401
|
von Willebrand factor and its cleaving protease ADAMTS13 balance in coronary artery vessels: Lessons learned from thrombotic thrombocytopenic purpura. A narrative review. Thromb Res 2017; 155:78-85. [DOI: 10.1016/j.thromres.2017.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/11/2017] [Indexed: 02/08/2023]
|
402
|
Macklin P, Frieboes HB, Sparks JL, Ghaffarizadeh A, Friedman SH, Juarez EF, Jonckheere E, Mumenthaler SM. Progress Towards Computational 3-D Multicellular Systems Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 936:225-246. [PMID: 27739051 DOI: 10.1007/978-3-319-42023-3_12] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tumors cannot be understood in isolation from their microenvironment. Tumor and stromal cells change phenotype based upon biochemical and biophysical inputs from their surroundings, even as they interact with and remodel the microenvironment. Cancer should be investigated as an adaptive, multicellular system in a dynamical microenvironment. Computational modeling offers the potential to detangle this complex system, but the modeling platform must ideally account for tumor heterogeneity, substrate and signaling factor biotransport, cell and tissue biophysics, tissue and vascular remodeling, microvascular and interstitial flow, and links between all these sub-systems. Such a platform should leverage high-throughput experimental data, while using open data standards for reproducibility. In this chapter, we review advances by our groups in these key areas, particularly in advanced models of tissue mechanics and interstitial flow, open source simulation software, high-throughput phenotypic screening, and multicellular data standards. In the future, we expect a transformation of computational cancer biology from individual groups modeling isolated parts of cancer, to coalitions of groups combining compatible tools to simulate the 3-D multicellular systems biology of cancer tissues.
Collapse
Affiliation(s)
- Paul Macklin
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Jessica L Sparks
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Ahmadreza Ghaffarizadeh
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Samuel H Friedman
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Edwin F Juarez
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Edmond Jonckheere
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
403
|
A novel modified physiologically relevant model for cardiac angiogenesis. Microvasc Res 2017; 114:84-91. [PMID: 28666802 DOI: 10.1016/j.mvr.2017.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 01/15/2023]
Abstract
Angiogenesis assays are important tools for studying both the mechanisms of cardiac angiogenesis and the potential development of therapeutic strategies to ischemic heart diseases. Currently, various assays have been used to quantitate cardiac tubule formation, yet no consensus has been reached regarding a suitable assay for evaluating the efficacy of angiogenic stimulants or inhibitors. Most in vivo angiogenesis assays are complex and difficult to interpret, whereas traditional in vitro angiogenesis models measure only one aspect of this process. To bridge the gap between in vivo and in vitro angiogenesis assays, here, we have developed a novel modified cardiac explants matrigel assay. We observed the morphology of vascular sprouts formed in three forms of cardiac angiogenesis assays then used quantitative image analyses to further compare the morphological features of vascular sprouts formed in two cardiac explants angiogenesis assays. Vascular sprouts formed in the fibronectin group were less and short, whereas those formed in the matrigel group were significantly longer, consisting of more area and branch points. Moreover, we found the benefits of this matrigel model by observing the ability of cardiac explants to form vascular sprouts under normoxia or hypoxia condition in the presence of angiogenic stimulant and inhibitor, VEGF and PEDF. In summary, the above analyses revealed that the morphology of vascular sprouts formed in this model appears more representative of myocardial capillary formation in vivo, and this accessible, reliable angiogenic assay is a more physiologically relevant assay which allows further assessment of pharmacologic compounds on cardiac angiogenesis.
Collapse
|
404
|
Ezrin enhances line tension along transcellular tunnel edges via NMIIa driven actomyosin cable formation. Nat Commun 2017. [PMID: 28643776 PMCID: PMC5490010 DOI: 10.1038/ncomms15839] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transendothelial cell macroaperture (TEM) tunnels control endothelium barrier function and are triggered by several toxins from pathogenic bacteria that provoke vascular leakage. Cellular dewetting theory predicted that a line tension of uncharacterized origin works at TEM boundaries to limit their widening. Here, by conducting high-resolution microscopy approaches we unveil the presence of an actomyosin cable encircling TEMs. We develop a theoretical cellular dewetting framework to interpret TEM physical parameters that are quantitatively determined by laser ablation experiments. This establishes the critical role of ezrin and non-muscle myosin II (NMII) in the progressive implementation of line tension. Mechanistically, fluorescence-recovery-after-photobleaching experiments point for the upstream role of ezrin in stabilizing actin filaments at the edges of TEMs, thereby favouring their crosslinking by NMIIa. Collectively, our findings ascribe to ezrin and NMIIa a critical function of enhancing line tension at the cell boundary surrounding the TEMs by promoting the formation of an actomyosin ring.
Collapse
|
405
|
Theodorakis PE, Müller EA, Craster RV, Matar OK. Physical insights into the blood-brain barrier translocation mechanisms. Phys Biol 2017; 14:041001. [PMID: 28586313 DOI: 10.1088/1478-3975/aa708a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The number of individuals suffering from diseases of the central nervous system (CNS) is growing with an aging population. While candidate drugs for many of these diseases are available, most of these pharmaceutical agents cannot reach the brain rendering most of the drug therapies that target the CNS inefficient. The reason is the blood-brain barrier (BBB), a complex and dynamic interface that controls the influx and efflux of substances through a number of different translocation mechanisms. Here, we present these mechanisms providing, also, the necessary background related to the morphology and various characteristics of the BBB. Moreover, we discuss various numerical and simulation approaches used to study the BBB, and possible future directions based on multi-scale methods. We anticipate that this review will motivate multi-disciplinary research on the BBB aiming at the design of effective drug therapies.
Collapse
|
406
|
Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 2017; 18:477-494. [PMID: 28537573 DOI: 10.1038/nrm.2017.36] [Citation(s) in RCA: 413] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Blood and lymphatic vessels pervade almost all body tissues and have numerous essential roles in physiology and disease. The inner lining of these networks is formed by a single layer of endothelial cells, which is specialized according to the needs of the tissue that it supplies. Whereas the general mechanisms of blood and lymphatic vessel development are being defined with increasing molecular precision, studies of the processes of endothelial specialization remain mostly descriptive. Recent insights from genetic animal models illuminate how endothelial cells interact with each other and with their tissue environment, providing paradigms for vessel type- and organ-specific endothelial differentiation. Delineating these governing principles will be crucial for understanding how tissues develop and maintain, and how their function becomes abnormal in disease.
Collapse
|
407
|
Scarritt ME, Pashos NC, Motherwell JM, Eagle ZR, Burkett BJ, Gregory AN, Mostany R, Weiss DJ, Alvarez DF, Bunnell BA. Re-endothelialization of rat lung scaffolds through passive, gravity-driven seeding of segment-specific pulmonary endothelial cells. J Tissue Eng Regen Med 2017; 12:e786-e806. [PMID: 27943597 DOI: 10.1002/term.2382] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 09/27/2016] [Accepted: 12/06/2016] [Indexed: 01/05/2023]
Abstract
Effective re-endothelialization is critical for the use of decellularized scaffolds for ex vivo lung engineering. Current approaches yield insufficiently re-endothelialized scaffolds that haemorrhage and become thrombogenic upon implantation. Herein, gravity-driven seeding coupled with bioreactor culture facilitated widespread distribution and engraftment of endothelial cells throughout rat lung scaffolds. Initially, human umbilical vein endothelial cells were seeded into the pulmonary artery by either gravity-driven, variable flow perfusion seeding or pump-driven, pulsatile flow perfusion seeding. Gravity seeding evenly distributed cells and supported cell survival and re-lining of the vascular walls while perfusion pump-driven seeding led to increased cell fragmentation and death. Using gravity seeding, rat pulmonary artery endothelial cells and rat pulmonary vein endothelial cells attached in intermediate and large vessels, while rat pulmonary microvascular endothelial cells deposited mostly in microvessels. Combination seeding of these cells led to positive vascular endothelial cadherin staining. In addition, combination seeding improved barrier function as assessed by serum albumin extravasation; however, leakage was observed in the distal portions of the re-endothelialized tissue suggesting that recellularization of the alveoli is necessary to complete barrier function of the capillary-alveolar network. Overall, these data indicate that vascular recellularization of rat lung scaffolds is achieved through gravity seeding. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Michelle E Scarritt
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nicholas C Pashos
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA.,Bioinnovation PhD Program, Tulane University, New Orleans, LA, USA
| | | | - Zachary R Eagle
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Brian J Burkett
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ashley N Gregory
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | - Diego F Alvarez
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
408
|
DeStefano JG, Williams A, Wnorowski A, Yimam N, Searson PC, Wong AD. Real-time quantification of endothelial response to shear stress and vascular modulators. Integr Biol (Camb) 2017; 9:362-374. [PMID: 28345713 PMCID: PMC5490251 DOI: 10.1039/c7ib00023e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quiescence is commonly used to describe the inactive state of endothelial cells (ECs) in monolayers that have reached homeostasis. Experimentally quiescence is usually described in terms of the relative change in cell activity (e.g. turnover, speed, etc.) in response to a perturbation (e.g. solute, shear stress, etc.). The objective of this study is to provide new insight into EC quiescence by quantitatively defining the morphology and activity of confluent cell monolayers in response to shear stress and vascular modulators. Confluent monolayers of human umbilical vein ECs (HUVECs) were subjected to a range of shear stresses (4-16 dyne cm-2) under steady flow. Using phase contrast, time-lapse microscopy and image analysis, we quantified EC morphology, speed, proliferation, and apoptosis rates over time and detected differences in monolayer responses under various media conditions: basal media supplemented with growth factors, interleukin-8, or cyclic AMP. In all conditions, we observed a transition from cobblestone to spindle-like morphology in a dose-dependent manner due to shear stress. Cyclic AMP enhanced the elongation and alignment of HUVECs due to shear stress and reduced steady state cell speed. We observed the lowest proliferation rates below 8 dyne cm-2 and found that growth factors and cyclic AMP reduced proliferation and apoptosis; interleukin-8 similarly decreased proliferation, but increased apoptosis. We have quantified the response of ECs in confluent monolayers to shear stress and vascular modulators in terms of morphology, speed, proliferation and apoptosis and have established quantifiable metrics of cell activity to define vascular quiescence under shear stress.
