboratory procedures requiring specific infrastructure. Here, we report a rapid, simple and high-yielding spore production method for nine F. oxysporum formae speciales as well as the biocontrol species Fo47 and Fo618-12. For Fusarium spp. causing Fusarium wilt or Panama disease of banana, we used the protocol for four species comprising the recognized physiological races, including Tropical Race 4 (TR4). We subsequently tested the produced inoculum in comparative inoculation trials on banana plants to evaluate their efficiency. All assays resulted in typical symptoms within 10 weeks; significant differences in final disease ratings were observed, depending on inoculum concentration. Pouring inoculum directly onto banana plants showed the most consistent and reproducible results, as expressed in external wilting, internal discoloration and determined by real-time PCR assays on entire rhizomes. Moreover, this method allows the inoculation of 250 plants per hour by one individual thereby facilitating the phenotyping of large mutant and breeding populations.
Collapse
Affiliation(s)
| | | | | | - Harold J. G. Meijer
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Gert H. J. Kema
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
440
|
Lendemer JC, Keepers KG, Tripp EA, Pogoda CS, McCain CM, Kane NC. A taxonomically broad metagenomic survey of 339 species spanning 57 families suggests cystobasidiomycete yeasts are not ubiquitous across all lichens. AMERICAN JOURNAL OF BOTANY 2019; 106:1090-1095. [PMID: 31397894 DOI: 10.1002/ajb2.1339] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Lichens are fungi that enter into obligate symbioses with photosynthesizing organisms (algae, cyanobacteria). Traditional narratives of lichens as binary symbiont pairs have given way to their recognition as dynamic metacommunities. Basidiomycete yeasts, particularly of the genus Cyphobasidium, have been inferred to be widespread and important components of lichen metacommunities. Yet, the presence of basidiomycete yeasts across a wide diversity of lichen lineages has not previously been tested. METHODS We searched for lichen-associated cystobasidiomycete yeasts in newly generated metagenomic data from 413 samples of 339 lichen species spanning 57 families and 25 orders. The data set was generated as part of a large-scale project to study lichen biodiversity gradients in the southern Appalachian Mountains Biodiversity Hotspot of southeastern North America. RESULTS Our efforts detected cystobasidiomycete yeasts in nine taxa (Bryoria nadvornikiana, Heterodermia leucomelos, Lecidea roseotincta, Opegrapha vulgata, Parmotrema hypotropum, P. subsumptum, Usnea cornuta, U. strigosa, and U. subgracilis), representing 2.7% of all species sampled. Seven of these taxa (78%) are foliose (leaf-like) or fruticose (shrubby) lichens that belong to families where basidiomycete yeasts have been previously detected. In several of the nine cases, cystobasidiomycete rDNA coverage was comparable to, or greater than, that of the primary lichen fungus single-copy nuclear genomic rDNA, suggesting sampling artifacts are unlikely to account for our results. CONCLUSIONS Studies from diverse areas of the natural sciences have led to the need to reconceptualize lichens as dynamic metacommunities. However, our failure to detect cystobasidiomycetes in 97.3% (330 species) of the sampled species suggests that basidiomycete yeasts are not ubiquitous in lichens.
Collapse
Affiliation(s)
- James C Lendemer
- Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY, 10458-5126, USA
| | - Kyle G Keepers
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80302, USA
| | - Erin A Tripp
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80302, USA
- Museum of Natural History, University of Colorado, Boulder, CO, 80302, USA
| | - Cloe S Pogoda
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80302, USA
| | - Christy M McCain
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80302, USA
- Museum of Natural History, University of Colorado, Boulder, CO, 80302, USA
| | - Nolan C Kane
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80302, USA
| |
Collapse
|
441
|
Sutela S, Poimala A, Vainio EJ. Viruses of fungi and oomycetes in the soil environment. FEMS Microbiol Ecol 2019; 95:5542194. [DOI: 10.1093/femsec/fiz119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
ABSTRACTSoils support a myriad of organisms hosting highly diverse viromes. In this minireview, we focus on viruses hosted by true fungi and oomycetes (members of Stamenopila, Chromalveolata) inhabiting bulk soil, rhizosphere and litter layer, and representing different ecological guilds, including fungal saprotrophs, mycorrhizal fungi, mutualistic endophytes and pathogens. Viruses infecting fungi and oomycetes are characterized by persistent intracellular nonlytic lifestyles and transmission via spores and/or hyphal contacts. Almost all fungal and oomycete viruses have genomes composed of single-stranded or double-stranded RNA, and recent studies have revealed numerous novel viruses representing yet unclassified family-level groups. Depending on the virus–host combination, infections can be asymptomatic, beneficial or detrimental to the host. Thus, mycovirus infections may contribute to the multiplex interactions of hosts, therefore likely affecting the dynamics of fungal communities required for the functioning of soil ecosystems. However, the effects of fungal and oomycete viruses on soil ecological processes are still mostly unknown. Interestingly, new metagenomics data suggest an extensive level of horizontal virus transfer between plants, fungi and insects.
