401
|
Calatayud Arroyo M, García Barrera T, Callejón Leblic B, Arias Borrego A, Collado MC. A review of the impact of xenobiotics from dietary sources on infant health: Early life exposures and the role of the microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:115994. [PMID: 33310490 DOI: 10.1016/j.envpol.2020.115994] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/22/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Xenobiotics are worldwide distributed and humans are unavoidably exposed to multiple chemical compounds during life, from preconception to adulthood. The human microbiota is mainly settled during early life and modulate host health and fitness. One of the main routes for chemical exposure is by intake of contaminated food and water. Thus, the interplay between diet-xenobiotics-microbiota during pregnancy and perinatal period may have relevant consequences for infant and adult health. Maternal exposure to metal(oid)s, persistent organic pollutants, and some food additives can modify the infant's microbiota with unknown consequences for child or adult health. Toxicants' exposure may also modulate the maternal transfer of microorganisms to the progeny during birth and breastfeeding; however, scarce information is available. The rapid increase in releasing novel chemicals to the environment, the exposure to chemical mixtures, the chronic/low dose scenario, and the delay in science-stakeholders action call for novel and groundbreaking approaches to improve a comprehensive risk assessment in sensitive population groups like pregnant women and neonates, with emphasis on microbiota as modulating factor and target-organ of xenobiotic's toxicity.
Collapse
Affiliation(s)
- M Calatayud Arroyo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, Paterna, Valencia, 46980, Spain.
| | - T García Barrera
- Research Center on Natural Resources, Health and the Environment (RENSMA), Department of Chemistry "Prof. J.C. Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, 21120, Spain
| | - B Callejón Leblic
- Research Center on Natural Resources, Health and the Environment (RENSMA), Department of Chemistry "Prof. J.C. Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, 21120, Spain
| | - A Arias Borrego
- Research Center on Natural Resources, Health and the Environment (RENSMA), Department of Chemistry "Prof. J.C. Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, 21120, Spain
| | - M C Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, Paterna, Valencia, 46980, Spain.
| |
Collapse
|
402
|
Gougousis S, Mouchtaropoulou E, Besli I, Vrochidis P, Skoumpas I, Constantinidis I. HPV-Related Oropharyngeal Cancer and Biomarkers Based on Epigenetics and Microbiome Profile. Front Cell Dev Biol 2021; 8:625330. [PMID: 33521000 PMCID: PMC7841258 DOI: 10.3389/fcell.2020.625330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
H uman papillomavirus (HPV) is considered the main cause of the increasing incidence rates of oropharyngeal squamous cell carcinoma (OPSCC), and soon, the global burden of HPV-related OPSCC is predicted to exceed that of cervical cancer. Moreover, a different molecular profile for HPV-related OPSCC has been described, opening new promising targeted therapies and immunotherapy approaches. Epigenetic and microbiome-based exploration of biomarkers has gained growing interest with a view to the primary oropharyngeal cancer (OPC) screening. Understanding the role of the epigenetic mechanism and the changes that occur during pathogenesis shows appreciable progress in recent years. The different methylation status of DNA and miRNAs demonstrates the value of possible biomarkers discriminating even in different stages of dysplasia. Through whole-genome bisulfite sequencing, differentially methylated regions (DMRs) hold the key to recover missing information. O n the other hand, the microbiota investigation signifies a new biomarker approach for the evaluation of OPC. Along with known cofactors playing a major role in microbiota differentiation, HPV-related cases must be explored further for better understanding. The dynamic approach of the shotgun metagenomic sequencing will robustly fill the gap especially in species/strain level and consequently to biomarker detection. The constantly growing incidence of HPV-related OPC should lead us in further investigation and understanding of the unique features of the disease, more accurate diagnostic methods, along with the development and implementation of new, targeted therapies. This paper comprehensively reviews the significance of biomarkers based on epigenetics and microbiome profile in the accuracy of the diagnosis of the HPV-related cancer in the oropharynx.
Collapse
Affiliation(s)
- Spyridon Gougousis
- GH "G. Papanikolaou," ENT, Head and Neck Department, Thessaloniki, Greece
| | | | - Ioanna Besli
- GH "G. Papanikolaou," ENT, Head and Neck Department, Thessaloniki, Greece
| | | | - Ioannis Skoumpas
- GH "G. Papanikolaou," ENT, Head and Neck Department, Thessaloniki, Greece
| | - Ioannis Constantinidis
- 1st Department of Otorhinolaryngology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
403
|
Bunis DG, Bronevetsky Y, Krow-Lucal E, Bhakta NR, Kim CC, Nerella S, Jones N, Mendoza VF, Bryson YJ, Gern JE, Rutishauser RL, Ye CJ, Sirota M, McCune JM, Burt TD. Single-Cell Mapping of Progressive Fetal-to-Adult Transition in Human Naive T Cells. Cell Rep 2021; 34:108573. [PMID: 33406429 PMCID: PMC10263444 DOI: 10.1016/j.celrep.2020.108573] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Whereas the human fetal immune system is poised to generate immune tolerance and suppress inflammation in utero, an adult-like immune system emerges to orchestrate anti-pathogen immune responses in post-natal life. It has been posited that cells of the adult immune system arise as a discrete ontological "layer" of hematopoietic stem-progenitor cells (HSPCs) and their progeny; evidence supporting this model in humans has, however, been inconclusive. Here, we combine bulk and single-cell transcriptional profiling of lymphoid cells, myeloid cells, and HSPCs from fetal, perinatal, and adult developmental stages to demonstrate that the fetal-to-adult transition occurs progressively along a continuum of maturity-with a substantial degree of inter-individual variation at the time of birth-rather than via a transition between discrete waves. These findings have important implications for the design of strategies for prophylaxis against infection in the newborn and for the use of umbilical cord blood (UCB) in the setting of transplantation.
Collapse
Affiliation(s)
- Daniel G Bunis
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Yelena Bronevetsky
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Elisabeth Krow-Lucal
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nirav R Bhakta
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Charles C Kim
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Srilaxmi Nerella
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Norman Jones
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ventura F Mendoza
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yvonne J Bryson
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Mattel Children's Hospital UCLA, Los Angeles, CA, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rachel L Rutishauser
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Division of Neonatology, University of California, San Francisco, San Francisco, CA, USA.
| | - Joseph M McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Trevor D Burt
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Division of Neonatology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
404
|
Wang Y, Shao T, Wang J, Huang X, Deng X, Cao Y, Zhou M, Zhao C. An update on potential biomarkers for diagnosing diabetic foot ulcer at early stage. Biomed Pharmacother 2021; 133:110991. [PMID: 33227713 DOI: 10.1016/j.biopha.2020.110991] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023] Open
Abstract
As one of major chronic complications of diabetes, diabetic foot ulcer (DFU) is the main cause of disability and death. The clinical diagnosis and prognosis of DFU is inadequate. For clinicians, if the risk stratification of DFU can be obtained earlier in diabetic patients, the hospitalization, disability and mortality rate will be reduced. In addition to the inflammatory biomarkers that have been widely concerned and used, e.g., procalcitonin, pentraxin-3, C-reactive protein (CRP), interleukins (ILs), and tumor necrosis factor-α (TNF-α), etc., a more comprehensive prediction of the risk and severity of DFU is needed to reflect new biomarkers for therapeutic intervention effects. Along with the development of systems biology technology, genomics, proteomics, metabolomics and microbiome have been used in the studies on DFU for better understanding of the disease. In this review, new biomarkers that are expected to assist in the accurate diagnosis and risk stratification of DFU will be discussed and summarized in detail.
Collapse
Affiliation(s)
- Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tengteng Shao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jialin Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoting Huang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaofei Deng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China; Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China.
| |
Collapse
|
405
|
Schütte K, Schulz C, Vilchez-Vargas R, Vasapolli R, Palm F, Simon B, Schomburg D, Lux A, Geffers R, Pieper DH, Link A, Malfertheiner P. Impact of healthy aging on active bacterial assemblages throughout the gastrointestinal tract. Gut Microbes 2021; 13:1966261. [PMID: 34455919 PMCID: PMC8409759 DOI: 10.1080/19490976.2021.1966261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 02/04/2023] Open
Abstract
The adaption of gut microbiota (GM) throughout human life is a key factor in maintaining health. Interventions to restore a healthy GM composition may have the potential to improve health and disease outcomes in the elderly. We performed a comprehensive characterization of changes in the luminal and mucosa-associated microbiota composition in elderly compared with younger healthy individuals. Samples from saliva and feces, and biopsies from the upper and lower gastrointestinal tract (UGIT, LGIT), were collected from 59 asymptomatic individuals grouped by age: 40-55, 56-70, and 71-85 years). All underwent anthropometric, geriatric, and nutritional assessment. RNA was extracted and reverse-transcribed into complementary DNA; the V1-V2 regions of 16S ribosomal RNA genes were amplified and sequenced. Abundances of the taxa in all taxonomic ranks in each sample type were used to construct sample-similarity matrices by the Bray-Curtis algorithm. Significant differences between defined groups were assessed by analysis of similarity. The bacterial community showed strong interindividual variations and a clear distinction between samples from UGIT, LGIT, and feces. While in saliva some taxa were affected by aging, this number was considerably greater in UGIT and was subsequently higher in LGIT. Unexpectedly, aging scarcely influenced the bacterial community of feces over the age range of 40-85 years. The development of interventions to preserve and restore human health with increased age by establishing a healthy gut microbiome should not rely solely on data from fecal analysis, as the intestinal mucosa is affected by more significant changes, which differ from those observed in fecal analyses.
Collapse
Affiliation(s)
- Kerstin Schütte
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken Marienhospital Osnabrück, Bischofsstr. 1, Osnabrück, Germany
| | - Christian Schulz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Internal Medicine 2, University Hospital, Munich, Germany
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Riccardo Vasapolli
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Internal Medicine 2, University Hospital, Munich, Germany
| | - Frederike Palm
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Bianca Simon
- Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken Marienhospital Osnabrück, Bischofsstr. 1, Osnabrück, Germany
| | - Dirk Schomburg
- Institute of Biometry and Medical Informatics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anke Lux
- Institute of Biometry and Medical Informatics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Geffers
- GMAK Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dietmar H. Pieper
- Microbial Interactions and Processes (MINP) Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Internal Medicine 2, University Hospital, Munich, Germany
| |
Collapse
|
406
|
Managing the Microbiome: How the Gut Influences Development and Disease. Nutrients 2020; 13:nu13010074. [PMID: 33383647 PMCID: PMC7823600 DOI: 10.3390/nu13010074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
The microbiome lies at the forefront of scientific research, as researchers work to uncover its mysterious influence on human development and disease. This paper reviews how the microbiome is studied, how researchers can improve its study, and what clinical applications microbiome research might yield. For this review, we analyzed studies concerning the role of the microbiome in disease and early development, the common methodologies by which the microbiome is researched in the lab, and modern clinical treatments for dysbiosis and their possible future applications. We found that the gut microbiome is essential for proper development of various physiological systems and that gut dysbiosis is a clear factor in the etiology of various diseases. Furthermore, we found that germ-free animal models and microbiome manipulation techniques are inadequate, reducing the efficacy of microbiome research. Nonetheless, research continues to show the significance of microbiome manipulation in the clinical treatment of disease, having shown great promise in the prevention and treatment of dysbiosis. Though the clinical applications of microbiome manipulation are currently limited, the significance of dysbiosis in the etiology of a wide array of diseases indicates the significance of this research and highlights the need for more effective research methods concerning the microbiome.
