401
|
Retinal neuroinflammatory induced neuronal degeneration - Role of toll-like receptor-4 and relationship with gliosis. Exp Eye Res 2018; 169:99-110. [PMID: 29425879 DOI: 10.1016/j.exer.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/21/2018] [Accepted: 02/03/2018] [Indexed: 12/18/2022]
Abstract
The purpose of this study was to explore retina-intrinsic neuroinflammatory reactions, effects on neuronal survival, relationship with classic gliosis, and possible role of the toll-like receptor 4 (TLR4). To isolate the adult retina from the systemic immune system, a previously described large animal explant culture model was used in which full-thickness porcine retinal sheets can be kept in vitro for extended time periods. Explants were kept for 5 days in vitro (DIV) and were treated with either; lipopolysaccharide (LPS), a Toll-like receptor-4 (TLR4) inhibitor (CLI-095), LPS + CLI-095, or solvent vehicle throughout the culture period after which retinal sections were examined with hematoxylin and eosin staining and extensive immunohistochemistry. In addition, culture medium from all explant groups was assayed for a panel of cytokines at 2 and 5DIV. Compared with in vivo controls, vehicle controls (CT) as well as CLI-095 explants displayed moderate reduction of total thickness and number of retinal neurons with upregulation of glial fibrillary acidic protein (GFAP) throughout the Müller cells. In contrast, LPS and LPS + CLI-095 treated counterparts showed extensive overall thinning with widespread neuronal degeneration but only minimal signs of classical Müller cell gliosis (limited upregulation of GFAP and no downregulation of glutamine synthetase (GS). These specimens also displayed a significantly increased expression of galectin-3 and TGF-beta activated kinase 1 (TAK1). Multiplex proteomic analysis of culture medium at 2DIV revealed elevated levels of IL-1β, IL-6, IL-4 and IL-12 in LPS-treated explants compared to CLI-095 and CT counterparts. LPS stimulation of the isolated adult retina results in substantial neuronal cell death despite only minimal signs of gliosis indicating a retina-intrinsic neuroinflammatory response directly related to the degenerative process. This response is characterized by early upregulation of several inflammatory related cytokines with subsequent upregulation of Galectin-3, TLR4 and TAK1. Pharmacological block of TLR4 does not attenuate neuronal loss indicating that LPS induced retinal degeneration is mediated by TLR4 independent neuroinflammatory pathways.
Collapse
|
402
|
Lee WJ, Ham SA, Yoo H, Hwang JS, Yoo T, Paek KS, Lim DS, Han SG, Lee CH, Hong K, Seo HG. Activation of PPARδ attenuates neurotoxicity by inhibiting lipopolysaccharide-triggered glutamate release in BV-2 microglial cells. J Cell Biochem 2018; 119:5609-5619. [PMID: 29388693 DOI: 10.1002/jcb.26732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/29/2018] [Indexed: 12/25/2022]
Abstract
Neuroinflammation-associated release of glutamate from activated microglia has been implicated in the progression of neurodegenerative diseases. However, the regulatory mechanisms underlying this glutamate release are poorly understood. Here, we show that peroxisome proliferator-activated receptor delta (PPARδ) modulates neurotoxicity by inhibiting glutamate release in lipopolysaccharide (LPS)-activated BV-2 microglial cells. Activation of PPARδ by GW501516, a specific PPARδ agonist, inhibited glutamate release in BV-2 cells. This effect of GW501516 was significantly blocked by shRNA-mediated knockdown of PPARδ and by treatment with GSK0660, a specific PPARδ antagonist, indicating that PPARδ is associated with blockade of glutamate release. Additionally, GW501516-activated PPARδ suppressed generation of reactive oxygen species and expression of gp91phox, a functional subunit of NADPH oxidase 2, in BV-2 cells stimulated with LPS. The inhibitory effect of GW501516 on gp91phox expression and glutamate release was further potentiated in the presence of AG490, a specific inhibitor of janus kinase 2 (JAK2), leading to the inhibition of signal transducer and activator of transcription 1 (STAT1). By contrast, GW501516 upregulated the expression of suppressor of cytokine signaling 1 (SOCS1), an endogenous inhibitor of JAK2. Furthermore, neurotoxicity induced by conditioned media from LPS-stimulated BV-2 cells was significantly reduced when conditioned media from BV-2 cells treated with both LPS and GW501516 were used. These results indicate that PPARδ attenuates LPS-triggered neuroinflammation by enhancing SOCS1-mediated inhibition of JAK2/STAT1 signaling, thereby inhibiting neurotoxicity associated with glutamate release.
Collapse
Affiliation(s)
- Won Jin Lee
- Sanghuh College of Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Sun Ah Ham
- Sanghuh College of Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Hyunjin Yoo
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Jung Seok Hwang
- Sanghuh College of Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Taesik Yoo
- Sanghuh College of Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
| | | | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Bundang-gu, Seongnam, Korea
| | - Sung Gu Han
- Sanghuh College of Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Chi-Ho Lee
- Sanghuh College of Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Kwonho Hong
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Han Geuk Seo
- Sanghuh College of Life Sciences, Konkuk University, Gwangjin-gu, Seoul, Korea
| |
Collapse
|
403
|
Trained innate immunity: a salient factor in the pathogenesis of neuroimmune psychiatric disorders. Mol Psychiatry 2018; 23:170-176. [PMID: 29230022 DOI: 10.1038/mp.2017.186] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023]
Abstract
Historically, only cells of the adaptive immune system have been considered capable of retaining memory for infectious challenges. Recently, however, cells of the innate immune system have been shown to be capable of displaying long-term functional memory following a single immunostimulatory challenge, leading to enhanced production of proinflammatory molecules upon other subsequent, and temporally distant, immunostimulatory challenges. This effect has been termed 'trained innate immunity', and is underwritten by stable epigenetic changes in immune and metabolic pathways. Importantly, the long-term training of innate immune cells can occur as a result of infectious as well as and non-infectious challenges, including stress. Given the role that both stress and an activated immune system have in neuropathology, innate immune training has important implications for our understanding and treatment of neuropsychiatric disorders. This review focuses on the evidence for trained innate immunity and highlights some insights into its relevance for psychiatric diseases.
Collapse
|
404
|
Chowdhury FA, Hossain MK, Mostofa AGM, Akbor MM, Bin Sayeed MS. Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4010629. [PMID: 29651429 PMCID: PMC5831880 DOI: 10.1155/2018/4010629] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most devastating brain tumors with median survival of one year and presents unique challenges to therapy because of its aggressive behavior. Current treatment strategy involves surgery, radiotherapy, immunotherapy, and adjuvant chemotherapy even though optimal management requires a multidisciplinary approach and knowledge of potential complications from both the disease and its treatment. Thymoquinone (TQ), the main bioactive component of Nigella sativa L., has exhibited anticancer effects in numerous preclinical studies. Due to its multitargeting nature, TQ interferes in a wide range of tumorigenic processes and counteract carcinogenesis, malignant growth, invasion, migration, and angiogenesis. TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells. Its potential to enter brain via nasal pathway due to volatile nature of TQ adds another advantage in overcoming blood-brain barrier. In this review, we summarized the potential role of TQ in different signaling pathways in GBM that have undergone treatment with standard therapeutic modalities or with TQ. Altogether, we suggest further comprehensive evaluation of TQ in preclinical and clinical level to delineate its implied utility as novel therapeutics to combat the challenges for the treatment of GBM.
Collapse
Affiliation(s)
- Fabliha Ahmed Chowdhury
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Kamal Hossain
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. G. M. Mostofa
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maruf Mohammad Akbor
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | | |
Collapse
|
405
|
Engen PA, Dodiya HB, Naqib A, Forsyth CB, Green SJ, Voigt RM, Kordower JH, Mutlu EA, Shannon KM, Keshavarzian A. The Potential Role of Gut-Derived Inflammation in Multiple System Atrophy. JOURNAL OF PARKINSONS DISEASE 2018; 7:331-346. [PMID: 28234259 DOI: 10.3233/jpd-160991] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent evidence suggests that Parkinson's disease (PD) is associated with intestinal microbiota dysbiosis, abnormal intestinal permeability, and intestinal inflammation. OBJECTIVE Our study aimed to determine if these gut abnormalities are present in another synucleinopathy, multiple system atrophy (MSA). METHODS In six MSA and 11 healthy control subjects, we performed immunohistochemistry studies of colonic sigmoid mucosa to evaluate the intestinal barrier marker Zonula Occludens-1 and the endotoxin-related inflammation marker Toll-like-receptor-4 expression. We also assessed colonic sigmoid mucosal and fecal microbiota compositions using high-throughput 16S ribosomal RNA gene amplicon sequencing. RESULTS MSA subjects showed disrupted tight junction protein Zonula Occludens-1 structure in sigmoid mucosa tissue suggesting intestinal barrier dysfunction. The lipopolysaccharide specific inflammatory receptor Toll-like-receptor-4 was significantly higher in the colonic sigmoid mucosa in MSA relative to healthy controls. Microbiota analysis suggested high relative abundance of gram-negative, putative "pro-inflammatory" bacteria in various family and genus level taxa, from the phylum Bacteroidetes and Proteobacteria, in MSA feces and mucosa. At the taxonomic level of genus, putative "anti-inflammatory" butyrate-producing bacteria were less abundant in MSA feces. Predictive functional analysis indicated that the relative abundance of a number of genes involved in metabolism were lower in MSA feces, whereas the relative abundance of genes involved in lipopolysaccharide biosynthesis were higher in both MSA feces and mucosa compared to healthy controls. CONCLUSIONS This proof-of-concept study provides preliminary evidence that like PD, MSA subjects display evidence of disrupted intestinal barrier integrity, increased marker of endotoxin-related intestinal inflammation, and pro-inflammatory colonic microbiota.
