401
|
Macías-Cruz U, Correa-Calderón A, Mellado M, Meza-Herrera CA, Aréchiga CF, Avendaño-Reyes L. Thermoregulatory response to outdoor heat stress of hair sheep females at different physiological state. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:2151-2160. [PMID: 30244321 DOI: 10.1007/s00484-018-1615-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/18/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Forty Dorper × Pelibuey sheep females were used to evaluate the effects of physiological state on physiological variables and serum concentrations of metabolites, thyroid hormones, and electrolytes under outdoor heat stress conditions. Females were selected as follows (n = 10 per group): weaning ewe lambs (WEL; 3 months old), replacement nulliparous ewes (RNE; 8 months old), non-pregnant and non-lactating multiparous ewes (NME; 3-4 years old) and lactating multiparous ewes (LME; 3-4 years old). While physiological variables were measured both morning and afternoon, blood samples were collected before feeding in the morning to determine all blood components. Three contrasts were constructed: (1) WEL vs. older ewes, (2) RNE vs. multiparous ewes, and (3) NME vs. LME. Compared with older ewes, WEL had higher (P < 0.01) rectal temperature (RT) and hair coat temperatures through the day, and also higher (P < 0.01) respiratory rate (RR) only in the afternoon. Serum levels of glucose and cholesterol were lower (P ≤ 0.02) in WEL than in older ewes. Nulliparous ewes compared with multiparous had always similar RT but higher (P ≤ 0.05) hair coat temperatures in most of the body regions by the morning and higher (P < 0.01) RR, without difference for hair coat temperatures in the afternoon. Only serum glucose (P = 0.07) and urea nitrogen (P < 0.01) levels were affected by parturition number, being lower in multiparous ewes. Regarding the effect of lactation, while RR was unaffected, afternoon RT and hair coat temperatures in most of the body regions through the day were higher (P ≤ 0.03) in lactating ewes. In addition, LME had lower (P < 0.01) serum levels of glucose, cholesterol, and urea nitrogen, but higher (P = 0.02) triiodothyronine levels than NME. In conclusion, ewe lambs and lactating ewes were less tolerant to heat stress, while nulliparous and multiparous ewes showed similar thermoregulatory ability.
Collapse
Affiliation(s)
- U Macías-Cruz
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, 21705, Mexicali, B.C., Mexico
| | - A Correa-Calderón
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, 21705, Mexicali, B.C., Mexico
| | - M Mellado
- Departamento de Nutrición Animal, Universidad Autónoma Agraria Antonio Narro, 25315, Saltillo, Coahuila, Mexico
| | - C A Meza-Herrera
- Universidad Autónoma Chapingo, URUZA, 35230 Bermejillo, Durango, Mexico
| | - C F Aréchiga
- Universidad Autónoma de Zacatecas, UAMVZ, 98500 Ctra. Panamericana km 31.5, Zacatecas, Mexico
| | - Leonel Avendaño-Reyes
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, 21705, Mexicali, B.C., Mexico.
| |
Collapse
|
402
|
Kim KS, Seibert JT, Edea Z, Graves KL, Kim ES, Keating AF, Baumgard LH, Ross JW, Rothschild MF. Characterization of the acute heat stress response in gilts: III. Genome-wide association studies of thermotolerance traits in pigs. J Anim Sci 2018; 96:2074-2085. [PMID: 29669012 DOI: 10.1093/jas/sky131] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/12/2018] [Indexed: 01/09/2023] Open
Abstract
Heat stress is one of the limiting factors negatively affecting pig production, health, and fertility. Characterizing genomic regions responsible for variation in HS tolerance would be useful in identifying important genetic factor(s) regulating physiological responses to HS. In the present study, we performed genome-wide association analyses for respiration rate (RR), rectal temperature (TR), and skin temperature (TS) during HS in 214 crossbred gilts genotyped for 68,549 single nucleotide polymorphisms (SNP) using the Porcine SNP 70K BeadChip. Considering the top 0.1% smoothed phenotypic variances explained by SNP windows, we detected 26, 26, 21, and 14 genes that reside within SNPs explaining the largest proportion of variance (top 25 SNP windows) and associated with change in RR (ΔRR) from thermoneutral (TN) conditions to HS environment, as well as the change in prepubertal TR (ΔTR), change in postpubertal ΔTR, and change in TS (ΔTS), respectively. The region between 28.85 Mb and 29.10 Mb on chromosome 16 explained about 0.05% of the observed variation for ΔRR. The growth hormone receptor (GHR) gene resides in this region and is associated with the HS response. The other important candidate genes associated with ΔRR (PAIP1, NNT, and TEAD4), ΔTR (LIMS2, TTR, and TEAD4), and ΔTS (ERBB4, FKBP1B, NFATC2, and ATP9A) have reported roles in the cellular stress response. The SNP explaining the largest proportion of variance and located within and in the vicinity of genes were related to apoptosis or cellular stress and are potential candidates that underlie the physiological response to HS in pigs.
Collapse
Affiliation(s)
- Kwan-Suk Kim
- Department of Animal Science, Iowa State University, Ames, IA.,Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA
| | - Zewde Edea
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Kody L Graves
- Department of Animal Science, Iowa State University, Ames, IA
| | - Eui-Soo Kim
- Department of Animal Science, Iowa State University, Ames, IA.,Recombinetics, St. Paul, MN
| | | | | | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| | | |
Collapse
|
403
|
Graves KL, Seibert JT, Keating AF, Baumgard LH, Ross JW. Characterizing the acute heat stress response in gilts: II. Assessing repeatability and association with fertility. J Anim Sci 2018; 96:2419-2426. [PMID: 29788126 DOI: 10.1093/jas/skx037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/01/2018] [Indexed: 01/05/2023] Open
Abstract
Mitigating heat stress (HS) in swine production is important as it detrimentally affects multiple aspects of overall animal production efficiency. Study objectives were to determine if gilts characterized as tolerant (TOL) or susceptible (SUS) in response to HS maintain that phenotype later in life and if that phenotype influences reproductive ability during HS. Individual gilts identified as TOL (n = 50) or SUS (n = 50) from a prepubertal HS challenge were selected based on their rectal temperature (TR) during acute HS. The study consisted of 4 experimental periods (P). During P0 (2 d), all pigs were exposed to thermoneutral (TN) conditions (21.1 °C). During P1 (14 d), all gilts received Matrix (15 mg altrenogest per day) to synchronize estrus, and were maintained in TN conditions. During P2 (9 d), Matrix supplementation was terminated and gilts were subjected to diurnal HS with ambient temperatures set at 35 °C from 1000 to 2200 h and 21 °C from 2200 to 1000 h. Also during P2 gilts underwent estrus detection and artificial insemination. During P3 gilts were housed in TN conditions for 41 d at which they were sacrificed and reproductive tracts were collected. During the last 2 d of P1 and throughout the entirety of P2, TR and skin temperature (TS) were recorded. During P2, SUS had increased TR relative to TOL pigs during P2 (0.27 °C; P < 0.01). Overall, uterine wet weight, ovarian weight, corpora lutea (CL) count, and embryo survival were 5.6 ± 0.1 kg, 21.6 ± 0.3 g, 17.8 ± 0.3 CLs, and 79 ± 2%, respectively, and not influenced by prepubertal HS tolerance classification (P ≥ 0.37). Tolerant gilts had a longer return-to-estrus (6.1 vs. 5.5 d, respectively; P = 0.01) following altrenogest withdrawal and tended to have larger CL diameters (10.3 vs. 10.1 mm; P = 0.06) compared to SUS gilts. Fetal weight (25.4 vs. 23.6 g; P = 0.01) and fetal crown-rump length (74.8 vs. 72.8 mm; P < 0.01) were higher in gilts previously classified as SUS compared to those previously classified as TOL. Additionally, neither litter size nor the number of fetuses detected as a percentage of ovulations was influenced by classification. In summary, SUS gilts had a shorter return-to-estrus, increased fetus size, and tended to have smaller CL diameters compared to TOL gilts. Additionally, SUS gilts also retained their inability to maintain euthermia postpubertally relative to TOL gilts. In conclusion, there appeared to be little reproductive advantage of maintaining a lower TR during HS.
Collapse
Affiliation(s)
- Kody L Graves
- Department of Animal Sciences, Iowa State University, Ames, IA
| | - Jacob T Seibert
- Department of Animal Sciences, Iowa State University, Ames, IA
| | | | | | - Jason W Ross
- Department of Animal Sciences, Iowa State University, Ames, IA
| |
Collapse
|
404
|
Dickson MJ, Hager CL, Al-Shaibi A, Thomas PQ, Baumgard LH, Ross JW, Keating AF. Impact of heat stress during the follicular phase on porcine ovarian steroidogenic and phosphatidylinositol-3 signaling. J Anim Sci 2018; 96:2162-2174. [PMID: 29684161 DOI: 10.1093/jas/sky144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Environmental conditions that impede heat dissipation and increase body temperature cause heat stress (HS). The study objective was to evaluate impacts of HS on the follicular phase of the estrous cycle. Postpubertal gilts (126.0 ± 21.6 kg) were orally administered altrenogest to synchronize estrus, and subjected to either 5 d of thermal-neutral (TN; 20.3 ± 0.5 °C; n = 6) or cyclical HS (25.4 - 31.9 °C; n = 6) conditions during the follicular phase preceding behavioral estrus. On d 5, blood samples were obtained, gilts were euthanized, and ovaries collected. Fluid from dominant follicles was aspirated and ovarian protein homogenates prepared for protein abundance analysis. HS decreased feed intake (22%; P = 0.03) and while plasma insulin levels did not differ, the insulin:feed intake ratio was increased 3-fold by HS (P = 0.02). Insulin receptor protein abundance was increased (29%; P < 0.01), but insulin receptor substrate 1, total and phosphorylated protein kinase B, superoxide dismutase 1, and acyloxyacyl hydrolase protein abundance were unaffected by HS (P > 0.05). Plasma and follicular fluid 17β-estradiol, progesterone, and lipopolysaccharide-binding protein concentrations as well as abundance of steroid acute regulatory protein, cytochrome P450 19A1, and multidrug resistance-associated protein 1 were not affected by HS (P > 0.05). HS increased estrogen sulfotransferase protein abundance (44%; P = 0.02), toll-like receptor 4 (36%; P = 0.05), and phosphorylated REL-associated protein (31%; P = 0.02). Regardless of treatment, toll-like receptor 4 protein was localized to mural granulosa cells in the porcine ovary. In conclusion, HS altered ovarian signaling in postpubertal gilts during their follicular phase in ways that likely contributes to seasonal infertility.