Collapse
|
407
|
Zhang Y, Wang Z, Peng J, Gerner ST, Yin S, Jiang Y. Gut microbiota-brain interaction: An emerging immunotherapy for traumatic brain injury. Exp Neurol 2020; 337:113585. [PMID: 33370556 DOI: 10.1016/j.expneurol.2020.113585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Individuals suffering from traumatic brain injury (TBI) often experience the activation of the immune system, resulting in declines in cognitive and neurological function after brain injury. Despite decades of efforts, approaches for clinically effective treatment are sparse. Evidence on the association between current therapeutic strategies and clinical outcomes after TBI is limited to poorly understood mechanisms. For decades, an increasing number of studies suggest that the gut-brain axis (GBA), a bidirectional communication system between the central nervous system (CNS) and the gastrointestinal tract, plays a critical role in systemic immune response following neurological diseases. In this review, we detail current knowledge of the immune pathologies of GBA after TBI. These processes may provide a new therapeutic target and rehabilitation strategy developed and used in clinical treatment of TBI patients.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhaoyang Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Stefan T Gerner
- Department of Neurology, University Hospital Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
408
|
Guo N, Zhang Z, Han C, Chen L, Zheng X, Yu K, Zhang Z, Wang C. Effects of continuous intravenous infusion of propofol on intestinal flora in rats. Biomed Pharmacother 2020; 134:111080. [PMID: 33338744 DOI: 10.1016/j.biopha.2020.111080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022] Open
Abstract
Under normal circumstances, the gut microbiota, host, and external environment establish a dynamic ecological balance and maintain human health. Once this balance is broken, the intestinal flora dysregulation will form, manifested by changes in the diversity, richness, proportion, location and biological characteristics of the gut microbiota. The hypothesis that propofol alters gut microbes was tested in a rat model with continuous intravenous infusion of propofol. Eight male wistar rats underwent tail vein puncture and catheterization respectively, and were continuously pumped with propofol for 3 h. Feces were collected from each rat before and on the 1 st, 3rd, 7th and 14th days after intervention. Finally, the effect of continuous intravenous infusion of propofol on the intestinal flora of rats was analyzed by high-throughput 16S rRNA gene amplification sequencing. Through high-throughput 16S rRNA gene amplicon sequencing analysis, we found that continuous intravenous infusion of propofol had little effect on intestinal flora in rats. Analysis of Alpha (shannon diversity index) showed that group A-7 was different from group P and group A-1 (P = 0.034), and recovered on the 14th day. Although the species diversity analysis showed a significant difference among the five groups (P = 0.049), the distribution of most fecal samples in the PCoA showed a clustered distribution, indicating similarity. In addition, no significant difference was found in the statistical KEGG difference pathway through LEfSe analysis.
Collapse
Affiliation(s)
- Nana Guo
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Zhongjie Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Ci Han
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Lu Chen
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Xiaoya Zheng
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Kaili Yu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Zhaodi Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Changsong Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
409
|
Ni Q, Ye Z, Wang Y, Chen J, Zhang W, Ma C, Li K, Liu Y, Liu L, Han Z, Gao T, Jian Z, Li S, Li C. Gut Microbial Dysbiosis and Plasma Metabolic Profile in Individuals With Vitiligo. Front Microbiol 2020; 11:592248. [PMID: 33381090 PMCID: PMC7768019 DOI: 10.3389/fmicb.2020.592248] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Autoimmune diseases are increasingly linked to aberrant gut microbiome and relevant metabolites. However, the association between vitiligo and the gut microbiome remains to be elucidated. Thus, we conducted a case-control study through 16S rRNA sequencing and serum untargeted-metabolomic profiling based on 30 vitiligo patients and 30 matched healthy controls. In vitiligo patients, the microbial composition was distinct from that of healthy controls according to the analysis on α- and β-diversity (P < 0.05), with a characteristic decreased Bacteroidetes: Firmicutes ratio. Meanwhile, the levels of 23 serum metabolites (including taurochenodeoxycholate and L-NG-monomethyl-arginine) in the vitiligo patients were different from those in the healthy individuals and showed significant correlations with some microbial markers. We found that Corynebacterium 1, Ruminococcus 2, Jeotgalibaca and Psychrobacter were correlated significantly with disease duration and serum IL-1β level in vitiligo patients. And Psychrobacter was identified as the most predictive features for vitiligo by machine learning analysis ("importance" = 0.0236). Finally, combining multi-omics data and joint prediction models with accuracies up to 0.929 were established with dominant contribution of Corynebacterium 1 and Psychrobacter. Our findings replenished the previously unknown relationship between gut dysbiosis and vitiligo circulating metabolome and enrolled the gut-skin axis into the understanding of vitiligo pathogenesis.
Collapse
Affiliation(s)
- Qingrong Ni
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhubiao Ye
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yinghan Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Cuiling Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kai Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ling Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheyi Han
- Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; National Clinical Research Center for Digestive Diseases, Xi'an, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
410
|
Chen Y, Fang H, Li C, Wu G, Xu T, Yang X, Zhao L, Ke X, Zhang C. Gut Bacteria Shared by Children and Their Mothers Associate with Developmental Level and Social Deficits in Autism Spectrum Disorder. mSphere 2020; 5:e01044-20. [PMID: 33268567 PMCID: PMC7716279 DOI: 10.1128/msphere.01044-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
The gut microbiota of autism spectrum disorder (ASD) children differs from that of children without ASD. The maternal gut microbiota impacts offspring gut microbiota. However, the relationship between the development of ASD and gut bacteria shared between children and their mothers remains elusive. Our study recruited 76 children with ASD and 47 age- and gender-matched children with typical development (TD), as well as the mothers of both groups, and investigated their gut microbiota using amplicon sequence variants (ASVs). The gut microbiota of ASD children was altered compared with that of children with TD, while no significant alterations were found in their mothers. We established 30 gut bacterial coabundance groups (CAGs) and found the relative abundances of CAG15 and CAG16 significantly decreased in ASD children. CAG15 showed a positive correlation with developmental level. The proportion of ASD children who shared either one of the two Lachnospiraceae ASVs from CAG15 with their mothers was significantly lower than that of children with TD. Moreover, we found that CAG12, CAG13, and CAG18 negatively correlated with the severity of social deficits in ASD children. ASD children who shared any one of the four (two Ruminococcaceae, one Lachnospiraceae, and one Collinsella) ASVs in CAG13 and CAG18 with their mothers showed a lower level of social deficits than ASD children that did not share those with their mothers. These data demonstrate that these shared gut bacteria in ASD children are associated with their developmental level and social deficits. This work provides a new direction toward understanding the role of the gut microbiota in the pathogenesis and development of ASD. (This study has been registered in the Chinese Clinical Trial Registry under number ChiCTR-RPC-16008139.)IMPORTANCE Gut microbiota may contribute to the pathogenesis and development of autism spectrum disorder. The maternal gut microbiota influences offspring gut microbial structure and composition. However, the relationship between the clinical symptoms of autism spectrum disorder and the gut bacteria shared between children and their mothers is not yet known. In our study, the gut microbiota of children with autism spectrum disorder differed from that of children with typical development, but there were no differences in the gut microbiota of their mothers. More importantly, gut bacteria shared between children with autism spectrum disorder and their mothers were related to developmental disabilities and social deficits. Thus, our study suggests that these shared gut bacteria may play an important role in the development of autism spectrum disorder. This provides a new direction for future studies aiming to explore the role of the gut microbiota in autism spectrum disorder.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Fang
- Nanjing Brain Hospital affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chunyan Li
- Nanjing Brain Hospital affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guojun Wu
- Department of Biochemistry and Microbiology, New Jersey Institute for Food, Nutrition and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ting Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Biochemistry and Microbiology, New Jersey Institute for Food, Nutrition and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Xiaoyan Ke
- Nanjing Brain Hospital affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
411
|
Selway CA, Mills JG, Weinstein P, Skelly C, Yadav S, Lowe A, Breed MF, Weyrich LS. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. ENVIRONMENT INTERNATIONAL 2020; 145:106084. [PMID: 32977191 DOI: 10.1016/j.envint.2020.106084] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In industrialized countries, non-communicable diseases have been increasing in prevalence since the middle of the 20th century. While the causal mechanisms remain poorly understood, increased population density, pollution, sedentary behavior, smoking, changes in diet, and limited outdoor exposure have all been proposed as significant contributors. Several hypotheses (e.g. Hygiene, Old Friends, and Biodiversity Hypotheses) also suggest that limited environmental microbial exposures may underpin part of this rise in non-communicable diseases. In response, the Microbiome Rewilding Hypothesis proposes that adequate environmental microbial exposures could be achieved by restoring urban green spaces and could potentially decrease the prevalence of non-communicable diseases. However, the microbial interactions between humans and their surrounding environment and the passaging of microbes between both entities remains poorly understood, especially within an urban context. RESULTS Here, we survey human skin (n = 90 swabs) and nasal (n = 90 swabs) microbiota of three subjects that were exposed to air (n = 15), soil (n = 15), and leaves (n = 15) from different urban green space environments in three different cities across different continents (Adelaide, Australia; Bournemouth, United Kingdom; New Delhi, India). Using 16S ribosomal RNA metabarcoding, we examined baseline controls (pre-exposure) of both skin (n = 16) and nasal (n = 16) swabs and tracked microbiota transfer from the environment to the human body after exposure events. Microbial richness and phylogenetic diversity increased after urban green space exposure in skin and nasal samples collected in two of the three locations. The microbial composition of skin samples also became more similar to soil microbiota after exposure, while nasal samples became more similar to air samples. Nasal samples were more variable between sites and individuals than skin samples. CONCLUSIONS We show that exposure to urban green spaces can increase skin and nasal microbial diversity and alter human microbiota composition. Our study improves our understanding of human-environmental microbial interactions and suggests that increased exposure to diverse outdoor environments may increase the microbial diversity, which could lead to positive health outcomes for non-communicable diseases.