Collapse
Affiliation(s)
- Phillip A Engen
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Hemraj B Dodiya
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA.,Department of Pharmacology, Rush University Medical Center, Chicago, IL, USA
| | - Ankur Naqib
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA.,Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Stefan J Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Robin M Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Jeffrey H Kordower
- Department of Neurology, Rush University Medical Center, Chicago, IL, USA
| | - Ece A Mutlu
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Kathleen M Shannon
- Department of Neurology, University of Wisconsin School of Public Health, Madison, WI, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA.,Department of Pharmacology, Rush University Medical Center, Chicago, IL, USA.,Department of Physiology, Rush University Medical Center, Chicago, IL, USA.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
406
|
Taipa R, Sousa AL, Melo Pires M, Sousa N. Does the Interplay Between Aging and Neuroinflammation Modulate Alzheimer's Disease Clinical Phenotypes? A Clinico-Pathological Perspective. J Alzheimers Dis 2018; 53:403-17. [PMID: 27176075 DOI: 10.3233/jad-160121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and is the most common cause of dementia worldwide. Cumulative data suggests that neuroinflammation plays a prominent and early role in AD, and there is compelling data from different research groups of age-associated dysregulation of the neuroimmune system. From the clinical point of view, despite clinical resemblance and neuropathological findings, there are important differences between the group of patients with sporadic early-onset (<65 years old) and late-onset AD (>65 years old). Thus, it seems important to understand the age-dependent relationship between neuroinflammation and the underlying biology of AD in order to identify potential explanations for clinical heterogeneity, interpret biomarkers, and promote the best treatment to different clinical AD phenotypes. The study of the delicate balance between pro-inflammatory or anti-inflammatory sides of immune players in the different ages of onset of AD would be important to understand treatment efficacy in clinical trials and eventually, not only direct treatment to early disease stages, but also the possibility of establishing different treatment approaches depending on the age of the patient. In this review, we would like to summarize what is currently known about the interplay between "normal" age associated inflammatory changes and AD pathological mechanisms, and also the potential differences between early-onset and late-onset AD taking into account the age-related neuroimmune background at disease onset.
Collapse
Affiliation(s)
- Ricardo Taipa
- Neuropathology Unit, Department of Neuroscience, Hospital Santo António - Centro Hospitalar do Porto, Porto, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Ana Luísa Sousa
- Department of Neurology, Hospital Santo António - Centro Hospitalar do Porto, Porto, Portugal
| | - Manuel Melo Pires
- Neuropathology Unit, Department of Neuroscience, Hospital Santo António - Centro Hospitalar do Porto, Porto, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| |
Collapse
|
407
|
Zhou X, Wang C, Chen Z, Peng Y, Peng H, Hou X, Ye W, Qiu R, Xia K, Tang B, Jiang H. Association of TNF-α rs1799964 and IL-1β rs16944 polymorphisms with multiple system atrophy in Chinese Han population. Int J Neurosci 2018; 128:761-764. [PMID: 29251119 DOI: 10.1080/00207454.2017.1418346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Recent evidence suggested that several single nucleotide polymorphisms (SNPs) of inflammation-related genes (TNF-α rs1799964, IL-1α rs1800587, IL-1β rs16944, IL-8 rs4073, ICAM-1 rs5498) were associated with multiple system atrophy (MSA). Herein, we conducted this case-control study to evaluate the possible correlation between the five SNPs related to inflammation and MSA in Chinese Han population. METHODS AND PATIENTS We recruited 154 sporadic patients with MSA and 223 health controls in this study. All subjects were genotyped for the five SNPs using polymerase chain reaction amplification and Sanger sequencing. RESULTS TNF-α rs1799964, genotype distribution and minor allele frequency (MAF) showed significant differences between patients and controls, which might illustrate the minor allele C may increase the risk for MSA (genotype, P = 0.006, OR = 1.245, 95% CI = [1.066-1.455]; allele, P = 0.001, OR = 1.887, 95% CI = [1.303-2.733]). For rs16944, patients carrying AA genotype showed a nearly 5-year early age at onset (AAO) than GG genotype (50.52 ± 7.45 years vs. 54.90 ± 7.21 years, P = 0.037). No differences were found in genotype distribution and MAF of the five SNPs between patients with MSA with predominant cerebellar ataxia (MSA-C) and with predominant Parkinsonism (MSA-P). CONCLUSION Our study suggests that rs1799964 of TNF-α may act as a risk factor for MSA and the IL-1β rs16944 might be a genetic factor that modifies the AAO in MSA. Moreover, the exact mechanism of neuroinflammatory response in MSA deserves further exploration.
Collapse
Affiliation(s)
- Xin Zhou
- a Department of Neurology, Xiangya Hospital , Central South University , Changsha , P. R. China
| | - Chunrong Wang
- a Department of Neurology, Xiangya Hospital , Central South University , Changsha , P. R. China
| | - Zhao Chen
- a Department of Neurology, Xiangya Hospital , Central South University , Changsha , P. R. China
| | - Yun Peng
- a Department of Neurology, Xiangya Hospital , Central South University , Changsha , P. R. China
| | - Huirong Peng
- a Department of Neurology, Xiangya Hospital , Central South University , Changsha , P. R. China
| | - Xuan Hou
- a Department of Neurology, Xiangya Hospital , Central South University , Changsha , P. R. China
| | - Wei Ye
- a Department of Neurology, Xiangya Hospital , Central South University , Changsha , P. R. China
| | - Rong Qiu
- b School of Information Science and Engineering , Central South University , Changsha , P. R. China
| | - Kun Xia
- c State Key Laboratory of Medical Genetics , Central South University , Changsha , P. R. China
| | - Beisha Tang
- a Department of Neurology, Xiangya Hospital , Central South University , Changsha , P. R. China.,c State Key Laboratory of Medical Genetics , Central South University , Changsha , P. R. China.,d Key Laboratory of Hunan Province in Neurodegenerative Disorders , Central South University , Changsha , P. R. China
| | - Hong Jiang
- a Department of Neurology, Xiangya Hospital , Central South University , Changsha , P. R. China.,c State Key Laboratory of Medical Genetics , Central South University , Changsha , P. R. China.,d Key Laboratory of Hunan Province in Neurodegenerative Disorders , Central South University , Changsha , P. R. China
| |
Collapse
|
408
|
Keck F, Kortchak S, Bakovic A, Roberts B, Agrawal N, Narayanan A. Direct and indirect pro-inflammatory cytokine response resulting from TC-83 infection of glial cells. Virulence 2018; 9:1403-1421. [PMID: 30101649 PMCID: PMC6141141 DOI: 10.1080/21505594.2018.1509668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a neurotropic arbovirus that is highly infectious as an aerosol and can result in an encephalitic phenotype in infected individuals. VEEV infections are known to be associated with robust inflammation that eventually contributes to neurodegenerative phenotypes. In this study, we utilize the TC-83 strain of VEEV, which is known to induce the expression of IL-6, IL-8, and other pro-inflammatory cytokines. We had previously demonstrated that TC-83 infection resulted in changes in mitochondrial function, eventually resulting in mitophagy. In this manuscript, we provide data that links upstream mitochondrial dysfunction with downstream pro-inflammatory cytokine production in the context of microglia and astrocytoma cells. We also provide data on the role of bystander cells, which significantly contribute to the overall inflammatory load. Use of a mitochondrial-targeted antioxidant, mitoquinone mesylate, greatly reduced the inflammatory cytokine load and ameliorated bystander cell inflammatory responses more significantly than a broad-spectrum anti-inflammatory compound (BAY 11-7082). Our data suggest that the inflammatory mediators, especially IL-1β, may prime naïve cells to infection and lead to increased infection rates in microglial and astrocytoma cells. Cumulatively, our data suggest that the interplay between mitochondrial dysfunction and inflammatory events elicited in a neuronal microenvironment during a TC-83 infection may contribute to the spread of infection.
Collapse
Affiliation(s)
- Forrest Keck
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, USA
| | - Stephanie Kortchak
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, USA
| | - Allison Bakovic
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, USA
| | | | - Nitin Agrawal
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, USA
| |
Collapse
|
409
|
Alrehaili AA, Lee JY, Bakhuraysah MM, Kim MJ, Aui PM, Magee KA, Petratos S. Nogo receptor expression in microglia/macrophages during experimental autoimmune encephalomyelitis progression. Neural Regen Res 2018; 13:896-907. [PMID: 29863021 PMCID: PMC5998626 DOI: 10.4103/1673-5374.232488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myelin-associated inhibitory factors within the central nervous system (CNS) are considered to be one of the main obstacles for axonal regeneration following disease or injury. The nogo receptor 1 (NgR1) has been well documented to play a key role in limiting axonal regrowth in the injured and diseased mammalian CNS. However, the role of nogo receptor in immune cell activation during CNS inflammation is yet to be mechanistically elucidated. Microglia/macrophages are immune cells that are regarded as pathogenic contributors to inflammatory demyelinating lesions in multiple sclerosis (MS). In this study, the animal model of MS, experimental autoimmune encephalomyelitis (EAE) was induced in ngr1+/+ and ngr1–/– female mice following injection with the myelin oligodendrocyte glycoprotein (MOG35–55) peptide. A fate-map analysis of microglia/macrophages was performed throughout spinal cord sections of EAE-induced mice at clinical scores of 0, 1, 2 and 3, respectively (increasing locomotor disability) from both genotypes, using the CD11b and Iba1 cell markers. Western immunoblotting using lysates from isolated spinal cord microglia/macrophages, along with immunohistochemistry and flow cytometric analysis, was performed to demonstrate the expression of nogo receptor and its two homologs during EAE progression. Myelin protein engulfment during EAE progression in ngr1+/+ and ngr1–/– mice was demonstrated by western immunblotting of lysates from isolated spinal cord microglia/macrophages, detecting levels of Nogo-A and MOG. The numbers of M1 and M2 microglia/macrophage phenotypes present in the spinal cords of EAE-induced ngr1+/+ and ngr1–/– mice, were assessed by flow cytometric analysis using CD38 and Erg-2 markers. A significant difference in microglia/macrophage numbers between ngr1+/+ and ngr1–/– mice was identified during the progression of the clinical symptoms of EAE, in the white versus gray matter regions of the spinal cord. This difference was unrelated to the expression of NgR on these macrophage/microglial cells. We have identified that as EAE progresses, the phagocytic activity of microglia/macrophages with myelin debris, in ngr1–/– mice, was enhanced. Moreover, we show a modulation from a predominant M1-pathogenic to the M2-neurotrophic cell phenotype in the ngr1–/– mice during EAE progression. These findings suggest that CNS-specific macrophages and microglia of ngr1–/– mice may exhibit an enhanced capacity to clear inhibitory molecules that are sequestered in inflammatory lesions.