Collapse
Affiliation(s)
| | - Candice L Hager
- Iowa State University Department of Animal Science, Ames, IA
| | - Ahmad Al-Shaibi
- Iowa State University Department of Animal Science, Ames, IA
| | - Porsha Q Thomas
- Iowa State University Department of Animal Science, Ames, IA
| | | | - Jason W Ross
- Iowa State University Department of Animal Science, Ames, IA
| | | |
Collapse
|
405
|
Affiliation(s)
- John B Gaughan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Australia
- Corresponding author:
| | - Veerasamy Sejian
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Terry L Mader
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Frank R Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
406
|
Yu CL, Guan JY, Ding J, Huang S, Lian Y, Luo HY, Wang XZ. AMP-activated protein kinase negatively regulates heat treatment-induced lactate secretion in cultured boar sertoli cells. Theriogenology 2018; 121:35-41. [DOI: 10.1016/j.theriogenology.2018.07.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022]
|
407
|
Skibiel AL, Dado-Senn B, Fabris TF, Dahl GE, Laporta J. In utero exposure to thermal stress has long-term effects on mammary gland microstructure and function in dairy cattle. PLoS One 2018; 13:e0206046. [PMID: 30325972 PMCID: PMC6191142 DOI: 10.1371/journal.pone.0206046] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/05/2018] [Indexed: 11/18/2022] Open
Abstract
Earth's rising temperature has substantial repercussions for food-producing animals by increasing morbidity and mortality, diminishing reproductive potential, and reducing productivity. In the dairy industry this equates to massive losses in milk yield, which occur when cows are exposed to heat stress during lactation or during the non-lactating period between lactations (i.e. dry period). Furthermore, milk yield is significantly lower in first-lactation heifers that experienced fetal heat stress. The mechanisms underlying intrauterine effects of heat stress on the offspring's future lactation have yet to be fully elucidated. We hypothesize that heat stress experienced through the intrauterine environment will alter the mammary gland microstructure and cellular processes involved in cell turnover during the cow's first lactation. Mammary biopsies were collected from first-lactation heifers that were exposed to heat stress or cooling conditions while developing in utero (IUHT and IUCL; respectively, n = 9-10). IUHT heifers produced less milk compared to IUCL. The mammary glands of IUHT heifers differed morphologically from IUCL, with the IUHT heifers having smaller alveoli and a greater proportion of connective tissue relative to their IUCL herdmates. However, intrauterine heat stress had little impact on the proliferation and apoptosis of mammary cells during lactation. Our results indicate that fetal exposure to heat stress impairs milk production in the first lactation, in part, by inducing aberrant mammary morphology. This may result from alterations in the developmental trajectory of the fetal mammary gland that persist through the first lactation rather than to alterations in the cellular processes controlling mammary cell turnover during lactation.
Collapse
Affiliation(s)
- Amy L. Skibiel
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Bethany Dado-Senn
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Thiago F. Fabris
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Geoffrey E. Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Jimena Laporta
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
408
|
Johnson JS, Aardsma MA, Duttlinger AW, Kpodo KR. Early life thermal stress: Impact on future thermotolerance, stress response, behavior, and intestinal morphology in piglets exposed to a heat stress challenge during simulated transport. J Anim Sci 2018; 96:1640-1653. [PMID: 29635346 DOI: 10.1093/jas/sky107] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/16/2018] [Indexed: 11/14/2022] Open
Abstract
Study objectives were to evaluate the impact of early life thermal stress (ELTS) on thermoregulation, stress response, and intestinal health of piglets subjected to a future heat stress (HS) challenge during simulated transport. From d 7 to 9 post-farrowing, 12 first-parity sows and their litters were exposed to thermoneutral (ELTN; 25.4 ± 1.1 °C w/heat lamp; n = 4), HS (ELHS; cycling 32-38 °C w/heat lamp; n = 4), or cold stress (ELCS; 25.4 ± 1.1 °C w/no heat lamp; n = 4) conditions, and then from d 10 until weaning all piglets were exposed to thermoneutral (TN) conditions (25.3 ± 1.9 °C w/heat lamp). During the ELTS period, respiration rate, rectal temperature (TR), and skin temperature (TS) of three mixed-sex piglets per dam were monitored daily (0800, 1200, 1600, 2000 h). At 13 ± 1.3 d of age, temperature recorders were implanted intra-abdominally into all piglets. At weaning (20.0 ± 1.3 d of age), piglets were bled and then herded up a ramp into a simulated transport trailer and exposed to HS conditions (cycling 32-38 °C) for 8 h. During the 8 h simulated transport, core body temperature (TC) and TS were assessed every 15 min. After the simulated transport, piglets were unloaded from the trailer, bled, weighed, and then housed individually in TN conditions (28.5 ± 0.7 °C) for 7 d. During this time, ADFI and ADG were monitored, blood samples were taken on d 1, 4, and 7, and piglets were video-recorded to assess behavior. Piglets were sacrificed on d 8 post-simulated transport and intestinal morphology was assessed. Data were analyzed using PROC MIXED in SAS 9.4. In the ELTS period, piglet TR was increased overall (P = 0.01) in ELHS (39.77 ± 0.05 °C) compared to ELTN (39.34 ± 0.05 °C) and ELCS (39.40 ± 0.05 °C) litters. During simulated transport, TC was greater (P = 0.02) in ELHS (40.84 ± 0.12 °C) compared to ELTN (40.49 ± 0.12 °C) and ELCS (40.39 ± 0.12 °C) pigs. Following simulated transport, BW loss was greater (P = 0.01; 40%) for ELHS compared to ELTN and ELCS pigs and ADFI was reduced (P = 0.05; 28.6%) in ELHS compared to ELTN pigs. Sitting behavior tended to be increased (P = 0.06; 47.4%) in ELHS vs. ELCS or ELTN pigs. Overall, circulating cortisol was greater for ELHS (P ≤ 0.01; 38.8%) compared to ELCS and ELTN pigs. Goblet cells per villi were reduced (P = 0.02; 20%) in the jejunum of ELHS vs. ELCS and ELTN pigs. In summary, ELHS reduced thermotolerance and increased the future stress response of piglets compared to ELCS and ELTN.
Collapse
Affiliation(s)
- Jay S Johnson
- USDA-ARS, Livestock Behavior Research Unit, West Lafayette, IN
| | - Matthew A Aardsma
- USDA-ARS, Livestock Behavior Research Unit, West Lafayette, IN.,Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Alan W Duttlinger
- USDA-ARS, Livestock Behavior Research Unit, West Lafayette, IN.,Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Kouassi R Kpodo
- USDA-ARS, Livestock Behavior Research Unit, West Lafayette, IN.,Department of Animal Sciences, Purdue University, West Lafayette, IN
| |
Collapse
|
409
|
Chronic heat stress increases insulin-like growth factor-1(IGF-1) but does not affect IGF-binding proteins in growing pigs. J Therm Biol 2018; 77:122-130. [DOI: 10.1016/j.jtherbio.2018.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/08/2018] [Accepted: 08/17/2018] [Indexed: 12/19/2022]
|
410
|
Mayorga EJ, Kvidera SK, Horst EA, Al-Qaisi M, Dickson MJ, Seibert JT, Lei S, Keating AF, Ross JW, Rhoads RP, Rambo ZJ, Wilson ME, Baumgard LH. Effects of zinc amino acid complex on biomarkers of gut integrity and metabolism during and following heat stress or feed restriction in pigs. J Anim Sci 2018; 96:4173-4185. [PMID: 30256966 PMCID: PMC6162568 DOI: 10.1093/jas/sky293] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
Study objectives were to determine the effects of zinc (Zn) amino acid complex (Availa Zn, Zinpro Corporation, Eden Prairie, MN) on metabolism, biomarkers of leaky gut, and inflammation during and following heat stress (HS) and nutrient restriction. Crossbred gilts (n = 50; 50 ± 2 kg BW) were blocked by initial BW and randomly assigned to one of five treatments: 1) thermoneutral (TN) and ad libitum fed a control diet (TNCtl), 2) TN and pair-fed a control diet (PFCtl), 3) TN and pair-fed a Zn-supplemented diet (PFZn), 4) HS and ad libitum fed a control diet (HSCtl), and 5) HS and ad libitum fed a Zn-supplemented diet (HSZn). The study consisted of 3 experimental periods (P): during P1 (7 d), all pigs were fed their respective diets ad libitum and housed in TN conditions (20.84 ± 0.03 °C, 47.11 ± 0.42% relative humidity). During P2 (7 d), HSCtl and HSZn pigs were exposed to progressive cyclical HS conditions (27 to 30 °C, 41.9 ± 0.5% relative humidity), while TNCtl, PFCtl, and PFZn pigs remained in TN conditions and were fed ad libitum or pair-fed to their respective HSCtl and HSZn counterparts. During P3 (5 d; "recovery phase"), all pigs were housed in TN conditions and fed ad libitum. Pigs exposed to HS had overall increased rectal temperature, skin temperature, and respiration rate (0.33 °C, 3.76 °C, and 27 bpm, respectively; P < 0.01). Relative to TN controls, HS decreased ADFI and ADG (28 and 35%, respectively; P < 0.05), but these variables were unaffected by dietary treatment. Additionally, circulating insulin did not differ between HS and TN pigs (P = 0.41), but was decreased in PF relative to TN pigs (P < 0.01). During recovery, no differences were observed in rectal temperature or respiration rate across treatments, but HSZn pigs had decreased skin temperature relative to TN, PF, and HSCtl pigs (P < 0.01). During P3, no Zn effects were observed in production parameters; however, PF pigs had increased ADFI and ADG relative to TN and HS treatments (P < 0.01). During P3, circulating insulin was increased in pigs that were HS relative to TN and PF pigs (75%, P < 0.05). Interestingly, tumor necrosis factor alpha (TNFα) levels were decreased during P3 (P = 0.04) in Zn relative to Ctl-fed pigs. Circulating lipopolysaccharide-binding protein was not different among periods (P > 0.10). In summary, Zn reduced TNFα (regardless of HS), and the stimulatory effect of HS on insulin secretion is amplified during HS recovery.
Collapse
Affiliation(s)
- Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA
| | - Sara K Kvidera
- Department of Animal Science, Iowa State University, Ames, IA
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA
| | - Samantha Lei
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| | | | | | | |
Collapse
|
411
|
Zhao L, McMillan RP, Xie G, Giridhar SGLW, Baumgard LH, El-Kadi S, Selsby J, Ross J, Gabler N, Hulver MW, Rhoads RP. Heat stress decreases metabolic flexibility in skeletal muscle of growing pigs. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1096-R1106. [PMID: 30256682 DOI: 10.1152/ajpregu.00404.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Heat-stressed pigs experience metabolic alterations, including altered insulin profiles, reduced lipid mobilization, and compromised intestinal integrity. This is bioenergetically distinct from thermal neutral pigs on a similar nutritional plane. To delineate differences in substrate preferences between direct and indirect (via reduced feed intake) heat stress effects, skeletal muscle fuel metabolism was assessed. Pigs (35.3 ± 0.8 kg) were randomly assigned to three treatments: thermal neutral fed ad libitum (TN; 21°C, n = 8), heat stress fed ad libitum (HS; 35°C, n = 8), and TN, pair-fed/HS intake (PF; n = 8) for 7 days. Body temperature (TB) and feed intake (FI) were recorded daily. Longissimus dorsi muscle was biopsied for metabolic assays on days -2, 3, and 7 relative to initiation of environmental treatments. Heat stress increased TB and decreased FI ( P < 0.05). Heat stress inhibited incomplete fatty acid oxidation and glucose oxidation ( P < 0.05). Metabolic flexibility decreased in HS pigs compared with TN and PF controls ( P < 0.05). Both phosphofructokinase and pyruvate dehydrogenase (PDH) activities increased in PF ( P < 0.05); however, TN and HS did not differ. Heat stress inhibited citrate synthase and β-hydroxyacyl-CoA dehydrogenase (β-HAD) activities ( P < 0.05). Heat stress did not alter PDH phosphorylation or carnitine palmitoyltransferase 1 abundance but reduced acetyl-CoA carboxylase 1 (ACC1) protein abundance ( P < 0.05). In conclusion, HS decreased skeletal muscle fatty acid oxidation and metabolic flexibility, likely involving β-HAD and ACC regulation.