Collapse
Affiliation(s)
- Caitlin A Selway
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jacob G Mills
- School of Biological Sciences and the Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Philip Weinstein
- School of Biological Sciences and the Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Chris Skelly
- Public Health Dorset, Dorset County Council, Dorchester DT1 1TP, UK.
| | - Sudesh Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Andrew Lowe
- School of Biological Sciences and the Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia.
| | - Laura S Weyrich
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia; Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
412
|
Can we prevent allergic disease? Understanding the links between the early life microbiome and allergic diseases of childhood. Curr Opin Pediatr 2020; 32:790-797. [PMID: 33027216 DOI: 10.1097/mop.0000000000000956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The microbiome and immune system are intrinsically linked, and during infancy these crucial biological systems undergo a concurrent and expansive maturation process. As these maturation processes progress, some children develop a sequence of IgE-mediated immune disorders termed the 'Allergic March', and unfortunately the prevalence of these lifelong and burdensome allergic conditions has increased over the past half century. Our current treatment strategies are unable to prevent or cure components of the Allergic March. However, recent discoveries have enhanced our mechanistic understanding of early-life microbiota-immune interactions with exciting implications for preventing these allergic disorders. RECENT FINDINGS The current review will detail recent literature regarding perinatal factors (e.g. birth mode, antibiotic exposure, breastmilk seeding of the microbiota, built environment) that shape the infant gut microbiota composition. Furthermore, we will discuss new findings that have highlighted immune cells which are particularly sensitive to microbial influences in utero and during the early-life window of development. SUMMARY As our understanding of the dynamic relationship between the developing infant microbiota and immune system grows, a priority toward preserving critical early-life interactions may provide life-long protection to these diseases in the future.
Collapse
|
413
|
Holmes A, Finger C, Morales-Scheihing D, Lee J, McCullough LD. Gut dysbiosis and age-related neurological diseases; an innovative approach for therapeutic interventions. Transl Res 2020; 226:39-56. [PMID: 32755639 PMCID: PMC7590960 DOI: 10.1016/j.trsl.2020.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
The gut microbiota is a complex ecosystem of bacteria, fungi, and viruses that acts as a critical regulator in microbial, metabolic, and immune responses in the host organism. Imbalances in the gut microbiota, termed "dysbiosis," often induce aberrant immune responses, which in turn disrupt the local and systemic homeostasis of the host. Emerging evidence has highlighted the importance of gut microbiota in intestinal diseases, and more recently, in age-related central nervous systems diseases, for example, stroke and Alzheimer's disease. It is now generally recognized that gut microbiota significantly influences host behaviors and modulates the interaction between microbiota, gut, and brain, via the "microbiota-gut-brain axis." Several approaches have been utilized to reduce age-related dysbiosis in experimental models and in clinical studies. These include strategies to manipulate the microbiome via fecal microbiota transplantation, administration of prebiotics and probiotics, and dietary interventions. In this review, we explore both clinical and preclinical therapies for treating age-related dysbiosis.
Collapse
Affiliation(s)
- Aleah Holmes
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Carson Finger
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Diego Morales-Scheihing
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
414
|
van Tilburg Bernardes E, Gutierrez MW, Arrieta MC. The Fungal Microbiome and Asthma. Front Cell Infect Microbiol 2020; 10:583418. [PMID: 33324573 PMCID: PMC7726317 DOI: 10.3389/fcimb.2020.583418] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Asthma is a group of inflammatory conditions that compromises the airways of a continuously increasing number of people around the globe. Its complex etiology comprises both genetic and environmental aspects, with the intestinal and lung microbiomes emerging as newly implicated factors that can drive and aggravate asthma. Longitudinal infant cohort studies combined with mechanistic studies in animal models have identified microbial signatures causally associated with subsequent asthma risk. The recent inclusion of fungi in human microbiome surveys has revealed that microbiome signatures associated with asthma risk are not limited to bacteria, and that fungi are also implicated in asthma development in susceptible individuals. In this review, we examine the unique properties of human-associated and environmental fungi, which confer them the ability to influence immune development and allergic responses. The important contribution of fungi to asthma development and exacerbations prompts for their inclusion in current and future asthma studies in humans and animal models.
Collapse
Affiliation(s)
- Erik van Tilburg Bernardes
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mackenzie W Gutierrez
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
415
|
Jones RM, Neish AS. Gut Microbiota in Intestinal and Liver Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:251-275. [PMID: 33234022 DOI: 10.1146/annurev-pathol-030320-095722] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is known that the gut microbiota, the numerically vast and taxonomically diverse microbial communities that thrive in a symbiotic fashion within our alimentary tract, can affect the normal physiology of the gastrointestinal tract and liver. Further, disturbances of the microbiota community structure from both endogenous and exogenous influences as well as the failure of host responsive mechanisms have been implicated in a variety of disease processes. Mechanistically, alterations in intestinal permeability and dysbiosis of the microbiota can result in inflammation, immune activation, and exposure to xenobiotic influences. Additionally, the gut and liver are continually exposed to small molecule products of the microbiota with proinflammatory, gene regulatory, and oxidative properties. Long-term coevolution has led to tolerance and incorporation of these influences into normal physiology and homeostasis; conversely, changes in this equilibrium from either the host or the microbial side can result in a wide variety of immune, inflammatory, metabolic, and neoplastic intestinal and hepatic disorders.
Collapse
Affiliation(s)
- Rheinallt M Jones
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
| |
Collapse
|
416
|
Abstract
Periodontal diseases are chronic inflammatory, multifactorial diseases where the major triggering factors for disease onset are bacteria and their toxins, but the major part of tissue destruction occurs as a result of host response towards the periodontal microbiome. Periodontal microbiome consists of a wide range of microorganisms including obligate and facultative anaerobes. In health, there is a dynamic balance between the host, environment, and the microbiome. Environmental factors, mainly tobacco smoking and psychological stress, disrupt the symbiotic relationship. Tobacco smoke and its components alter the bacterial surface and functions such as growth. Psychological stressors and stress hormones may affect the outcome of an infection by changing the virulence factors and/or host response. This review aims to provide currently available data on the effects of the major environmental factors on the periodontal microbiome.
Collapse
Affiliation(s)
- Nurcan Buduneli
- Department of Periodontology, Faculty of Dentistry, Ege University, İzmir, Turkey
| |
Collapse
|
417
|
Mishima Y, Ishihara S. Molecular Mechanisms of Microbiota-Mediated Pathology in Irritable Bowel Syndrome. Int J Mol Sci 2020; 21:ijms21228664. [PMID: 33212919 PMCID: PMC7698457 DOI: 10.3390/ijms21228664] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most prevalent functional gastrointestinal disorders, and accumulating evidence gained in both preclinical and clinical studies indicate the involvement of enteric microbiota in its pathogenesis. Gut resident microbiota appear to influence brain activity through the enteric nervous system, while their composition and function are affected by the central nervous system. Based on these results, the term “brain–gut–microbiome axis” has been proposed and enteric microbiota have become a potential therapeutic target in IBS cases. However, details regarding the microbe-related pathophysiology of IBS remain elusive. This review summarizes the existing knowledge of molecular mechanisms in the pathogenesis of IBS as well as recent progress related to microbiome-derived neurotransmitters, compounds, metabolites, neuroendocrine factors, and enzymes.
Collapse
|
418
|
Shaffer JP, Marotz C, Belda-Ferre P, Martino C, Wandro S, Estaki M, Salido RA, Carpenter CS, Zaramela LS, Minich JJ, Bryant M, Sanders K, Fraraccio S, Ackermann G, Humphrey G, Swafford AD, Miller-Montgomery S, Knight R. A comparison of DNA/RNA extraction protocols for high-throughput sequencing of microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.13.370387. [PMID: 33200135 PMCID: PMC7668742 DOI: 10.1101/2020.11.13.370387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One goal among microbial ecology researchers is to capture the maximum amount of information from all organisms in a sample. The recent COVID-19 pandemic, caused by the RNA virus SARS-CoV-2, has highlighted a gap in traditional DNA-based protocols, including the high-throughput methods we previously established as field standards. To enable simultaneous SARS-CoV-2 and microbial community profiling, we compare the relative performance of two total nucleic acid extraction protocols and our previously benchmarked protocol. We included a diverse panel of environmental and host-associated sample types, including body sites commonly swabbed for COVID-19 testing. Here we present results comparing the cost, processing time, DNA and RNA yield, microbial community composition, limit of detection, and well-to-well contamination, between these protocols. Accession numbers Raw sequence data were deposited at the European Nucleotide Archive (accession#: ERP124610) and raw and processed data are available at Qiita (Study ID: 12201). All processing and analysis code is available on GitHub ( github.com/justinshaffer/Extraction_test_MagMAX ). Methods summary To allow for downstream applications involving RNA-based organisms such as SARS-CoV-2, we compared the two extraction protocols designed to extract DNA and RNA against our previously established protocol for extracting only DNA for microbial community analyses. Across 10 diverse sample types, one of the two protocols was equivalent or better than our established DNA-based protocol. Our conclusion is based on per-sample comparisons of DNA and RNA yield, the number of quality sequences generated, microbial community alpha- and beta-diversity and taxonomic composition, the limit of detection, and extent of well-to-well contamination.
Collapse
|
419
|
Balbi T, Vezzulli L, Lasa A, Pallavicini A, Canesi L. Insight into the microbial communities associated with first larval stages of Mytilus galloprovincialis: Possible interference by estrogenic compounds. Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108833. [PMID: 32585367 DOI: 10.1016/j.cbpc.2020.108833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
The microbiota, the host-associated community of microbes, play important roles in health status and whole body homeostasis of all organisms, including marine species. In bivalves, the microbiota composition has been mainly investigated in adults, whereas little information is available during development. In this work, the microbiota composition of the first larval stages of Mytilus galloprovincialis was evaluated by 16S rRNA gene-based profiling, at 24 and 48 hours post fertilization in comparison with those of eggs and sperm. The main genera detected in both larvae (Vibrio, Pseudoalteromonas, Psychrobium, Colwellia) derived from eggs. However, a clear shift in microbiota was observed in developing larvae compared to eggs, both in terms of core microbiome and relative abundance of different genera. The results provide a first insight into the composition of the microbial communities associated with gametes and early larvae of mussels. Moreover, the impact on larval microbiome of estrogenic chemicals that potentially affect Mytilus early development, 17βestradiol-E2, Bisphenol A-BPA and Bisphenol F-BPF (10 μg/L), was investigated. Exposure to estrogenic chemicals leads to changes in abundance of different genera, with distinct and common effects depending on the compound and larval stage. Both potential pathogens (Vibrio, Arcobacter, Tenacibaculum) and genera involved in xenobiotic biotransformation (Oleispira, Shewanella) were affected. The effects of estrogenic compounds on larval microbiome were not related to their developmental effects: however, the results address the importance of evaluating the impact of emerging contaminants on the microbiota of marine invertebrates, including larval stages, that are most sensitive to environmental perturbations.