Collapse
Affiliation(s)
- Amani A Alrehaili
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia; Department of Clinical Laboratories, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - Jae Young Lee
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia; Toolgen Inc., Gasan Digital-Ro, Geumcheon, Seoul, Korea
| | - Maha M Bakhuraysah
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia; Department of Clinical Laboratories, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - Min Joung Kim
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia
| | - Pei-Mun Aui
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia
| | - Kylie A Magee
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia
| |
Collapse
|
410
|
Facci L, Barbierato M, Skaper SD. Astrocyte/Microglia Cocultures as a Model to Study Neuroinflammation. Methods Mol Biol 2018; 1727:127-137. [PMID: 29222778 DOI: 10.1007/978-1-4939-7571-6_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Glial cell activation plays an important role in the pathogenesis of various neurodegenerative disorders as well as in chronic and neuropathic pain. This chapter describes a model which allows one to assess the individual and combined contributions of astrocytes and microglia in response to a pro-inflammatory stimulus, with emphasis on ionotropic purinergic receptors.
Collapse
Affiliation(s)
- Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Massimo Barbierato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
411
|
Kroken RA, Sommer IE, Steen VM, Dieset I, Johnsen E. Constructing the Immune Signature of Schizophrenia for Clinical Use and Research; An Integrative Review Translating Descriptives Into Diagnostics. Front Psychiatry 2018; 9:753. [PMID: 30766494 PMCID: PMC6365449 DOI: 10.3389/fpsyt.2018.00753] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is considered a syndrome comprised by several disease phenotypes, covering a range of underlying pathologies. One of these disease mechanisms seems to involve immune dysregulation and neuroinflammation. While the current dopamine receptor-blocking antipsychotic drugs decrease psychotic symptoms and prevent relapse in the majority of patients with schizophrenia, there is a huge need to explore new treatment options that target other pathophysiological pathways. Such studies should aim at identifying robust biomarkers in order to diagnose and monitor the immune biophenotype in schizophrenia and develop better selection procedures for clinical trials with anti-inflammatory and immune-modulating drugs. In this focused review, we describe available methods to assess inflammatory status and immune disturbances in vivo. We also outline findings of immune disturbances and signs of inflammation at cellular, protein, and brain imaging levels in patients with schizophrenia. Furthermore, we summarize the results from studies with anti-inflammatory or other immune-modulating drugs, highlighting how such studies have dealt with participant selection. Finally, we propose a strategy to construct an immune signature that may be helpful in selecting and monitoring participants in studies with immune modulating drugs and also applicable in regular clinical work.
Collapse
Affiliation(s)
- Rune A Kroken
- Psychiatric Division, Haukeland University Hospital, Bergen, Norway.,Norwegian Centre for Mental Disorders Research, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Iris E Sommer
- Department of Neuroscience and Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Vidar M Steen
- Department of Clinical Science, Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, University of Bergen, Bergen, Norway.,Dr. E. Martens Research Group of Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ingrid Dieset
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Acute Psychiatric Department, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Erik Johnsen
- Psychiatric Division, Haukeland University Hospital, Bergen, Norway.,Norwegian Centre for Mental Disorders Research, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
412
|
Nguyen T, Mao Y, Sutherland T, Gorrie CA. Neural progenitor cells but not astrocytes respond distally to thoracic spinal cord injury in rat models. Neural Regen Res 2017; 12:1885-1894. [PMID: 29239336 PMCID: PMC5745844 DOI: 10.4103/1673-5374.219051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a detrimental condition that causes loss of sensory and motor function in an individual. Many complex secondary injury cascades occur after SCI and they offer great potential for therapeutic targeting. In this study, we investigated the response of endogenous neural progenitor cells, astrocytes, and microglia to a localized thoracic SCI throughout the neuroaxis. Twenty-five adult female Sprague-Dawley rats underwent mild-contusion thoracic SCI (n = 9), sham surgery (n = 8), or no surgery (n = 8). Spinal cord and brain tissues were fixed and cut at six regions of the neuroaxis. Immunohistochemistry showed increased reactivity of neural progenitor cell marker nestin in the central canal at all levels of the spinal cord. Increased reactivity of astrocyte-specific marker glial fibrillary acidic protein was found only at the lesion epicenter. The number of activated microglia was significantly increased at the lesion site, and activated microglia extended to the lumbar enlargement. Phagocytic microglia and macrophages were significantly increased only at the lesion site. There were no changes in nestin, glial fibrillary acidic protein, microglia and macrophage response in the third ventricle of rats subjected to mild-contusion thoracic SCI compared to the sham surgery or no surgery. These findings indicate that neural progenitor cells, astrocytes and microglia respond differently to a localized SCI, presumably due to differences in inflammatory signaling. These different cellular responses may have implications in the way that neural progenitor cells can be manipulated for neuroregeneration after SCI. This needs to be further investigated.
Collapse
Affiliation(s)
- Tara Nguyen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Yilin Mao
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Theresa Sutherland
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Catherine Anne Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| |
Collapse
|
413
|
Clayton KA, Van Enoo AA, Ikezu T. Alzheimer's Disease: The Role of Microglia in Brain Homeostasis and Proteopathy. Front Neurosci 2017; 11:680. [PMID: 29311768 PMCID: PMC5733046 DOI: 10.3389/fnins.2017.00680] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/21/2017] [Indexed: 01/15/2023] Open
Abstract
Brain aging is central to late-onset Alzheimer's disease (LOAD), although the mechanisms by which it occurs at protein or cellular levels are not fully understood. Alzheimer's disease is the most common proteopathy and is characterized by two unique pathologies: senile plaques and neurofibrillary tangles, the former accumulating earlier than the latter. Aging alters the proteostasis of amyloid-β peptides and microtubule-associated protein tau, which are regulated in both autonomous and non-autonomous manners. Microglia, the resident phagocytes of the central nervous system, play a major role in the non-autonomous clearance of protein aggregates. Their function is significantly altered by aging and neurodegeneration. This is genetically supported by the association of microglia-specific genes, TREM2 and CD33, and late onset Alzheimer's disease. Here, we propose that the functional characterization of microglia, and their contribution to proteopathy, will lead to a new therapeutic direction in Alzheimer's disease research.
Collapse
Affiliation(s)
- Kevin A Clayton
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States
| | - Alicia A Van Enoo
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States.,Department of Neurology, Medical School, Boston University, Boston, MA, United States
| |
Collapse
|
414
|
Johnstone MR, Sun M, Taylor CJ, Brady RD, Grills BL, Church JE, Shultz SR, McDonald SJ. Gambogic amide, a selective TrkA agonist, does not improve outcomes from traumatic brain injury in mice. Brain Inj 2017; 32:257-268. [PMID: 29227174 DOI: 10.1080/02699052.2017.1394492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES There is evidence that treatment with nerve growth factor (NGF) may reduce neuroinflammation and apoptosis after a traumatic brain injury (TBI). NGF is thought to exert its effects via binding to either TrkA or p75 neurotrophin receptors. This study aimed to investigate the effects of a selective TrkA agonist, gambogic amide (GA), on TBI pathology and outcomes in mice following lateral fluid percussion injury. METHODS Male C57BL/6 mice were given either a TBI or sham injury, and then received subcutaneous injections of either 2 mg/kg of GA or vehicle at 1, 24, and 48 h post-injury. Following behavioural studies, mice were euthanized at 72 h post-injury for analysis of neuroinflammatory, apoptotic, and neurite outgrowth markers. RESULTS Behavioural testing revealed that GA did not mitigate motor deficits after TBI. TBI caused an increase in cortical and hippocampal expression of several markers of neuroinflammation and apoptosis compared to sham groups. GA treatment did not attenuate these increases in expression, possibly contributed to by our finding of TrkA receptor down-regulation post-TBI. CONCLUSIONS These findings suggest that GA treatment may not be suitable for attenuating TBI pathology and improving outcomes.
Collapse
Affiliation(s)
- Maddison R Johnstone
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Mujun Sun
- b Department of Medicine , The Royal Melbourne Hospital, The University of Melbourne , Parkville , VIC , Australia
| | - Caroline J Taylor
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Rhys D Brady
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia.,b Department of Medicine , The Royal Melbourne Hospital, The University of Melbourne , Parkville , VIC , Australia
| | - Brian L Grills
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Jarrod E Church
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| | - Sandy R Shultz
- b Department of Medicine , The Royal Melbourne Hospital, The University of Melbourne , Parkville , VIC , Australia.,c Department of Neuroscience , Central Clinical School, Monash University , Melbourne , VIC , Australia
| | - Stuart J McDonald
- a Department of Physiology, Anatomy and Microbiology , School of Life Sciences, La Trobe University , Melbourne , VIC , Australia
| |
Collapse
|
415
|
Hillmer AT, Sandiego CM, Hannestad J, Angarita GA, Kumar A, McGovern EM, Huang Y, O’Connor KC, Carson RE, O’Malley SS, Cosgrove KP. In vivo imaging of translocator protein, a marker of activated microglia, in alcohol dependence. Mol Psychiatry 2017; 22:1759-1766. [PMID: 28242869 PMCID: PMC5573660 DOI: 10.1038/mp.2017.10] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/14/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022]
Abstract
Neuroinflammation may be a critical component of the neurobiology of alcohol use disorders, yet the exact nature of this relationship is not well understood. This work compared the brain and peripheral immune profile of alcohol-dependent subjects and controls. Brain levels of 18-kDa translocator protein (TSPO), a marker of microglial activation and neuroinflammation, were measured with [11C]PBR28 positron emission tomography imaging in 15 healthy controls and 15 alcohol-dependent subjects. Alcohol-dependent subjects were imaged 1-4 days (n=14) or 24 days (n=1) after their last drink. Linear mixed modeling of partial-volume-corrected [11C]PBR28 data revealed a main effect of alcohol dependence (P=0.034), corresponding to 10% lower TSPO levels in alcohol-dependent subjects. Within this group, exploratory analyses found a negative association of TSPO levels in the hippocampus and striatum with alcohol dependence severity (P<0.035). Peripheral immune response was assessed in a subset of subjects by measuring cytokine expression from monocytes cultured both in the presence and absence of lipopolysaccharide. Peripheral monocyte response to lipopolysaccharide stimulation was lower in alcohol-dependent subjects compared with controls for the proinflammatory cytokines interleukin-6 and interleukin-8. Thus, alcohol-dependent individuals exhibited less activated microglia in the brain and a blunted peripheral proinflammatory response compared with controls. These findings suggest a role for pharmaceuticals tuning the neuroimmune system as therapeutics for alcohol dependence.