Collapse
Affiliation(s)
- Lidan Zhao
- Department of Animal and Poultry Sciences, Virginia Tech University , Blacksburg, Virginia
| | - Ryan P McMillan
- Virginia Tech Metabolic Phenotyping Core, Virginia Tech University , Blacksburg, Virginia
| | - Guohao Xie
- Department of Animal and Poultry Sciences, Virginia Tech University , Blacksburg, Virginia
| | | | - Lance H Baumgard
- Department of Animal Science, Iowa State University , Ames, Iowa
| | - Samer El-Kadi
- Department of Animal and Poultry Sciences, Virginia Tech University , Blacksburg, Virginia
| | - Joshua Selsby
- Department of Animal Science, Iowa State University , Ames, Iowa
| | - Jason Ross
- Department of Animal Science, Iowa State University , Ames, Iowa
| | - Nicholas Gabler
- Department of Animal Science, Iowa State University , Ames, Iowa
| | - Matthew W Hulver
- Virginia Tech Metabolic Phenotyping Core, Virginia Tech University , Blacksburg, Virginia.,Department of Human Nutrition, Foods and Exercise, Virginia Tech University , Blacksburg, Virginia
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech University , Blacksburg, Virginia
| |
Collapse
|
412
|
Effects of chronic heat stress on lactational performance and the transcriptomic profile of blood cells in lactating dairy goats. J DAIRY RES 2018; 85:423-430. [PMID: 30236165 DOI: 10.1017/s0022029918000705] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
High temperature is a major stress that negatively affects welfare, health, and productivity of dairy animals. Heat-stressed animals are more prone to disease, suggesting that their immunity is hindered. Although productive and physiologic responses of dairy animals to heat stress are well known, there is still limited information on the response at the transcriptome level. Our objective was to evaluate the changes in performance and blood transcriptomics of dairy goats under heat stress. Eight multiparous Murciano-Granadina dairy goats in mid-lactation were assigned to 1 of 2 climatic treatments for 35 d. Treatments and temperature-humidity index (THI) were: (1) thermal neutral (TN: n = 4; 15-20 °C, 40-45%, THI = 59-65), and (2) heat stress (HS: n = 4; 12 h at 37 °C-40%, THI = 86; 12 h at 30 °C-40%, THI = 77). Rectal temperature, respiratory rate, feed intake and milk yield were recorded daily. Additionally, milk composition was evaluated weekly. Blood samples were collected at d 35 and RNA was extracted for microarray analyses (Affymetrix GeneChip Bovine Genome Array). Differences in rectal temperature and respiratory rate between HS and TN goats were maximal during the first 3 d of the experiment, reduced thereafter, but remained significant throughout the 35-d experimental period. Heat stress reduced feed intake, milk yield, milk protein and milk fat contents by 29, 8, 12, and 13%, respectively. Microarray analysis of blood revealed that 55 genes were up-regulated, whereas 88 were down-regulated by HS. Bioinformatics analysis using the Dynamic Impact Approach revealed that 31 biological pathways were impacted by HS. Pathways associated with leukocyte transendothelial migration, cell adhesion, hematopoietic cell lineage, calcium signaling, and PPAR signaling were negatively impacted by HS, whereas nucleotide metabolism was activated. In conclusion, heat stress not only negatively affected milk production in dairy goats, but also resulted in alterations in the functionality of immune cells, which would make the immune system of heat-stressed goats less capable of fending-off diseases.
Collapse
|
413
|
Effects of corn particle size on nutrient utilization in pigs evaluated under optimal and heat stress conditions. Trop Anim Health Prod 2018; 51:443-448. [PMID: 30238226 PMCID: PMC6510778 DOI: 10.1007/s11250-018-1711-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/11/2018] [Indexed: 12/16/2022]
Abstract
The effects of corn particle size on nutrient digestibility and energy utilization in pigs were determined under optimal (experiment 1, 25 ± 1 °C) or heat stress (experiment 2, 37 ± 1 °C) conditions. In Exp. 1 and 2, five experimental diets were tested using a 5 × 5 Latin square design involving five barrows (Landrace × Yorkshire × Duroc, average initial body weight of 30 ± 1 kg and 45.0 ± 1.8 kg, respectively, in individual metabolic cages). Dietary treatments were as follows: 200-, 300-, 400-, 600-, 800-μm corn particle sizes obtained by mesh screens. Under optimal thermal conditions, digestibility of dry matter (DM) and crude fiber (CF) from 200-μm diet was higher (P < 0.05) compared to that from the 300-μm and 400-μm diets. The digestibility of crude protein (CP) and ether extract (EE) was the highest (P < 0.05) at the 200-μm particle size. The apparent total tract digestibility of energy was significantly higher (P < 0.05) on the 200-μm diet. Under heat stress, digestibility of CF when corn was ground to 600 μm was higher (P < 0.05) compared to 300 and 400 μm. Digestibility of NDF and ADF was the highest (P < 0.05) at 600-μm corn particle size. In conclusion, grinding corn to 200-μm corn particles had a positive effect on DM, CP, EE, and CF under optimal thermal condition, while the 600-μm corn particle size had positive effects on digestibility of CF, NDF, and ADF than 200-μm corn particle size under heat stress.
Collapse
|
414
|
Ahirwar MK, Kataktalware MA, Pushpadass HA, Jeyakumar S, Jash S, Nazar S, Devi G L, Kastelic JP, Ramesha KP. Scrotal infrared digital thermography predicts effects of thermal stress on buffalo (Bubalus bubalis) semen. J Therm Biol 2018; 78:51-57. [PMID: 30509667 DOI: 10.1016/j.jtherbio.2018.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/04/2018] [Accepted: 09/08/2018] [Indexed: 10/28/2022]
Abstract
The objective was to use scrotal infrared digital thermography to evaluate effects of thermal stress on semen quality of Murrah buffalo (Bubalus bubalis) breeding bulls. Ejaculates from 109 Murrah bulls maintained at three semen stations were evaluated for: ejaculate volume, sperm concentration (SCON), initial motility (IM), percent live sperm (LIVE), acrosome integrity of fresh semen (AIFS), plasma membrane integrity of fresh semen (PMIFS), head abnormalities of fresh semen (HAFS), midpiece abnormalities of fresh semen (MPAFS), tail abnormalities of fresh semen (TAFS), post-thaw motility (PTM), acrosome integrity of post-thawed semen (AIPT) and plasma membrane integrity of post-thawed semen (PMIPT). Scrotal and ocular surface temperatures were acquired during rainy, winter and summer seasons, using an FLIR i5 infrared camera. Thermographic images were analyzed with Quick Report 1.2 SP2 software and temperature data acquired. Daily mean temperature and mean relative humidity were used to determine the temperature-humidity index (THI). Environmental factors were analyzed using CORR to determine collinearity among independent variables. There was a high correlation among THI, proximal, mid and distal scrotal temperatures (r ≥ 0.73). Therefore, distal pole temperature (DPT), THI, temperature gradient (TG) and ocular temperature (OcT) were used in the analysis of variance (ANOVA) and in regression analysis of dependent variables. The THI, DPT, TG and OcT had significant influences on sperm abnormalities, acrosome and plasma membrane integrity of fresh as well as post-thawed semen. The TG had significant effects on LIVE and SCON. All semen quality parameters were predicted (regression analysis) as a function of the three independent factors. We concluded that scrotal infrared thermography was useful for assessing influences of thermal stress and environmental factors on characteristics of buffalo semen.
Collapse
Affiliation(s)
- Maneesh Kumar Ahirwar
- ICAR-National Dairy Research Institute, Southern Regional Station, Adugodi, Bengaluru 560030, India
| | | | | | - Sakthivel Jeyakumar
- ICAR-National Dairy Research Institute, Southern Regional Station, Adugodi, Bengaluru 560030, India
| | - Soumitra Jash
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru 560030, India
| | - Sayyad Nazar
- ICAR-National Dairy Research Institute, Southern Regional Station, Adugodi, Bengaluru 560030, India
| | - Letha Devi G
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru 560030, India
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Canada T2N 4N1
| | | |
Collapse
|
415
|
Hall L, Villar F, Chapman J, McLean D, Long N, Xiao Y, Collier J, Collier R. An evaluation of an immunomodulatory feed ingredient in heat-stressed lactating Holstein cows: Effects on hormonal, physiological, and production responses. J Dairy Sci 2018; 101:7095-7105. [DOI: 10.3168/jds.2017-14210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/21/2018] [Indexed: 11/19/2022]
|
416
|
He X, Lu Z, Ma B, Zhang L, Li J, Jiang Y, Zhou G, Gao F. Chronic Heat Stress Damages Small Intestinal Epithelium Cells Associated with the Adenosine 5'-Monophosphate-Activated Protein Kinase Pathway in Broilers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7301-7309. [PMID: 29954175 DOI: 10.1021/acs.jafc.8b02145] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Heat-stressed broilers usually reduce their feed intake, leading to energy imbalance and disturbing the homeostasis in the small intestine. This study was aimed to explore heat-stress-mediated physiological features that may be ascribed to impairments in the intestinal tract of broilers. The results revealed that heat exposure increased the activities of trypsin and Na+/K+-ATPase, while it decreased the activities of amylase, lipase, and maltase as well as the proliferating cell nuclear antigen cells in the jejunum after 14 days of heat exposure. Meanwhile, heat stress upregulated the mRNA expressions of AMPKα1, LKB1, and HIF-1α and protein expressions of p-AMPKαThr172 and p-LKB1Thr189 in the small intestine after 7 or 14 days of heat exposure. In conclusion, chronic heat exposure impeded the development of digestive organs, disordered the activities of intestinal digestive enzymes, and impaired the intestinal epithelial cells by increasing the cell apoptosis and declining cell proliferation, which might be correlated with the adenosine 5'-monophosphate-activated protein kinase signaling pathway. Additionally, heat stress upregulated the gene expression of HIF-1α, which indicated that heat stress may disturb the homeostasis in the intestine.