Collapse
Affiliation(s)
- T Balbi
- DISTAV, Dept. of Earth, Environment and Life Sciences, University of Genoa, Italy.
| | - L Vezzulli
- DISTAV, Dept. of Earth, Environment and Life Sciences, University of Genoa, Italy
| | - A Lasa
- Dept. of Microbiology and Parasitology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Pallavicini
- Dept. of Life Sciences, University of Trieste, Italy
| | - L Canesi
- DISTAV, Dept. of Earth, Environment and Life Sciences, University of Genoa, Italy
| |
Collapse
|
420
|
Giles EM, Couper J. Microbiome in health and disease. J Paediatr Child Health 2020; 56:1735-1738. [PMID: 32502314 DOI: 10.1111/jpc.14939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
Abstract
There has been an exponential rise in research into the microbiota of the human gastrointestinal tract, particularly of the genomic content (the microbiome). The vast number of micro-organisms residing in our gut has an integral role in essential processes, including growth and development. Probiotics, live micro-organisms with putative benefits on health have become ubiquitous as treatments for many conditions, despite often limited robust clinical trial data. However, the resurgence of faecal microbial transplantation as an effective treatment modality provides further promise that manipulation of our microbiome can have clinical benefits. This review will present the recent evidence for the role of the microbiome in development and growth, and focus on the evidence for its manipulation in paediatric diseases. We will show that while there is promising data in specific diseases, there remain many unanswered questions. Only through a deeper understanding of our complex internal ecosystem will we be able to move to the next stage of targeted microbial therapy.
Collapse
Affiliation(s)
- Edward M Giles
- Centre for Innate Immunity and Infectious Disease, Hudson Institute for Medical Research, Melbourne, Victoria, Australia.,Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Jenny Couper
- Discipline of Paediatrics, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
421
|
Jarmakiewicz-Czaja S, Sokal A, Filip R. What was First, Obesity or Inflammatory Bowel Disease? What Does the Gut Microbiota Have to Do with It? Nutrients 2020; 12:nu12103073. [PMID: 33050109 PMCID: PMC7600052 DOI: 10.3390/nu12103073] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
A sedentary lifestyle and inadequate nutrition often leads to disturbances in intestinal homeostasis, which may predispose people to excess body weight and metabolic syndrome. Obesity is frequently observed in patients with inflammatory bowel diseases (IBD), similar to the general population. Obesity may exert a negative effect on the course of IBD as well as reduce the response to treatment. Moreover, it may also be an additional risk factor for vein thromboembolism during the flare. In both obesity and IBD, it is of great importance to implement proper dietary ingredients that exert desirable effect on gut microbiota. The key to reducing body mass index (BMI) and alleviating the course of IBD is preserving healthy intestinal microflora.
Collapse
Affiliation(s)
- Sara Jarmakiewicz-Czaja
- Medical College of Rzeszow University, Institute of Health Sciences, 35-959 Rzeszow, Poland;
- Correspondence:
| | - Aneta Sokal
- Medical College of Rzeszow University, Institute of Health Sciences, 35-959 Rzeszow, Poland;
| | - Rafał Filip
- Medical College of Rzeszow University, Institute of Medicine, 35-959 Rzeszow, Poland;
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
422
|
Habiba M, Heyn R, Bianchi P, Brosens I, Benagiano G. The development of the human uterus: morphogenesis to menarche. Hum Reprod Update 2020; 27:1-26. [PMID: 33395479 DOI: 10.1093/humupd/dmaa036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
There is emerging evidence that early uterine development in humans is an important determinant of conditions such as ontogenetic progesterone resistance, menstrual preconditioning, defective deep placentation and pre-eclampsia in young adolescents. A key observation is the relative infrequency of neonatal uterine bleeding and hormone withdrawal at birth. The origin of the uterus from the fusion of the two paramesonephric, or Müllerian, ducts was described almost 200 years ago. The uterus forms around the 10th week of foetal life. The uterine corpus and the cervix react differently to the circulating steroid hormones during pregnancy. Adult uterine proportions are not attained until after puberty. It is unclear if the endometrial microbiome and immune response-which are areas of growing interest in the adult-play a role in the early stages of uterine development. The aim is to review the phases of uterine development up until the onset of puberty in order to trace the origin of abnormal development and to assess current knowledge for features that may be linked to conditions encountered later in life. The narrative review incorporates literature searches of Medline, PubMed and Scopus using the broad terms individually and then in combination: uterus, development, anatomy, microscopy, embryology, foetus, (pre)-puberty, menarche, microbiome and immune cells. Identified articles were assessed manually for relevance, any linked articles and historical textbooks. We included some animal studies of molecular mechanisms. There are competing theories about the contributions of the Müllerian and Wolffian ducts to the developing uterus. Endometrium features are suggestive of an oestrogen effect at 16-20 weeks gestation. The discrepancy in the reported expression of oestrogen receptor is likely to be related to the higher sensitivity of more recent techniques. Primitive endometrial glands appear around 20 weeks. Features of progestogen action are expressed late in the third trimester. Interestingly, progesterone receptor expression is higher at mid-gestation than at birth when features of endometrial maturation are rare. Neonatal uterine bleeding occurs in around 5% of neonates. Myometrial differentiation progresses from the mesenchyme surrounding the endometrium at the level of the cervix. During infancy, the uterus and endometrium remain inactive. The beginning of uterine growth precedes the onset of puberty and continues for several years after menarche. Uterine anomalies may result from fusion defects or atresia of one or both Müllerian ducts. Organogenetic differentiation of Müllerian epithelium to form the endometrial and endocervical epithelium may be independent of circulating steroids. A number of genes have been identified that are involved in endometrial and myometrial differentiation although gene mutations have not been demonstrated to be common in cases of uterine malformation. The role, if any, of the microbiome in relation to uterine development remains speculative. Modern molecular techniques applied to rodent models have enhanced our understanding of uterine molecular mechanisms and their interactions. However, little is known about functional correlates or features with relevance to adult onset of uterine disease in humans. Prepubertal growth and development lends itself to non-invasive diagnostics such as ultrasound and MRI. Increased awareness of the occurrence of neonatal uterine bleeding and of the potential impact on adult onset disease may stimulate renewed research in this area.
Collapse
Affiliation(s)
- Marwan Habiba
- Department of Health Sciences, University of Leicester and University Hospitals of Leicester, Leicester Royal Infirmary, Leicester, UK
| | - Rosemarie Heyn
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Paola Bianchi
- Department of Medico-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Ivo Brosens
- Faculty of Medicine, Catholic University of Leuven, Leuven, Belgium
| | - Giuseppe Benagiano
- Department of Maternal and Child Health, Gynaecology and Urology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
423
|
Rattan P, Minacapelli CD, Rustgi V. The Microbiome and Hepatocellular Carcinoma. Liver Transpl 2020; 26:1316-1327. [PMID: 32564483 DOI: 10.1002/lt.25828] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022]
Abstract
The human microbiome is a vast and complex system encompassing all of the microbes and their genes that occupy the environmentally exposed surfaces of the human body. The gut microbiota and its associated microbiome play an integral role in mammalian metabolism and immune tolerance as well as in immunocompetence. Disruptions in the human gut microbiome are associated with a cycle of hepatocyte injury and regeneration characteristic of chronic liver disease. The persistence of this inflammation has been shown to induce the accumulation of genetic and epigenetic changes leading to hepatocellular carcinoma (HCC). Therefore, the importance and prognostic influence of the gut microbiome on hepatocarcinogenesis has been increasingly studied in recent years. This review discusses the mechanisms by which imbalances in the gut microbiome disturb the gut-liver axis to impact hepatocarcinogenesis, including disruption of the intestinal barrier, changes in bile acid metabolism, and reduction in tumor-suppressing microRNA. Furthermore, this review summarizes recent advances in potential microbiome-based therapeutic opportunities in HCC.
Collapse
Affiliation(s)
- Puru Rattan
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Carlos D Minacapelli
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Vinod Rustgi
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
424
|
Santoro A, Zhao J, Wu L, Carru C, Biagi E, Franceschi C. Microbiomes other than the gut: inflammaging and age-related diseases. Semin Immunopathol 2020; 42:589-605. [PMID: 32997224 PMCID: PMC7666274 DOI: 10.1007/s00281-020-00814-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
During the course of evolution, bacteria have developed an intimate relationship with humans colonizing specific body sites at the interface with the body exterior and invaginations such as nose, mouth, lung, gut, vagina, genito-urinary tract, and skin and thus constituting an integrated meta-organism. The final result has been a mutual adaptation and functional integration which confers significant advantages to humans and bacteria. The immune system of the host co-evolved with the microbiota to develop complex mechanisms to recognize and destroy invading microbes, while preserving its own bacteria. Composition and diversity of the microbiota change according to development and aging and contribute to humans' health and fitness by modulating the immune system response and inflammaging and vice versa. In the last decades, we experienced an explosion of studies on the role of gut microbiota in aging, age-related diseases, and longevity; however, less reports are present on the role of the microbiota at different body sites. In this review, we describe the key steps of the co-evolution between Homo sapiens and microbiome and how this adaptation can impact on immunosenescence and inflammaging. We briefly summarized the role of gut microbiota in aging and longevity while bringing out the involvement of the other microbiota.
Collapse
Affiliation(s)
- Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72703, USA
| | - Lu Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ciriaco Carru
- Department of Biomedical Sciences, University Hospital (AOU) - University of Sassari, Sassari, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| |
Collapse
|
425
|
Shastry RP, Rekha PD. Bacterial cross talk with gut microbiome and its implications: a short review. Folia Microbiol (Praha) 2020; 66:15-24. [PMID: 32949007 DOI: 10.1007/s12223-020-00821-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Human gut microbiota exists in a complicated symbiotic relationship which postulates to impact health and disease conditions on the host. Interestingly, the gut microbiome shows different mechanisms to regulate host physiology and metabolism including cell-to-cell communications. But microbiota imbalance is characterized to change in the host normal functioning and lead to the development and progression of major human diseases. Therefore, the direct cross talk through the microbial metabolites or peptides suggests the evidence of host health and disease. Recent reports highlight the adaptation signals/small molecules promoting microbial colonization which allows modulating immunity of host and leads to pathogen colonization. Moreover, quorum sensing peptides are also evident in the involvement of host disease conditions. Here, we review the current understanding of the gut microbiota cross talk with mammalian cells through metabolites and peptides. These studies are providing insight into the prediction of signature molecules which significantly provide information for the understanding of the interaction for precision medicine applications.
Collapse
Affiliation(s)
- Rajesh P Shastry
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| |
Collapse
|
426
|
Gong H, Yuan Q, Pang J, Li T, Li J, Zhan B, Chang R, Mao X. Dietary Milk Fat Globule Membrane Restores Decreased Intestinal Mucosal Barrier Development and Alterations of Intestinal Flora in Infant-Formula-Fed Rat Pups. Mol Nutr Food Res 2020; 64:e2000232. [PMID: 32918844 DOI: 10.1002/mnfr.202000232] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SCOPE Milk fat globule membrane (MFGM), which contains abundant polar lipids and glycoproteins, can narrow the gap in growth and development between breast-fed and infant-formula-fed babies. The objective of this study is to evaluate the effect of MFGM supplementation in infant formula on intestinal epithelium maturation, tight junctions, and gut colonization in rat pups. METHODS AND RESULTS Sprague Dawley rat pups consume one of the five diets from postnatal day 8, including rat breastfeeding (BF), infant formula (IF), and infant formula containing MFGM at 260 mg kg-1 body weight (BW), 520 mg kg-1 BW, or 1040 mg kg-1 BW. Results show that MFGM supplementation in infant formula can facilitate intestinal mucosal barrier maturation via promoting intestinal proliferation and differentiation, and increasing tight junction proteins. In addition, compared with that of the IF pups, the intestinal flora composition of MFGM-supplemented pups is more similar to that of BF pups. CONCLUSION MFGM supplementation in infant formula can restore the intestinal development in infant-formula-fed pups, which suggests that the supplementation of MFGM in infant formula can better mimic breast milk.