Collapse
Affiliation(s)
- AT Hillmer
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT,Yale PET Center, Yale University School of Medicine, New Haven, CT
| | - CM Sandiego
- Yale PET Center, Yale University School of Medicine, New Haven, CT,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | | | - GA Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT,Connecticut Mental Health Center, New Haven, CT
| | - A Kumar
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - EM McGovern
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Y Huang
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT,Yale PET Center, Yale University School of Medicine, New Haven, CT
| | - KC O’Connor
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - RE Carson
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT,Yale PET Center, Yale University School of Medicine, New Haven, CT
| | - SS O’Malley
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - KP Cosgrove
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT,Yale PET Center, Yale University School of Medicine, New Haven, CT,Department of Psychiatry, Yale University School of Medicine, New Haven, CT,Department of Neuroscience, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
416
|
Taipa R, Ferreira V, Brochado P, Robinson A, Reis I, Marques F, Mann DM, Melo-Pires M, Sousa N. Inflammatory pathology markers (activated microglia and reactive astrocytes) in early and late onset Alzheimer disease: a post mortem study. Neuropathol Appl Neurobiol 2017; 44:298-313. [PMID: 29044639 DOI: 10.1111/nan.12445] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/22/2017] [Indexed: 01/03/2023]
Abstract
AIMS The association between the pathological features of AD and dementia is stronger in younger old persons than in older old persons suggesting that additional factors are involved in the clinical expression of dementia in the oldest old. Cumulative data suggests that neuroinflammation plays a prominent role in Alzheimer's disease (AD) and different studies reported an age-associated dysregulation of the neuroimmune system. Consequently, we sought to characterize the pattern of microglial cell activation and astrogliosis in brain post mortem tissue of pathologically confirmed cases of early and late onset AD (EOAD and LOAD) and determine their relation to age. METHODS Immunohistochemistry (CD68 and glial fibrillary acidic protein) with morphometric analysis of astroglial profiles in 36 cases of AD and 28 similarly aged controls. RESULTS Both EOAD and LOAD groups had higher microglial scores in CA1, entorhinal and temporal cortices, and higher astroglial response in CA1, dentate gyrus, entorhinal and temporal cortices, compared to aged matched controls. Additionally, EOAD had higher microglial scores in subiculum, entorhinal and temporal subcortical white matter, and LOAD higher astrogliosis in CA2 region. CONCLUSIONS Overall, we found that the neuroinflammatory pathological markers in late stage AD human tissue to have a similar pattern in both EOAD and LOAD, though the severity of the pathological markers in the younger group was higher. Understanding the age effect in AD will be important when testing modifying agents that act on the neuroinflammation.
Collapse
Affiliation(s)
- R Taipa
- Neuropathology Unit, Department of Neurosciences, Centro Hospitalar do Porto, Porto, Portugal.,Life and Health Sciences Research Institute, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - V Ferreira
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - P Brochado
- Neuropathology Unit, Department of Neurosciences, Centro Hospitalar do Porto, Porto, Portugal
| | - A Robinson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Salford Royal Hospital Foundation NHS Trust, University of Manchester, Salford, UK
| | - I Reis
- Neuropathology Unit, Department of Neurosciences, Centro Hospitalar do Porto, Porto, Portugal
| | - F Marques
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - D M Mann
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Salford Royal Hospital Foundation NHS Trust, University of Manchester, Salford, UK
| | - M Melo-Pires
- Neuropathology Unit, Department of Neurosciences, Centro Hospitalar do Porto, Porto, Portugal
| | - N Sousa
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| |
Collapse
|
417
|
Kim KW, Kim HJ, Sohn JH, Yim JH, Kim YC, Oh H. Anti-neuroinflammatory effect of 6,8,1'-tri-O-methylaverantin, a metabolite from a marine-derived fungal strain Aspergillus sp., via upregulation of heme oxygenase-1 in lipopolysaccharide-activated microglia. Neurochem Int 2017; 113:8-22. [PMID: 29174381 DOI: 10.1016/j.neuint.2017.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/06/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022]
Abstract
In the course of searching for anti-neuroinflammatory metabolites from marine-derived fungi, three fungal metabolites, 6,8,1'-tri-O-methylaverantin, 6,8-di-O-methylaverufin, and 5-methoxysterigmatocystin were isolated from a marine-derived fungal strain Aspergillus sp. SF-6796. Among these, 6,8,1'-tri-O-methylaverantin induced the expression of heme oxygenase (HO)-1 protein in BV2 microglial cells. The induction of HO-1 protein was mediated by the activation of nuclear transcription factor erythroid-2 related factor 2 (Nrf2), and was regulated by the p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase/protein kinase B signaling pathways. Furthermore, 6,8,1'-tri-O-methylaverantin suppressed the overproduction of pro-inflammatory mediators, such as nitric oxide, prostaglandin E2, inducible nitric oxide synthase, and cyclooxygenase-2 in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. These anti-neuroinflammatory effects were mediated through the negative regulation of the nuclear factor kappa B pathway, repressing the phosphorylation and degradation of inhibitor kappa B-α, translocation into the nucleus of p65/p50 heterodimer, and DNA-binding activity of p65 subunit. The anti-neuroinflammatory effect of 6,8,1'-tri-O-methylaverantin was partially blocked by a selective HO-1 inhibitor, suggesting that its anti-neuroinflammatory effect is at least partly mediated by HO-1 induction. In this study, 6,8,1'-tri-O-methylaverantin also induced HO-1 protein expression in primary microglial cells, and this correlated with anti-neuroinflammatory effects observed in LPS-stimulated primary microglial cells. In conclusion, 6,8,1'-tri-O-methylaverantin represents a potential candidate for use in the development of therapeutic agents for the regulation of neuroinflammation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Kwan-Woo Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Hye Jin Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Jae Hak Sohn
- College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Joung Han Yim
- Korea Polar Research Institute, KORDI, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea.
| |
Collapse
|
418
|
Doyle HH, Murphy AZ. Sex differences in innate immunity and its impact on opioid pharmacology. J Neurosci Res 2017; 95:487-499. [PMID: 27870418 DOI: 10.1002/jnr.23852] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/22/2016] [Accepted: 07/06/2016] [Indexed: 12/30/2022]
Abstract
Morphine has been and continues to be one of the most potent and widely used drugs for the treatment of pain. Clinical and animal models investigating sex differences in pain and analgesia demonstrate that morphine is a more potent analgesic in males than in females. In addition to binding to the neuronal μ-opioid receptor, morphine binds to the innate immune receptor toll-like receptor 4 (TLR4), located on glial cells. Activation of glial TLR4 initiates a neuroinflammatory response that directly opposes morphine analgesia. Females of many species have a more active immune system than males; however, few studies have investigated glial cells as a potential mechanism driving sexually dimorphic responses to morphine. This Mini-Review illustrates the involvement of glial cells in key processes underlying observed sex differences in morphine analgesia and suggests that targeting glia may improve current treatment strategies for pain. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hillary H Doyle
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
419
|
Farrand AQ, Helke KL, Gregory RA, Gooz M, Hinson VK, Boger HA. Vagus nerve stimulation improves locomotion and neuronal populations in a model of Parkinson's disease. Brain Stimul 2017; 10:1045-1054. [PMID: 28918943 PMCID: PMC5675746 DOI: 10.1016/j.brs.2017.08.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/15/2017] [Accepted: 08/22/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive, neurodegenerative disorder with no disease-modifying therapies, and symptomatic treatments are often limited by debilitating side effects. In PD, locus coeruleus noradrenergic (LC-NE) neurons degenerate prior to substantia nigra dopaminergic (SN-DA) neurons. Vagus nerve stimulation (VNS) activates LC neurons, and decreases pro-inflammatory markers, allowing improvement of LC targets, making it a potential PD therapeutic. OBJECTIVE To assess therapeutic potential of VNS in a PD model. METHODS To mimic the progression of PD degeneration, rats received a systemic injection of noradrenergic neurotoxin DSP-4, followed one week later by bilateral intrastriatal injection of dopaminergic neurotoxin 6-hydroxydopamine. At this time, a subset of rats also had vagus cuffs implanted. After eleven days, rats received a precise VNS regimen twice a day for ten days, and locomotion was measured during each afternoon session. Immediately following final stimulation, rats were euthanized, and left dorsal striatum, bilateral SN and LC were sectioned for immunohistochemical detection of monoaminergic neurons (tyrosine hydroxylase, TH), α-synuclein, astrocytes (GFAP) and microglia (Iba-1). RESULTS VNS significantly increased locomotion of lesioned rats. VNS also resulted in increased expression of TH in striatum, SN, and LC; decreased SN α-synuclein expression; and decreased expression of glial markers in the SN and LC of lesioned rats. Additionally, saline-treated rats after VNS, had higher LC TH and lower SN Iba-1. CONCLUSIONS Our findings of increased locomotion, beneficial effects on LC-NE and SN-DA neurons, decreased α-synuclein density in SN TH-positive neurons, and neuroinflammation suggest VNS has potential as a novel PD therapeutic.
Collapse
Affiliation(s)
- Ariana Q Farrand
- Dept of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB403, MSC510, Charleston, SC 29425, USA
| | - Kristi L Helke
- Dept of Comparative Medicine, Medical University of South Carolina, 114 Doughty St, STB 648, MSC 777, Charleston, SC 29425, USA; Dept of Pathology, Medical University of South Carolina, 165 Ashley Ave, Children's Hospital 309, MSC 908, Charleston, SC 29425, USA
| | - Rebecca A Gregory
- Dept of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB403, MSC510, Charleston, SC 29425, USA; Dept of Comparative Medicine, Medical University of South Carolina, 114 Doughty St, STB 648, MSC 777, Charleston, SC 29425, USA
| | - Monika Gooz
- Dept of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St, DDB 507, MSC 139, Charleston, SC 29425, USA
| | - Vanessa K Hinson
- Dept of Neurology, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 309, MSC 606, Charleston, SC 29425, USA
| | - Heather A Boger
- Dept of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB403, MSC510, Charleston, SC 29425, USA.
| |
Collapse
|
420
|
Collina S, Rui M, Stotani S, Bignardi E, Rossi D, Curti D, Giordanetto F, Malacrida A, Scuteri A, Cavaletti G. Are sigma receptor modulators a weapon against multiple sclerosis disease? Future Med Chem 2017; 9:2029-2051. [PMID: 29076758 DOI: 10.4155/fmc-2017-0122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Effective therapies for multiple sclerosis (MS) are still missing. This neurological disease affects more than 2.5 million people worldwide. To date, biological immunomodulatory drugs are effective and safe during short-term treatment, but they are suitable only for parenteral administration and they are expensive. Accordingly, academic and industrial environments are still focusing their efforts toward the development of new MS drugs. Considering that neurodegeneration is a contributory factor in the onset of MS, herein we will focus on the crucial role played by sigma 1 receptors (S1Rs) in MS. A pilot study was performed, evaluating the effect of the S1R agonist (R)-RC33 on rat dorsal root ganglia experimental model. The encouraging results support the potential of S1R agonists for MS treatment.