Collapse
Affiliation(s)
- Xiaofang He
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Zhuang Lu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Bingbing Ma
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Yun Jiang
- Ginling College , Nanjing Normal University , Nanjing , Jiangsu 210097 , People's Republic of China
| | - Guanghong Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| |
Collapse
|
417
|
Tang J, He A, Yan H, Jia G, Liu G, Chen X, Cai J, Tian G, Shang H, Zhao H. Damage to the myogenic differentiation of C2C12 cells by heat stress is associated with up-regulation of several selenoproteins. Sci Rep 2018; 8:10601. [PMID: 30006533 PMCID: PMC6045685 DOI: 10.1038/s41598-018-29012-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/04/2018] [Indexed: 01/05/2023] Open
Abstract
This study was conducted to profile the selenoprotein encoding genes or proteins in mouse C2C12 cells and integrate their roles in the skeletal cell damage induced by heat stress (HS). Cells were cultured at 37.0 °C or 41.5 °C for 4, 6 or 8 days. The mRNA expression of 24 selenoprotein encoding genes and abundance of 5 selenoproteins were investigated. HS suppressed myogenic differentiation and impaired the development of muscle myotubes. HS down-regulated (P < 0.01) mRNA abundance of MYOD and MYOGENIN, and decreased (P < 0.01) MYOGENIN protein expression, HS elevated (P < 0.01) HSP70 and (P < 0.01) the ratio of BCL-2 to BAX at both mRNA and protein level. Meanwhile, HS up-regulated (P < 0.01–0.05) expressions of 18, 11 and 8 selenoprotein encoding genes after 4, 6 and 8 days of hyperthermia, and only down-regulated (P < 0.01) DIO2 after 6 and 8 days of hyperthermia, respectively. Furthermore, HS influenced expression of selenoproteins and up-regulated (P < 0.01–0.05) GPX1, GPX4 and SEPN1 after 6 days of HS. The damage to development of mouse skeletal muscle myotubes by HS accompanied with the up-regulation of both selenoprotein encoding genes and proteins, which suggested a potential protective effect of selenoprotein on hyperthermia associated damage in C2C12 cells.
Collapse
Affiliation(s)
- Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Trace Element Research Center, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Aihua He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hui Yan
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haiying Shang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China. .,Trace Element Research Center, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
418
|
Tao S, Orellana R, Weng X, Marins T, Dahl G, Bernard J. Symposium review: The influences of heat stress on bovine mammary gland function. J Dairy Sci 2018; 101:5642-5654. [DOI: 10.3168/jds.2017-13727] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/25/2017] [Indexed: 12/15/2022]
|
419
|
Sasaki Y, Fujie M, Nakatake S, Kawabata T. Quantitative assessment of the effects of outside temperature on farrowing rate in gilts and sows by using a multivariate logistic regression model. Anim Sci J 2018; 89:1187-1193. [PMID: 29808521 DOI: 10.1111/asj.13048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022]
Abstract
It is well known that pigs are sensitive to heat stress, but few studies have assessed the critical temperature that affects farrowing rate. Therefore, the objective of the present study was to assess the effects of outside temperature on farrowing rate by using a multivariate logistic regression model. Data were obtained from 25 commercial farms, including 26,128 service records for gilts and 120,655 service records for sows. Two variables, maximum temperature (MAX) and temperature humidity index (THI), were used as an indicator for climate conditions. In gilts, an interaction between climate conditions and service number was associated with farrowing rate (p < .05). In the first service, farrowing rate decreased as climate conditions increased, whereas no relationship was found in the second service or later. In sows, farrowing rate at first service decreased as MAX increased from 22°C or THI increased from 66 (p < .05), but no apparent reduction under heat conditions was found in the second service or later. Additionally, effect of heat stress on farrowing rate in parities 1-2 was higher than those in parities 3-5 and ≥6 (p < .05). These results can be applied to field conditions as a standard for the critical temperature for farrowing rate.
Collapse
Affiliation(s)
- Yosuke Sasaki
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Madoka Fujie
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Shingo Nakatake
- Miyazaki Prefectural Economics Federation of Agricultural Cooperatives, Miyazaki, Japan
| | - Tadahiro Kawabata
- Kagoshima Prefectural Economics Federation of Agricultural Cooperatives, Section of Swine, Kagoshima, Japan
| |
Collapse
|
420
|
Performance and carcass characteristics of steers fed with two levels of metabolizable energy intake during summer and winter season. Animal 2018; 13:221-230. [PMID: 29785891 DOI: 10.1017/s1751731118001131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Climate change is producing an increase on extreme weather events around the world such as flooding, drought and extreme ambient temperatures impacting animal production and animal welfare. At present, there is a lack of studies addressing the effects of climatic conditions associated with energy intake in finishing cattle in South American feed yards. Therefore, two experiments were conducted to assess the effects of environmental variables and level of metabolizable energy intake above maintenance requirements (MEI) on performance and carcass quality of steers. In each experiment (winter and summer), steers were fed with 1.85 or 2.72 times of their requirements of metabolizable energy of maintenance. A total of 24 crossbred steers per experiment were used and located in four pens (26.25 m2/head) equipped with a Calan Broadbent Feeding System. Animals were fed with the same diet within each season, varying the amount offered to adjust the MEI treatments. Mud depth, mud scores, tympanic temperature (TT), environmental variables, average daily gain, respiration rates and carcass characteristics plus three thermal comfort indices were collected. Data analysis considered a factorial arrangement (Season and MEI). In addition, a repeated measures analysis was performed for TT and respiration rate. Mean values of ambient temperature, solar radiation and comfort thermal indices were greater in the summer experiment as expected (P<0.005). The mean values of TT were higher in steers fed with higher MEI and also in the summer season. The average daily gain was greater during summer v. winter (1.10±0.11 v. 0.36±0.06) kg/day, also when steers were fed 2.72 v. 1.85 MEI level (0.89±0.12 v. 0.57±0.10) kg/day. In summer, respiration rate increased in 41.2% in the afternoon. In winter, muddy conditions increased with time of feeding, whereas wind speed and rainfall had significant effects on TT and average daily gain. We conclude that MEI and environmental variables have direct effects on the physiology and performance of steers, including TT and average daily gain, particularly during the winter. In addition, carcass characteristics were affected by season but not by the level of MEI. Finally, due to the high variability of data as well as the small number of animals assessed in these experiments, more studies on carcass characteristics under similar conditions are required.
Collapse
|
421
|
Ross JW, Hale BJ, Seibert JT, Romoser MR, Adur MK, Keating AF, Baumgard LH. Physiological mechanisms through which heat stress compromises reproduction in pigs. Mol Reprod Dev 2018; 84:934-945. [PMID: 28667793 DOI: 10.1002/mrd.22859] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022]
Abstract
Seasonal variations in environmental temperatures impose added stress on domestic species bred for economically important production traits. These heat-mediated stressors vary on a seasonal, daily, or spatial scale, and negatively impact behavior and reduce feed intake and growth rate, which inevitably lead to reduced herd productivity. The seasonal infertility observed in domestic swine is primarily characterized by depressed reproductive performance, which manifests as delayed puberty onset, reduced farrowing rates, and extended weaning-to-estrus intervals. Understanding the effects of heat stress at the organismal, cellular, and molecular level is a prerequisite to identifying mitigation strategies that should reduce the economic burden of compromised reproduction. In this review, we discuss the effect of heat stress on an animal's ability to maintain homeostasis in multiple systems via several hypothalamic-pituitary-end organ axes. Additionally, we discuss our understanding of epigenetic programming and how hyperthermia experienced in utero influences industry-relevant postnatal phenotypes. Further, we highlight the recent recognized mechanisms by which distant tissues and organs may molecularly communicate via extracellular vesicles, a potentially novel mechanism contributing to the heat-stress response.
Collapse
Affiliation(s)
- Jason W Ross
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Benjamin J Hale
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, Iowa
| | | | - Malavika K Adur
- Department of Animal Science, Iowa State University, Ames, Iowa
| | | | | |
Collapse
|
422
|
SINGH SOHANVIR, SOREN SIMSON, SHASHANK CG, KUMAR SUNIL, LAKHANI PREETI, GREWAL SONIKA, KUMAR PRAMOD. Global warming: Impact, adaptation and amelioration strategies for bovine under tropical climatic conditions. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i1.79372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Livestock are exposed to different climatic extreme events such as high air temperature, humidity, flood, drought, desert, heat wave, feed, fodder and water scarcity etc. which now seems to be very common in the tropical and subtropical climatic conditions. The climate change scenario is assumed to be a major threat to animal production systems under tropical climate. The demand of food or the food security issue compel us to undertake holistic approach to sustainable livestock production system that may be one of the remedies for fulfilling the demand of fast growing population. The objective of this review is to focus on the major effect on dairy production system and different strategies to overcome the adverse effect of heat stress under tropical climatic conditions. The identificationof unique adaptive traits between and within breeds and their propagation seem to be essential in near future in respect of climate change scenario. The management and feeding strategies proved to be beneficial for relieving adverse effects of heat stress for maintaining the productivity of dairy animals. Nevertheless, decision makers, extension services and research institutions have to support and encourage livestock activities to enhance the animal productivity under changed climate scenario.
Collapse
|
423
|
Mellado M, Dávila A, Gaytán L, Macías-Cruz U, Avendaño-Reyes L, García E. Risk factors for clinical ketosis and association with milk production and reproduction variables in dairy cows in a hot environment. Trop Anim Health Prod 2018; 50:1611-1616. [PMID: 29717378 DOI: 10.1007/s11250-018-1602-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/19/2018] [Indexed: 11/28/2022]
Abstract
The aims of the present study were to investigate (1) the risk factors that influence the occurrence of clinical ketosis (CK; blood β-hydroxybutyrate > 3.0 mmol/L) and (2) to determine the influence of subclinical ketosis (SCK; 1.2 ≤ β-hydroxybutyrate ≤ 2.9 mmol/L) and CK on reproductive performance and milk yield in high-yielding Holstein cows in a hot environment. Cows (n = 345) were blood sampled from 6 to 15 days postpartum for β-hydroxybutyrate (BHB) determination with a hand-held meter. Cows calving in spring had 3.7 increased odds of having CK (20.7% incidence) than cows calving in summer (3.9% incidence) and autumn (9.4% incidence). Temperature-humidity index < 83 was associated with 1.6 times higher risk for CK compared with cows calving in warmer days. First-service conception rate was 12 and 16 percentage point higher (P < 0.05) in nonketotic cows compared with cows with SCK and CK, respectively. Actual 305-day milk yields for healthy, SCK, and CK cows were 9991 ± 1411, 10,123 ± 1442, and 10,386 ± 1435 kg (mean ± SD), respectively, with no difference (P > 0.05) between groups. In conclusion, this study documented that ketosis was seasonal with lower incidence of this metabolic disease during hot seasons and with increased ambient temperature at calving. Also, 305-day milk yield of Holstein cows was not related to blood BHB content early in lactation in this hot environment. However, elevated circulating BHB was negatively associated with conception rate at first service and fetal losses.