Collapse
Affiliation(s)
- Han Gong
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Qichen Yuan
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Jinzhu Pang
- Mengniu Arla (Inner Mongolia) Dairy Products Co., Ltd., Beijing, 101100, China
| | - Tiange Li
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Jufang Li
- Mengniu Arla (Inner Mongolia) Dairy Products Co., Ltd., Beijing, 101100, China
| | - Biyuan Zhan
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Rui Chang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Xueying Mao
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
427
|
Maity C, Gupta AK, Saroj DB, Biyani A, Bagkar P, Kulkarni J, Dixit Y. Impact of a Gastrointestinal Stable Probiotic Supplement Bacillus coagulans LBSC on Human Gut Microbiome Modulation. J Diet Suppl 2020; 18:577-596. [PMID: 32896190 DOI: 10.1080/19390211.2020.1814931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacillus coagulans LBSC showed stability in acidic pH, bile and simulated human gastrointenstinal juices. Under static gut model, when passed through oral, gastric and intestinal phases, B. coagulans LBSC was found to be stable as free viable spores and also with various foods such as milk and baby foods, as well as American and European diets. In human studies, modulation of gut microbiota by B. coagulans LBSC was comprehended by whole genome metagenome analysis of fecal samples obtained from pre- and post-treatment of irritable bowel syndrome (IBS) patients. B. coagulans LBSC treatment showed positive modulation in gut microbiota, especially up regulation of phyla such as Actinobacteria and Firmicutes, whereas down regulation of Bacteroids, Proteobacteria, Streptophyta and Verrucomicrobia. Simultaneously, it has altered various microbiota associated metabolic pathways to create the normalcy of gut microenvironment.
Collapse
Affiliation(s)
| | | | - Dina B Saroj
- Advanced Enzyme Technologies Ltd, Thane, Maharashtra, India
| | - Atul Biyani
- Advanced Enzyme Technologies Ltd, Thane, Maharashtra, India
| | - Pratik Bagkar
- Advanced Enzyme Technologies Ltd, Thane, Maharashtra, India
| | | | - Yogini Dixit
- Advanced Enzyme Technologies Ltd, Thane, Maharashtra, India
| |
Collapse
|
428
|
|
429
|
Mobeen F, Sharma V, Prakash T. Comparative gut microbiome analysis of the Prakriti and Sasang systems reveals functional level similarities in constitutionally similar classes. 3 Biotech 2020; 10:379. [PMID: 32802721 PMCID: PMC7413973 DOI: 10.1007/s13205-020-02376-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
The traditional medicinal systems (TMS) of India (Prakriti) and Korea (Sasang) classify human individuals based on their constitution determined by the physiological and psychological traits of individuals. Similarities in the constitutions are already found between the classes of Prakriti (Vata, Pitta, and Kapha) and Sasang (TE: Taeeumin, SE: Soeumin, and SY: Soyangin) systems. Gut health is an important aspect of this constitution based classification in TMS. To determine the role of gut microbes in such classifications, we have analyzed the gut microbiome (taxa and imputed functions) in the constitutionally similar Prakriti and Sasang classes. An enrichment of Bacteroides and Prevotella enterotypes is observed in the Sasang and Prakriti samples, respectively. The impact of the constitution is found to be more prominent with respect to the taxa and predicted-functions within the Prakriti classes. Gut microbiome functional-level similarities are found to correlate well with the host phenotypes of the constitutionally similar Prakriti and Sasang classes. An enrichment of carbohydrate and amino-acid metabolism is observed in the Vata and SE classes which may be responsible for meeting with their high energy demands and lean phenotype. The Pitta and SY classes exhibit the high capacity to metabolize toxins. An enrichment of functions responsible for predisposition to obesity and high drug metabolism is observed in the Kapha and TE classes. The contribution of gut adaptive functions is found to correlate with the constitution-based classification in both Prakriti and Sasang systems. The TE class harboured the highest number of biofilm-forming and stress-tolerant microbes thus exhibiting the maximum tolerance of environmental stress. Similarities in the gut microbiota and the resulting disease predisposition patterns are found to exist between the constitutionally matching Prakriti and Sasang classes.
Collapse
Affiliation(s)
- Fauzul Mobeen
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005 India
| | - Vikas Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005 India
| | - Tulika Prakash
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005 India
| |
Collapse
|
430
|
Awany D, Chimusa ER. Heritability jointly explained by host genotype and microbiome: will improve traits prediction? Brief Bioinform 2020; 22:5893981. [PMID: 32810866 DOI: 10.1093/bib/bbaa175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/14/2022] Open
Abstract
As we observe the $70$th anniversary of the publication by Robertson that formalized the notion of 'heritability', geneticists remain puzzled by the problem of missing/hidden heritability, where heritability estimates from genome-wide association studies (GWASs) fall short of that from twin-based studies. Many possible explanations have been offered for this discrepancy, including existence of genetic variants poorly captured by existing arrays, dominance, epistasis and unaccounted-for environmental factors; albeit these remain controversial. We believe a substantial part of this problem could be solved or better understood by incorporating the host's microbiota information in the GWAS model for heritability estimation and may also increase human traits prediction for clinical utility. This is because, despite empirical observations such as (i) the intimate role of the microbiome in many complex human phenotypes, (ii) the overlap between genetic variants associated with both microbiome attributes and complex diseases and (iii) the existence of heritable bacterial taxa, current GWAS models for heritability estimate do not take into account the contributory role of the microbiome. Furthermore, heritability estimate from twin-based studies does not discern microbiome component of the observed total phenotypic variance. Here, we summarize the concept of heritability in GWAS and microbiome-wide association studies, focusing on its estimation, from a statistical genetics perspective. We then discuss a possible statistical method to incorporate the microbiome in the estimation of heritability in host GWAS.
Collapse
Affiliation(s)
- Denis Awany
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Emile R Chimusa
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
431
|
Parris KM, Amabebe E, Cohen MC, Anumba DO. Placental microbial-metabolite profiles and inflammatory mechanisms associated with preterm birth. J Clin Pathol 2020; 74:10-18. [PMID: 32796048 DOI: 10.1136/jclinpath-2020-206536] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
Abstract
There is growing emphasis on the potential significance of the placental microbiome and microbiome-metabolite interactions in immune responses and subsequent pregnancy outcome, especially in relation to preterm birth (PTB). This review discusses in detail the pathomechanisms of placental inflammatory responses and the resultant maternal-fetal allograft rejection in both microbial-induced and sterile conditions. It also highlights some potential placental-associated predictive markers of PTB for future investigation. The existence of a placental microbiome remains debatable. Therefore, an overview of our current understanding of the state and role of the placental microbiome (if it exists) and metabolome in human pregnancy is also provided. We critical evaluate the evidence for a placental microbiome, discuss its functional capacity through the elaborated metabolic products and also describe the consequent and more established fetomaternal inflammatory responses that stimulate the pathway to preterm premature rupture of membranes, preterm labour and spontaneous PTB.
Collapse
Affiliation(s)
- Kerry M Parris
- Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | | | - Marta C Cohen
- Oncology and Metabolism, University of Sheffield, Sheffield, UK.,Histopathology, Sheffield Childrens Hospital NHS Foundation Trust, Sheffield, UK
| | - Dilly O Anumba
- Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
432
|
Bacterial Peptidoglycans from Microbiota in Neurodevelopment and Behavior. Trends Mol Med 2020; 26:729-743. [DOI: 10.1016/j.molmed.2020.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
|
433
|
Strasser C, Spindelboeck W, Kashofer K, Oswald J, Haid B. Low-dose antibiotic prophylaxis has no significant impact on the stability of the intestinal microbiome in children with urogenital tract malformations under 1 year of age. J Pediatr Urol 2020; 16:456.e1-456.e7. [PMID: 32665196 DOI: 10.1016/j.jpurol.2020.05.165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Accumulating data point at potentially lasting effects of early childhood therapeutic antibiotic exposure on the intestinal microbial. Little is known on the impact of low-dose longterm antibiotic prophylaxis on the developing intestinal microbiota in children during their first year of life. OBJECTIVE To investigate compositional changes of the intestinal microbiota by next generation sequencing based microbiome analysis and bacterial metabolites in longitudinally collected fecal samples. STUDY DESIGN Twelve patients were analyzed in this prospective, longitudinal pilot study during a period of 70 days (sampling on days 0,7,14,30,70). Only transvaginally and term born babies, breastfed with no prior antibiotic exposure with urogenital malformation (vesicoureteral reflux and/or upper urinary tract dilatation) were included into the study. Seven patients received antibiotic longterm prophylaxis with a second-generation cephalosporin and five did not. Sequencing of bacterial 16 S rRNA allowed for an analysis of the microbiome composition. The Principal coordinate analysis was performed for the evaluation of compositional profile. Furthermore, quantitative measurement of short chain fatty acids served as a proxy for the metabolic activity of the individual microbiome over the study time. RESULTS Analysis of observed species, Shannon Index and weighted Unifrac distances between timepoints revealed neither significant difference comparing the prophylaxis group versus the control group over the study period, nor significant changes within the groups over time. Principal coordinate analysis (PCoA) was performed for the evaluation of compositional profile. Also, no differences regarding the fecal SCFA content were found between the two groups (>0.05 at each tested point, Mann-Whitney Test). DISCUSSION Although there were interindividual compositional differences of the microbiome (cluster of bacterial composition) at the beginning of the observation, we did not observe significant longitudinal changes regarding both bacterial diversity and SCFAs in neither group. Over the study period, the patient's microbiome remained stable and resilient to the antibiotic exposure in terms of bacterial abundance and metabolism. Limitations to the study are the low number of patients included and the use of one single antibiotic (cefaclor). CONCLUSION This is the first pilot study to demonstrate that long term low-dose antibiotic administration in children under one year of age does neither seem to influence the composition of the intestinal microbiota nor the quantities of bacterial fermentation products compared to untreated controls.