Collapse
Affiliation(s)
- Jackson G DeStefano
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | | | | | | | |
Collapse
|
409
|
Lee WL, Klip A. Endothelial Transcytosis of Insulin: Does It Contribute to Insulin Resistance? Physiology (Bethesda) 2017; 31:336-45. [PMID: 27511460 DOI: 10.1152/physiol.00010.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Most research on insulin resistance has focused on impaired signaling at the level of target tissues like skeletal muscle. Insulin delivery is also important and includes recruitment and perfusion of capillaries bearing insulin, but also the transit of insulin across the capillary endothelium. The mechanisms of this second stage (insulin transcytosis) and whether it contributes to insulin resistance remain uncertain.
Collapse
Affiliation(s)
- Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; and
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada; Paediatrics, and Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
410
|
Zakharova IS, Zhiven' MK, Saaya SB, Shevchenko AI, Smirnova AM, Strunov A, Karpenko AA, Pokushalov EA, Ivanova LN, Makarevich PI, Parfyonova YV, Aboian E, Zakian SM. Endothelial and smooth muscle cells derived from human cardiac explants demonstrate angiogenic potential and suitable for design of cell-containing vascular grafts. J Transl Med 2017; 15:54. [PMID: 28257636 PMCID: PMC5336693 DOI: 10.1186/s12967-017-1156-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/22/2017] [Indexed: 01/25/2023] Open
Abstract
Background Endothelial and smooth muscle cells are considered promising resources for regenerative medicine and cell replacement therapy. It has been shown that both types of cells are heterogeneous depending on the type of vessels and organs in which they are located. Therefore, isolation of endothelial and smooth muscle cells from tissues relevant to the area of research is necessary for the adequate study of specific pathologies. However, sources of specialized human endothelial and smooth muscle cells are limited, and the search for new sources is still relevant. The main goal of our study is to demonstrate that functional endothelial and smooth muscle cells can be obtained from an available source—post-surgically discarded cardiac tissue from the right atrial appendage and right ventricular myocardium. Methods Heterogeneous primary cell cultures were enzymatically isolated from cardiac explants and then grown in specific endothelial and smooth muscle growth media on collagen IV-coated surfaces. The population of endothelial cells was further enriched by immunomagnetic sorting for CD31, and the culture thus obtained was characterized by immunocytochemistry, ultrastructural analysis and in vitro functional tests. The angiogenic potency of the cells was examined by injecting them, along with Matrigel, into immunodeficient mice. Cells were also seeded on characterized polycaprolactone/chitosan membranes with subsequent analysis of cell proliferation and function. Results Endothelial cells isolated from cardiac explants expressed CD31, VE-cadherin and VEGFR2 and showed typical properties, namely, cytoplasmic Weibel-Palade bodies, metabolism of acetylated low-density lipoproteins, formation of capillary-like structures in Matrigel, and production of extracellular matrix and angiogenic cytokines. Isolated smooth muscle cells expressed extracellular matrix components as well as α-actin and myosin heavy chain. Vascular cells derived from cardiac explants demonstrated the ability to stimulate angiogenesis in vivo. Endothelial cells proliferated most effectively on membranes made of polycaprolactone and chitosan blended in a 25:75 ratio, neutralized by a mixture of alkaline and ethanol. Endothelial and smooth muscle cells retained their functional properties when seeded on the blended membranes. Conclusions We established endothelial and smooth muscle cell cultures from human right atrial appendage and right ventricle post-operative explants. The isolated cells revealed angiogenic potential and may be a promising source of patient-specific cells for regenerative medicine. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1156-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- I S Zakharova
- The Federal Research Center Institute of Cytology And Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation. .,Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation. .,Siberian Federal Biomedical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, Russian Federation.
| | - M K Zhiven'
- The Federal Research Center Institute of Cytology And Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Siberian Federal Biomedical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, Russian Federation
| | - Sh B Saaya
- Siberian Federal Biomedical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, Russian Federation
| | - A I Shevchenko
- The Federal Research Center Institute of Cytology And Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Siberian Federal Biomedical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - A M Smirnova
- The Federal Research Center Institute of Cytology And Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Siberian Federal Biomedical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - A Strunov
- The Federal Research Center Institute of Cytology And Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - A A Karpenko
- Siberian Federal Biomedical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, Russian Federation
| | - E A Pokushalov
- Siberian Federal Biomedical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, Russian Federation
| | - L N Ivanova
- The Federal Research Center Institute of Cytology And Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - P I Makarevich
- Laboratory of Angiogenesis, Russian Cardiology Research and Production Complex, Moscow, Russian Federation.,Laboratory of gene and cell therapy, Institute of regenerative medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Y V Parfyonova
- Laboratory of Angiogenesis, Russian Cardiology Research and Production Complex, Moscow, Russian Federation.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - E Aboian
- Division of Vascular Surgery, Palo Alto Medical Foundation, Burlingame, USA
| | - S M Zakian
- The Federal Research Center Institute of Cytology And Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Siberian Federal Biomedical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
411
|
How J, Zhou A, Oh ST. Splanchnic vein thrombosis in myeloproliferative neoplasms: pathophysiology and molecular mechanisms of disease. Ther Adv Hematol 2017; 8:107-118. [PMID: 28246554 PMCID: PMC5305004 DOI: 10.1177/2040620716680333] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are the most common underlying prothrombotic disorder found in patients with splanchnic vein thrombosis (SVT). Clinical risk factors for MPN-associated SVTs include younger age, female sex, concomitant hypercoagulable disorders, and the JAK2 V617F mutation. These risk factors are distinct from those associated with arterial or deep venous thrombosis (DVT) in MPN patients, suggesting disparate disease mechanisms. The pathophysiology of SVT is thought to derive from local interactions between activated blood cells and the unique splanchnic endothelial environment. Other mutations commonly found in MPNs, including CALR and MPL, are rare in MPN-associated SVT. The purpose of this article is to review the clinical and molecular risk factors for MPN-associated SVT, with particular focus on the possible mechanisms of SVT formation in MPN patients.
Collapse
Affiliation(s)
- Joan How
- Division of Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - Amy Zhou
- Division of Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - Stephen T. Oh
- Division of Hematology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8125, St Louis, MO 63110, USA
| |
Collapse
|
412
|
Uhl B, Hirn S, Immler R, Mildner K, Möckl L, Sperandio M, Bräuchle C, Reichel CA, Zeuschner D, Krombach F. The Endothelial Glycocalyx Controls Interactions of Quantum Dots with the Endothelium and Their Translocation across the Blood-Tissue Border. ACS NANO 2017; 11:1498-1508. [PMID: 28135073 DOI: 10.1021/acsnano.6b06812] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Advances in the engineering of nanoparticles (NPs), which represent particles of less than 100 nm in one external dimension, led to an increasing utilization of nanomaterials for biomedical purposes. A prerequisite for their use in diagnostic and therapeutic applications, however, is the targeted delivery to the site of injury. Interactions between blood-borne NPs and the vascular endothelium represent a critical step for nanoparticle delivery into diseased tissue. Here, we show that the endothelial glycocalyx, which constitutes a glycoprotein-polysaccharide meshwork coating the luminal surface of vessels, effectively controls interactions of carboxyl-functionalized quantum dots with the microvascular endothelium. Glycosaminoglycans of the endothelial glycocalyx were found to physically cover endothelial adhesion and signaling molecules, thereby preventing endothelial attachment, uptake, and translocation of these nanoparticles through different layers of the vessel wall. Conversely, degradation of the endothelial glycocalyx promoted interactions of these nanoparticles with microvascular endothelial cells under the pathologic condition of ischemia-reperfusion, thus identifying the injured endothelial glycocalyx as an essential element of the blood-tissue border facilitating the targeted delivery of nanomaterials to diseased tissue.
Collapse
Affiliation(s)
- Bernd Uhl
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Stephanie Hirn
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Roland Immler
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Karina Mildner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine , 48149 Münster, Germany
| | - Leonhard Möckl
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Christoph Bräuchle
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Christoph A Reichel
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine , 48149 Münster, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians-Universität München , 81377 Munich, Germany
| |
Collapse
|
413
|
Lauridsen HM, Gonzalez AL. Biomimetic, ultrathin and elastic hydrogels regulate human neutrophil extravasation across endothelial-pericyte bilayers. PLoS One 2017; 12:e0171386. [PMID: 28234918 PMCID: PMC5325185 DOI: 10.1371/journal.pone.0171386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/18/2017] [Indexed: 11/18/2022] Open
Abstract
The vascular basement membrane-a thin, elastic layer of extracellular matrix separating and encasing vascular cells-provides biological and mechanical cues to endothelial cells, pericytes, and migrating leukocytes. In contrast, experimental scaffolds typically used to replicate basement membranes are stiff and bio-inert. Here, we present thin, porated polyethylene glycol hydrogels to replicate human vascular basement membranes. Like commercial transwells, our hydrogels are approximately 10μm thick, but like basement membranes, the hydrogels presented here are elastic (E: 50-80kPa) and contain a dense network of small pores. Moreover, the inclusion of bioactive domains introduces receptor-mediated biochemical signaling. We compare elastic hydrogels to common culture substrates (E: >2GPa) for human endothelial cell and pericyte monolayers and bilayers to replicate postcapillary venules in vitro. Our data demonstrate that substrate elasticity facilitates differences in vascular phenotype, supporting expression of vascular markers that are increasingly replicative of venules. Endothelial cells differentially express vascular markers, like EphB4, and leukocyte adhesion molecules, such as ICAM-1, with decreased mechanical stiffness. With porated PEG hydrogels we demonstrate the ability to evaluate and observe leukocyte recruitment across endothelial cell and pericyte monolayers and bilayers, reporting that basement membrane scaffolds can significantly alter the rate of vascular migration in experimental systems. Overall, this study demonstrates the creation and utility of a new and accessible method to recapture the mechanical and biological complexity of human basement membranes in vitro.