Collapse
Affiliation(s)
- Suvi Sutela
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Anna Poimala
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
442
|
Denham ST, Wambaugh MA, Brown JCS. How Environmental Fungi Cause a Range of Clinical Outcomes in Susceptible Hosts. J Mol Biol 2019; 431:2982-3009. [PMID: 31078554 PMCID: PMC6646061 DOI: 10.1016/j.jmb.2019.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
Environmental fungi are globally ubiquitous and human exposure is near universal. However, relatively few fungal species are capable of infecting humans, and among fungi, few exposure events lead to severe systemic infections. Systemic infections have mortality rates of up to 90%, cost the US healthcare system $7.2 billion annually, and are typically associated with immunocompromised patients. Despite this reputation, exposure to environmental fungi results in a range of outcomes, from asymptomatic latent infections to severe systemic infection. Here we discuss different exposure outcomes for five major fungal pathogens: Aspergillus, Blastomyces, Coccidioides, Cryptococcus, and Histoplasma species. These fungi include a mold, a budding yeast, and thermal dimorphic fungi. All of these species must adapt to dramatically changing environments over the course of disease. These dynamic environments include the human lung, which is the first exposure site for these organisms. Fungi must defend themselves against host immune cells while germinating and growing, which risks further exposing microbe-associated molecular patterns to the host. We discuss immune evasion strategies during early infection, from disruption of host immune cells to major changes in fungal cell morphology.
Collapse
Affiliation(s)
- Steven T Denham
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Morgan A Wambaugh
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Jessica C S Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
443
|
Tomé LMR, Badotti F, Assis GBN, Fonseca PLC, da Silva GA, da Silveira RMB, Costa-Rezende DH, Dos Santos ERD, de Carvalho Azevedo VA, Figueiredo HCP, Góes-Neto A. Proteomic fingerprinting for the fast and accurate identification of species in the Polyporoid and Hymenochaetoid fungi clades. J Proteomics 2019; 203:103390. [PMID: 31129267 DOI: 10.1016/j.jprot.2019.103390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022]
Abstract
Basidiomycotan fungi play significant roles in the biogeochemical cycle of carbon as wood decomposers and are used in the food industry for mushroom production and in biotechnology for the production of diverse bioactive compounds and bioremediation. The correct identification of basidiomycotan isolates is crucial for understanding their biology and being able to expand their applications. Currently, the identification of these organisms is performed by analyzing morphological and genomic characteristics, primarily those based on DNA biomarkers. Despite their efficiency, such methods require considerable expertise and are both time-consuming and error-prone (multistep workflow). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged in the last decade as an accurate, fast, and powerful alternative for the identification of microorganisms. MALDI-TOF MS has been widely applied for the identification and taxonomical characterization of both bacteria and ascomycotan fungi from clinical origins. However, species of Basidiomycota have been poorly evaluated using this method. In the present study, we assessed the performance of MALDI-TOF MS using basidiomycotan isolates of two distinct taxonomical families: Polyporaceae and Hymenochaetaceae. Using a simple protocol, which eliminates the protein extraction step, we obtained high-quality mass spectra data and demonstrated that this method is efficient for the discrimination of isolates at the species level. SIGNIFICANCE: In this study, the MALDI-TOF mass spectrometry was employed to test its accuracy on the recognition of fungal species with high biotechnological and environmental interest. Using a simple and fast protocol, we obtained high-quality mass-spectra (protein fingerprinting) and proved that MALDI-TOF MS is sufficiently robust to the identification at species level and to evaluate the relationships among the isolates of the polyporoid and hymenochaetoid clades (Basidiomycota).