Collapse
Affiliation(s)
- C Strasser
- Med Campus III, Kepleruniversitätsklinikum, Department of Urology and Andrology, Linz, Austria; Hospital of the Sisters of Charity, Department of Paediatric Urology, Linz, Austria
| | - W Spindelboeck
- Medical University Graz, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Graz, Austria.
| | - K Kashofer
- Medical University of Graz, Institute of Pathology, Graz, Austria
| | - J Oswald
- Hospital of the Sisters of Charity, Department of Paediatric Urology, Linz, Austria
| | - B Haid
- Hospital of the Sisters of Charity, Department of Paediatric Urology, Linz, Austria; Ludwig-Maximilians-University, Department of Urology, Munich, Germany
| |
Collapse
|
434
|
van Best N, Rolle-Kampczyk U, Schaap FG, Basic M, Olde Damink SWM, Bleich A, Savelkoul PHM, von Bergen M, Penders J, Hornef MW. Bile acids drive the newborn's gut microbiota maturation. Nat Commun 2020; 11:3692. [PMID: 32703946 PMCID: PMC7378201 DOI: 10.1038/s41467-020-17183-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Following birth, the neonatal intestine is exposed to maternal and environmental bacteria that successively form a dense and highly dynamic intestinal microbiota. Whereas the effect of exogenous factors has been extensively investigated, endogenous, host-mediated mechanisms have remained largely unexplored. Concomitantly with microbial colonization, the liver undergoes functional transition from a hematopoietic organ to a central organ of metabolic regulation and immune surveillance. The aim of the present study was to analyze the influence of the developing hepatic function and liver metabolism on the early intestinal microbiota. Here, we report on the characterization of the colonization dynamics and liver metabolism in the murine gastrointestinal tract (n = 6-10 per age group) using metabolomic and microbial profiling in combination with multivariate analysis. We observed major age-dependent microbial and metabolic changes and identified bile acids as potent drivers of the early intestinal microbiota maturation. Consistently, oral administration of tauro-cholic acid or β-tauro-murocholic acid to newborn mice (n = 7-14 per group) accelerated postnatal microbiota maturation.
Collapse
Affiliation(s)
- N van Best
- Institute of Medical Microbiology, RWTH University Hospital Aachen, RWTH University, Aachen, Germany
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - U Rolle-Kampczyk
- Department of Molecular Systems Biology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - F G Schaap
- Department of General Surgery, NUTRIM, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - M Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - S W M Olde Damink
- Department of General Surgery, NUTRIM, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - A Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - P H M Savelkoul
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - M von Bergen
- Department of Molecular Systems Biology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - J Penders
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.
- School of Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands.
| | - M W Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, RWTH University, Aachen, Germany.
| |
Collapse
|
435
|
Impaired Hypothalamic Microglial Activation in Offspring of Antibiotic-Treated Pregnant/Lactating Rats Is Attenuated by Prebiotic Oligofructose Co-Administration. Microorganisms 2020; 8:microorganisms8071085. [PMID: 32708167 PMCID: PMC7409116 DOI: 10.3390/microorganisms8071085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
Microbial colonization of the gut early in life is crucial for the development of the immune and nervous systems, as well as influencing metabolism and weight gain. While early life exposure to antibiotics can cause microbial dysbiosis, prebiotics are non-digestible substrates that selectively promote the growth of beneficial gut microbiota. Our objective was to examine the effects of dietary prebiotic administration on the consequences of maternal antibiotic intake on offspring body weight, behavior, and neuroimmune responses later in life. Sprague-Dawley rat dams were given low-dose penicillin (LDP), prebiotic fiber (10% oligofructose), or both, during the third week of pregnancy and throughout lactation. Anxiety-like behavior, weight gain, body composition, cecal microbiota composition, and microglial responses to lipopolysaccharide (LPS) were assessed in offspring. Male and female prebiotic offspring had lower body weight compared to antibiotic offspring. Maternal antibiotic exposure resulted in lasting effects on select offspring microbiota including a lower relative abundance of Streptococcus, Lactococcus, and Eubacterium at 10 weeks of age. Maternal antibiotic use impaired microglial response to LPS in the hypothalamus compared to control, and this phenotype was reversed with prebiotic. Prebiotic fiber warrants further investigation as an adjunct to antibiotic use during pregnancy.
Collapse
|
436
|
Zhu C, Miller M, Zeng Z, Wang Y, Mahlich Y, Aptekmann A, Bromberg Y. Computational Approaches for Unraveling the Effects of Variation in the Human Genome and Microbiome. Annu Rev Biomed Data Sci 2020. [DOI: 10.1146/annurev-biodatasci-030320-041014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The past two decades of analytical efforts have highlighted how much more remains to be learned about the human genome and, particularly, its complex involvement in promoting disease development and progression. While numerous computational tools exist for the assessment of the functional and pathogenic effects of genome variants, their precision is far from satisfactory, particularly for clinical use. Accumulating evidence also suggests that the human microbiome's interaction with the human genome plays a critical role in determining health and disease states. While numerous microbial taxonomic groups and molecular functions of the human microbiome have been associated with disease, the reproducibility of these findings is lacking. The human microbiome–genome interaction in healthy individuals is even less well understood. This review summarizes the available computational methods built to analyze the effect of variation in the human genome and microbiome. We address the applicability and precision of these methods across their possible uses. We also briefly discuss the exciting, necessary, and now possible integration of the two types of data to improve the understanding of pathogenicity mechanisms.
Collapse
Affiliation(s)
- Chengsheng Zhu
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08873, USA;,
| | - Maximilian Miller
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08873, USA;,
| | - Zishuo Zeng
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08873, USA;,
| | - Yanran Wang
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08873, USA;,
| | - Yannick Mahlich
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08873, USA;,
| | - Ariel Aptekmann
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08873, USA;,
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08873, USA;,
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
437
|
Akinyemi FT, Ding J, Zhou H, Xu K, He C, Han C, Zheng Y, Luo H, Yang K, Gu C, Huang Q, Meng H. Dynamic distribution of gut microbiota during embryonic development in chicken. Poult Sci 2020; 99:5079-5090. [PMID: 32988546 PMCID: PMC7598139 DOI: 10.1016/j.psj.2020.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
The gut microbiota is a complex ecological community and widely recognized in many aspects of research, but little is known on the relation between gut microbiota and embryonic development in chickens. The aim of this study was to explore the dynamic distribution of gut microbiota in chickens' embryos during stages of developments (chicken embryos that had incubated until day 3 [E3], day 12 [E12], and day 19 [E19]). Here, 16S rRNA gene sequencing was performed on the gut microbiota in chicken embryos across different developmental stages. Twenty-one phyla and 601 genera were present in chicken embryos, and 96 genera such as Ochrobactrum, Phyllobacterium, and Amycolatopsis were the core microbiota in the 3 stages of development. Second, 94 genera of microbes were found to change significantly between E3 and E12, and 143 genera significantly differed between E12 and E19 in chicken embryos (P < 0.05). Ochrobactrum and Amycolatopsis decreased with growth changes: E3 (30.4%), E12 (25.1%), and E19 (13.6%) and E3 (11.5%), E12 (7.4%), and E19 (5.6%), respectively. Contrarily, Phyllobacterium increased to 47.9% at E19, indicating the growing trend of microbial diversity among the embryos' development. Moreover, the principal component analysis showed a high level of similarities between E3 and E12 compared with E19, whereas the alpha analysis showed more diversity of gut microbiota at E19. Furthermore, the functional predictions showed that metabolic pathways such as energy metabolism and genetic information processing were significantly enriched on day 3 and day 12 in our study, suggesting their strong influence on growth, development, and immunity of chicken embryos. Our findings provide insights into the understanding of dynamic shifts of gut microbiota during chicken embryonic growth.
Collapse
Affiliation(s)
- Fisayo T Akinyemi
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinmei Ding
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Zhou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ke Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuan He
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengxiao Han
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuming Zheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huaixi Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaixuan Yang
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Caiju Gu
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Qizhong Huang
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
438
|
Campos-Cerda F, Bohannan BJM. The Nidobiome: A Framework for Understanding Microbiome Assembly in Neonates. Trends Ecol Evol 2020; 35:573-582. [PMID: 32360079 DOI: 10.1016/j.tree.2020.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
The importance of microbial associations to animals' development, physiology, and fitness is widely recognized. In most animals, these microbial associations must be developed anew with every generation, making microbiome assembly a critical ecological and evolutionary process. To fully understand neonate microbial colonization, we need to study the interacting effects of neonate, parents, nest, and external environment. We propose an integrative approach based on the concept of the 'nidobiome', a new unit of microbiome-host interactions, which brings together these key elements. We discuss the contribution of each element on microbial colonization at different stages of host development, and we provide a framework based on key developmental events to compare microbiome assembly across animal species.
Collapse
Affiliation(s)
- Felipe Campos-Cerda
- Institute of Ecology and Evolution, Biology Department, University of Oregon, Eugene, OR 97405, USA.
| | - Brendan J M Bohannan
- Institute of Ecology and Evolution, Biology Department, University of Oregon, Eugene, OR 97405, USA
| |
Collapse
|
439
|
Kim YY, Joh JS, Lee JY. Importance of microbial extracellular vesicle in the pathogenesis of asthma and chronic obstructive pulmonary disease and its diagnostic potential. Asia Pac Allergy 2020; 10:e25. [PMID: 32789110 PMCID: PMC7402947 DOI: 10.5415/apallergy.2020.10.e25] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
There are rising evidences of the human microbiome as a potentially influential player that is actively engaged in shaping the pathogenetic processes and other unresolved issues both in asthma and other chronic respiratory diseases, particularly of the airways. The biological components such as microbiome in inhaled air can induce immune dysfunction and inflammation, leading to inflammatory pulmonary disorders such as asthma and chronic obstructive pulmonary disease (COPD). Microbe-derived extracellular vesicles (EVs) with biologically active information or functions can reprogram their respective target cells and EV may have a role for the development of asthma and COPD. To evaluate the role of microbe-derived EV in the pathogenesis of asthma and COPD and its role in diagnosis, the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement method was used for the study. An electronic search was performed using PubMed, PubMed Central, and Embase up to 2020. EVs serve as an intercellular transporter of miRNAs for cell-to-cell communication in the lungs. Bacteria-derived EVs have distinctive characteristics in the lungs of patients with asthma and COPD compared to healthy controls. Furthermore, bacterial EV IgG antibody titers in serum were significantly higher in patients with asthma and COPD than in healthy controls, suggesting that antibacterial EV antibodies titers can be used as a diagnostic tool for lung disease. Taken together, microbial EVs and miRNAs have important roles in the pathogenesis of asthma and COPD and they can provide novel diagnostic biomarkers for asthma and COPD.