Collapse
Affiliation(s)
- Holly M. Lauridsen
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - Anjelica L. Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
- * E-mail:
| |
Collapse
|
414
|
Géraud C, Koch PS, Zierow J, Klapproth K, Busch K, Olsavszky V, Leibing T, Demory A, Ulbrich F, Diett M, Singh S, Sticht C, Breitkopf-Heinlein K, Richter K, Karppinen SM, Pihlajaniemi T, Arnold B, Rodewald HR, Augustin HG, Schledzewski K, Goerdt S. GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis. J Clin Invest 2017; 127:1099-1114. [PMID: 28218627 DOI: 10.1172/jci90086] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/20/2016] [Indexed: 12/23/2022] Open
Abstract
Microvascular endothelial cells (ECs) are increasingly recognized as organ-specific gatekeepers of their microenvironment. Microvascular ECs instruct neighboring cells in their organ-specific vascular niches through angiocrine factors, which include secreted growth factors (angiokines), extracellular matrix molecules, and transmembrane proteins. However, the molecular regulators that drive organ-specific microvascular transcriptional programs and thereby regulate angiodiversity are largely elusive. In contrast to other ECs, which form a continuous cell layer, liver sinusoidal ECs (LSECs) constitute discontinuous, permeable microvessels. Here, we have shown that the transcription factor GATA4 controls murine LSEC specification and function. LSEC-restricted deletion of Gata4 caused transformation of discontinuous liver sinusoids into continuous capillaries. Capillarization was characterized by ectopic basement membrane deposition, formation of a continuous EC layer, and increased expression of VE-cadherin. Correspondingly, ectopic expression of GATA4 in cultured continuous ECs mediated the downregulation of continuous EC-associated transcripts and upregulation of LSEC-associated genes. The switch from discontinuous LSECs to continuous ECs during embryogenesis caused liver hypoplasia, fibrosis, and impaired colonization by hematopoietic progenitor cells, resulting in anemia and embryonic lethality. Thus, GATA4 acts as master regulator of hepatic microvascular specification and acquisition of organ-specific vascular competence, which are indispensable for liver development. The data also establish an essential role of the hepatic microvasculature in embryonic hematopoiesis.
Collapse
|
415
|
Czamara K, Majzner K, Selmi A, Baranska M, Ozaki Y, Kaczor A. Unsaturated lipid bodies as a hallmark of inflammation studied by Raman 2D and 3D microscopy. Sci Rep 2017; 7:40889. [PMID: 28098251 PMCID: PMC5241649 DOI: 10.1038/srep40889] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023] Open
Abstract
Endothelial HMEC-1 cells incubated with pro-inflammatory cytokine TNF-α for 6 and 24 hours were studied as a model of inflammation using Raman imaging. Striking changes in distribution, composition and concentration of cellular lipids were observed after exposure to TNF-α compared to the control. In particular, 3D Raman imaging revealed a significant increase in the amount of lipid entities formed under inflammation. Lipid bodies were randomly distributed in the cytoplasm and two types of droplets were assembled: more saturated one, in spectral characteristics resembling phosphatidylcholine and saturated cholesteryl esters, observed also in the control, and highly unsaturated one, containing also cholesterols, being a hallmark of inflamed cells. The statistical analysis showed that the number of lipid bodies was significantly dependent on the exposure time to TNF-α. Overall, observed formation of unsaturated lipid droplets can be directly correlated with the increase in production of prostacyclins - endogenous inflammation mediators.
Collapse
Affiliation(s)
- K Czamara
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.,Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - K Majzner
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.,Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - A Selmi
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - M Baranska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.,Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Y Ozaki
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan
| | - A Kaczor
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.,Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| |
Collapse
|
416
|
Zielińska KA, Van Moortel L, Opdenakker G, De Bosscher K, Van den Steen PE. Endothelial Response to Glucocorticoids in Inflammatory Diseases. Front Immunol 2016; 7:592. [PMID: 28018358 PMCID: PMC5155119 DOI: 10.3389/fimmu.2016.00592] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022] Open
Abstract
The endothelium plays a crucial role in inflammation. A balanced control of inflammation requires the action of glucocorticoids (GCs), steroidal hormones with potent cell-specific anti-inflammatory properties. Besides the classic anti-inflammatory effects of GCs on leukocytes, recent studies confirm that endothelial cells also represent an important target for GCs. GCs regulate different aspects of endothelial physiology including expression of adhesion molecules, production of pro-inflammatory cytokines and chemokines, and maintenance of endothelial barrier integrity. However, the regulation of endothelial GC sensitivity remains incompletely understood. In this review, we specifically examine the endothelial response to GCs in various inflammatory diseases ranging from multiple sclerosis, stroke, sepsis, and vasculitis to atherosclerosis. Shedding more light on the cross talk between GCs and endothelium will help to improve existing therapeutic strategies and develop new therapies better tailored to the needs of patients.
Collapse
Affiliation(s)
- Karolina A. Zielińska
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Laura Van Moortel
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-UGent, VIB Medical Biotechnology Center, Ghent, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-UGent, VIB Medical Biotechnology Center, Ghent, Belgium
| | | |
Collapse
|
417
|
Three-dimensional visualization of arsenic stimulated mouse liver sinusoidal by FIB-SEM approach. Protein Cell 2016; 7:227-32. [PMID: 26856874 PMCID: PMC4791422 DOI: 10.1007/s13238-016-0246-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
418
|
Lokhov PG, Balashova EE. SANTAVAC ™: A Novel Universal Antigen Composition for Developing Cancer Vaccines. Recent Pat Biotechnol 2016; 11:32-41. [PMID: 27903220 PMCID: PMC5396256 DOI: 10.2174/1872208309666161130140535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/05/2022]
Abstract
Background: Development of a universal cancer vaccine for the prevention of all cancers has been under development for many years. Antiangiogenic cancer vaccines elicit immune responses with the potential of destroying tumor vasculature endothelial cells without affecting vasculature integrity in normal tissues. The methods used in the development of antigen compositions comprising these vaccines have been recently improved and described in this report in the context of SANTAVAC ™ development - the first cancer vaccine based on endothelial cell heterogeneity. Methods: The present report summarizes data related to SANTAVAC™ development, including technical key points associated with optimal SANTAVAC™ production, a description of the composition required for preparing cancer vaccines with the highest predicted efficacy and safety, and a strategy for SANTAVAC™ large-scale implementation. Patents related to SANTAVAC™ and other universal cancer vaccines are also described. Results: SANTAVAC ™ was shown to be the most promising antigen composition for anti-cancer vaccination, allowing for immune targeting of the tumor vasculature in experimental models with a high predicted efficacy (up to 60), where efficacy represents the fold decrease in the number of endothelial cells with a tumor-induced phenotype and directly related to predicted arrest of tumor growth. Conclusion: The use of SANTAVAC ™ as a universal antigenic composition may spur vaccine development activities resulting in a set of therapeutic or prophylactic vaccines against different types of solid cancers.
Collapse
Affiliation(s)
- Petr G Lokhov
- Institute of biomedical chemistry, P.O. Box: 119121, Pogodinskaya st., 10, Moscow. Russian Federation
| | | |
Collapse
|
419
|
Bosetti F, Galis ZS, Bynoe MS, Charette M, Cipolla MJ, Del Zoppo GJ, Gould D, Hatsukami TS, Jones TLZ, Koenig JI, Lutty GA, Maric-Bilkan C, Stevens T, Tolunay HE, Koroshetz W. "Small Blood Vessels: Big Health Problems?": Scientific Recommendations of the National Institutes of Health Workshop. J Am Heart Assoc 2016; 5:JAHA.116.004389. [PMID: 27815267 PMCID: PMC5210346 DOI: 10.1161/jaha.116.004389] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Francesca Bosetti
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| | - Zorina S Galis
- National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | | | - Marc Charette
- National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | | | | | | | | | - Teresa L Z Jones
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - James I Koenig
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| | | | - Christine Maric-Bilkan
- National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | | | - H Eser Tolunay
- National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Walter Koroshetz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| | | |
Collapse
|
420
|
Baselet B, Rombouts C, Benotmane AM, Baatout S, Aerts A. Cardiovascular diseases related to ionizing radiation: The risk of low-dose exposure (Review). Int J Mol Med 2016; 38:1623-1641. [PMID: 27748824 PMCID: PMC5117755 DOI: 10.3892/ijmm.2016.2777] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/07/2016] [Indexed: 12/27/2022] Open
Abstract
Traditionally, non-cancer diseases are not considered as health risks following exposure to low doses of ionizing radiation. Indeed, non-cancer diseases are classified as deterministic tissue reactions, which are characterized by a threshold dose. It is judged that below an absorbed dose of 100 mGy, no clinically relevant tissue damage occurs, forming the basis for the current radiation protection system concerning non-cancer effects. Recent epidemiological findings point, however, to an excess risk of non-cancer diseases following exposure to lower doses of ionizing radiation than was previously thought. The evidence is the most sound for cardiovascular disease (CVD) and cataract. Due to limited statistical power, the dose-risk relationship is undetermined below 0.5 Gy; however, if this relationship proves to be without a threshold, it may have considerable impact on current low-dose health risk estimates. In this review, we describe the CVD risk related to low doses of ionizing radiation, the clinical manifestation and the pathology of radiation-induced CVD, as well as the importance of the endothelium models in CVD research as a way forward to complement the epidemiological data with the underlying biological and molecular mechanisms.
Collapse
Affiliation(s)
- Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Charlotte Rombouts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Abderrafi Mohammed Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| |
Collapse
|
421
|
Beets K, Staring MW, Criem N, Maas E, Schellinx N, de Sousa Lopes SMC, Umans L, Zwijsen A. BMP-SMAD signalling output is highly regionalized in cardiovascular and lymphatic endothelial networks. BMC DEVELOPMENTAL BIOLOGY 2016; 16:34. [PMID: 27724845 PMCID: PMC5057272 DOI: 10.1186/s12861-016-0133-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022]
Abstract
BACKGROUND Bone morphogenetic protein (BMP) signalling has emerged as a fundamental pathway in endothelial cell biology and deregulation of this pathway is implicated in several vascular disorders. BMP signalling output in endothelial cells is highly context- and dose-dependent. Phosphorylation of the BMP intracellular effectors, SMAD1/5/9, is routinely used to monitor BMP signalling activity. To better understand the in vivo context-dependency of BMP-SMAD signalling, we investigated differences in BMP-SMAD transcriptional activity in different vascular beds during mouse embryonic and postnatal stages. For this, we used the BRE::gfp BMP signalling reporter mouse in which the BMP response element (BRE) from the ID1-promotor, a SMAD1/5/9 target gene, drives the expression of GFP. RESULTS A mosaic pattern of GFP was present in various angiogenic sprouting plexuses and in endocardium of cardiac cushions and trabeculae in the heart. High calibre veins seemed to be more BRE::gfp transcriptionally active than arteries, and ubiquitous activity was present in embryonic lymphatic vasculature. Postnatal lymphatic vessels showed however only discrete micro-domains of transcriptional activity. Dynamic shifts in transcriptional activity were also observed in the endocardium of the developing heart, with a general decrease in activity over time. Surprisingly, proliferative endothelial cells were almost never GFP-positive. Patches of transcriptional activity seemed to correlate with vasculature undergoing hemodynamic alterations. CONCLUSION The BRE::gfp mouse allows to investigate selective context-dependent aspects of BMP-SMAD signalling. Our data reveals the highly dynamic nature of BMP-SMAD mediated transcriptional regulation in time and space throughout the vascular tree, supporting that BMP-SMAD signalling can be a source of phenotypic diversity in some, but not all, healthy endothelium. This knowledge can provide insight in vascular bed or organ-specific diseases and phenotypic heterogeneity within an endothelial cell population.