Collapse
Affiliation(s)
- Luiz Marcelo Ribeiro Tomé
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fernanda Badotti
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, MG, Brazil
| | - Gabriella Borba Netto Assis
- AQUACEN - Laboratório Oficial de Diagnóstico de Doenças de Animais Aquáticos do Ministério da Agricultura, Pecuária e Abastecimento, Escola de Veterinária da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Paula Luize Camargos Fonseca
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Genivaldo Alves da Silva
- Laboratory of Mycology, Botany Department, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, RS, Brazil
| | - Rosa Mara Borges da Silveira
- Laboratory of Mycology, Botany Department, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, RS, Brazil
| | | | | | - Vasco Ariston de Carvalho Azevedo
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Henrique Cesar Pereira Figueiredo
- AQUACEN - Laboratório Oficial de Diagnóstico de Doenças de Animais Aquáticos do Ministério da Agricultura, Pecuária e Abastecimento, Escola de Veterinária da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Aristóteles Góes-Neto
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
444
|
Matsuoka S, Sugiyama Y, Sato H, Katano I, Harada K, Doi H. Spatial structure of fungal DNA assemblages revealed with eDNA metabarcoding in a forest river network in western Japan. METABARCODING AND METAGENOMICS 2019. [DOI: 10.3897/mbmg.3.36335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Growing evidence has revealed high diversity and spatial heterogeneity of fungal communities in local habitats of terrestrial ecosystems. Recently, the analysis of environmental DNA has been undertaken to study the biodiversity of organisms, such as animals and plants, in both aquatic and terrestrial habitats. In the present study, we investigated fungal DNA assemblages and their spatial structure using environmental DNA metabarcoding targeting the internal transcribed spacer 1 (ITS1) region of the rRNA gene cluster in habitats across different branches of rivers in forest landscapes. A total of 1,956 operational taxonomic units (OTUs) were detected. Of these, 770 were assigned as Ascomycota, 177 as Basidiomycota, and 38 as Chytridiomycota. The river water was found to contain functionally diverse OTUs of both aquatic and terrestrial fungi, such as plant decomposers and mycorrhizal fungi. These fungal DNA assemblages were more similar within, rather than between, river branches. In addition, the assemblages were more similar between spatially closer branches. This spatial structuring was significantly associated with geographic distances but not with vegetation of the catchment area and the elevation at the sampling points. Our results imply that information on the terrestrial and aquatic fungal compositions of watersheds, and therefore their spatial structure, can be obtained by investigating the fungal DNA assemblages in river water.
Collapse
|
445
|
Etxebeste O, Otamendi A, Garzia A, Espeso EA, Cortese MS. Rewiring of transcriptional networks as a major event leading to the diversity of asexual multicellularity in fungi. Crit Rev Microbiol 2019; 45:548-563. [PMID: 31267819 DOI: 10.1080/1040841x.2019.1630359] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Complex multicellularity (CM) is characterized by the generation of three-dimensional structures that follow a genetically controlled program. CM emerged at least five times in evolution, one of them in fungi. There are two types of CM programs in fungi, leading, respectively, to the formation of sexual or asexual spores. Asexual spores foment the spread of mycoses, as they are the main vehicle for dispersion. In spite of this key dependence, there is great morphological diversity of asexual multicellular structures in fungi. To advance the understanding of the mechanisms that control initiation and progression of asexual CM and how they can lead to such a remarkable morphological diversification, we studied 503 fungal proteomes, representing all phyla and subphyla, and most known classes. Conservation analyses of 33 regulators of asexual development suggest stepwise emergence of transcription factors. While velvet proteins constitute one of the most ancient systems, the central regulator BrlA emerged late in evolution (with the class Eurotiomycetes). Some factors, such as MoConX4, seem to be species-specific. These observations suggest that the emergence and evolution of transcriptional regulators rewire transcriptional networks. This process could reach the species level, resulting in a vast diversity of morphologies.