Collapse
Affiliation(s)
- You-Young Kim
- Asthma Allergy Center, National Medical Center, Seoul, Korea
| | - Joon Sung Joh
- Department of Respiratory Medicine, National Medical Center, Seoul, Korea
| | - Ji Yeon Lee
- Department of Respiratory Medicine, National Medical Center, Seoul, Korea
| |
Collapse
|
440
|
Berg G, Rybakova D, Fischer D, Cernava T, Vergès MCC, Charles T, Chen X, Cocolin L, Eversole K, Corral GH, Kazou M, Kinkel L, Lange L, Lima N, Loy A, Macklin JA, Maguin E, Mauchline T, McClure R, Mitter B, Ryan M, Sarand I, Smidt H, Schelkle B, Roume H, Kiran GS, Selvin J, Souza RSCD, van Overbeek L, Singh BK, Wagner M, Walsh A, Sessitsch A, Schloter M. Microbiome definition re-visited: old concepts and new challenges. MICROBIOME 2020; 8:103. [PMID: 32605663 PMCID: PMC7329523 DOI: 10.1186/s40168-020-00875-0] [Citation(s) in RCA: 902] [Impact Index Per Article: 180.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/22/2020] [Indexed: 05/03/2023]
Abstract
The field of microbiome research has evolved rapidly over the past few decades and has become a topic of great scientific and public interest. As a result of this rapid growth in interest covering different fields, we are lacking a clear commonly agreed definition of the term "microbiome." Moreover, a consensus on best practices in microbiome research is missing. Recently, a panel of international experts discussed the current gaps in the frame of the European-funded MicrobiomeSupport project. The meeting brought together about 40 leaders from diverse microbiome areas, while more than a hundred experts from all over the world took part in an online survey accompanying the workshop. This article excerpts the outcomes of the workshop and the corresponding online survey embedded in a short historical introduction and future outlook. We propose a definition of microbiome based on the compact, clear, and comprehensive description of the term provided by Whipps et al. in 1988, amended with a set of novel recommendations considering the latest technological developments and research findings. We clearly separate the terms microbiome and microbiota and provide a comprehensive discussion considering the composition of microbiota, the heterogeneity and dynamics of microbiomes in time and space, the stability and resilience of microbial networks, the definition of core microbiomes, and functionally relevant keystone species as well as co-evolutionary principles of microbe-host and inter-species interactions within the microbiome. These broad definitions together with the suggested unifying concepts will help to improve standardization of microbiome studies in the future, and could be the starting point for an integrated assessment of data resulting in a more rapid transfer of knowledge from basic science into practice. Furthermore, microbiome standards are important for solving new challenges associated with anthropogenic-driven changes in the field of planetary health, for which the understanding of microbiomes might play a key role. Video Abstract.
Collapse
Affiliation(s)
- Gabriele Berg
- Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Daria Rybakova
- Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Tomislav Cernava
- Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Trevor Charles
- Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Metagenom Bio, 550 Parkside Drive, Unit A9, Waterloo, ON, N2L 5 V4, Canada
| | - Xiaoyulong Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Luca Cocolin
- European Food Information Council, Brussels, Belgium
| | - Kellye Eversole
- International Alliance for Phytobiomes Research, Summit, Lee, MO, 's, USA
| | | | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Linda Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Lene Lange
- BioEconomy, Research, & Advisory, Valby, Denmark
| | - Nelson Lima
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Alexander Loy
- Department of Microbial Ecology and Ecosystem Science, University of Vienna, Vienna, Austria
| | | | - Emmanuelle Maguin
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Tim Mauchline
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, UK
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Birgit Mitter
- Bioresources Unit, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Inga Sarand
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | | | | | - G Seghal Kiran
- Dept of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - Rafael Soares Correa de Souza
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Leo van Overbeek
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Michael Wagner
- Department of Microbial Ecology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Aaron Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Angela Sessitsch
- Bioresources Unit, AIT Austrian Institute of Technology, Tulln, Austria
| | | |
Collapse
|
441
|
Stanojević M. Are Covid-19-positive mothers dangerous for their term and well newborn babies? Is there an answer? J Perinat Med 2020; 48:441-445. [PMID: 32401228 DOI: 10.1515/jpm-2020-0186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 12/30/2022]
Abstract
Background The pandemic caused by the new coronavirus SARS-CoV-2 (Covid-19) is quite a challenging experience for the world. At the moment of birth, the fetus is prepared to face the challenge of labor and the exposure to the outside world, meaning that labor and birth represent the first extrauterine major exposure to a complex microbiota. The vagina, which is a canal for reproduction, is by evolution separated (but not far) from the anus and urethra. Passing through the birthing canal is a mechanism for intergenerational transmission of vaginal and gut microorganisms for the vertical transmission of microbiota not only from our mothers and grandmothers but also from earlier ancestors. Methods Many national and international instructions have been developed since the beginning of the Covid-19 outbreak in January 2020 in Wuhan in China. All of them pointed out hygiene measures, social distancing and avoidance of social contacts as the most important epidemiological preventive measures. Pregnancy and neonatal periods are considered as high risk for Covid-19 infection. Results The instructions defined the care for pregnant women in the delivery room, during a hospital stay and after discharge. The controversial procedures in the care of Covid-19-suspected or -positive asymptomatic women in labor were: mode of delivery, companion during birth and labor, skin-to-skin contact, breastfeeding, and visits during a hospital stay. Conclusion There is a hope that instruction on coping with the coronavirus (Covid-19) infection in pregnancy with all proposed interventions affecting mothers, babies and families, besides saving lives, are beneficial and efficient by exerting no harm.
Collapse
Affiliation(s)
- Milan Stanojević
- Department of Obstetrics and Gynecology Medical School University of Zagreb, Neonatal Unit, Sveti Duh University Hospital, Voćarska cesta 63/1, Zagreb 10000, Croatia
| |
Collapse
|
442
|
Rapid Reconstitution of the Fecal Microbiome after Extended Diet-Induced Changes Indicates a Stable Gut Microbiome in Healthy Adult Dogs. Appl Environ Microbiol 2020; 86:AEM.00562-20. [PMID: 32303546 DOI: 10.1128/aem.00562-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome has an important role in health, and diet represents a key lever for shaping the gut microbiome across all stages of life. Maternal milk consumption in neonates leads to long-term health effects, indicating that pliability in the infant gut microbiome in response to diet can drive enduring change. The ability of diet to drive lasting changes in the adult gut microbiome is less understood. We studied the effect of an extreme dietary shift on the fecal microbiome of 46 Labrador retriever dogs (mean age, 4.6 years) over 11 months. Dogs were fed a nutritionally complete, commercially available complex diet (CD) for a minimum of 5 weeks, followed by highly purified diets (PDs) for 36 weeks, and the initial CD for at least a further 4 weeks. Fecal samples were collected at regular intervals for DNA extraction. By analyzing 16S rRNA genes and the metagenomes, we observed minor effects on microbial diversity but significant changes in bacterial taxa and genetic potential when a PD was fed. Specifically, metagenomics identified an enrichment of quinone- and GABA-related pathways on PD, providing insights into dietary effects on cross-feeding strategies impacting community structure. When dogs returned to the CD, no significant differences were found with the initial time point. These findings are consistent with the gut microbiome being rapidly adaptable but capable of being reconstituted when provided with similar diets. These data highlight that long-term changes in the adult dog gut microbiome may only be achieved through long-term maintenance on a specified diet, rather than through feeding a transitionary diet.IMPORTANCE Diet can influence the adult gut microbiome (the community of bacteria) and health outcomes, but the ability to make changes persisting beyond feeding of a particular diet is poorly understood. We investigated whether feeding highly purified diets to adult dogs for 36 weeks would alter bacterial populations sufficiently to result in a persistent change following the dogs' return to a commercial diet. As expected, the microbiome changed when the purified diet was fed, but the original microbiome was reconstituted within weeks of the dogs returning to the commercial diet. The significance of these findings is in identifying an intrinsic stability of the host microbiome in healthy dogs, suggesting that dietary changes to support adult dog health through modifying the gut microbiome may be achieved only through maintenance on a specified diet, rather than through feeding transitionary diets.
Collapse
|
443
|
Manzoor SS, Doedens A, Burns MB. The promise and challenge of cancer microbiome research. Genome Biol 2020; 21:131. [PMID: 32487228 PMCID: PMC7265652 DOI: 10.1186/s13059-020-02037-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Many microbial agents have been implicated as contributors to cancer genesis and development, and the search to identify and characterize new cancer-related organisms is ongoing. Modern developments in methodologies, especially culture-independent approaches, have accelerated and driven this research. Recent work has shed light on the multifaceted role that the community of organisms in and on the human body plays in cancer onset, development, detection, treatment, and outcome. Much remains to be discovered, however, as methodological variation and functional testing of statistical correlations need to be addressed for the field to advance.
Collapse
Affiliation(s)
| | - Annemiek Doedens
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Michael B Burns
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660, USA.
| |
Collapse
|
444
|
Effect of co-trimoxazole prophylaxis on morbidity and mortality of HIV-exposed, HIV-uninfected infants in South Africa: a randomised controlled, non-inferiority trial. LANCET GLOBAL HEALTH 2020; 7:e1717-e1727. [PMID: 31708152 DOI: 10.1016/s2214-109x(19)30422-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND WHO guidelines recommend co-trimoxazole prophylaxis for HIV-exposed, HIV-uninfected infants. These guidelines date back to an era in which HIV testing of infants was impossible and mothers had poor access to antiretroviral treatment. To determine whether this guideline requires revision in the current era of effective prevention of mother-to-child transmission and early infant diagnosis programmes, we aimed to investigate whether receiving no co-trimoxazole prophylaxis is inferior to receiving co-trimoxazole prophylaxis in the resulting incidence of grade 3 or 4 common childhood illnesses or mortality in breastfed HIV-exposed, HIV-uninfected infants. METHODS We investigated our aim in a randomised controlled, non-inferiority trial. We enrolled the HIV-negative infants of mothers living with HIV who were actively involved in transmission prevention programmes in two clinics in Durban, South Africa. Infants were included in the study if they were breastfeeding at the screening and enrolment visits, and their mother was planning to breastfeed for at least 6 months; were a singleton birth and had a birthweight of 2 kg or more; had no clinically observed genetic disorders; and had no serious illnesses and had not received antibiotics or traditional medications (such as herbal remedies). Infants were randomly assigned (1:1) to receive co-trimoxazole or no co-trimoxazole. In the co-trimoxazole group, infants received the drug until all exposure to HIV had ceased (ie, 6 weeks after last exposure to breastmilk) and the infant was confirmed to be uninfected with HIV. The drug was administered by mothers in once-daily regimens of 20 mg trimethoprim and 100 mg sulfamethoxazole orally (age <6 months or bodyweight <5 kg), or 40 mg trimethoprim and 200 mg sulfamethoxazole orally (age >6 months or bodyweight >5 kg). Clinical and laboratory staff always remained masked to group assignment, but mothers and study counsellors were not. Infants and their mothers attended study visits at ages 6 weeks (for enrolment and randomisation), 10 weeks, 14 weeks, and then monthly from 4 to 12 months. Our primary outcome was the incidence of grade 3 or 4 common childhood illnesses (pneumonia or diarrhoea) or mortality in breastfed HIV-exposed, HIV-uninfected infants by age 12 months. A non-inferiority bound of 5% was used. The study is registered with the Pan African Clinical Trials Registry, number PACTR201311000621110, and the South African National Clinical Trials Registry, number DOH-27-0614-4728. FINDINGS We screened 1570 mother-child pairs for study enrolment, from whom (78%) eligible infants were enrolled into the study between Oct 16, 2013, and May 23, 2018. Of the infants enrolled, 611 (50%) were randomly assigned to the co-trimoxazole group and 609 (50%) were randomly assigned to the no co-trimoxazole group. One (<1%) infant in the no co-trimoxazole group was excluded from the analysis of the final outcomes for having received traditional medicine (which only became apparent after randomisation); therefore, 611 (50%) infants in the co-trimoxazole group and 608 (50%) infants in the no co-trimoxazole group were included in the final intention-to-treat analysis. 136 (22%) infants in the co-trimoxazole group and 139 (23%) infants in the no co-trimoxazole group did not complete the 12-month study visit, predominantly because of loss to follow-up (93 [15%] infants in the co-trimoxazole group; 90 [15%] infants in the no co-trimoxazole group). The cumulative probability of the composite primary outcome was 0·114 (95% CI 0·076 to 0·147; 49 events) in the co-trimoxazole group versus 0·0795 (0·044 to 0·115; 39 events) in the no co-trimoxazole group. The risk difference (no co-trimoxazole group minus co-trimoxazole group) was -0·0319 (-0·075 to 0·011), meaning that the risk was around 3 percentage points lower in the no co-trimoxazole group on the additive scale. INTERPRETATION We can conclude that no co-trimoxazole is not inferior to daily co-trimoxazole among breastfed HIV-exposed, HIV-uninfected infants whose mothers are accessing a prevention of mother-to-child transmission programme in an area unaffected by malaria. We therefore believe that WHO should revise the co-trimoxazole guidelines for HIV-exposed, HIV-uninfected infants in areas unaffected by malaria. FUNDING HIV Prevention Research Unit of the South African Medical Research Council and the Family Larsson-Rosenquist Foundation.