Collapse
Affiliation(s)
- M Mellado
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, 25315, Saltillo, Mexico
| | - A Dávila
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, 27054, Torreon, Mexico
| | - L Gaytán
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, 27054, Torreon, Mexico
| | - U Macías-Cruz
- Institute of Agriculture Science, Autonomous University of Baja California, 21705, Mexicali, Mexico
| | - L Avendaño-Reyes
- Institute of Agriculture Science, Autonomous University of Baja California, 21705, Mexicali, Mexico
| | - E García
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, 25315, Saltillo, Mexico.
| |
Collapse
|
424
|
Ganesan S, Volodina O, Pearce SC, Gabler NK, Baumgard LH, Rhoads RP, Selsby JT. Acute heat stress activated inflammatory signaling in porcine oxidative skeletal muscle. Physiol Rep 2018; 5:5/16/e13397. [PMID: 28830980 PMCID: PMC5582270 DOI: 10.14814/phy2.13397] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022] Open
Abstract
Despite well-studied clinical manifestations, intracellular mechanisms of prolonged hyperthermic injury remain unclear, especially in skeletal muscle. Given muscle's large potential to impact systemic inflammation and metabolism, the response of muscle cells to heat-mediated injury warrants further investigation. We have previously reported increased activation of NF-κB signaling and increased NF-κB and AP-1-driven transcripts in oxidative skeletal muscle following 12 h of heat stress. The purpose of this investigation was to examine early heat stress-induced inflammatory signaling in skeletal muscle. We hypothesized that heat stress would increase NF-κB and AP-1 signaling in oxidative skeletal muscle. To address this hypothesis, 32 gilts were randomly assigned to one of four treatment groups (n = 8/group): control (0 h: 21°C) or exposed to heat stress conditions (37°C) for 2 h (n = 8), 4 h (n = 8), or 6 h (n = 8). Immediately following environmental exposure pigs were euthanized and the red portion of the semitendinosus muscle (STR) was harvested. We found evidence of NF-κB pathway activation as indicated by increased protein abundance of NF-κB activator IKK-α following 4 h and increased total NF-κB protein abundance following 6 h of heat stress. Heat stress also stimulated AP-1 signaling as AP-1 protein abundance was increased in nuclear fractions following 4 h of heat stress. Interleukin-6 protein abundance and activation of the JAK/STAT pathway were decreased in heat stressed muscle. These data indicate that heat stress activated inflammatory signaling in the porcine STR muscle via the AP-1 pathway and early activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Olga Volodina
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Sarah C Pearce
- Department of Animal Science, Iowa State University, Ames, Iowa
| | | | | | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa
| |
Collapse
|
425
|
Seelenbinder KM, Zhao LD, Hanigan MD, Hulver MW, McMillan RP, Baumgard LH, Selsby JT, Ross JW, Gabler NK, Rhoads RP. Effects of heat stress during porcine reproductive and respiratory syndrome virus infection on metabolic responses in growing pigs. J Anim Sci 2018; 96:1375-1387. [PMID: 29474563 PMCID: PMC6140946 DOI: 10.1093/jas/sky057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/20/2018] [Indexed: 01/15/2023] Open
Abstract
Heat stress (HS) and immune challenges negatively impact nutrient allocation and metabolism in swine, especially due to elevated heat load. In order to assess the effects of HS during Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection on metabolism, 9-wk old crossbred barrows were individually housed, fed ad libitum, divided into four treatments: thermo-neutral (TN), thermo-neutral PRRSV infected (TP), HS, and HS PRRSV infected (HP), and subjected to two experimental phases. Phase 1 occurred in TN conditions (22 °C) where half the animals were infected with PRRS virus (n = 12), while the other half (n = 11) remained uninfected. Phase 2 began, after 10 d with half of the uninfected (n = 6) and infected groups (n = 6) transported to heated rooms (35 °C) for 3 d of continuous heat, while the rest remained in TN conditions. Blood samples were collected prior to each phase and at trial completion before sacrifice. PPRS viral load indicated only infected animals were infected. Individual rectal temperature (Tr), respiration rates (RR), and feed intakes (FI) were determined daily. Pigs exposed to either challenge had an increased Tr, (P < 0.0001) whereas RR increased (P < 0.0001) with HS, compared to TN. ADG and BW decreased with challenges compared to TN, with the greatest loss to HP pigs. Markers of muscle degradation such as creatine kinase, creatinine, and urea nitrogen were elevated during challenges. Blood glucose levels tended to decrease in HS pigs. HS tended to decrease white blood cell (WBC) and lymphocytes and increase monocytes and eosinophils during HS. However, neutrophils were significantly increased (P < 0.01) during HP. Metabolic flexibility tended to decrease in PRRS infected pigs as well as HS pigs. Fatty acid oxidation measured by CO2 production decreased in HP pigs. Taken together, these data demonstrate the additive effects of the HP challenge compared to either PRRSV or HS alone.
Collapse
Affiliation(s)
| | - Lidan D Zhao
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| | - Mark D Hanigan
- Department of Dairy Science, Virginia Tech, Blacksburg, VA
| | - Matthew W Hulver
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA
| | | | | | - Josh T Selsby
- Department of Animal Science, Iowa State University, Ames, IA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| |
Collapse
|
426
|
Seibert JT, Graves KL, Hale BJ, Keating AF, Baumgard LH, Ross JW. Characterizing the acute heat stress response in gilts: I. Thermoregulatory and production variables. J Anim Sci 2018; 96:941-949. [PMID: 29617863 PMCID: PMC6093585 DOI: 10.1093/jas/skx036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/01/2018] [Indexed: 12/21/2022] Open
Abstract
Identifying traits associated with susceptibility or tolerance to heat stress (HS) is a prerequisite for developing strategies to improve efficient pork production during the summer months. Study objectives were to determine the relationship between the thermoregulatory and production responses to acute HS in pigs. Prepubertal gilts (n = 235; 77.9 ± 1.2 kg BW) were exposed to a thermoneutral (TN) period (P1, 24 h; 21.9 ± 0.5 °C, 62 ± 13% RH; fed ad libitum) followed immediately by a subsequent acute HS period (P2, 24 h; 29.7 ± 1.3 °C, 49 ± 8% RH; fed ad libitum). Rectal temperature (TR), skin temperature (TS), and respiration rate (RR) were monitored and BW and feed intake (FI) were determined. All pigs had increased TR, TS, and RR (0.80 °C, 5.65 °C, and 61.2 bpm, respectively; P < 0.01) and decreased FI and BW (29% and 1.10 kg, respectively; P < 0.01) during P2 compared to P1. Interestingly, body temperature indices did not explain variation in FI during P2 (R2 ≤ 0.02). Further, the percent change in BW during P2 was only marginally explained by each body temperature index (R2 ≤ 0.06) or percent change in FI (R2 = 0.14). During HS, TR was strongly correlated with P1 TR (r = 0.72, P < 0.01), indicating a pig's body temperature during TN conditions predicts the severity of hyperthermia during HS. Additionally, the change in TR (ΔTR, HS TR - TN TR) was larger in pigs retrospectively classified as susceptible (SUS) as compared to tolerant (TOL) pigs (1.05 vs. 0.51 °C, respectively; P < 0.01). In summary, thermoregulatory responses and production variables during acute HS are only marginally related. Further, changes in BW and FI were unexpectedly poorly correlated during acute HS (r = 0.34; P < 0.01). Collectively, suboptimal growth is largely independent on the thermoregulatory response and hypophagia during acute HS. Consequently, incorporating solely body temperature indices into a genetic index is likely insufficient for substantial progress in selecting HS tolerant pigs.
Collapse
Affiliation(s)
- J T Seibert
- Department of Animal Science, Iowa State University, Ames, IA
| | - K L Graves
- Department of Animal Science, Iowa State University, Ames, IA
| | - B J Hale
- Department of Animal Science, Iowa State University, Ames, IA
| | - A F Keating
- Department of Animal Science, Iowa State University, Ames, IA
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA
| | - J W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
427
|
López E, Mellado M, Martínez AM, Véliz FG, García JE, de Santiago A, Carrillo E. Stress-related hormonal alterations, growth and pelleted starter intake in pre-weaning Holstein calves in response to thermal stress. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:493-500. [PMID: 28986694 DOI: 10.1007/s00484-017-1458-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/09/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to investigate the effect of heat stress and month of birth on growth performance, pelleted starter intake, and stress-related hormones in Holstein calves. Birth weight and growth records, representing 4735 Holstein calves from a large commercial dairy herd in northern Mexico (25° N; 22.3 °C mean annual temperature) from 2013 to 2015, were analyzed. Temperature-humidity index (THI) at calving, season of birth, and month of birth were the independent variables, whereas growth traits were the dependent variables. Increased THI at birth from < 65 to > 85 units was associated with a decrease in birth weight from 39.3 to 38.7 kg. Calves subjected to high THI (> 75 units) at calving showed lesser (P < 0.01) pre-weaning gains (405 ± 97 g/calf/day), whereas those calves born with THI < 70 units presented the highest gains (466 ± 112 g/calf/day). Birth during the fall months reduced (P < 0.01) weaning weight by about 5 kg compared with winter months. Also, the pre-weaning average daily gain for calves born in the fall was about 70 g less (P < 0.01) than calves delivered in winter months. Plasma triiodothyronine and tetraiodothyronine levels were lower (1.02 ± 0.21 and 48 ± 7.9 ng/mL, respectively; P < 0.01) in summer and highest in winter (1.64 ± 0.48 and 66 ± 11 ng/mL, respectively). Mean plasma cortisol concentration was higher in heat-stressed calves born in summer (59 ± 40 ng/mL) than calves born in winter (20 ± 28 ng/mL). Pelleted starter intake 1 week before weaning was lowest (P < 0.01) in the fall (0.82 ± 0.26 kg/calf/day; mean ± SD) and highest in spring (1.26 ± 0.43 kg/calf/day). It was concluded that in this particular environment, heat stress affects birth weight and growth rate of Holstein calves. Thus, environmental management of the newborn calf during hot spring and summer months is warranted to optimize pelleted starter intake and calf growth rates.
Collapse
Affiliation(s)
- E López
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico
| | - M Mellado
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, 25315, Saltillo, Coahuila, Mexico.
| | - A M Martínez
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, 25315, Saltillo, Coahuila, Mexico
| | - F G Véliz
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, 25315, Saltillo, Coahuila, Mexico
| | - J E García
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico
| | - A de Santiago
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico
| | - E Carrillo
- Techological Institute of Torreon, Torreon, Mexico
| |
Collapse
|
428
|
Brownstein AJ, Ganesan S, Summers CM, Pearce S, Hale BJ, Ross JW, Gabler N, Seibert JT, Rhoads RP, Baumgard LH, Selsby JT. Heat stress causes dysfunctional autophagy in oxidative skeletal muscle. Physiol Rep 2018. [PMID: 28646096 PMCID: PMC5492206 DOI: 10.14814/phy2.13317] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have previously established that 24 h of environmental hyperthermia causes oxidative stress and have implicated mitochondria as likely contributors to this process. Given this, we hypothesized that heat stress would lead to increased autophagy/mitophagy and a reduction in mitochondrial content. To address this hypothesis pigs were housed in thermoneutral (TN; 20°C) or heat stress (35°C) conditions for 1- (HS1) or 3- (HS3) days and the red and white portions of the semitendinosus collected. We did not detect differences in glycolytic muscle. Counter to our hypothesis, upstream activation of autophagy was largely similar between groups as were markers of autophagosome nucleation and elongation. LC3A/B-I increased 1.6-fold in HS1 and HS3 compared to TN (P < 0.05), LC3A/B-II was increased 4.1-fold in HS1 and 4.8-fold in HS3 relative to TN, (P < 0.05) and the LC3A/B-II/I ratio was increased 3-fold in HS1 and HS3 compared to TN suggesting an accumulation of autophagosomes. p62 was dramatically increased in HS1 and HS3 compared to TN Heat stress decreased mitophagy markers PINK1 7.0-fold in HS1 (P < 0.05) and numerically by 2.4-fold in HS3 compared to TN and BNIP3L/NIX by 2.5-fold (P < 0.05) in HS1 and HS3. Markers of mitochondrial content were largely increased without activation of PGC-1α signaling. In total, these data suggest heat-stress-mediated suppression of activation of autophagy and autophagosomal degradation, which may enable the persistence of damaged mitochondria in muscle cells and promote a dysfunctional intracellular environment.