Collapse
Affiliation(s)
- Oier Etxebeste
- Laboratory of Biology, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country (UPV/EHU), San Sebastian, Spain
| | - Ainara Otamendi
- Laboratory of Biology, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country (UPV/EHU), San Sebastian, Spain
| | - Aitor Garzia
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Marc S Cortese
- Laboratory of Biology, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country (UPV/EHU), San Sebastian, Spain
| |
Collapse
|
446
|
|
447
|
Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Microbes Infect 2019; 21:237-245. [PMID: 31255676 DOI: 10.1016/j.micinf.2019.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022]
Abstract
Seminal work by Louis Pasteur revealed the contribution of fungi - yeasts and microsporidia to agroindustry and disease in animals, respectively. More than 150 years later, the impact of fungi on human health and beyond is an ever-increasing issue, although often underestimated. Recent studies estimate that fungal infections, especially those caused by Candida, Cryptococcus and Aspergillus species, kill more than one million people annually. Indeed, these neglected infections are in general very difficult to cure and the associated mortality remains very high even when antifungal treatments exist. The development of new antifungals and diagnostic tools that are both necessary to fight fungal diseases efficiently, requires greater insights in the biology of the fungal pathogens of humans in the context of the infection, on their epidemiology, and on their role in the human mycobiota. We also need a better understanding of the host immune responses to fungal pathogens as well as the genetic basis for the increased sensitivity of some individuals to fungal infections. Here, we highlight some recent progress made in these different areas of research, in particular based on work conducted in our own laboratories. These progresses should lay the ground for better management of fungal infections, as they provide opportunities for better diagnostic, vaccination, the development of classical antifungals but also strategies for targeting virulence factors or the host.
Collapse
|
448
|
Lyagin I, Efremenko E. Enzymes for Detoxification of Various Mycotoxins: Origins and Mechanisms of Catalytic Action. Molecules 2019; 24:E2362. [PMID: 31247992 PMCID: PMC6651818 DOI: 10.3390/molecules24132362] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are highly dangerous natural compounds produced by various fungi. Enzymatic transformation seems to be the most promising method for detoxification of mycotoxins. This review summarizes current information on enzymes of different classes to convert various mycotoxins. An in-depth analysis of 11 key enzyme mechanisms towards dozens of major mycotoxins was realized. Additionally, molecular docking of mycotoxins to enzymes' active centers was carried out to clarify some of these catalytic mechanisms. Analyzing protein homologues from various organisms (plants, animals, fungi, and bacteria), the prevalence and availability of natural sources of active biocatalysts with a high practical potential is discussed. The importance of multifunctional enzyme combinations for detoxification of mycotoxins is posed.
Collapse
Affiliation(s)
- Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, RAS, Moscow 119334, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
- Emanuel Institute of Biochemical Physics, RAS, Moscow 119334, Russia.