Collapse
Affiliation(s)
- Simona Collina
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Marta Rui
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Silvia Stotani
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, Dortmund 44227, Germany
| | - Emanuele Bignardi
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Daniela Curti
- Department of Biology & Biotechnology 'L. Spallanzani', Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Via Ferrata 9, Pavia 27100, Italy
| | | | - Alessio Malacrida
- Experimental Neurology Unit, Department of Medicine & Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Arianna Scuteri
- Experimental Neurology Unit, Department of Medicine & Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, Department of Medicine & Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Via Cadore 48, Monza 20900, Italy
| |
Collapse
|
421
|
Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol Psychiatry 2017; 22:1576-1584. [PMID: 27400854 PMCID: PMC5658669 DOI: 10.1038/mp.2016.103] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders caused by various genetic and environmental factors that result in synaptic abnormalities. ASD development is suggested to involve microglia, which have a role in synaptic refinement during development. Autophagy and related pathways are also suggested to be involved in ASDs. However, the precise roles of microglial autophagy in synapses and ASDs are unknown. Here, we show that microglial autophagy is involved in synaptic refinement and neurobehavior regulation. We found that deletion of atg7, which is vital for autophagy, from myeloid cell-specific lysozyme M-Cre mice resulted in social behavioral defects and repetitive behaviors, characteristic features of ASDs. These mice also had increases in dendritic spines and synaptic markers and altered connectivity between brain regions, indicating defects in synaptic refinement. Synaptosome degradation was impaired in atg7-deficient microglia and immature dendritic filopodia were increased in neurons co-cultured with atg7-deficient microglia. To our knowledge, our results are the first to show the role of microglial autophagy in the regulation of the synapse and neurobehaviors. We anticipate our results to be a starting point for more comprehensive studies of microglial autophagy in ASDs and the development of putative therapeutics.
Collapse
|
422
|
Ahmed A, Wang LL, Abdelmaksoud S, Aboelgheit A, Saeed S, Zhang CL. Minocycline modulates microglia polarization in ischemia-reperfusion model of retinal degeneration and induces neuroprotection. Sci Rep 2017; 7:14065. [PMID: 29070819 PMCID: PMC5656679 DOI: 10.1038/s41598-017-14450-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Retinal ischemia-reperfusion (IR) injury causes irreversible loss of neurons and ultimately leads to permanent visual impairment and blindness. The cellular response under this pathological retinal condition is less clear. Using genetically modified mice, we systematically examined the behavior of microglia/macrophages after injury. We show that IR leads to activation of microglia/macrophages indicated by migration and proliferation of resident microglia and recruitment of circulating monocytes. IR-induced microglia/macrophages associate with apoptotic retinal neurons. Very interestingly, neuron loss can be mitigated by minocycline treatment. Minocycline induces Il4 expression and M2 polarization of microglia/macrophages. IL4 neutralization dampens minocycline-induced M2 polarization and neuroprotection. Given a well-established safety profile as an antibiotic, our results provide a rationale for using minocycline as a therapeutic agent for treating ischemic retinal degeneration.
Collapse
Affiliation(s)
- Amel Ahmed
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA.,Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Lei-Lei Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Safaa Abdelmaksoud
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amal Aboelgheit
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Safaa Saeed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA. .,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA.
| |
Collapse
|
423
|
Hamasaki MY, Machado MCC, Pinheiro da Silva F. Animal models of neuroinflammation secondary to acute insults originated outside the brain. J Neurosci Res 2017; 96:371-378. [DOI: 10.1002/jnr.24184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Mike Yoshio Hamasaki
- Laboratório de Emergências Clínicas, Faculdade de Medicina FMUSP; Universidade de São Paulo; São Paulo SP Brazil
| | | | - Fabiano Pinheiro da Silva
- Laboratório de Emergências Clínicas, Faculdade de Medicina FMUSP; Universidade de São Paulo; São Paulo SP Brazil
| |
Collapse
|
424
|
Soveyd N, Abdolahi M, Bitarafan S, Tafakhori A, Sarraf P, Togha M, Okhovat AA, Hatami M, Sedighiyan M, Djalali M, Mohammadzadeh Honarvar N. Molecular mechanisms of omega-3 fatty acids in the migraine headache. IRANIAN JOURNAL OF NEUROLOGY 2017; 16:210-217. [PMID: 29736227 PMCID: PMC5937007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/25/2017] [Indexed: 06/08/2023]
Abstract
Migraine is a common chronic inflammatory neurological disease with the progressive and episodic course. Much evidence have shown a role of inflammation in the pathogenesis of migraine. Omega-3 fatty acids are an important components of cell membranes phospholipids. The intake of these fatty acids is related to decrease concentration of C-reactive protein (CRP), proinflammatory eicosanoids, cytokines, chemokines and other inflammation biomarkers. Many of clinical trials have shown the beneficial effect of dietary supplementation with omega-3 fatty acids in inflammatory and autoimmune diseases in human, including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS) and migraine headaches. Therefore, omega-3 fatty acids as an alternative therapy can be potentially important. This review focuses on the pathogenesis of a migraine, with an emphasis on the role of omega-3 fatty acid and its molecular mechanisms.
Collapse
Affiliation(s)
- Neda Soveyd
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abdolahi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sama Bitarafan
- Iranian Centre of Neurological Research, Neuroscience institute, Department of Neurology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Centre of Neurological Research, Neuroscience institute, Department of Neurology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Payam Sarraf
- Iranian Centre of Neurological Research, Neuroscience institute, Department of Neurology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Togha
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Okhovat
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Hatami
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Sedighiyan
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Niyaz Mohammadzadeh Honarvar
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
425
|
Wu Z, Ni J, Liu Y, Teeling JL, Takayama F, Collcutt A, Ibbett P, Nakanishi H. Cathepsin B plays a critical role in inducing Alzheimer's disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice. Brain Behav Immun 2017; 65:350-361. [PMID: 28610747 DOI: 10.1016/j.bbi.2017.06.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
A number of clinical and experimental studies have revealed a strong association between periodontitis and accelerated cognitive decline in Alzheimer's disease (AD); however, the mechanism of the association is unknown. In the present study, we tested the hypothesis that cathepsin (Cat) B plays a critical role in the initiation of neuroinflammation and neural dysfunction following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis (PgLPS) in mice (1mg/kg, daily, intraperitoneally). Young (2months old) and middle-aged (12months old) wild-type (WT; C57BL/6N) or CatB-deficient (CatB-/-) mice were exposed to PgLPS daily for 5 consecutive weeks. The learning and memory function were assessed using the passive avoidance test, and the expression of amyloid precursor protein (APP), CatB, TLR2 and IL-1β was analyzed in brain tissues by immunohistochemistry and Western blotting. We found that chronic systemic exposure to PgLPS for five consecutive weeks induced learning and memory deficits with the intracellular accumulation of Aβ in neurons in the middle-aged WT mice, but not in young WT or middle-aged CatB-/- mice. PgLPS significantly increased the expression of CatB in both microglia and neurons in middle-aged WT mice, while increased expression of mature IL-1β and TLR2 was restricted to microglia in the hippocampus of middle-aged WT mice, but not in that of the middle-aged CatB-/- ones. In in vitro studies, PgLPS (1µg/ml) stimulation upregulated the mean mRNA expression of IL-1β, TLR2 and downregulated the protein levels of IκBα in the cultured MG6 microglia as well as in the primary microglia from WT mice, which were significantly inhibited by the CatB-specific inhibitor CA-074Me as well as by the primary microglia from CatB-/- mice. Furthermore, the mean mRNA expression of APP and CatB were significantly increased in the primary cultured hippocampal neurons after treatment with conditioned medium from PgLPS-treated WT primary microglia, but not after treatment with conditioned medium neutralized with anti-IL-1beta, and not after treatment with conditioned medium from PgLPS-treated CatB-/- primary microglia or with PgLPS directly. Taken together, these findings indicate that chronic systemic exposure to PgLPS induces AD-like phenotypes, including microglia-mediated neuroinflammation, intracellular Aβ accumulation in neurons and impairment of the learning and memory functions in the middle-aged mice in a CatB-dependent manner. We propose that CatB may be a therapeutic target for preventing periodontitis-associated cognitive decline in AD.
Collapse
Affiliation(s)
- Zhou Wu
- Department of Aging Science and Pharmacology, Kyushu University, Japan; OBT Research Center, Faculty of Dental Science, Kyushu University, Japan.
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Kyushu University, Japan
| | - Yicong Liu
- Department of Aging Science and Pharmacology, Kyushu University, Japan
| | - Jessica L Teeling
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom
| | - Fumiko Takayama
- Department of Aging Science and Pharmacology, Kyushu University, Japan
| | - Alex Collcutt
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom
| | - Paul Ibbett
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom
| | - Hiroshi Nakanishi
- Department of Aging Science and Pharmacology, Kyushu University, Japan
| |
Collapse
|
426
|
Necroptosis in microglia contributes to neuroinflammation and retinal degeneration through TLR4 activation. Cell Death Differ 2017; 25:180-189. [PMID: 28885615 PMCID: PMC5729519 DOI: 10.1038/cdd.2017.141] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/09/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022] Open
Abstract
Inflammation has emerged to be a critical mechanism responsible for neural damage and neurodegenerative diseases. Microglia, the resident innate immune cells in retina, are implicated as principal components of the immunological insult to retinal neural cells. The involvement of microglia in retinal inflammation is complex and here we propose for the first time that necroptosis in microglia triggers neuroinflammation and exacerbates retinal neural damage and degeneration. We found microglia experienced receptor-interacting protein kinase 1 (RIP1)- and RIP3-dependent necroptosis not only in the retinal degenerative rd1 mice, but also in the acute retinal neural injury mice. The necroptotic microglia released various pro-inflammatory cytokines and chemokines, such as tumor necrosis factor-α and chemokine (C-C motif) ligand 2, which orchestrated the retinal inflammation. Importantly, necroptosis blockade using necrostatin-1 could suppress microglia-mediated inflammation, rescue retinal degeneration or prevent neural injury in vivo. Meanwhile, cultured microglia underwent RIP1/3-mediated necroptosis and the necroptotic microglia produced large amounts of pro-inflammatory cytokines in response to lipopolysaccharide or oxidative stress in vitro. Mechanically, TLR4 deficiency ameliorated microglia necroptosis with decreased expression levels of machinery molecules RIP1 and RIP3, and suppressed retinal inflammation, suggesting that TLR4 signaling was required in microglia necroptosis-mediated inflammation. Thus, we proposed that microglia experienced necroptosis through TLR4 activation, promoting an inflammatory response that serves to exacerbate considerable neural damage and degeneration. Necroptosis blockade therefore emerged as a novel therapeutic strategy for tempering microglia-mediated neuroinflammation and ameliorating neural injury and neurodegenerative diseases.