Collapse
Affiliation(s)
- Karen Beets
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Michael W. Staring
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Nathan Criem
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Elke Maas
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Niels Schellinx
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Lieve Umans
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - An Zwijsen
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
422
|
Zeiser R, Robson SC, Vaikunthanathan T, Dworak M, Burnstock G. Unlocking the Potential of Purinergic Signaling in Transplantation. Am J Transplant 2016; 16:2781-2794. [PMID: 27005321 PMCID: PMC5472988 DOI: 10.1111/ajt.13801] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/11/2016] [Accepted: 03/19/2016] [Indexed: 01/25/2023]
Abstract
Purinergic signaling has been recognized as playing an important role in inflammation, angiogenesis, malignancy, diabetes and neural transmission. Activation of signaling pathways downstream from purinergic receptors may also be implicated in transplantation and related vascular injury. Following transplantation, the proinflammatory "danger signal" adenosine triphosphate (ATP) is released from damaged cells and promotes proliferation and activation of a variety of immune cells. Targeting purinergic signaling pathways may promote immunosuppression and ameliorate inflammation. Under pathophysiological conditions, nucleotide-scavenging ectonucleotidases CD39 and CD73 hydrolyze ATP, ultimately, to the anti-inflammatory mediator adenosine. Adenosine suppresses proinflammatory cytokine production and is associated with improved graft survival and decreased severity of graft-versus-host disease. Furthermore, purinergic signaling is involved both directly and indirectly in the mechanism of action of several existing immunosuppressive drugs, such as calcineurin inhibitors and mammalian target of rapamycin inhibitors. Targeting of purinergic receptor pathways, particularly in the setting of combination therapies, could become a valuable immunosuppressive strategy in transplantation. This review focuses on the role of the purinergic signaling pathway in transplantation and immunosuppression and explores possible future applications in clinical practice.
Collapse
Affiliation(s)
- R. Zeiser
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | - S. C. Robson
- Department of Medicine, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,Corresponding authors: Markus Dworak and Simon C. Robson, and
| | - T. Vaikunthanathan
- Division of Transplantation Immunology & Mucosal Biology, MRC Centre for Transplantation, King’s College London, Great Maze Pond, London, UK
| | - M. Dworak
- Novartis Pharma, Nuernberg, Germany,Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany,Corresponding authors: Markus Dworak and Simon C. Robson, and
| | - G. Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
423
|
Affiliation(s)
- Canan G Nebigil
- From the Biotechnology and Cell Signaling Laboratory (UMR 7242), CNRS-University of Strasbourg, Illkirch, France.
| |
Collapse
|
424
|
Ortega-Gomez A, Salvermoser M, Rossaint J, Pick R, Brauner J, Lemnitzer P, Tilgner J, de Jong RJ, Megens RTA, Jamasbi J, Döring Y, Pham CT, Scheiermann C, Siess W, Drechsler M, Weber C, Grommes J, Zarbock A, Walzog B, Soehnlein O. Cathepsin G Controls Arterial But Not Venular Myeloid Cell Recruitment. Circulation 2016; 134:1176-1188. [PMID: 27660294 DOI: 10.1161/circulationaha.116.024790] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/31/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Therapeutic targeting of arterial leukocyte recruitment in the context of atherosclerosis has been disappointing in clinical studies. Reasons for such failures include the lack of knowledge of arterial-specific recruitment patterns. Here we establish the importance of the cathepsin G (CatG) in the context of arterial myeloid cell recruitment. METHODS Intravital microscopy of the carotid artery, the jugular vein, and cremasteric arterioles and venules in Apoe-/-and CatG-deficient mice (Apoe-/-Ctsg-/-) was used to study site-specific myeloid cell behavior after high-fat diet feeding or tumor necrosis factor stimulation. Atherosclerosis development was assessed in aortic root sections after 4 weeks of high-fat diet, whereas lung inflammation was assessed after inhalation of lipopolysaccharide. Endothelial deposition of CatG and CCL5 was quantified in whole-mount preparations using 2-photon and confocal microscopy. RESULTS Our observations elucidated a crucial role for CatG during arterial leukocyte adhesion, an effect not found during venular adhesion. Consequently, CatG deficiency attenuates atherosclerosis but not acute lung inflammation. Mechanistically, CatG is immobilized on arterial endothelium where it activates leukocytes to firmly adhere engaging integrin clustering, a process of crucial importance to achieve effective adherence under high-shear flow. Therapeutic neutralization of CatG specifically abrogated arterial leukocyte adhesion without affecting myeloid cell adhesion in the microcirculation. Repetitive application of CatG-neutralizing antibodies permitted inhibition of atherogenesis in mice. CONCLUSIONS Taken together, these findings present evidence of an arterial-specific recruitment pattern centered on CatG-instructed adhesion strengthening. The inhibition of this process could provide a novel strategy for treatment of arterial inflammation with limited side effects.
Collapse
Affiliation(s)
- Almudena Ortega-Gomez
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Melanie Salvermoser
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Jan Rossaint
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Robert Pick
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Janine Brauner
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Patricia Lemnitzer
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Jessica Tilgner
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Renske J de Jong
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Remco T A Megens
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Janina Jamasbi
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Yvonne Döring
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Christine T Pham
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Christoph Scheiermann
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Wolfgang Siess
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Maik Drechsler
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Christian Weber
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Jochen Grommes
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Alexander Zarbock
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Barbara Walzog
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Oliver Soehnlein
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.).
| |
Collapse
|
425
|
Herting S, DiBartolomeo A, Pipes T, Kunz S, Temnyk K, Truty J, Ur S, Cardinal KO. Human Umbilical Versus Coronary Cell Sources for Tissue-Engineered Blood Vessel Mimics. ACTA ACUST UNITED AC 2016. [DOI: 10.1089/aivt.2016.0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Scott Herting
- Department of Biomedical Engineering, Cal Poly, San Luis Obispo, San Luis Obispo, California
| | - Alex DiBartolomeo
- Department of Biomedical Engineering, Cal Poly, San Luis Obispo, San Luis Obispo, California
| | - Toni Pipes
- Department of Biomedical Engineering, Cal Poly, San Luis Obispo, San Luis Obispo, California
| | - Shelby Kunz
- Department of Biomedical Engineering, Cal Poly, San Luis Obispo, San Luis Obispo, California
| | - Kristen Temnyk
- Department of Biomedical Engineering, Cal Poly, San Luis Obispo, San Luis Obispo, California
| | - Jakub Truty
- Department of Biomedical Engineering, Cal Poly, San Luis Obispo, San Luis Obispo, California
| | - Sarah Ur
- Department of Biomedical Engineering, Cal Poly, San Luis Obispo, San Luis Obispo, California
| | | |
Collapse
|
426
|
Kim JJ, Hou L, Huang NF. Vascularization of three-dimensional engineered tissues for regenerative medicine applications. Acta Biomater 2016; 41:17-26. [PMID: 27262741 PMCID: PMC4969172 DOI: 10.1016/j.actbio.2016.06.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 01/05/2023]
Abstract
UNLABELLED Engineering of three-dimensional (3D) tissues is a promising approach for restoring diseased or dysfunctional myocardium with a functional replacement. However, a major bottleneck in this field is the lack of efficient vascularization strategies, because tissue constructs produced in vitro require a constant flow of oxygen and nutrients to maintain viability and functionality. Compared to angiogenic cell therapy and growth factor treatment, bioengineering approaches such as spatial micropatterning, integration of sacrificial materials, tissue decellularization, and 3D bioprinting enable the generation of more precisely controllable neovessel formation. In this review, we summarize the state-of-the-art approaches to develop 3D tissue engineered constructs with vasculature, and demonstrate how some of these techniques have been applied towards regenerative medicine for treatment of heart failure. STATEMENT OF SIGNIFICANCE Tissue engineering is a promising approach to replace or restore dysfunctional tissues/organs, but a major bottleneck in realizing its potential is the challenge of creating scalable 3D tissues. Since most 3D engineered tissues require a constant supply of nutrients, it is necessary to integrate functional vasculature within the tissues in order to facilitate the transport of nutrients. To address these needs, researchers are employing biomaterial engineering and design strategies to foster vessel formation within 3D tissues. This review highlights the state-of-the-art bioengineering tools and technologies to create vascularized 3D tissues for clinical applications in regenerative medicine, highlighting the application of these technologies to engineer vascularized cardiac patches for treatment of heart failure.
Collapse
Affiliation(s)
- Joseph J Kim
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Luqia Hou
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Ngan F Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.
| |
Collapse
|
427
|
Lanier V, Gillespie C, Leffers M, Daley-Brown D, Milner J, Lipsey C, Webb N, Anderson LM, Newman G, Waltenberger J, Gonzalez-Perez RR. Leptin-induced transphosphorylation of vascular endothelial growth factor receptor increases Notch and stimulates endothelial cell angiogenic transformation. Int J Biochem Cell Biol 2016; 79:139-150. [PMID: 27590851 DOI: 10.1016/j.biocel.2016.08.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 08/13/2016] [Accepted: 08/29/2016] [Indexed: 02/08/2023]
Abstract
Leptin increases vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2), and Notch expression in cancer cells, and transphosphorylates VEGFR-2 in endothelial cells. However, the mechanisms involved in leptin's actions in endothelial cells are not completely known. Here we investigated whether a leptin-VEGFR-Notch axis is involved in these leptin's actions. To this end, human umbilical vein and porcine aortic endothelial cells (wild type and genetically modified to overexpress VEGFR-1 or -2) were cultured in the absence of VEGF and treated with leptin and inhibitors of Notch (gamma-secretase inhibitors: DAPT and S2188, and silencing RNA), VEGFR (kinase inhibitor: SU5416, and silencing RNA) and leptin receptor, OB-R (pegylated leptin peptide receptor antagonist 2: PEG-LPrA2). Interestingly, in the absence of VEGF, leptin induced the expression of several components of Notch signaling pathway in endothelial cells. Inhibition of VEGFR and Notch signaling significantly decreased leptin-induced S-phase progression, proliferation, and tube formation in endothelial cells. Moreover, leptin/OB-R induced transphosphorylation of VEGFR-1 and VEGFR-2 was essential for leptin's effects. These results unveil for the first time a novel mechanism by which leptin could induce angiogenic features via upregulation/trans-activation of VEGFR and downstream expression/activation of Notch in endothelial cells. Thus, high levels of leptin found in overweight and obese patients might lead to increased angiogenesis by activating VEGFR-Notch signaling crosstalk in endothelial cells. These observations might be highly relevant for obese patients with cancer, where leptin/VEGFR/Notch crosstalk could play an important role in cancer growth, and could be a new target for the control of tumor angiogenesis.