Collapse
Affiliation(s)
| | - Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Corey M Summers
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Sarah Pearce
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Benjamin J Hale
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Nicholas Gabler
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | | | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa
| |
Collapse
|
429
|
Serum metabolomics study of nutrient metabolic variations in chronic heat-stressed broilers. Br J Nutr 2018; 119:771-781. [DOI: 10.1017/s0007114518000247] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AbstractTo investigate the effects of heat stress on broiler metabolism, we assigned 144 broilers to normal control (NC), heat stress (HS) or pair-fed (PF) groups and then monitored the effects using growth performance, carcass characteristics, biochemical assays and GC-MS-based metabolomics. The up-regulation of cloacal temperature confirmed that our experiment was successful in inducing chronic heat stress. The average daily gain and average daily feed intake of the HS group were significantly lower than those of the NC group, by 28·76 and 18·42 %, respectively (P<0·001), whereas the feed:gain ratio was significantly higher, by 14·49 % (P=0·003), and heat stress also increased leg proportion (P=0·027) and intramuscular fat proportion (P<0·001) and decreased breast proportion (P=0·009). When comparing the HS and NC groups and HS and PF groups, our metabolomics approach identified seventy-eight and thirty-four metabolites, respectively, with significantly different levels (variable importance in the projection values >1 and P<0·05). The greater feed:gain ratio of the HS group was significantly positively correlated with the leg, abdominal fat, subcutaneous fat and intramuscular fat proportions and levels of some free amino acids (proline, l-cysteine, methionine and threonine) but was negatively correlated with breast proportion and levels of some NEFA (stearic acid, arachidonic acid, palmitic acid and oleic acid). These findings indicated that the heat-stressed broilers were in negative energy balance and unable to effectively mobilise fat, thereby resulting in protein decomposition, which subsequently affected growth performance and carcass characteristics.
Collapse
|
430
|
Ganesan S, Brownstein AJ, Pearce SC, Hudson MB, Gabler NK, Baumgard LH, Rhoads RP, Selsby JT. Prolonged environment-induced hyperthermia alters autophagy in oxidative skeletal muscle in Sus scrofa. J Therm Biol 2018; 74:160-169. [PMID: 29801622 DOI: 10.1016/j.jtherbio.2018.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 11/26/2022]
Abstract
Prolonged heat stress represents a continuing threat to human health and agricultural production. Despite the broad, negative impact of prolonged hyperthermia little is known about underlying pathological mechanisms leading to negative health outcomes, which has limited the development of etiological interventions and left clinicians and producers with only cooling and rehydration strategies. The purpose of this investigation was to determine the extent to which prolonged environment-induced hyperthermia altered autophagy in oxidative skeletal muscle in a large animal model, serving the dual purpose of accurately modeling human physiology as well as agricultural production. We hypothesized that prolonged hyperthermia would induce autophagy in skeletal muscle, independent of the accompanying caloric restriction. To test this hypothesis pigs were treated as follows: thermoneutral (20 °C), heat stress (35 °C), or were held under thermoneutral conditions but pair-fed to the heat stress group for seven days. Upon euthanasia the red portion of the semitendinosus was collected. We found that prolonged hyperthermic exposure increased oxidative stress without a corresponding change in antioxidant enzyme activities. Hyperthermia prevented initiation of autophagy despite increased markers of nucleation, elongation and autophagosome formation. However, p62 relative protein abundance, which is inversely correlated with autophagic degradation, was strongly increased suggesting suppressed degradation of autophagosomes. Markers of mitophagy and mitochondrial abundance were largely similar between groups. These data indicate that faulty autophagy plays a key role in hyperthermic muscle dysfunction.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Sarah C Pearce
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Matthew B Hudson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, 19716, USA
| | - Nicolas K Gabler
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Robert P Rhoads
- Department of Animal and Poultry Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
431
|
Lyte M, Villageliú DN, Crooker BA, Brown DR. Symposium review: Microbial endocrinology-Why the integration of microbes, epithelial cells, and neurochemical signals in the digestive tract matters to ruminant health. J Dairy Sci 2018; 101:5619-5628. [PMID: 29550113 DOI: 10.3168/jds.2017-13589] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/07/2018] [Indexed: 12/14/2022]
Abstract
The union of microbiology and neurobiology, which has been termed microbial endocrinology, is defined as the study of the ability of microorganisms to produce and respond to neurochemicals that originate either within the microorganisms themselves or within the host they inhabit. It serves as the basis for an evolutionarily derived method of communication between a host and its microbiota. Mechanisms elucidated by microbial endocrinology give new insight into the ways the microbiota can affect host stress, metabolic efficiency, resistance to disease, and other factors that may prove relevant to the dairy industry.
Collapse
Affiliation(s)
- Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames 50011.
| | - Daniel N Villageliú
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames 50011
| | - Brian A Crooker
- Department of Animal Science, University of Minnesota, St. Paul 55108
| | - David R Brown
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul 55108
| |
Collapse
|
432
|
Seibert JT, Abuajamieh M, Sanz Fernandez MV, Johnson JS, Kvidera SK, Horst EA, Mayorga EJ, Lei S, Patience JF, Ross JW, Rhoads RP, Johnson RC, Lonergan SM, Perfield JW, Baumgard LH. Effects of heat stress and insulin sensitizers on pig adipose tissue. J Anim Sci 2018; 96:510-520. [PMID: 29385474 PMCID: PMC6140977 DOI: 10.1093/jas/skx067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/21/2017] [Indexed: 01/03/2023] Open
Abstract
Heat stress (HS) negatively impacts several swine production variables, including carcass fat quality and quantity. Pigs reared in HS have more adipose tissue than energetically predicted, explainable, in part, by HS-induced hyperinsulinemia. Study objectives were to evaluate insulin's role in altering fat characteristics during HS via feeding insulin-sensitizing compounds. Forty crossbred barrows (113 ± 9 kg BW) were randomly assigned to one of five environment by diet treatments: 1) thermoneutral (TN) fed ad libitum (TNAL), 2) TN and pair-fed (TNPF), 3) HS fed ad libitum (HSAL), 4) HS fed ad libitum with sterculic oil (SO) supplementation (HSSO; 13 g/d), and 5) HS fed ad libitum with dietary chromium (Cr) supplementation (HSCr; 0.5 mg/d; Kemin Industries, Des Moines, IA). The study consisted of three experimental periods (P). During P0 (2 d), all pigs were exposed to TN conditions (23 ± 3 °C, 68 ± 10% RH) and fed ad libitum. During P1 (7 d), all pigs received their respective dietary supplements, were maintained in TN conditions, and fed ad libitum. During P2 (21 d), HSAL, HSSO, and HSCr pigs were fed ad libitum and exposed to cyclical HS conditions (28 to 33 °C, 58 ± 10% RH). The TNAL and TNPF pigs remained in TN conditions and were fed ad libitum or pair-fed to their HSAL counterparts. Rectal temperature (TR), respiration rate (RR), and skin temperature (TS) were obtained daily at 0600 and 1800 h. At 1800 h, HS exposed pigs had increased TR, RR, and TS relative to TNAL controls (1.13 °C, 48 bpm, and 3.51 °C, respectively; P < 0.01). During wk 2 and 3 of P2, HSSO pigs had increased 1800 h TR relative to HSAL and HSCr (~0.40 and ~0.42 °C, respectively; P ≤ 0.05). Heat stress decreased ADFI and ADG compared to TNAL pigs (2.24 vs. 3.28 and 0.63 vs. 1.09 kg/d, respectively; P < 0.01) and neither variable was affected by SO or Cr supplementation. Heat stress increased or tended to increase moisture content of abdominal (7.7 vs. 5.9%; P = 0.07) and inner s.c. (11.4 vs. 9.8%; P < 0.05) adipose depots compared to TNAL controls. Interestingly, TNPF pigs also had increased adipose tissue moisture content and this was most pronounced in the outer s.c. depot (15.0 vs. 12.2%; P < 0.01) compared to TNAL pigs. Heat stress had little or no effect on fatty acid composition of abdominal, inner, and outer s.c. adipose tissue depots. In summary, the negative effects of HS on fat quality do not appear to be fatty acid composition related, but may be explained by increased adipose tissue moisture content.
Collapse
Affiliation(s)
- J T Seibert
- Department of Animal Science, Iowa State University, Ames, IA
| | - M Abuajamieh
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - J S Johnson
- Department of Animal Science, Iowa State University, Ames, IA
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames, IA
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames, IA
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA
| | - S Lei
- Department of Animal Science, Iowa State University, Ames, IA
| | - J F Patience
- Department of Animal Science, Iowa State University, Ames, IA
| | - J W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| | - R P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| | | | - S M Lonergan
- Department of Animal Science, Iowa State University, Ames, IA
| | - J W Perfield
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
- Department of Food Science, University of Missouri, Columbia, MO
- Current Address: Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
433
|
Calamari L, Morera P, Bani P, Minuti A, Basiricò L, Vitali A, Bernabucci U. Effect of hot season on blood parameters, fecal fermentative parameters, and occurrence of Clostridium tyrobutyricum spores in feces of lactating dairy cows. J Dairy Sci 2018; 101:4437-4447. [PMID: 29501337 DOI: 10.3168/jds.2017-13693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/02/2018] [Indexed: 11/19/2022]
Abstract
High temperature influences rumen and gut health, passage rate, and diet digestibility, with effects on fermentative processes. The main aim of the study was to investigate the effect of hot season on hindgut fermentation, the occurrence of Clostridium tyrobutyricum spores in bovine feces, and on their relationship with metabolic conditions in dairy cows producing milk used for Grana Padano cheese. The study was carried out on 7 dairy farms located in the Po Valley (Italy), involving 1,950 Italian Friesian dairy cows. The study was carried out from November 2013 till the end of July 2014. Temperature and relative humidity were recorded daily by weather stations. Constant management conditions were maintained during the experimental period. Feed and diet characteristics, metabolic conditions, and fecal characteristics were recorded in winter (from late November 2013 to the end of January 2014), spring (from April to May 2014), and summer (July 2014) season. In each season, blood samples were collected from 14 multiparous lactating dairy cows per herd to measure biochemical indices related to energy, protein, and mineral metabolism, as well as markers of inflammation and some enzyme activities. Fecal samples were also collected and measurements of moisture, pH and volatile fatty acids (VFA) were performed. The DNA extracted and purified from fecal samples was used to detect Clostridium tyrobutyricum spores in a quantitative real-time PCR assay. The daily mean temperature-humidity index was 40.7 ± 4.6 (range 25 to 55), 61.2 ± 3.7 (range 39 to 77), and 70.8 ± 3.2 (range 54 to 83) in winter, spring, and summer, respectively. Total VFA concentration in feces progressively decreased from winter to summer. The seasonal changes of acetate and propionate followed the same trend of total VFA; conversely, butyrate did not show any difference between seasons, and its molar proportion was greater in summer compared with winter. A greater occurrence of Cl. tyrobutyricum spores in summer compared with the other seasons was observed. The plasma concentrations of glucose, urea, albumin, Ca, Mg, Cl, Zn, and alkaline phosphatase activity were lower in summer compared with winter, whereas the opposite occurred for bilirubin and Na. Our results show that summer season, through direct and indirect effect of heat stress, affected fecal fermentative parameters and hindgut buffering capacity, and was responsible for the increasing occurrence of Cl. tyrobutyricum spores in feces.