Collapse
|
427
|
Kwon SH, Han JK, Choi M, Kwon YJ, Kim SJ, Yi EH, Shin JC, Cho IH, Kim BH, Jeong Kim S, Ye SK. Dysfunction of Microglial STAT3 Alleviates Depressive Behavior via Neuron-Microglia Interactions. Neuropsychopharmacology 2017; 42:2072-2086. [PMID: 28480882 PMCID: PMC5561349 DOI: 10.1038/npp.2017.93] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/22/2022]
Abstract
Neuron-microglia interactions have a crucial role in maintaining the neuroimmune system. The balance of neuroimmune system has emerged as an important process in the pathophysiology of depression. However, how neuron-microglia interactions contribute to major depressive disorders has been poorly understood. Herein, we demonstrated that microglia-derived synaptic changes induced antidepressive-like behavior by using microglia-specific signal transducer and activator of transcription 3 (STAT3) knockout (KO) (STAT3fl/fl;LysM-Cre+/-) mice. We found that microglia-specific STAT3 KO mice showed antidepressive-like behavior in the forced swim, tail suspension, sucrose preference, and open-field tests. Surprisingly, the secretion of macrophage colony-stimulating factor (M-CSF) was increased from neuronal cells in the brains of STAT3fl/fl;LysM-Cre+/- mice. Moreover, the phosphorylation of antidepressant-targeting mediators and brain-derived neurotrophic factor expression were increased in the brains of STAT3fl/fl;LysM-Cre+/- mice as well as in neuronal cells in response to M-CSF stimulation. Importantly, the miniature excitatory postsynaptic current frequency in the medial prefrontal cortex was increased in STAT3fl/fl;LysM-Cre+/- mice and in the M-CSF treatment group. Collectively, microglial STAT3 regulates depression-related behaviors via neuronal M-CSF-mediated synaptic activity, suggesting that inhibition of microglial STAT3 might be a new therapeutic strategy for depression.
Collapse
Affiliation(s)
- Sun-Ho Kwon
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea,Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea,Biomedical Science Project (BK21[PLUS]), Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Kyu Han
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea,Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea,Department of Brain and Cognitive Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Moonseok Choi
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong-Jin Kwon
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Hee Yi
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Cheon Shin
- Pohang Center for Evaluation of Biomaterials, Pohang, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Byung-Hak Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea,Biomedical Science Project (BK21[PLUS]), Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Jeong Kim
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea,Biomedical Science Project (BK21[PLUS]), Seoul National University College of Medicine, Seoul, Republic of Korea,Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea,Department of Brain and Cognitive Sciences, Seoul National University Graduate School, Seoul, Republic of Korea,Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea. Tel: +82 2 740 8229, Fax: +82 2 763 9667, E-mail:
| | - Sang-Kyu Ye
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea,Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea,Biomedical Science Project (BK21[PLUS]), Seoul National University College of Medicine, Seoul, Republic of Korea,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea,Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea. Tel: +82 2 740 8281, Fax: +82 2 745 7996, E-mail:
| |
Collapse
|
428
|
Cătălin B, Stopper L, Bălşeanu TA, Scheller A. The in situ morphology of microglia is highly sensitive to the mode of tissue fixation. J Chem Neuroanat 2017; 86:59-66. [PMID: 28866082 DOI: 10.1016/j.jchemneu.2017.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/20/2017] [Accepted: 08/29/2017] [Indexed: 01/11/2023]
Abstract
Microglia are known as the most motile cells in the central nervous system (CNS). It was shown in vivo that they permanently scan their direct microenvironment and react to pathological conditions within minutes. Many studies of brain pathologies use fixed brain tissue to investigate cellular changes. Unfortunately, due to technical reasons, the time span between the induction of the fixation procedure (start of the perfusion) and the finally-fixed tissue lasts several minutes, giving time to microglia to start reacting to the ischemic conditions due to perfusion start. Here, we investigated the microglial changes generated by the fixation itself in TgH(CX3CR1-EGFP) mice with fluorescent labelled microglia using confocal laser scanning microscopy (CLSM) of fixed brain tissue as well as two-photon laser scanning microscopy (2P-LSM) during the perfusion of a living animal. We revealed the impact of fixation and buffer parameters on cell morphology. The largest morphological differences compared to physiological in vivo branch arborization were observed when the directly dissected brain was immersed in paraformaldehyde fixation solution overnight, without prior fixative perfusion of the animal. But even perfusion with a fixative, followed by post-fixation leads to small changes in microglial process length and number and could not be prevented when compared to physiological in vivo microglia morphology acquired using in vivo 2P-LSM. Interestingly, perfusion with different buffers either oxygenated artificial cerebrospinal fluid or phosphate buffered saline prior to perfusion-fixation showed minor microglia changes in arborization and/or number of processes. Fixation methods influence microglia morphology. Therefore, to define microglia activation states immunohistochemical stainings or genetic labelling of the cells have to be included in addition to morphological analysis.
Collapse
Affiliation(s)
- Bogdan Cătălin
- Department of Molecular Physiology, CIPMM (Center for Integrative Physiology and Molecular Medicine), Building 48, University of Saarland, Homburg, Germany; Department of Functional Sciences, University of Medicine and Pharmacy of Craiova, Romania.
| | - Laura Stopper
- Department of Molecular Physiology, CIPMM (Center for Integrative Physiology and Molecular Medicine), Building 48, University of Saarland, Homburg, Germany
| | - Tudor-Adrian Bălşeanu
- Department of Functional Sciences, University of Medicine and Pharmacy of Craiova, Romania; Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Anja Scheller
- Department of Molecular Physiology, CIPMM (Center for Integrative Physiology and Molecular Medicine), Building 48, University of Saarland, Homburg, Germany.
| |
Collapse
|
429
|
Budge KM, Neal ML, Richardson JR, Safadi FF. Glycoprotein NMB: an Emerging Role in Neurodegenerative Disease. Mol Neurobiol 2017; 55:5167-5176. [PMID: 28856541 DOI: 10.1007/s12035-017-0707-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022]
Abstract
Neurodegeneration is characterized by severe neuronal loss leading to the cognitive and physical impairments that define various neurodegenerative diseases. Neuroinflammation is one hallmark of neurodegenerative diseases and can ultimately contribute to disease progression. Increased inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1 β), and tumor necrosis factor-α (TNF-α) are associated with Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Unfortunately, current therapeutic options lack ability to stop or effectively slow progression of these diseases and are primarily aimed at alleviating symptoms. Thus, it is crucial to discover novel treatment candidates for neurodegenerative diseases. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type-I transmembrane glycoprotein first identified in a melanoma cell line. GPNMB augments bone mineral deposition by stimulating osteoblast differentiation. Aside from its anabolic function in the bone, emerging evidence suggests that GPNMB has anti-inflammatory and reparative functions. GPNMB has also been demonstrated to be neuroprotective in an animal model of ALS, cerebral ischemia, and other disease models. Given these discoveries, GPNMB should be investigated as a potential therapeutic option for multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Kevin M Budge
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University (NEOMED), 4209 State Route 44, Rootstown, OH, 44224, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Matthew L Neal
- Department of Pharmaceutical Sciences, College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
| | - Jason R Richardson
- Department of Pharmaceutical Sciences, College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University (NEOMED), 4209 State Route 44, Rootstown, OH, 44224, USA. .,School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
430
|
D'Erchia AM, Gallo A, Manzari C, Raho S, Horner DS, Chiara M, Valletti A, Aiello I, Mastropasqua F, Ciaccia L, Locatelli F, Pisani F, Nicchia GP, Svelto M, Pesole G, Picardi E. Massive transcriptome sequencing of human spinal cord tissues provides new insights into motor neuron degeneration in ALS. Sci Rep 2017; 7:10046. [PMID: 28855684 PMCID: PMC5577269 DOI: 10.1038/s41598-017-10488-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
ALS is a devastating and debilitating human disease characterized by the progressive death of upper and lower motor neurons. Although much effort has been made to elucidate molecular determinants underlying the onset and progression of the disorder, the causes of ALS remain largely unknown. In the present work, we have deeply sequenced whole transcriptome from spinal cord ventral horns of post-mortem ALS human donors affected by the sporadic form of the disease (which comprises ~90% of the cases but which is less investigated than the inherited form of the disease). We observe 1160 deregulated genes including 18 miRNAs and show that down regulated genes are mainly of neuronal derivation while up regulated genes have glial origin and tend to be involved in neuroinflammation or cell death. Remarkably, we find strong deregulation of SNAP25 and STX1B at both mRNA and protein levels suggesting impaired synaptic function through SNAP25 reduction as a possible cause of calcium elevation and glutamate excitotoxicity. We also note aberrant alternative splicing but not disrupted RNA editing.
Collapse
Affiliation(s)
- Anna Maria D'Erchia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy
| | - Angela Gallo
- Department of Pediatric Oncohaematology, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Caterina Manzari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy
| | - Susanna Raho
- Department of Pediatric Oncohaematology, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - David S Horner
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Matteo Chiara
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy
| | - Alessio Valletti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy
| | - Italia Aiello
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy
| | - Francesca Mastropasqua
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy
| | - Loredana Ciaccia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy
| | - Franco Locatelli
- Department of Pediatric Oncohaematology, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Francesco Pisani
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy.,National Institute of Biostructures and Biosystems (INBB), Viale Medaglie D'Oro 305, 00136, Rome, Italy.,Center of Excellence in Comparative Genomics, University of Bari, Piazza Umberto I, 70121, Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy. .,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy. .,National Institute of Biostructures and Biosystems (INBB), Viale Medaglie D'Oro 305, 00136, Rome, Italy. .,Center of Excellence in Comparative Genomics, University of Bari, Piazza Umberto I, 70121, Bari, Italy.