Collapse
Affiliation(s)
- Viola Lanier
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| | - Corey Gillespie
- Atlanta Technical College, Bioscience Technology Program, Atlanta, GA 30310, United States
| | | | - Danielle Daley-Brown
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| | - Joy Milner
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| | - Crystal Lipsey
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| | - Nia Webb
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| | - Leonard M Anderson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States; Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA 30310, United States
| | - Gale Newman
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| | | | - Ruben Rene Gonzalez-Perez
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States.
| |
Collapse
|
428
|
Dong W, Lu A, Zhao J, Yin S, Ou B, Feng H. An efficient and simple co-culture method for isolating primary human hepatic cells: Potential application for tumor microenvironment research. Oncol Rep 2016; 36:2126-34. [PMID: 27498714 DOI: 10.3892/or.2016.4979] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/07/2016] [Indexed: 11/06/2022] Open
Abstract
Co-cultivation of non-parenchymal cells (NPCs) and tumor cells from the same donor is important for metastatic cancer research. This study aimed to optimize a protocol for liver NPC isolation. Two novel 3D organotypic co‑culture models for hepatocyte, endothelial cell (EC) and Kupffer cell (KC) isolation were used. Long‑term cell co‑culture, density gradient centrifugation and magnetic‑activated cell sorting (MACS) were established. ECs were isolated from the co‑culture system; the purity of the ECs was 92±1.2%. The island‑like shape of hepatocytes was noted in the 3D co‑culture system, and spindle cells were found in the rest space. Immunofluorescence analysis showed a net structure; the connective tissue was positively stained with VE‑cadherin or CD68, which were ECs and KCs/macrophages. KCs were enriched in this system and separated by using selective adherence to plastic. Clec4f+ KCs consisted of 87±6.3% of these cells. Heterogeneous endothelium populations were detected, including sinusoid ECs, microvascular ECs and hepatic lymphatic vessel epithelial cells. In addition, hepatic progenitor cells were isolated and differentiated into hepatoblasts. Dendritic cells (DCs), invariant natural killer T (iNKT) cells were further separated by density gradient centrifugation and magnetic bead sorting. In the present study, high protein expression levels of desmin and GFAP were observed in the hepatic stellate cells (HSCs). Most of the HSCs were α‑SMA‑positive cells, which underlined the identity of activated HSCs. Intrahepatic human biliary epithelial cells (hBECs) were semi‑purified by centrifugation on a Percoll gradient and were further immunopurified. In conclusion, we provide an efficient long‑term culture method to obtain liver NPCs in sufficient number and purity.
Collapse
Affiliation(s)
- Wei Dong
- Heart Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jingkun Zhao
- Department of General, Visceral, Transplantation and Vascular Surgery, University Hospital of Munich (Ludwig Maximilian University of Munich), D‑81377 Munich, Germany
| | - Shuai Yin
- Department of General, Visceral, Transplantation and Vascular Surgery, University Hospital of Munich (Ludwig Maximilian University of Munich), D‑81377 Munich, Germany
| | - Baochi Ou
- Heart Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Hao Feng
- Heart Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
429
|
Guo L, Zhang H, Hou Y, Wei T, Liu J. Plasmalemma vesicle-associated protein: A crucial component of vascular homeostasis. Exp Ther Med 2016; 12:1639-1644. [PMID: 27602081 PMCID: PMC4998186 DOI: 10.3892/etm.2016.3557] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Endothelial subcellular structures, including caveolae, fenestrae and transendothelial channels, are crucial for regulating microvascular function. Plasmalemma vesicle-associated protein (PLVAP) is an endothelial cell-specific protein that forms the stomatal and fenestral diaphragms of blood vessels and regulates basal permeability, leukocyte migration and angiogenesis. Loss of PLVAP in mice leads to premature mortality due to disrupted homeostasis. Evidence from previous studies suggested that PLVAP is involved in cancer, traumatic spinal cord injury, acute ischemic brain disease, transplant glomerulopathy, Norrie disease and diabetic retinopathy. Specifically, PLVAP expression has been demonstrated to be upregulated in these diseases, accompanied by pro-angiogenic or pro-inflammatory responses. Therefore, PLVAP is considered a novel therapeutic target, in addition to an endothelial cell marker. The present review summarizes the structure and functions of PLVAP, and its roles in pathophysiological processes.
Collapse
Affiliation(s)
- Ling Guo
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Hongyan Zhang
- Department of Cardiovascular Medicine, Xintai City People's Hospital Affiliated to Taishan Medical University, Xintai, Shandong 271200, P.R. China
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Tianshu Wei
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Victoria 3010, Australia
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
430
|
Herklotz M, Hanke J, Hänsel S, Drichel J, Marx M, Maitz MF, Werner C. Biomaterials trigger endothelial cell activation when co-incubated with human whole blood. Biomaterials 2016; 104:258-68. [PMID: 27472163 DOI: 10.1016/j.biomaterials.2016.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/11/2016] [Accepted: 07/16/2016] [Indexed: 12/25/2022]
Abstract
Endothelial cell activation resulting from biomaterial contact or biomaterial-induced blood activation may in turn also affect hemostasis and inflammatory processes in the blood. Current in vitro hemocompatibility assays typically ignore these modulating effects of the endothelium. This study describes a co-incubation system of human whole blood, biomaterial and endothelial cells (ECs) that was developed to overcome this limitation. First, human endothelial cells were characterized in terms of their expression of coagulation- and inflammation-relevant markers in response to various activators. Subsequently, their capacity to regulate hemostasis as well as complement and granulocyte activation was monitored in a hemocompatibility assay. After blood contact, quiescent ECs exhibited anticoagulant and anti-inflammatory properties. When they were co-incubated with surfaces exhibiting pro-coagulant or pro-inflammatory characteristics, the ECs down-regulated coagulation but not complement or leukocyte activation. Analysis of intracellular levels of the endothelial activation markers E-selectin and tissue factor showed that co-incubation with model surfaces and blood significantly increased the activation state of ECs. Finally, the coagulation- and inflammation-modulating properties of the ECs were tested after blood/biomaterial exposure. Pre-activation of ECs by biomaterials in the blood induced a pro-coagulant and pro-inflammatory state of the ECs, wherein the pro-coagulant response was higher for biomaterial/blood pre-activated ECs than for TNF-α-pre-activated cells. This work provides evidence that biomaterials, even without directly contacting the endothelium, affect the endothelial activation state with and have consequences for plasmatic and cellular reactions in the blood.
Collapse
Affiliation(s)
- Manuela Herklotz
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Germany
| | - Jasmin Hanke
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Germany
| | - Stefanie Hänsel
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Germany
| | - Juliane Drichel
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Germany
| | - Monique Marx
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Germany
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Germany.
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Germany
| |
Collapse
|
431
|
Tanigaki K, Chambliss KL, Yuhanna IS, Sacharidou A, Ahmed M, Atochin DN, Huang PL, Shaul PW, Mineo C. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice. Diabetes 2016; 65:1996-2005. [PMID: 27207525 PMCID: PMC4915578 DOI: 10.2337/db15-1605] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/09/2016] [Indexed: 12/12/2022]
Abstract
Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis.
Collapse
Affiliation(s)
- Keiji Tanigaki
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ken L Chambliss
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ivan S Yuhanna
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Anastasia Sacharidou
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mohamed Ahmed
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Dmitriy N Atochin
- Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Paul L Huang
- Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
432
|
Alabi RO, Glomski K, Haxaire C, Weskamp G, Monette S, Blobel CP. ADAM10-Dependent Signaling Through Notch1 and Notch4 Controls Development of Organ-Specific Vascular Beds. Circ Res 2016; 119:519-31. [PMID: 27354212 DOI: 10.1161/circresaha.115.307738] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/24/2016] [Indexed: 12/22/2022]
Abstract
RATIONALE Endothelial Notch signaling is critical for early vascular development and survival. Yet, previously described mice lacking endothelial a disintegrin and metalloproteinase 10 (ADAM10), a key regulator of Notch signaling, survived into adulthood with organ-specific vascular defects. These findings raised questions about whether these vascular defects were related to Notch signaling or other functions of ADAM10. OBJECTIVE The aims of the study are to determine whether compensatory or redundant functions of ADAM17 in Notch signaling can explain the survival of Adam10ΔEC mice, explore the contribution of different Tie2-Cre transgenes to the differences in survival, and establish whether the Adam10ΔEC vascular phenotypes can be recapitulated by inactivation of Notch receptors in endothelial cells. METHODS AND RESULTS Mice lacking ADAM10 and ADAM17 in endothelial cells (Adam10/Adam17ΔEC), which survived postnatally with organ-specific vascular defects, resembled Adam10ΔEC mice. In contrast, Adam10ΔEC mice generated with the Tie2Cre transgene previously used to inactivate endothelial Notch (Adam10ΔEC(Flv)) died by E10.5. Quantitative polymerase chain reaction analysis demonstrated that Cre-mediated recombination occurs earlier in Adam10ΔEC(Flv) mice than in the previously described Adam10ΔEC mice. Finally, mice lacking endothelial Notch1 (Notch1ΔEC) share some organ-specific vascular defects with Adam10ΔEC mice, whereas Notch4(-/-) mice lacking endothelial Notch1 (Notch1ΔEC/Notch4(-/-)) had defects in all vascular beds affected in Adam10ΔEC mice. CONCLUSIONS Our results argue against a major role for ADAM17 in endothelial Notch signaling and clarify the difference in phenotypes of previously described mice lacking ADAM10 or Notch in endothelial cells. Most notably, these findings uncover new roles for Notch signaling in the development of organ-specific vascular beds.