Collapse
Affiliation(s)
- L Calamari
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - P Morera
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, via S. Camillo De Lellis, s.n.c, 01100 Viterbo, Italy
| | - P Bani
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - A Minuti
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy.
| | - L Basiricò
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, via S. Camillo De Lellis, s.n.c, 01100 Viterbo, Italy
| | - A Vitali
- Facoltà di Bioscienze e Tecnologie Agroalimentari ed Ambientali, Università di Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - U Bernabucci
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, via S. Camillo De Lellis, s.n.c, 01100 Viterbo, Italy
| |
Collapse
|
434
|
Ganesan S, Summers CM, Pearce SC, Gabler NK, Valentine RJ, Baumgard LH, Rhoads RP, Selsby JT. Short-term heat stress altered metabolism and insulin signaling in skeletal muscle. J Anim Sci 2018; 96:154-167. [PMID: 29432553 PMCID: PMC6140929 DOI: 10.1093/jas/skx083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
Heat-related complications continue to be a major health concern for humans and animals and lead to potentially life-threatening conditions. Heat stress (HS) alters metabolic parameters and may alter glucose metabolism and insulin signaling. Therefore, the purpose of this investigation was to determine the extent to which 12 h of HS-altered energetic metabolism in oxidative skeletal muscle. To address this, crossbred gilts (n = 8/group) were assigned to one of three environmental treatments for 12 h: thermoneutral (TN; 21 °C), HS (37 °C), or pair-fed to HS counterparts but housed in TN conditions (PFTN). Following treatment, animals were euthanized and the semitendinosus red (STR) was recovered. Despite increased relative protein abundance of the insulin receptor, insulin receptor substrate (IRS1) phosphorylation was increased (P = 0.0005) at S307, an inhibitory site, and phosphorylated protein kinase B (AKT) (S473) was decreased (P = 0.03) likely serving to impair insulin signaling following 12 h of HS. Further, HS increased phosphorylated protein kinase C (PKC) ζ/λ (P = 0.02) and phosphorylated PKCδ/θ protein abundance (P = 0.02), which are known to regulate inhibitory serine phosphorylation of IRS1 (S307). Sarcolemmal glucose transporter 4 (Glut4) was decreased (P = 0.04) in the membrane fraction of HS skeletal muscle suggesting diminished glucose uptake capacity. HS-mediated increases (P = 0.04) in mechanistic target of rapamycin (mTOR) were not accompanied by phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1). HS decreased (P = 0.0006) glycogen synthase (GS) and increased (P = 0.02) phosphorylated GS suggesting impaired glycogen synthesis. In addition, HS altered fatty acid metabolic signaling by increasing (P = 0.02) Acetyl-CoA carboxylase (ACC), decreasing (P = 0.005) phosphorylated ATP-citrate lyase (pATPCL) and fatty acid synthase (P = 0.01) (FAS). These data suggest that 12 h of HS blunted insulin signaling, decreased protein synthesis, and altered glycogen and fatty acid metabolism.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, IA
| | - Corey M Summers
- Department of Animal Science, Iowa State University, Ames, IA
- Department of Kinesiology, Iowa State University, Ames, IA
| | - Sarah C Pearce
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | | | | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
435
|
Luo J, Song J, Liu L, Xue B, Tian G, Yang Y. Effect of epigallocatechin gallate on growth performance and serum biochemical metabolites in heat-stressed broilers. Poult Sci 2018; 97:599-606. [DOI: 10.3382/ps/pex353] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 10/28/2017] [Indexed: 02/05/2023] Open
|
436
|
Ganesan S, Summers CM, Pearce SC, Gabler NK, Valentine RJ, Baumgard LH, Rhoads RP, Selsby JT. Short-term heat stress causes altered intracellular signaling in oxidative skeletal muscle. J Anim Sci 2018; 95:2438-2451. [PMID: 28727070 DOI: 10.2527/jas.2016.1233] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heat stress (HS) causes morbidities and mortalities, in part by inducing organ-specific injury and dysfunction. Further, HS markedly reduces farm animal productivity, and this is especially true for lean tissue accretion. The purpose of this investigation was to determine the extent to which short-term HS caused muscle dysfunction in skeletal muscle. We have previously found increased free radical injury in skeletal muscle following 24 h of HS. Thus, we hypothesized that HS would lead to apoptosis, autophagy, and decreased mitochondrial content in skeletal muscle. To test this hypothesis, crossbred gilts were divided into 3 groups ( = 8/group): thermal neutral (TN: 21°C), HS (37°C), and pair-fed thermal neutral (PFTN: feed intake matched with heat-stressed animals). Following 12 h of treatment, animals were euthanized and red (STR) and white (STW) portions of the semitendinosus were recovered. Heat stress did not alter intracellular signaling in STW. In STR, the oxidative stress marker malondialdehyde protein and concentration were increased in HS ( = 0.007) compared to TN and PFTN, which was matched by an inadequate antioxidant response, including an increase in superoxide dismutase (SOD) I ( = 0.03) and II relative protein abundance ( = 0.008) and total SOD activity ( = 0.02) but a reduction ( = 0.006) in catalase activity in HS compared to TN. Further, B-cell lymphoma 2-associated X protein ( = 0.02) and apoptotic protease activating factor 1 ( = 0.01) proteins were increased by HS compared to TN and PFTN. However, caspase 3 activity was similar between groups, indicating a lack of apoptotic execution. Despite increased initiation, autophagy appeared to be inhibited by HS as the microtubule-associated protein A/B light chain 3 II/I ratio and mitofusin-2 proteins were decreased ( < 0.03) and sequestosome 1(p62) protein abundance was increased ( = 0.001) in HS compared to TN and PFTN. Markers of mitochondrial content cytochrome c, cytochrome c oxidase IV, voltage-dependent anion channel, pyruvate dehydrogenase, and prohibitins 1 were increased ( < 0.05) in HS compared to TN, whereas mitochondrial biogenesis and mitophagy markers were similar between groups. These data demonstrate that HS caused aberrant intracellular signaling, which may contribute to HS-mediated muscle dysfunction.
Collapse
|
437
|
Johnson JS. Heat stress: impact on livestock well-being and productivity and mitigation strategies to alleviate the negative effects. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an17725] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heat stress (HS) is a multi-factorial problem that negatively affects livestock health and productivity and is closely linked with animal welfare. While HS may not be harmful when animals are able to adapt, the physiological changes that occur to ensure survival may impede the efficient conversion of feed energy into animal products. This adaptive response can be variable and is often based on previous HS exposure, genetics, species and production stage. When the heat load becomes too great for adaptive responses to compensate, the subsequent strain response causes reduced productivity and well-being and, in severe cases, mortality. The effects of HS on livestock productivity are well documented and range from decreased feed intake and body weight gain, to reduced reproductive efficiency and altered carcass composition and meat quality. In addition, researchers are beginning to elucidate the effects of prenatal HS on postnatal livestock performance and welfare. As knowledge of the negative impacts of HS on livestock performance and welfare increases, so will the development of effective mitigation strategies to support maintenance of productivity during times of high thermal heat loads and preserve appropriate animal welfare standards.
Collapse
|
438
|
Skibiel AL, Zachut M, do Amaral BC, Levin Y, Dahl GE. Liver proteomic analysis of postpartum Holstein cows exposed to heat stress or cooling conditions during the dry period. J Dairy Sci 2018; 101:705-716. [DOI: 10.3168/jds.2017-13258] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/19/2017] [Indexed: 12/25/2022]
|
439
|
Baumgard L, Collier R, Bauman D. A 100-Year Review: Regulation of nutrient partitioning to support lactation. J Dairy Sci 2017; 100:10353-10366. [DOI: 10.3168/jds.2017-13242] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/12/2017] [Indexed: 01/26/2023]
|
440
|
Gilhossein M, Mahjoubi E, Zahmatkesh D, Hossein Yazdi M. Exposure to sunlight results in lower concentrate intake during the hot hours of day in a cafeteria feeding of chopped alfalfa hay and concentrate in Afshari lambs. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
441
|
Collier R, Renquist B, Xiao Y. A 100-Year Review: Stress physiology including heat stress. J Dairy Sci 2017; 100:10367-10380. [DOI: 10.3168/jds.2017-13676] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
|
442
|
Srikanth K, Lee E, Kwan A, Lim Y, Lee J, Jang G, Chung H. Transcriptome analysis and identification of significantly differentially expressed genes in Holstein calves subjected to severe thermal stress. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:1993-2008. [PMID: 28900747 DOI: 10.1007/s00484-017-1392-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
RNA-Seq analysis was used to characterize transcriptome response of Holstein calves to thermal stress. A total of eight animals aged between 2 and 3 months were randomly selected and subjected to thermal stress corresponding to a temperature humidity index of 95 in an environmentally controlled house for 12 h consecutively for 3 days. A set of 15,787 unigenes were found to be expressed and after a threshold of threefold change, and a Q value <0.05; 502, 394, and 376 genes were found to be differentially expressed on days 1, 2, and 3 out of which 343, 261 and 256 genes were upregulated and 159, 133, and 120 genes were downregulated. Only 356 genes out of these were expressed on all 3 days, and only they were considered as significantly differentially expressed. KEGG pathway analysis revealed that ten pathways were significantly enriched; the top two among them were protein processing in endoplasmic reticulum and MAPK signaling pathways. These results suggest that thermal stress triggered a complex response in Holstein calves and the animals adjusted their physiological and metabolic processes to survive. Many of the genes identified in this study have not been previously reported to be involved in thermal stress response. The results of this study extend our understanding of the animal's response to thermal stress and some of the identified genes may prove useful in the efforts to breed Holstein cattle with superior thermotolerance, which might help in minimizing production loss due to thermal stress.