Collapse
|
445
|
Zhang X, Chen BD, Zhao LD, Li H. The Gut Microbiota: Emerging Evidence in Autoimmune Diseases. Trends Mol Med 2020; 26:862-873. [PMID: 32402849 DOI: 10.1016/j.molmed.2020.04.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
Abstract
The pathogenesis of autoimmune diseases (AIDs) is not only attributed to genetic susceptibilities but also environmental factors, among which, disturbed gut microbiota has attracted increasing attention. Compositional and functional changes of gut microbiota have been reported in various AIDs, and increasing evidence suggests that disturbed gut microbiota contributes to their immunopathogenesis. The accepted mechanisms include abnormal microbial translocation, molecular mimicry, and dysregulation of both local and systemic immunity. Studies have also suggested microbiota-based classification models and therapeutic interventions for patients with AIDs. Further in-depth mechanistic studies on microbiota-autoimmunity interplay in AIDs are urgently needed and underway to explore novel and precise diagnostic biomarkers and develop disease and patient-tailored therapeutic strategies.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, 100730; Clinical Immunology Centre, Medical Epigenetics Research Centre, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100730.
| | - Bei-di Chen
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, 100730; Clinical Immunology Centre, Medical Epigenetics Research Centre, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100730
| | - Li-Dan Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, 100730
| | - Hao Li
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
446
|
Colquhoun C, Duncan M, Grant G. Inflammatory Bowel Diseases: Host-Microbial-Environmental Interactions in Dysbiosis. Diseases 2020; 8:E13. [PMID: 32397606 PMCID: PMC7348996 DOI: 10.3390/diseases8020013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Crohn's Disease (CD) and Ulcerative Colitis (UC) are world-wide health problems in which intestinal dysbiosis or adverse functional changes in the microbiome are causative or exacerbating factors. The reduced abundance and diversity of the microbiome may be a result of a lack of exposure to vital commensal microbes or overexposure to competitive pathobionts during early life. Alternatively, many commensal bacteria may not find a suitable intestinal niche or fail to proliferate or function in a protective/competitive manner if they do colonize. Bacteria express a range of factors, such as fimbriae, flagella, and secretory compounds that enable them to attach to the gut, modulate metabolism, and outcompete other species. However, the host also releases factors, such as secretory IgA, antimicrobial factors, hormones, and mucins, which can prevent or regulate bacterial interactions with the gut or disable the bacterium. The delicate balance between these competing host and bacteria factors dictates whether a bacterium can colonize, proliferate or function in the intestine. Impaired functioning of NOD2 in Paneth cells and disrupted colonic mucus production are exacerbating features of CD and UC, respectively, that contribute to dysbiosis. This review evaluates the roles of these and other the host, bacterial and environmental factors in inflammatory bowel diseases.
Collapse
Affiliation(s)
| | | | - George Grant
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (C.C.); (M.D.)
| |
Collapse
|
447
|
Patil Y, Gooneratne R, Ju XH. Interactions between host and gut microbiota in domestic pigs: a review. Gut Microbes 2020; 11:310-334. [PMID: 31760878 PMCID: PMC7524349 DOI: 10.1080/19490976.2019.1690363] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 11/04/2019] [Indexed: 02/03/2023] Open
Abstract
It is well established that pig gut microbiota plays a critical role in maintaining metabolic homeostasis as well as in a myriad of physiological, neurological and immunological functions; including protection from pathogens and digestion of food materials - some of which would be otherwise indigestible by the pig. A rich and diverse gut microbial ecosystem (balanced microbiota) is the hallmark of good health; while qualitative and quantitative perturbations in the microbial composition can lead to development of various diseases. Alternatively, diseases caused by stressors or other factors have been shown to negatively impact the microbiota. This review focuses primarily on how commensal microorganisms in the gastrointestinal tract of pigs influence biochemical, physiological, immunological, and metabolic processes within the host animal.
Collapse
Affiliation(s)
- Yadnyavalkya Patil
- College of Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
- Faculty of Agriculture and Life Sciences, Department of Wine, Food, and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, New Zealand
- Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Department of Wine, Food, and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Xiang-Hong Ju
- College of Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
- Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| |
Collapse
|
448
|
Tomaiuolo R, Veneruso I, Cariati F, D’Argenio V. Microbiota and Human Reproduction: The Case of Female Infertility. High Throughput 2020; 9:ht9020012. [PMID: 32375241 PMCID: PMC7349014 DOI: 10.3390/ht9020012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
During the last decade, the availability of next-generation sequencing-based approaches has revealed the presence of microbial communities in almost all the human body, including the reproductive tract. As for other body sites, this resident microbiota has been involved in the maintenance of a healthy status. As a consequence, alterations due to internal or external factors may lead to microbial dysbiosis and to the development of pathologies. Female reproductive microbiota has also been suggested to affect infertility, and it may play a key role in the success of assisted reproductive technologies, such as embryo implantation and pregnancy care. While the vaginal microbiota is well described, the uterine microbiota is underexplored. This could be due to technical issues, as the uterus is a low biomass environment. Here, we review the state of the art regarding the role of the female reproductive system microbiota in women's health and human reproduction, highlighting its contribution to infertility.
Collapse
Affiliation(s)
- Rossella Tomaiuolo
- KronosDNA srl, Spinoff of Federico II University, 80133 Napoli, Italy; (R.T.); (F.C.)
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy;
- CEINGE-Biotecnologie Avanzate scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Iolanda Veneruso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy;
- CEINGE-Biotecnologie Avanzate scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Federica Cariati
- KronosDNA srl, Spinoff of Federico II University, 80133 Napoli, Italy; (R.T.); (F.C.)
- CEINGE-Biotecnologie Avanzate scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate scarl, Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, via di val Cannuta 247, 00166 Roma, Italy
- Correspondence: ; Tel.: +39-081-3737909
| |
Collapse
|
449
|
Wu M, Wang F, Yang J, Li P, Yan D, Yang Y, Zhang W, Ren J, Zhang Z, Wang M. The responses of the gut microbiota to MBL deficiency. Mol Immunol 2020; 122:99-108. [PMID: 32330757 DOI: 10.1016/j.molimm.2020.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Mannose-binding lectin (MBL) deficiency is a common innate immune system deficiency, and is associated with exacerbations and increased colonization of some pathogens. However, the response of the gut microbiota, a pivotal factor in host health, to MBL deficiency is not clear. In this study, MBL-/- and wild-type (WT) mice were generated by backcrossing from MBL-A and MBL-C knockout (KO) mice, and fecal samples were collected at different ages (4th, 8th, 12th, 19th and 27th weeks). The gut microbiota was analyzed by high-throughput sequencing with universal 16S rDNA primers (V3-V5 region). The results showed that structural segregation of the gut microbiota occurred at the 8th, 12th, 19th and 27th weeks of age, although there were no significant differences in alpha diversities between MBL-/- and WT mice at different ages. Impressively, in MBL-/- mice, Akkermansia (from the family Verrucomicrobiaceae) were decreased significantly, Lactobacillus (from the family Lactobacillaceae) abundances, Alistipes and Rikenella (both from the family of Rikenellaceae) were always enriched. Network analysis showed that more interactions existed in the gut microbiota from WT mice (33 nodes and 70 edges) than in the gut microbiota from MBL-/- mice (23 nodes and 40 edges). The 16S rDNA function prediction results indicated that the abundances of predicted genes in the "immune system disease", "metabolic disease" and "nucleotide metabolism" pathways were significantly increased in the MBL-/- mice. In conclusion, this study revealed that the gut microbiota changed in MBL deficient mice, especially at ages older than 4 weeks.
Collapse
Affiliation(s)
- Minna Wu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Fanping Wang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang 453003, China
| | - Jingwen Yang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang 453003, China
| | - Puze Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Dong Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yonghui Yang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang 453003, China
| | - Wei Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Jie Ren
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Zhenchao Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Mingyong Wang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang 453003, China.
| |
Collapse
|
450
|
Pawliszak T, Chua M, Leung CK, Tremblay-Savard O. Operon-based approach for the inference of rRNA and tRNA evolutionary histories in bacteria. BMC Genomics 2020; 21:252. [PMID: 32299351 PMCID: PMC7160887 DOI: 10.1186/s12864-020-6612-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background In bacterial genomes, rRNA and tRNA genes are often organized into operons, i.e. segments of closely located genes that share a single promoter and are transcribed as a single unit. Analyzing how these genes and operons evolve can help us understand what are the most common evolutionary events affecting them and give us a better picture of ancestral codon usage and protein synthesis. Results We introduce BOPAL, a new approach for the inference of evolutionary histories of rRNA and tRNA genes in bacteria, which is based on the identification of orthologous operons. Since operons can move around in the genome but are rarely transformed (e.g. rarely broken into different parts), this approach allows for a better inference of orthologous genes in genomes that have been affected by many rearrangements, which in turn helps with the inference of more realistic evolutionary scenarios and ancestors. Conclusions From our comparisons of BOPAL with other gene order alignment programs using simulated data, we have found that BOPAL infers evolutionary events and ancestral gene orders more accurately than other methods based on alignments. An analysis of 12 Bacillus genomes also showed that BOPAL performs just as well as other programs at building ancestral histories in a minimal amount of events.
Collapse
Affiliation(s)
- Tomasz Pawliszak
- Department of Computer Science, University of Manitoba, Winnipeg, Canada
| | - Meghan Chua
- Department of Computer Science, University of Manitoba, Winnipeg, Canada
| | - Carson K Leung
- Department of Computer Science, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|