Collapse
Affiliation(s)
- Rolake O Alabi
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY (R.O.A., K.G., C.H., G.W., C.P.B.); Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY (R.O.A., K.G., C.P.B.); Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, Rockefeller University, New York, NY (S.M.); Institute for Advanced Study, Technical University Munich, Munich, Germany (C.P.B.); and Departments of Medicine and of Physiology, Systems Biology and Biophysics, Weill Cornell Medicine, New York, NY (C.P.B.)
| | - Krzysztof Glomski
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY (R.O.A., K.G., C.H., G.W., C.P.B.); Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY (R.O.A., K.G., C.P.B.); Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, Rockefeller University, New York, NY (S.M.); Institute for Advanced Study, Technical University Munich, Munich, Germany (C.P.B.); and Departments of Medicine and of Physiology, Systems Biology and Biophysics, Weill Cornell Medicine, New York, NY (C.P.B.)
| | - Coline Haxaire
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY (R.O.A., K.G., C.H., G.W., C.P.B.); Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY (R.O.A., K.G., C.P.B.); Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, Rockefeller University, New York, NY (S.M.); Institute for Advanced Study, Technical University Munich, Munich, Germany (C.P.B.); and Departments of Medicine and of Physiology, Systems Biology and Biophysics, Weill Cornell Medicine, New York, NY (C.P.B.)
| | - Gisela Weskamp
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY (R.O.A., K.G., C.H., G.W., C.P.B.); Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY (R.O.A., K.G., C.P.B.); Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, Rockefeller University, New York, NY (S.M.); Institute for Advanced Study, Technical University Munich, Munich, Germany (C.P.B.); and Departments of Medicine and of Physiology, Systems Biology and Biophysics, Weill Cornell Medicine, New York, NY (C.P.B.)
| | - Sébastien Monette
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY (R.O.A., K.G., C.H., G.W., C.P.B.); Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY (R.O.A., K.G., C.P.B.); Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, Rockefeller University, New York, NY (S.M.); Institute for Advanced Study, Technical University Munich, Munich, Germany (C.P.B.); and Departments of Medicine and of Physiology, Systems Biology and Biophysics, Weill Cornell Medicine, New York, NY (C.P.B.)
| | - Carl P Blobel
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY (R.O.A., K.G., C.H., G.W., C.P.B.); Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY (R.O.A., K.G., C.P.B.); Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, Rockefeller University, New York, NY (S.M.); Institute for Advanced Study, Technical University Munich, Munich, Germany (C.P.B.); and Departments of Medicine and of Physiology, Systems Biology and Biophysics, Weill Cornell Medicine, New York, NY (C.P.B.).
| |
Collapse
|
433
|
Aman J, Weijers EM, van Nieuw Amerongen GP, Malik AB, van Hinsbergh VWM. Using cultured endothelial cells to study endothelial barrier dysfunction: Challenges and opportunities. Am J Physiol Lung Cell Mol Physiol 2016; 311:L453-66. [PMID: 27343194 DOI: 10.1152/ajplung.00393.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/20/2016] [Indexed: 12/24/2022] Open
Abstract
Despite considerable progress in the understanding of endothelial barrier regulation and the identification of approaches that have the potential to improve endothelial barrier function, no drug- or stem cell-based therapy is presently available to reverse the widespread vascular leak that is observed in acute respiratory distress syndrome (ARDS) and sepsis. The translational gap suggests a need to develop experimental approaches and tools that better mimic the complex environment of the microcirculation in which the vascular leak develops. Recent studies have identified several elements of this microenvironment. Among these are composition and stiffness of the extracellular matrix, fluid shear stress, interaction of endothelial cells (ECs) with pericytes, oxygen tension, and the combination of toxic and mechanic injurious stimuli. Development of novel cell culture techniques that integrate these elements would allow in-depth analysis of EC biology that closely approaches the (patho)physiological conditions in situ. In parallel, techniques to isolate organ-specific ECs, to define EC heterogeneity in its full complexity, and to culture patient-derived ECs from inducible pluripotent stem cells or endothelial progenitor cells are likely to advance the understanding of ARDS and lead to development of therapeutics. This review 1) summarizes the advantages and pitfalls of EC cultures to study vascular leak in ARDS, 2) provides an overview of elements of the microvascular environment that can directly affect endothelial barrier function, and 3) discusses alternative methods to bridge the gap between basic research and clinical application with the intent of improving the translational value of present EC culture approaches.
Collapse
Affiliation(s)
- Jurjan Aman
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; Department of Pulmonary Diseases, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands;
| | - Ester M Weijers
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Geerten P van Nieuw Amerongen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois
| | - Victor W M van Hinsbergh
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
434
|
Ruigrok MJR, Frijlink HW, Hinrichs WLJ. Pulmonary administration of small interfering RNA: The route to go? J Control Release 2016; 235:14-23. [PMID: 27235976 DOI: 10.1016/j.jconrel.2016.05.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 12/11/2022]
Abstract
Ever since the discovery of RNA interference (RNAi), which is a post-transcriptional gene silencing mechanism, researchers have been studying the therapeutic potential of using small interfering RNA (siRNA) to treat diseases that are characterized by excessive gene expression. Excessive gene expression can be particularly harmful if it occurs in a vulnerable organ such as the lungs as they are essential for physiological respiration. Consequently, RNAi could offer an approach to treat such lung diseases. Parenteral administration of siRNA has been shown to be difficult due to degradation by nucleases in the systemic circulation and excretion by the kidneys. To avoid these issues and to achieve local delivery and local effects, pulmonary administration has been proposed as an alternative administration route. Regarding this application, various animal studies have been conducted over the past few years. Therefore, this review presents a critical analysis of publications where pulmonary administration of siRNA in animals has been reported. Such an analysis is necessary to determine the feasibility of this administration route and to define directions for future research. First, we provide background information on lungs, pulmonary administration, and delivery vectors. Thereafter, we present and discuss relevant animal studies. Though nearly all publications reported positive outcomes, several reoccurring challenges were identified. They relate to 1) the necessity, efficacy, and safety of delivery vectors, 2) the biodistribution of siRNA in tissues other than the lungs, 3) the poor correlation between in vitro and in vivo models, and 4) the long-term effects upon (repeated) administration of siRNA. Finally, we present recommendations for future research to define the route to go: towards safer and more effective pulmonary administration of siRNA.
Collapse
Affiliation(s)
- M J R Ruigrok
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - H W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - W L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
435
|
Von Willebrand factor regulates complement on endothelial cells. Kidney Int 2016; 90:123-34. [PMID: 27236750 DOI: 10.1016/j.kint.2016.03.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/10/2016] [Accepted: 03/03/2016] [Indexed: 11/20/2022]
Abstract
Atypical hemolytic uremic syndrome and thrombotic thrombocytopenic purpura have traditionally been considered separate entities. Defects in the regulation of the complement alternative pathway occur in atypical hemolytic uremic syndrome, and defects in the cleavage of von Willebrand factor (VWF)-multimers arise in thrombotic thrombocytopenic purpura. However, recent studies suggest that both entities are related as defects in the disease-causing pathways overlap or show functional interactions. Here we investigate the possible functional link of VWF-multimers and the complement system on endothelial cells. Blood outgrowth endothelial cells (BOECs) were obtained from 3 healthy individuals and 2 patients with Type 3 von Willebrand disease lacking VWF. Cells were exposed to a standardized complement challenge via the combination of classical and alternative pathway activation and 50% normal human serum resulting in complement fixation to the endothelial surface. Under these conditions we found the expected release of VWF-multimers causing platelet adhesion onto BOECs from healthy individuals. Importantly, in BOECs derived from patients with von Willebrand disease complement C3c deposition and cytotoxicity were more pronounced than on BOECs derived from normal individuals. This is of particular importance as primary glomerular endothelial cells display a heterogeneous expression pattern of VWF with overall reduced VWF abundance. Thus, our results support a mechanistic link between VWF-multimers and the complement system. However, our findings also identify VWF as a new complement regulator on vascular endothelial cells and suggest that VWF has a protective effect on endothelial cells and complement-mediated injury.
Collapse
|
436
|
Complement MASP-1 enhances adhesion between endothelial cells and neutrophils by up-regulating E-selectin expression. Mol Immunol 2016; 75:38-47. [PMID: 27219453 DOI: 10.1016/j.molimm.2016.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/05/2016] [Accepted: 05/07/2016] [Indexed: 12/31/2022]
Abstract
The complement system and neutrophil granulocytes are indispensable in the immune response against extracellular pathogens such as bacteria and fungi. Endothelial cells also participate in antimicrobial immunity largely by regulating the homing of leukocytes through their cytokine production and their pattern of cell surface adhesion molecules. We have previously shown that mannan-binding lectin-associated serine protease-1 (MASP-1), a complement lectin pathway enzyme, is able to activate endothelial cells by cleaving protease activated receptors, which leads to cytokine production and enables neutrophil chemotaxis. Therefore, we aimed to investigate how recombinant MASP-1 (rMASP-1) can modify the pattern of P-selectin, E-selectin, ICAM-1, ICAM-2, and VCAM-1 adhesion molecules in human umbilical vein endothelial cells (HUVEC), and whether these changes can enhance the adherence between endothelial cells and neutrophil granulocyte model cells (differentiated PLB-985). We found that HUVECs activated by rMASP-1 decreased the expression of ICAM-2 and increased that of E-selectin, whereas ICAM-1, VCAM-1 and P-selectin expression remained unchanged. Furthermore, these changes resulted in increased adherence between differentiated PLB-985 cells and endothelial cells. Our finding suggests that complement MASP-1 can increase adhesion between neutrophils and endothelial cells in a direct fashion. This is in agreement with our previous finding that MASP-1 increases the production of pro-inflammatory cytokines (such as IL-6 and IL-8) and chemotaxis, and may thereby boost neutrophil functions. This newly described cooperation between complement lectin pathway and neutrophils via endothelial cells may be an effective tool to enhance the antimicrobial immune response.
Collapse
|
437
|
Dragun D, Catar R, Philippe A. Non-HLA antibodies against endothelial targets bridging allo- and autoimmunity. Kidney Int 2016; 90:280-288. [PMID: 27188505 DOI: 10.1016/j.kint.2016.03.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/12/2016] [Accepted: 03/17/2016] [Indexed: 12/17/2022]
Abstract
Detrimental actions of donor-specific antibodies (DSAs) directed against both major histocompatibility antigens (human leukocyte antigen [HLA]) and specific non-HLA antigens expressed on the allograft endothelium are a flourishing research area in kidney transplantation. Newly developed solid-phase assays enabling detection of functional non-HLA antibodies targeting G protein-coupled receptors such as angiotensin type I receptor and endothelin type A receptor were instrumental in providing long-awaited confirmation of their broad clinical relevance. Numerous recent clinical studies implicate angiotensin type I receptor and endothelin type A receptor antibodies as prognostic biomarkers for earlier occurrence and severity of acute and chronic immunologic complications in solid organ transplantation, stem cell transplantation, and systemic autoimmune vascular disease. Angiotensin type 1 receptor and endothelin type A receptor antibodies exert their pathophysiologic effects alone and in synergy with HLA-DSA. Recently identified antiperlecan antibodies are also implicated in accelerated allograft vascular pathology. In parallel, protein array technology platforms enabled recognition of new endothelial surface antigens implicated in endothelial cell activation. Upon target antigen recognition, non-HLA antibodies act as powerful inducers of phenotypic perturbations in endothelial cells via activation of distinct intracellular cell-signaling cascades. Comprehensive diagnostic assessment strategies focusing on both HLA-DSA and non-HLA antibody responses could substantially improve immunologic risk stratification before transplantation, help to better define subphenotypes of antibody-mediated rejection, and lead to timely initiation of targeted therapies. Better understanding of similarities and dissimilarities in HLA-DSA and distinct non-HLA antibody-related mechanisms of endothelial damage should facilitate discovery of common downstream signaling targets and pave the way for the development of endothelium-centered therapeutic strategies to accompany intensified immunosuppression and/or mechanical removal of antibodies.