Collapse
Affiliation(s)
- Krishnamoorthy Srikanth
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, 1500, K & P road, Iseo, Wanju, JB, 55365, South Korea
| | - Eunjin Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, 1500, K & P road, Iseo, Wanju, JB, 55365, South Korea
| | - Anam Kwan
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, 1500, K & P road, Iseo, Wanju, JB, 55365, South Korea
| | - Youngjo Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, 1500, K & P road, Iseo, Wanju, JB, 55365, South Korea
| | - Junyep Lee
- Environmental Science Division, National Institute of Animal Science, 1500, K & P road, Iseo, Wanju, JB, 55365, South Korea
| | - Gulwon Jang
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, 1500, K & P road, Iseo, Wanju, JB, 55365, South Korea
| | - Hoyoung Chung
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, 1500, K & P road, Iseo, Wanju, JB, 55365, South Korea.
| |
Collapse
|
443
|
Kvidera SK, Horst EA, Mayorga EJ, Sanz-Fernandez MV, Abuajamieh M, Baumgard LH. Estimating glucose requirements of an activated immune system in growing pigs. J Anim Sci 2017; 95:5020-5029. [PMID: 29293729 PMCID: PMC6292257 DOI: 10.2527/jas2017.1830] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022] Open
Abstract
Activated immune cells become obligate glucose utilizers, and a large i.v. lipopolysaccharide (LPS) dose causes insulin resistance and severe hypoglycemia. Therefore, study objectives were to quantify the amount of glucose needed to maintain euglycemia following an endotoxin challenge as a proxy of leukocyte glucose requirements. Fifteen fasted crossbred gilts (30.3 ± 1.7 kg) were bilaterally jugular catheterized and assigned 1 of 2 i.v. bolus treatments: control (CON; 10 mL sterile saline; = 7) or LPS challenge + euglycemic clamp (LPS-Eu; 055:B5; 5 μg/kg BW; 50% dextrose infusion to maintain euglycemia; = 8). Following administration, blood glucose was determined every 10 min and dextrose infusion rates were adjusted in LPS-Eu pigs to maintain euglycemia for 8 h. Pigs were fasted for 8 h prior to the bolus and remained fasted throughout the challenge. Rectal temperature was increased in LPS-Eu pigs relative to CON pigs (39.8 vs. 38.8°C; < 0.01). Relative to the baseline, CON pigs had 20% decreased blood glucose from 300 to 480 min postbolus ( = 0.01) whereas circulating glucose content in LPS-Eu pigs did not differ ( = 0.96) from prebolus levels. A total of 116 ± 8 g of infused glucose was required to maintain euglycemia in LPS-Eu pigs. Relative to CON pigs, overall plasma insulin, blood urea nitrogen, β-hydroxybutrate, lactate, and LPS-binding protein were increased in LPS-Eu pigs (295, 108, 29, 133, and 13%, respectively; ≤ 0.04) whereas NEFA was decreased (66%; < 0.01). Neutrophils in LPS-Eu pigs were decreased 84% at 120 min postbolus and returned to CON levels by 480 min ( < 0.01). Overall, lymphocytes, monocytes, eosinophils, and basophils were decreased in LPS-Eu pigs relative to CON pigs (75, 87, 70, and 50%, respectively; ≤ 0.05). These alterations in metabolism and the large amount of glucose needed to maintain euglycemia indicate nutrient repartitioning away from growth toward the immune system. Glucose is an important fuel for the immune system, and data from this study established that the glucose requirements of an intensely and acutely activated immune system in growing pigs are approximately 1.1 g/kg BW/h.
Collapse
Affiliation(s)
- S. K. Kvidera
- Iowa State University Department of Animal Science, Ames 50011
| | - E. A. Horst
- Iowa State University Department of Animal Science, Ames 50011
| | - E. J. Mayorga
- Iowa State University Department of Animal Science, Ames 50011
| | - M. V. Sanz-Fernandez
- Iowa State University Department of Animal Science, Ames 50011
- Department of Animal Reproduction, INIA, Madrid, Spain
| | - M. Abuajamieh
- Iowa State University Department of Animal Science, Ames 50011
- Department of Animal Production, The University of Jordan, Amman, Jordan 11942
| | - L. H. Baumgard
- Iowa State University Department of Animal Science, Ames 50011
| |
Collapse
|
444
|
Kvidera S, Horst E, Sanz Fernandez M, Abuajamieh M, Ganesan S, Gorden P, Green H, Schoenberg K, Trout W, Keating A, Baumgard L. Characterizing effects of feed restriction and glucagon-like peptide 2 administration on biomarkers of inflammation and intestinal morphology. J Dairy Sci 2017; 100:9402-9417. [DOI: 10.3168/jds.2017-13229] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/06/2017] [Indexed: 12/21/2022]
|
445
|
Rauw WM, Mayorga EJ, Lei SM, Dekkers JCM, Patience JF, Gabler NK, Lonergan SM, Baumgard LH. Effects of Diet and Genetics on Growth Performance of Pigs in Response to Repeated Exposure to Heat Stress. Front Genet 2017; 8:155. [PMID: 29123542 PMCID: PMC5662585 DOI: 10.3389/fgene.2017.00155] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/04/2017] [Indexed: 11/13/2022] Open
Abstract
Heat stress (HS) is one of the costliest issues in the U.S. pork industry. Aims of the present study were to determine the consequences of repeated exposure to HS on growth performance, and the effects of a high fiber diet, the genetic potential for high lean tissue accretion, and the genetic potential for residual feed intake (RFI) on resilience to HS. Barrows (n = 97) from three genetic lines (commercial, high RFI, low RFI) where subjected three times to a 4-day HS treatment (HS1, HS2, and HS3) which was preceded by a 9-day neutral (TN) adaptation period (TN1) and alternated by 7-day periods of neutral temperatures (TN2, TN3, and TN4). Body weight gain (BWG), feed intake (FI), feed conversion efficiency (FCE), RFI, and the drop in BWG and FI between TN and HS were estimated for each period, and slaughter traits were measured at the end of TN4. Commercial pigs had lower FI when fed a high fiber diet compared to a regular diet (2.70 ± 0.08 vs. 2.96 ± 0.08 kg/d; P < 0.05), while no differences were found for BWG, RFI or FCE. HS reduced FI, BWG, and FCE, increased RFI, and resulted in leaner pigs that generate smaller carcasses at slaughter. In TN, commercial pigs grew faster than the low and high RFI pigs (1.22 ± 0.06 vs. 0.720 ± 0.05 and 0.657 ± 0.07; P < 0.001) but growth rates were not significantly different between the lines during HS. Growth rates for the low RFI and high RFI pigs were similar both during TN and during HS. Pigs of interest for genetic improvement are those that are able to maintain growth rates during HS. Our results show that response in growth to HS was repeatable over subsequent 4-d HS cycles, which suggests the potential for including this response in the breeding index. The best performing animals during HS are likely those that are not highly superior for growth in TN.
Collapse
Affiliation(s)
- Wendy M Rauw
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain.,Department of Animal Science, Iowa State University, Ames, IA, United States
| | - E Johana Mayorga
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Soi Meng Lei
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Steven M Lonergan
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
446
|
Integrated mRNA and microRNA transcriptome analyses reveal regulation of thermal acclimation in Gymnocypris przewalskii: A case study in Tibetan Schizothoracine fish. PLoS One 2017; 12:e0186433. [PMID: 29045433 PMCID: PMC5646821 DOI: 10.1371/journal.pone.0186433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/29/2017] [Indexed: 11/19/2022] Open
Abstract
Environmental acclimation is important episode in wildlife occupation of the high-altitude Tibetan Plateau (TP). Transcriptome-wide studies on thermal acclimation mechanism in fish species are rarely revealed in Tibetan Plateau fish at high altitude. Thus, we used mRNA and miRNA transcriptome sequencing to investigate regulation of thermal acclimation in larval Tibetan naked carp, Gymnocypris przewalskii. We first remodeled the regulation network of mRNA and miRNA in thermal acclimation, and then identified differential expression of miRNAs and target mRNAs enriched in metabolic and digestive pathways. Interestingly, we identified two candidate genes contributed to normal skeletal development. The altered expression of these gene groups could potentially be associated with the developmental issues of deformity and induced larval death. Our results have three important implications: first, these findings provide strong evidences to support our hypothesis that G. przewalskii possess ability to build heat-tolerance against the controversial issue. Second, this study shows that transcriptional and post-transcriptional regulations are extensively involved in thermal acclimation. Third, the integrated mRNA and microRNA transcriptome analyses provide a large number of valuable genetic resources for future studies on environmental stress response in G. przewalskii and as a case study in Tibetan Schizothoracine fish.
Collapse
|
447
|
Choi Y, Hosseindoust A, Shim Y, Kim M, Kumar A, Oh S, Kim Y, Chae BJ. Evaluation of high nutrient diets on litter performance of heat-stressed lactating sows. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1598-1604. [PMID: 28920406 PMCID: PMC5666195 DOI: 10.5713/ajas.17.0398] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/04/2017] [Accepted: 09/12/2017] [Indexed: 01/26/2023]
Abstract
Objective The present study investigated the litter performance of multiparous sows fed 3% and 6% densified diets at farrowing to weaning during summer with mean maximum room temperature of 30.5°C. Methods A total of 60 crossbred multiparous sows were allotted to one of three treatments based on body weight according to a completely randomized design. Three different nutrient levels based on NRC were applied as standard diet (ST; metabolizable energy, 3,300 kcal/kg), high nutrient level 1 (HE1; ST+3% higher energy and 16.59% protein) and high nutrient level 2 (HE2; ST+6% higher energy and 17.04% protein). Results There was no variation in the body weight change. However, backfat thickness change tended to reduce in HE1 in comparison to ST treatment. Dietary treatments had no effects on feed intake, daily energy intake and weaning-to-estrus interval in lactating sows. Litter size, litter weight at weaning and average daily gain of piglets were significantly greater in sows in HE1 compared with ST, however, no difference was observed between HE2 and ST. Increasing the nutrient levels had no effects on the blood urea nitrogen, glucose, triglyceride, and creatinine at post-farrowing and weaning time. The concentration of follicle stimulating hormone, cortisol and insulin were not affected by dietary treatments either in post-farrowing or weaning time. The concentration of blood luteinizing hormone of sows in ST treatment was numerically less than sows in HE2 treatment at weaning. Milk and colostrum compositions such as protein, fat and lactose were not affected by the treatments. Conclusion An energy level of 3,400 kcal/kg (14.23 MJ/kg) with 166 g/kg crude protein is suggested as the optimal level of dietary nutrients for heat stressed lactating sows with significant beneficial effects on litter size.
Collapse
Affiliation(s)
- Yohan Choi
- Department of Animal Resources Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Abdolreza Hosseindoust
- Department of Animal Resources Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - YoungHo Shim
- 1685-18 Hamyeong-ro, Hampyeong-eup, Hampyeong 57136, Korea
| | - Minju Kim
- Department of Animal Resources Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Alip Kumar
- Department of Animal Resources Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Seungmin Oh
- Department of Animal Resources Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - YoungHwa Kim
- Department of Animal Resources Development Swine Science Division, RDA, Cheonan 31000, Korea
| | - Byung-Jo Chae
- Department of Animal Resources Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
448
|
Chapel NM, Byrd CJ, Lugar DW, Morello GM, Baumgard LH, Ross JW, Safranski TJ, Lucy MC, Johnson JS. Determining the effects of early gestation in utero heat stress on postnatal fasting heat production and circulating biomarkers associated with metabolism in growing pigs1,2. J Anim Sci 2017. [DOI: 10.2527/jas.2017.1730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
449
|
Cruzen SM, Baumgard LH, Gabler NK, Pearce SC, Lonergan SM. Temporal proteomic response to acute heat stress in the porcine muscle sarcoplasm1. J Anim Sci 2017. [DOI: 10.2527/jas.2017.1375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
450
|
Baldassarre M, Naldi M, Domenicali M, Volo S, Pietra M, Dondi F, Caraceni P, Peli A. Simple and rapid LC–MS method for the determination of circulating albumin microheterogeneity in veal calves exposed to heat stress. J Pharm Biomed Anal 2017; 144:263-268. [DOI: 10.1016/j.jpba.2017.04.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/10/2017] [Accepted: 04/23/2017] [Indexed: 12/17/2022]
|