| |
Collapse
|
449
|
Soverini M, Turroni S, Biagi E, Brigidi P, Candela M, Rampelli S. HumanMycobiomeScan: a new bioinformatics tool for the characterization of the fungal fraction in metagenomic samples. BMC Genomics 2019; 20:496. [PMID: 31202277 PMCID: PMC6570844 DOI: 10.1186/s12864-019-5883-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Background Modern metagenomic analysis of complex microbial communities produces large amounts of sequence data containing information on the microbiome in terms of bacterial, archaeal, viral and eukaryotic composition. The bioinformatics tools available are mainly devoted to profiling the bacterial and viral fractions and only a few software packages consider fungi. As the human fungal microbiome (human mycobiome) can play an important role in the onset and progression of diseases, a comprehensive description of host-microbiota interactions cannot ignore this component. Results HumanMycobiomeScan is a bioinformatics tool for the taxonomic profiling of the mycobiome directly from raw data of next-generation sequencing. The tool uses hierarchical databases of fungi in order to unambiguously assign reads to fungal species more accurately and > 10,000 times faster than other comparable approaches. HumanMycobiomeScan was validated using in silico generated synthetic communities and then applied to metagenomic data, to characterize the intestinal fungal components in subjects adhering to different subsistence strategies. Conclusions Although blind to unknown species, HumanMycobiomeScan allows the characterization of the fungal fraction of complex microbial ecosystems with good performance in terms of sample denoising from reads belonging to other microorganisms. HumanMycobiomeScan is most appropriate for well-studied microbiomes, for which most of the fungal species have been fully sequenced. This released version is functionally implemented to work with human-associated microbiota samples. In combination with other microbial profiling tools, HumanMycobiomeScan is a frugal and efficient tool for comprehensive characterization of microbial ecosystems through shotgun metagenomics sequencing. Electronic supplementary material The online version of this article (10.1186/s12864-019-5883-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matteo Soverini
- Department of Pharmacy and Biotechnology, Unit of Microbial Ecology of Health, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, Unit of Microbial Ecology of Health, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, Unit of Microbial Ecology of Health, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, Unit of Microbial Ecology of Health, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, Unit of Microbial Ecology of Health, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, Unit of Microbial Ecology of Health, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| |
Collapse
|
450
|
Passer AR, Coelho MA, Billmyre RB, Nowrousian M, Mittelbach M, Yurkov AM, Averette AF, Cuomo CA, Sun S, Heitman J. Genetic and Genomic Analyses Reveal Boundaries between Species Closely Related to Cryptococcus Pathogens. mBio 2019; 10:e00764-19. [PMID: 31186317 PMCID: PMC6561019 DOI: 10.1128/mbio.00764-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Speciation is a central mechanism of biological diversification. While speciation is well studied in plants and animals, in comparison, relatively little is known about speciation in fungi. One fungal model is the Cryptococcus genus, which is best known for the pathogenic Cryptococcus neoformans/Cryptococcus gattii species complex that causes >200,000 new human infections annually. Elucidation of how these species evolved into important human-pathogenic species remains challenging and can be advanced by studying the most closely related nonpathogenic species, Cryptococcus amylolentus and Tsuchiyaea wingfieldii However, these species have only four known isolates, and available data were insufficient to determine species boundaries within this group. By analyzing full-length chromosome assemblies, we reappraised the phylogenetic relationships of the four available strains, confirmed the genetic separation of C. amylolentus and T. wingfieldii (now Cryptococcus wingfieldii), and revealed an additional cryptic species, for which the name Cryptococcus floricola is proposed. The genomes of the three species are ∼6% divergent and exhibit significant chromosomal rearrangements, including inversions and a reciprocal translocation that involved intercentromeric ectopic recombination, which together likely impose significant barriers to genetic exchange. Using genetic crosses, we show that while C. wingfieldii cannot interbreed with any of the other strains, C. floricola can still undergo sexual reproduction with C. amylolentus However, most of the resulting spores were inviable or sterile or showed reduced recombination during meiosis, indicating that intrinsic postzygotic barriers had been established. Our study and genomic data will foster additional studies addressing fungal speciation and transitions between nonpathogenic and pathogenic Cryptococcus lineages.IMPORTANCE The evolutionary drivers of speciation are critical to our understanding of how new pathogens arise from nonpathogenic lineages and adapt to new environments. Here we focus on the Cryptococcus amylolentus species complex, a nonpathogenic fungal lineage closely related to the human-pathogenic Cryptococcus neoformans/Cryptococcus gattii complex. Using genetic and genomic analyses, we reexamined the species boundaries of four available isolates within the C. amylolentus complex and revealed three genetically isolated species. Their genomes are ∼6% divergent and exhibit chromosome rearrangements, including translocations and small-scale inversions. Although two of the species (C. amylolentus and newly described C. floricola) were still able to interbreed, the resulting hybrid progeny were usually inviable or sterile, indicating that barriers to reproduction had already been established. These results advance our understanding of speciation in fungi and highlight the power of genomics in assisting our ability to correctly identify and discriminate fungal species.
Collapse
Affiliation(s)
- Andrew Ryan Passer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Moritz Mittelbach
- Geobotany, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Andrey M Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|