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy. .,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy. .,National Institute of Biostructures and Biosystems (INBB), Viale Medaglie D'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
431
|
Neuroimaging of sport concussion: persistent alterations in brain structure and function at medical clearance. Sci Rep 2017; 7:8297. [PMID: 28839132 PMCID: PMC5571165 DOI: 10.1038/s41598-017-07742-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022] Open
Abstract
The medical decision of return to play (RTP) after a sport concussion is largely based on symptom status following a graded exercise protocol. However, it is currently unknown how objective markers of brain structure and function relate to clinical recovery. The goal of this study was to determine whether differences in brain structure and function at acute injury remain present at RTP. In this longitudinal study, 54 active varsity athletes were scanned using magnetic resonance imaging (MRI), including 27 with recent concussion, imaged at both acute injury and medical clearance, along with 27 matched controls. Diffusion tensor imaging was used to measure fractional anisotropy (FA) and mean diffusivity (MD) of white matter and resting-state functional MRI was used to measure global functional connectivity (Gconn). At acute injury, concussed athletes had reduced FA and increased MD, along with elevated Gconn; these effects remained present at RTP. Athletes who took longer to reach RTP also showed elevated Gconn in dorsal brain regions, but no significant white matter effects. This study presents the first evidence of altered brain structure and function at the time of medical clearance to RTP, with greater changes in brain function for athletes with a longer recovery time.
Collapse
|
432
|
Knockdown of miR-155 protects microglia against LPS-induced inflammatory injury via targeting RACK1: a novel research for intracranial infection. JOURNAL OF INFLAMMATION-LONDON 2017; 14:17. [PMID: 28804270 PMCID: PMC5549339 DOI: 10.1186/s12950-017-0162-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/05/2017] [Indexed: 11/17/2022]
Abstract
Background Intracranial infection, one of the complications of traumatic brain injury, is usually associated with inflammation. Several microRNAs (miRNAs), including miR-155, have been reported to be critical modulators in peripheral and central nervous system inflammation. In this study, we investigated the role of miR-155 in lipopolysaccharide (LPS)-induced inflammatory injury in mouse microglia BV2 cells. Results The expression level of miR-155 was significantly up-regulated after LPS stimulation in BV2 cells. LPS administration decreased BV2 cell viability, promoted apoptosis and increased the release of pro-inflammatory cytokines; while miR-155 knockdown rescued BV2 cell from LPS-induced injury. RACK1 was a directly target of miR-155. Interestingly, miR-155 knockdown did not attenuate LPS-induced inflammatory injury when RACK1 was knocked down. The mechanistic study indicated that miR-155 knockdown deactivated MAPK/NF-κB and mTOR signaling pathways under LPS-treated conditions. Conclusions Knockdown of miR-155 protected mouse microglia BV2 cells from LPS-induced inflammatory injury via targeting RACK1 and deactivating MAPK/NF-κB and mTOR signaling pathways.
Collapse
|
433
|
DaSilva NA, Nahar PP, Ma H, Eid A, Wei Z, Meschwitz S, Zawia NH, Slitt AL, Seeram NP. Pomegranate ellagitannin-gut microbial-derived metabolites, urolithins, inhibit neuroinflammation in vitro. Nutr Neurosci 2017; 22:185-195. [PMID: 28784051 DOI: 10.1080/1028415x.2017.1360558] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Urolithins, ellagitannin-gut microbial-derived metabolites, have been reported to mediate pomegranate's neuroprotective effects against Alzheimer's disease (AD), but there are limited data on their effects against neuroinflammation. Herein, we: (1) evaluated whether urolithins (urolithins A and B and their methylated derivatives) attenuate neuroinflammation in murine BV-2 microglia and human SH-SY5Y neurons, and (2) evaluated hippocampus of transgenic AD (R1.40) mice administered a pomegranate extract (PE; 100 or 200 mg/kg/day for 3 weeks) for inflammatory biomarkers. METHODS Effects of urolithins (10 μM) on inflammatory biomarkers were evaluated in lipopolysaccharide (LPS)-stimulated BV-2 microglia. In a non-contact co-culture cell model, SH-SY5Y cell viability was assessed after exposure to media collected from LPS-BV-2 cells treated with or without urolithins. Effects of urolithins on apoptosis and caspase 3/7 and 9 release from H2O2-induced oxidative stress of BV-2 and SH-SY5Y cells were assessed. Hippocampal tissues of vehicle and PE-treated transgenic R1.40 mice were evaluated for gene expression of inflammatory biomarkers by qRT-PCR. RESULTS Urolithins decreased media levels of nitric oxide, interleukin 6 (IL-6), prostaglandin E2, and tumor necrosis factor alpha from LPS-BV-2 microglia. In the co-culture cell model, media from LPS-BV-2 cells treated with urolithins preserved SH-SY5Y cell viability greater than media from cells treated without urolithins. Urolithins mitigated apoptosis and caspase 3/7 and 9 release from H2O2-induced oxidative stress of BV-2 and SH-SY5Y cells. While not statistically significant, inflammatory biomarkers (TNF-α, COX-2, IL-1, and IL-6) appeared to follow a decreasing trend in the hippocampus of high-dose PE-treated animals compared to controls. DISCUSSION The attenuation of neuroinflammation by urolithins may contribute, in part, toward pomegranate's neuroprotective effects against AD.
Collapse
Affiliation(s)
- Nicholas A DaSilva
- a Department of Biomedical and Pharmaceutical Sciences , College of Pharmacy, University of Rhode Island , Kingston , RI 02881 , USA
| | - Pragati P Nahar
- a Department of Biomedical and Pharmaceutical Sciences , College of Pharmacy, University of Rhode Island , Kingston , RI 02881 , USA
| | - Hang Ma
- a Department of Biomedical and Pharmaceutical Sciences , College of Pharmacy, University of Rhode Island , Kingston , RI 02881 , USA
| | - Aseel Eid
- a Department of Biomedical and Pharmaceutical Sciences , College of Pharmacy, University of Rhode Island , Kingston , RI 02881 , USA
| | - Zhengxi Wei
- a Department of Biomedical and Pharmaceutical Sciences , College of Pharmacy, University of Rhode Island , Kingston , RI 02881 , USA
| | - Susan Meschwitz
- b Department of Chemistry , Salve Regina University , Newport , RI 02840 , USA
| | - Nasser H Zawia
- a Department of Biomedical and Pharmaceutical Sciences , College of Pharmacy, University of Rhode Island , Kingston , RI 02881 , USA.,c George and Anne Ryan Institute for Neuroscience, University of Rhode Island , Kingston , RI 02881 , USA
| | - Angela L Slitt
- a Department of Biomedical and Pharmaceutical Sciences , College of Pharmacy, University of Rhode Island , Kingston , RI 02881 , USA
| | - Navindra P Seeram
- a Department of Biomedical and Pharmaceutical Sciences , College of Pharmacy, University of Rhode Island , Kingston , RI 02881 , USA.,c George and Anne Ryan Institute for Neuroscience, University of Rhode Island , Kingston , RI 02881 , USA
| |
Collapse
|
434
|
Bansal R, Singh R. Exploring the potential of natural and synthetic neuroprotective steroids against neurodegenerative disorders: A literature review. Med Res Rev 2017; 38:1126-1158. [PMID: 28697282 DOI: 10.1002/med.21458] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/01/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022]
Abstract
Neurodegeneration is a complex process, which leads to progressive brain damage due to loss of neurons. Despite exhaustive research, the cause of neuronal loss in various degenerative disorders is not entirely understood. Neuroprotective steroids constitute an important line of attack, which could play a major role against the common mechanisms associated with various neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Natural endogenous steroids induce the neuroprotection by protecting the nerve cells from neuronal injury through multiple mechanisms, therefore the structural modifications of the endogenous steroids could be helpful in the generation of new therapeutically useful neuroprotective agents. The review article will keep the readers apprised of the detailed description of natural as well as synthetic neuroprotective steroids from the medicinal chemistry point of view, which would be helpful in drug discovery efforts aimed toward neurodegenerative diseases.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ranjit Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
435
|
Ramirez AI, de Hoz R, Salobrar-Garcia E, Salazar JJ, Rojas B, Ajoy D, López-Cuenca I, Rojas P, Triviño A, Ramírez JM. The Role of Microglia in Retinal Neurodegeneration: Alzheimer's Disease, Parkinson, and Glaucoma. Front Aging Neurosci 2017; 9:214. [PMID: 28729832 PMCID: PMC5498525 DOI: 10.3389/fnagi.2017.00214] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/16/2017] [Indexed: 12/12/2022] Open
Abstract
Microglia, the immunocompetent cells of the central nervous system (CNS), act as neuropathology sensors and are neuroprotective under physiological conditions. Microglia react to injury and degeneration with immune-phenotypic and morphological changes, proliferation, migration, and inflammatory cytokine production. An uncontrolled microglial response secondary to sustained CNS damage can put neuronal survival at risk due to excessive inflammation. A neuroinflammatory response is considered among the etiological factors of the major aged-related neurodegenerative diseases of the CNS, and microglial cells are key players in these neurodegenerative lesions. The retina is an extension of the brain and therefore the inflammatory response in the brain can occur in the retina. The brain and retina are affected in several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and glaucoma. AD is an age-related neurodegeneration of the CNS characterized by neuronal and synaptic loss in the cerebral cortex, resulting in cognitive deficit and dementia. The extracellular deposits of beta-amyloid (Aβ) and intraneuronal accumulations of hyperphosphorylated tau protein (pTau) are the hallmarks of this disease. These deposits are also found in the retina and optic nerve. PD is a neurodegenerative locomotor disorder with the progressive loss of dopaminergic neurons in the substantia nigra. This is accompanied by Lewy body inclusion composed of α-synuclein (α-syn) aggregates. PD also involves retinal dopaminergic cell degeneration. Glaucoma is a multifactorial neurodegenerative disease of the optic nerve, characterized by retinal ganglion cell loss. In this pathology, deposition of Aβ, synuclein, and pTau has also been detected in retina. These neurodegenerative diseases share a common pathogenic mechanism, the neuroinflammation, in which microglia play an important role. Microglial activation has been reported in AD, PD, and glaucoma in relation to protein aggregates and degenerated neurons. The activated microglia can release pro-inflammatory cytokines which can aggravate and propagate neuroinflammation, thereby degenerating neurons and impairing brain as well as retinal function. The aim of the present review is to describe the contribution in retina to microglial-mediated neuroinflammation in AD, PD, and glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Ana I. Ramirez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Elena Salobrar-Garcia
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Juan J. Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Blanca Rojas
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Daniel Ajoy
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
| | - Pilar Rojas
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Servicio de Oftalmología, Hospital Gregorio MarañónMadrid, Spain
| | - Alberto Triviño
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM)Madrid, Spain
| |
Collapse
|
436
|
Natural Docosahexaenoic Acid in the Triglyceride Form Attenuates In Vitro Microglial Activation and Ameliorates Autoimmune Encephalomyelitis in Mice. Nutrients 2017; 9:nu9070681. [PMID: 28665331 PMCID: PMC5537796 DOI: 10.3390/nu9070681] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 12/25/2022] Open
Abstract
Many neurodegenerative diseases are associated, at least in part, to an inflammatory process in which microglia plays a major role. The effect of the triglyceride form of the omega-3 polyunsaturated fatty acid docosahexaenoic acid (TG-DHA) was assayed in vitro and in vivo to assess the protective and anti-inflammatory activity of this compound. In the in vitro study, BV-2 microglia cells were previously treated with TG-DHA and then activated with Lipopolysaccharide (LPS) and Interferon-gamma (IFN-γ). TG-DHA treatment protected BV-2 microglia cells from oxidative stress toxicity attenuating NO production and suppressing the induction of inflammatory cytokines. When compared with DHA in the ethyl-ester form, a significant difference in the ability to inhibit NO production in favor of TG-DHA was observed. TG-DHA inhibited significantly splenocyte proliferation but isolated CD4+ lymphocyte proliferation was unaffected. In a mice model of autoimmune encephalomyelitis (EAE), 250 mg/kg/day oral TG-DHA treatment was associated with a significant amelioration of the course and severity of the disease as compared to untreated animals. TG-DHA-treated EAE mice showed a better weight profile, which is a symptom related to a better course of encephalomyelitis. TG-DHA may be a promising therapeutic agent in neuroinflammatory processes and merit to be more extensively studied in human neurodegenerative disorders.