Collapse
Affiliation(s)
- Duska Dragun
- Clinic for Nephrology and Critical Care Medicine, Campus Virchow-Klinikum and Center for Cardiovascular Research, Medical Faculty of the Charité Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany.
| | - Rusan Catar
- Clinic for Nephrology and Critical Care Medicine, Campus Virchow-Klinikum and Center for Cardiovascular Research, Medical Faculty of the Charité Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Aurélie Philippe
- Clinic for Nephrology and Critical Care Medicine, Campus Virchow-Klinikum and Center for Cardiovascular Research, Medical Faculty of the Charité Berlin, Berlin, Germany
| |
Collapse
|
438
|
Reinhard NR, van Helden SF, Anthony EC, Yin T, Wu YI, Goedhart J, Gadella TWJ, Hordijk PL. Spatiotemporal analysis of RhoA/B/C activation in primary human endothelial cells. Sci Rep 2016; 6:25502. [PMID: 27147504 PMCID: PMC4857094 DOI: 10.1038/srep25502] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/19/2016] [Indexed: 02/01/2023] Open
Abstract
Endothelial cells line the vasculature and are important for the regulation of blood pressure, vascular permeability, clotting and transendothelial migration of leukocytes and tumor cells. A group of proteins that that control the endothelial barrier function are the RhoGTPases. This study focuses on three homologous (>88%) RhoGTPases: RhoA, RhoB, RhoC of which RhoB and RhoC have been poorly characterized. Using a RhoGTPase mRNA expression analysis we identified RhoC as the highest expressed in primary human endothelial cells. Based on an existing RhoA FRET sensor we developed new RhoB/C FRET sensors to characterize their spatiotemporal activation properties. We found all these RhoGTPase sensors to respond to physiologically relevant agonists (e.g. Thrombin), reaching transient, localized FRET ratio changes up to 200%. These RhoA/B/C FRET sensors show localized GEF and GAP activity and reveal spatial activation differences between RhoA/C and RhoB. Finally, we used these sensors to monitor GEF-specific differential activation of RhoA/B/C. In summary, this study adds high-contrast RhoB/C FRET sensors to the currently available FRET sensor toolkit and uncover new insights in endothelial and RhoGTPase cell biology. This allows us to study activation and signaling by these closely related RhoGTPases with high spatiotemporal resolution in primary human cells.
Collapse
Affiliation(s)
- Nathalie R Reinhard
- University of Amsterdam, Molecular Cytology, Swammerdam Institute for Life Sciences, van leeuwenhoek Centre for Advanced Microscopy, Amsterdam, The Netherlands.,Sanquin Research, Molecular Cell Biology, Amsterdam, The Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Suzanne F van Helden
- Sanquin Research, Molecular Cell Biology, Amsterdam, The Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Eloise C Anthony
- Sanquin Research, Molecular Cell Biology, Amsterdam, The Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Taofei Yin
- Center for cell analysis and Modeling, University of Connecticut Health Center, Farmington, United States of America
| | - Yi I Wu
- Center for cell analysis and Modeling, University of Connecticut Health Center, Farmington, United States of America
| | - Joachim Goedhart
- University of Amsterdam, Molecular Cytology, Swammerdam Institute for Life Sciences, van leeuwenhoek Centre for Advanced Microscopy, Amsterdam, The Netherlands
| | - Theodorus W J Gadella
- University of Amsterdam, Molecular Cytology, Swammerdam Institute for Life Sciences, van leeuwenhoek Centre for Advanced Microscopy, Amsterdam, The Netherlands
| | - Peter L Hordijk
- University of Amsterdam, Molecular Cytology, Swammerdam Institute for Life Sciences, van leeuwenhoek Centre for Advanced Microscopy, Amsterdam, The Netherlands.,Sanquin Research, Molecular Cell Biology, Amsterdam, The Netherlands.,Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, The Netherlands
| |
Collapse
|
439
|
|
440
|
Pitrez P, Rosa S, Praça C, Ferreira L. Vascular disease modeling using induced pluripotent stem cells: Focus in Hutchinson-Gilford Progeria Syndrome. Biochem Biophys Res Commun 2016; 473:710-8. [DOI: 10.1016/j.bbrc.2015.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 02/03/2023]
|
441
|
Ravenscroft SM, Pointon A, Williams AW, Cross MJ, Sidaway JE. Cardiac Non-myocyte Cells Show Enhanced Pharmacological Function Suggestive of Contractile Maturity in Stem Cell Derived Cardiomyocyte Microtissues. Toxicol Sci 2016; 152:99-112. [PMID: 27125969 PMCID: PMC4922542 DOI: 10.1093/toxsci/kfw069] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The immature phenotype of stem cell derived cardiomyocytes is a significant barrier to their use in translational medicine and pre-clinical in vitro drug toxicity and pharmacological analysis. Here we have assessed the contribution of non-myocyte cells on the contractile function of co-cultured human embryonic stem cell derived cardiomyocytes (hESC-CMs) in spheroid microtissue format. Microtissues were formed using a scaffold free 96-well cell suspension method from hESC-CM cultured alone (CM microtissues) or in combination with human primary cardiac microvascular endothelial cells and cardiac fibroblasts (CMEF microtissues). Contractility was characterized with fluorescence and video-based edge detection. CMEF microtissues displayed greater Ca2+ transient amplitudes, enhanced spontaneous contraction rate and remarkably enhanced contractile function in response to both positive and negative inotropic drugs, suggesting a more mature contractile phenotype than CM microtissues. In addition, for several drugs the enhanced contractile response was not apparent when endothelial cell or fibroblasts from a non-cardiac tissue were used as the ancillary cells. Further evidence of maturity for CMEF microtissues was shown with increased expression of genes that encode proteins critical in cardiac Ca2+ handling (S100A1), sarcomere assembly (telethonin/TCAP) and β-adrenergic receptor signalling. Our data shows that compared with single cell-type cardiomyocyte in vitro models, CMEF microtissues are superior at predicting the inotropic effects of drugs, demonstrating the critical contribution of cardiac non-myocyte cells in mediating functional cardiotoxicity.
Collapse
Affiliation(s)
- Stephanie M Ravenscroft
- *Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Sherrington Building, the University of Liverpool, Ashton Street, L69 3GE, UK Safety and ADME Translational Sciences, AstraZeneca R&D, Cambridge, CB4 0WG, UK
| | - Amy Pointon
- Safety and ADME Translational Sciences, AstraZeneca R&D, Cambridge, CB4 0WG, UK
| | - Awel W Williams
- *Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Sherrington Building, the University of Liverpool, Ashton Street, L69 3GE, UK
| | - Michael J Cross
- *Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Sherrington Building, the University of Liverpool, Ashton Street, L69 3GE, UK Safety and ADME Translational Sciences, AstraZeneca R&D, Cambridge, CB4 0WG, UK
| | - James E Sidaway
- *Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Sherrington Building, the University of Liverpool, Ashton Street, L69 3GE, UK Safety and ADME Translational Sciences, AstraZeneca R&D, Cambridge, CB4 0WG, UK Safety and ADME Translational Sciences, AstraZeneca R&D, Cambridge, CB4 0WG, UK
| |
Collapse
|
442
|
Dimasi DP, Pitson SM, Bonder CS. Examining the Role of Sphingosine Kinase-2 in the Regulation of Endothelial Cell Barrier Integrity. Microcirculation 2016; 23:248-65. [DOI: 10.1111/micc.12271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/25/2016] [Indexed: 12/30/2022]
Affiliation(s)
- David P. Dimasi
- Centre for Cancer Biology; University of South Australia and SA Pathology; Adelaide South Australia Australia
| | - Stuart M. Pitson
- Centre for Cancer Biology; University of South Australia and SA Pathology; Adelaide South Australia Australia
- School of Medicine; University of Adelaide; Adelaide South Australia Australia
- School of Biological Sciences; University of Adelaide; Adelaide South Australia Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology; University of South Australia and SA Pathology; Adelaide South Australia Australia
- School of Medicine; University of Adelaide; Adelaide South Australia Australia
- School of Biological Sciences; University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
443
|
Nishii K, Reese G, Moran EC, Sparks JL. Multiscale computational model of fluid flow and matrix deformation in decellularized liver. J Mech Behav Biomed Mater 2016; 57:201-14. [PMID: 26722987 PMCID: PMC4831654 DOI: 10.1016/j.jmbbm.2015.11.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 01/26/2023]
Abstract
Currently little is known about the biomechanical environment in decellularized tissue. The goal of this research is to quantify the mechanical microenvironment in decellularized liver, for varying organ-scale perfusion conditions, using a combined experimental/computational approach. Needle-guided ultra-miniature pressure sensors were inserted into liver tissue to measure parenchymal fluid pressure ex-situ in portal vein-perfused native (n=5) and decellularized (n=7) ferret liver, for flow rates from 3-12mL/min. Pressures were also recorded at the inlet near the portal vein cannula to estimate total vascular resistance of the specimens. Experimental results were fit to a multiscale computational model to simulate perfusion conditions inside native versus decellularized livers for four experimental flow rates. The multiscale model consists of two parts: an organ-scale electrical analog model of liver hemodynamics and a tissue-scale model that predicts pore fluid pressure, pore fluid velocity, and solid matrix stress and deformation throughout the 3D hepatic lobule. Distinct models were created for native versus decellularized liver. Results show that vascular resistance decreases by 82% as a result of decellularization. The hydraulic conductivity of the decellularized liver lobule, a measure of tissue permeability, was 5.6 times that of native liver. For the four flow rates studied, mean fluid pressures in the decellularized lobule were 0.6-2.4mmHg, mean fluid velocities were 211-767μm/s, and average solid matrix principal strains were 1.7-6.1%. In the future this modeling platform can be used to guide the optimization of perfusion seeding and conditioning strategies for decellularized scaffolds in liver bioengineering.
Collapse
Affiliation(s)
- Kenichiro Nishii
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States
| | - Greg Reese
- Research Computing Support Group, Miami University, Oxford, OH, United States
| | - Emma C Moran
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Jessica L Sparks
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States.
| |
Collapse
|
444
|
Hordijk PL. Recent insights into endothelial control of leukocyte extravasation. Cell Mol Life Sci 2016; 73:1591-608. [PMID: 26794844 PMCID: PMC11108429 DOI: 10.1007/s00018-016-2136-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/30/2022]
Abstract
In the process of leukocyte migration from the circulation across the vascular wall, the crosstalk with endothelial cells that line the blood vessels is essential. It is now firmly established that in endothelial cells important signaling events are initiated upon leukocyte adhesion that impinge on the regulation of cell-cell contact and control the efficiency of transendothelial migration. In addition, several external factors such as shear force and vascular stiffness were recently identified as important regulators of endothelial signaling and, consequently, leukocyte transmigration. Here, I review recent insights into endothelial signaling events that are linked to leukocyte migration across the vessel wall. In this field, protein phosphorylation and Rho-mediated cytoskeletal dynamics are still widely studied using increasingly sophisticated mouse models. In addition, activation of tyrosine phosphatases, changes in endothelial cell stiffness as well as different vascular beds have all been established as important factors in endothelial signaling and leukocyte transmigration. Finally, I address less-well-studied but interesting components in the endothelium that also control transendothelial migration, such as the ephrins and their Eph receptors, that provide novel insights in the complexity associated with this process.
Collapse
Affiliation(s)
- Peter L Hordijk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Swammerdam Institute for Life Sciences, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands.
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
445
|
Anene DF, Rosenberg AZ, Kleiner DE, Cornish TC, Halushka MK. Utilization of HPASubC for the Identification of Sinusoid-Specific Proteins in the Liver. J Proteome Res 2016; 15:1623-9. [PMID: 27005832 DOI: 10.1021/acs.jproteome.6b00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry-based proteomes of human organs and tissues are powerful tools but fail to capture protein localization and expression at the cellular level. For example, the proteome signal in liver represents the combined protein expression across diverse cellular constituents that include hepatocytes, Kupffer cells, endothelial cells, and others. We utilized HPASubC and the Human Protein Atlas (HPA) to identify the sinusoidal component of protein liver expression to further subset and organize this homogeneous signal. We evaluated 51 109 liver images covering 13 197 proteins from the HPA and discovered 1054 proteins that were exclusive to sinusoidal cells. Sinusoidal staining patterns were identified in a Kupffer cell (n = 247), endothelial cell (n = 358), or lymphocyte (n = 86) specific pattern. Two-hundred and thirty-nine of these proteins were not present in the NextProt or Human Proteome Map liver data sets, potentially expanding our knowledge of the liver proteome. We additionally demonstrate unique endothelial cell expression patterns that distinguish between portal vein, hepatic artery, capillary sinusoids, and central vein regions. These findings significantly improve our understanding of the liver proteome with insight into the endothelial complexity across the hepatic vascular network.
Collapse
Affiliation(s)
- Divine-Favour Anene
- Department of Pathology, Johns Hopkins University School of Medicine , 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Avi Z Rosenberg
- Department of Pathology, Children's National Medical Center , 111 Michigan Avenue Northwest, Washington, D.C. 20010, United States
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute , Building 10, Room 2S235, MSC 1500, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Toby C Cornish
- Department of Pathology, Johns Hopkins University School of Medicine , 720 Rutland Avenue, Baltimore, Maryland 21205, United States.,Department of Pathology, University of Colorado School of Medicine , Academic Office 1, Room L15-2109, 12631 East 17th Avenue, Aurora, Colorado 80045, United States
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine , 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| |
Collapse
|
446
|
Birbrair A, Frenette PS. Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 2016; 1370:82-96. [PMID: 27015419 DOI: 10.1111/nyas.13016] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/15/2022]
Abstract
In adult mammals, hematopoietic stem cells (HSCs) are defined by their abilities to self-renew and to differentiate to form all blood cell lineages. These rare multipotent cells occupy specific locations in the bone marrow (BM) microenvironment. The specific microenvironment regulating HSCs, commonly referred to as the niche, comprises multiple cell types whose exact contributions are under active investigation. Understanding cellular cross talk involving HSCs in the BM microenvironment is of fundamental importance for harnessing therapies against benign and malignant blood diseases. In this review, we summarize and evaluate recent advances in our understanding of niche heterogeneity and its influence on HSC function.
Collapse
Affiliation(s)
- Alexander Birbrair
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
447
|
Erol MK, Balkarli A, Toslak D, Dogan B, Durmaz D, Süren E, Altun S, Bulut M, Cobankara V. Evaluation of nailfold videocapillaroscopy in central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 2016; 254:1889-1896. [PMID: 26995556 DOI: 10.1007/s00417-016-3322-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/08/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Nailfold videocapillaroscopy (NVC) is a diagnostic tool to evaluate micro-vasculature. The presence of choroidal vasculopathy is apparent in central serous chorioretinopathy (CSCR). OBJECTIVES This study was aimed at assessing capillaroscopic nailfold findings in patients with CSCR. To the best of our knowledge, there is no study assessing NVC findings in CSCR in the literature. METHOD Sixty-one patients with CSCR who met the inclusion criteria, and 82 age- and sex-matched healthy controls were included to the study. A videocapillaroscopy device with 200× magnification was used for capillaroscopic assessment. RESULTS The mean age was 48.79 ± 11.15 years in the patient group (13 female, 48 male) and 49.38 ± 9.02 years in the control group (17 female, 65 male). The age and gender were comparable in the patient and control groups (p = 0.727 and p = 0.933, respectively). The capillary count was found to be decreased in the patient group compared to control group. No significant correlation was found between capillary count and choroidal thickness (p = 0.551; r = -0.081). In the patient group, the frequencies of major capillaroscopic findings including capillary ectasia, aneurysm, micro-hemorrhage, avascular area, tortuosity, neo-formation, bizarre capillary, bushy capillary, meander capillary and extravasation were found to be increased in the patient group. However, no significant correlation was detected between capillaroscopic findings and disease type and presence of attacks. CONCLUSIONS This is first study in which nailfold capillary assessment was performed in patients with CSCR, and we detected major capillaroscopic changes. These findings suggest that CSCR can be a systemic microvasculopathy. Further studies are needed to clarify the diagnostic and prognostic value of capillaroscopy in CSCR.
Collapse
Affiliation(s)
- Muhammet Kazim Erol
- Department of Ophtholmology, Antalya Education and Research Hospital, Kazim Karabekir Avenue, 07720, Muratpaşa, Antalya, Turkey.
| | - Ayse Balkarli
- Department of Internal Medicine, Division of Rheumatology, Antalya Education and Research Hospital, Antalya, Turkey
| | - Devrim Toslak
- Department of Ophtholmology, Antalya Education and Research Hospital, Kazim Karabekir Avenue, 07720, Muratpaşa, Antalya, Turkey
| | - Berna Dogan
- Department of Ophtholmology, Antalya Education and Research Hospital, Kazim Karabekir Avenue, 07720, Muratpaşa, Antalya, Turkey
| | - Dogan Durmaz
- Department of Ophtholmology, Antalya Education and Research Hospital, Kazim Karabekir Avenue, 07720, Muratpaşa, Antalya, Turkey
| | - Elçin Süren
- Department of Ophtholmology, Antalya Education and Research Hospital, Kazim Karabekir Avenue, 07720, Muratpaşa, Antalya, Turkey
| | - Salih Altun
- Department of Ophtholmology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Mehmet Bulut
- Department of Ophtholmology, Antalya Education and Research Hospital, Kazim Karabekir Avenue, 07720, Muratpaşa, Antalya, Turkey
| | - Veli Cobankara
- Department of Internal Medicine, Division of Rheumatology, Pamukkale University Hospital, Denizli, Turkey
| |
Collapse
|
448
|
Millar FR, Summers C, Griffiths MJ, Toshner MR, Proudfoot AG. The pulmonary endothelium in acute respiratory distress syndrome: insights and therapeutic opportunities. Thorax 2016; 71:462-73. [DOI: 10.1136/thoraxjnl-2015-207461] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 02/12/2016] [Indexed: 01/23/2023]
|
449
|
Oliveira SDS, Oliveira NF, Meyer-Fernandes JR, Savio LEB, Ornelas FGI, Ferreira ZS, Coutinho-Silva R, Silva CLM. Increased expression of NTPDases 2 and 3 in mesenteric endothelial cells during schistosomiasis favors leukocyte adhesion through P2Y1 receptors. Vascul Pharmacol 2016; 82:66-72. [PMID: 26924460 DOI: 10.1016/j.vph.2016.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/22/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
Schistosomiasis is caused by an intravascular parasite and linked to phenotypic changes in endothelial cells that favor inflammation. Endothelial cells express P2Y1 receptors (P2Y1R), and their activation by ADP favors leukocyte adhesion to the endothelial monolayer. We aimed to evaluate the influence of schistosomiasis upon endothelial purinergic signaling-mediated leukocyte adhesion. Mesenteric endothelial cells and mononuclear cells from control and Schistosoma mansoni-infected mice were used in co-culture. P2Y1R levels were similar in both groups. Basal leukocyte adhesion was higher in the infected than in the control group; leukocyte adhesion increased after treatment with the P2Y1R agonist 2-MeSATP in both groups, though it only marginally increased in the infected group. Pre-incubation with the selective P2Y1R antagonist MRS2179 (0.3μM) prevented the agonist effect. However, in the infected group it also reduced the basal leukocyte adhesion, suggesting endothelial cell pre-activation. The endothelial expressions of NTPDases 2 and 3 were significantly increased in the infected group, increasing extracellular ATP hydrolysis and ADP formation by endothelial cells. Therefore, mesenteric endothelial cells are primed by schistosomiasis to a pro-inflammatory phenotype characterized by an increased expression of NTPDases 2 and 3, favoring ADP accumulation and mononuclear cell adhesion, possibly contributing to mesenteric inflammation and schistosomiasis morbidity.
Collapse
Affiliation(s)
- Suellen Darc Santos Oliveira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Nathália F Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - José R Meyer-Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Luiz Eduardo Baggio Savio
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Flavia G I Ornelas
- Institute of Bioscience, University of São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Zulma S Ferreira
- Institute of Bioscience, University of São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Claudia Lucia Martins Silva
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
450
|
Aguirre JA, Lucchinetti E, Clanachan AS, Plane F, Zaugg M. Unraveling Interactions Between Anesthetics and the Endothelium. Anesth Analg 2016; 122:330-48. [DOI: 10.1213/ane.0000000000001053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|