Collapse
|
437
|
Desai BS, Monahan AJ, Carvey PM, Hendey B. Blood–Brain Barrier Pathology in Alzheimer's and Parkinson's Disease: Implications for Drug Therapy. Cell Transplant 2017; 16:285-99. [PMID: 17503739 DOI: 10.3727/000000007783464731] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The blood–brain barrier (BBB) is a tightly regulated barrier in the central nervous system. Though the BBB is thought to be intact during neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD), recent evidence argues otherwise. Dysfunction of the BBB may be involved in disease progression, eliciting of peripheral immune response, and, most importantly, altered drug efficacy. In this review, we will give a brief overview of the BBB, its components, and their functions. We will critically evaluate the current literature in AD and PD BBB pathology resulting from insult, neuroinflammation, and neurodegeneration. Specifically, we will discuss alterations in tight junction, transport and endothelial cell surface proteins, and vascular density changes, all of which result in altered permeability. Finally, we will discuss the implications of BBB dysfunction in current and future therapeutics. Developing a better appreciation of BBB dysfunction in AD and PD may not only provide novel strategies in treatment, but will prove an interesting milestone in understanding neurodegenerative disease etiology and progression.
Collapse
Affiliation(s)
- Brinda S Desai
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
438
|
Qasem H, Al-Ayadhi L, Al Dera H, El-Ansary A. Increase of cytosolic phospholipase A2 as hydrolytic enzyme of phospholipids and autism cognitive, social and sensory dysfunction severity. Lipids Health Dis 2017; 16:117. [PMID: 28724385 PMCID: PMC5516334 DOI: 10.1186/s12944-016-0391-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/13/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Autism is neurodevelopmental disorder that is characterized by developmental, behavioral, social and sensory abnormalities. Researchers have focused in last years in immunological alteration and inflammation as a hot subject in autism field. This work aims to study the alteration in phospholipids (PE, PS, and PC) together with the change in cPLA2 concentration as the main phospholipid hydrolytic enzyme in autistic patients compared to control. It was also extended to find a correlation between these biomarkers and severity of autism measured as childhood autism rating scale (CARS), Social responsiveness scale (SRS), and Short sensory profile (SSP). METHODS Phospholipids (PE, PS, PC) and cPLA2 as biochemical parameters were determined in the plasma of 48 Saudi autistic male patients, categorized as mild-moderate and severe as indicated by their Childhood Autism Rating Scale (CARS), social responsiveness scale (SRS) and short sensory profile (SSP) and compared to 40 age- and gender-matched control samples. RESULTS The reported data demonstrate significantly lower levels of PE, PS, and PC together with a significant increase in cPLA2. While association between severity of autism and impaired phospholipid concentration was completely lacked, an association between cPLA2 and impaired sensory processing was observed. CONCLUSIONS The impaired phospholipid level and remarkable increased in cPLA2 concentration asserted their roles in the etiology of autism. Receiver operating characteristic analysis together with predictiveness diagrams proved that the measured parameters could be used as predictive biomarkers of clinical symptoms and provide significant guidance for future therapeutic strategy to re-establish physiological homeostasis.
Collapse
Affiliation(s)
- Hanan Qasem
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, 11495 Riyadh, Saudi Arabia
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hussain Al Dera
- Basic medical science dept. College of Medicine, King Saud bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (Kaimrc), Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, 11495 Riyadh, Saudi Arabia
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
- Central Laboratory, Center for Female Scientific and Medical Colleges at King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
439
|
Wang SW, Liu DQ, Zhang LX, Ji M, Zhang YX, Dong QX, Liu SY, Xie XX, Liu RT. A vaccine with Aβ oligomer-specific mimotope attenuates cognitive deficits and brain pathologies in transgenic mice with Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2017; 9:41. [PMID: 28592267 PMCID: PMC5461751 DOI: 10.1186/s13195-017-0267-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022]
Abstract
Background β-Amyloid peptide (Aβ) oligomers are initial factors used to induce Alzheimer’s disease (AD) development, and Aβ monomers have normal physiological function. The antibodies or vaccines against Aβ monomers have serious problems, such as side effects and low curative effects. Therefore, it is essential to specifically target Aβ oligomers rather than monomers for the treatment of AD. Methods The mimotopes of Aβ oligomers were obtained by panning the phage-displayed random peptide libraries using oligomer-specific antibodies as targets and expressed on the surface of EBY100 Saccharomyces cerevisiae to generate yeast cell base vaccines. One vaccine (AOE1) induced antibodies specifically against Aβ oligomers and was selected for further study. The APP/PS1 mice were subcutaneously immunized with AOE1 eight times. The levels and characteristics of antibodies induced by AOE1 were determined by enzyme-linked immunosorbent assay. The effect of AOE1 on the cognitive deficits of AD mice was tested by novel object recognition (NOR) and Y-maze. Dot blot analysis, Western blot analysis, and immunohistochemistry were applied to measure the effects of AOE1 on Aβ pathologies, neuroinflammation, and microhemorrhages in the brains of AD mice. Results Eight mimotope candidates of Aβ oligomers were selected and expressed on EBY100 S. cerevisiae. Only AOE1 vaccine containing mimotope L2 induced antibodies that specifically recognized Aβ42 oligomers rather than monomers. AOE1 immunization significantly increased the AD mice’s exploration times for the novel object in the NOR test and the choices for new arms in the Y-maze test, and it reduced levels of Aβ oligomers and glial activation in the AD mouse brains. No activation of Aβ-specific T cells and microhemorrhages was observed in their brains following AOE1 vaccination. Conclusions AOE1 is the first vaccine applying the oligomer-specific mimotope as an immunogen, which could induce antibodies with high specificity to Aβ oligomers. AOE1 immunization attenuated Aβ pathologies and cognitive deficits in AD mice, decreased the overactivation of glial cells, and did not induce microhemorrhage in the brains of AD mice. These findings suggest that AOE1 may be a safer and more effective vaccine for AD treatment.
Collapse
Affiliation(s)
- Shao-Wei Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Dong-Qun Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Ling-Xiao Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Mei Ji
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Yang-Xin Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.,School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Quan-Xiu Dong
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Shu-Ying Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.,School of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Xi-Xiu Xie
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Rui-Tian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.
| |
Collapse
|
440
|
Inflammation and vascular remodeling in the ventral hippocampus contributes to vulnerability to stress. Transl Psychiatry 2017; 7:e1160. [PMID: 28654094 PMCID: PMC5537643 DOI: 10.1038/tp.2017.122] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/13/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022] Open
Abstract
During exposure to chronic stress, some individuals engage in active coping behaviors that promote resiliency to stress. Other individuals engage in passive coping that is associated with vulnerability to stress and with anxiety and depression. In an effort to identify novel molecular mechanisms that underlie vulnerability or resilience to stress, we used nonbiased analyses of microRNAs in the ventral hippocampus (vHPC) to identify those miRNAs differentially expressed in active (long-latency (LL)/resilient) or passive (short-latency (SL)/vulnerable) rats following chronic social defeat. In the vHPC of active coping rats, miR-455-3p level was increased, while miR-30e-3p level was increased in the vHPC of passive coping rats. Pathway analyses identified inflammatory and vascular remodeling pathways as enriched by genes targeted by these microRNAs. Utilizing several independent markers for blood vessels, inflammatory processes and neural activity in the vHPC, we found that SL/vulnerable rats exhibit increased neural activity, vascular remodeling and inflammatory processes that include both increased blood-brain barrier permeability and increased number of microglia in the vHPC relative to control and resilient rats. To test the relevance of these changes for the development of the vulnerable phenotype, we used pharmacological approaches to determine the contribution of inflammatory processes in mediating vulnerability and resiliency. Administration of the pro-inflammatory cytokine vascular endothelial growth factor-164 increased vulnerability to stress, while the non-steroidal anti-inflammatory drug meloxicam attenuated vulnerability. Collectively, these results show that vulnerability to stress is determined by a re-designed neurovascular unit characterized by increased neural activity, vascular remodeling and pro-inflammatory mechanisms in the vHPC. These results suggest that dampening inflammatory processes by administering anti-inflammatory agents reduces vulnerability to stress. These results have translational relevance as they suggest that administration of anti-inflammatory agents may reduce the impact of stress or trauma in vulnerable individuals.
Collapse
|
441
|
TRPV1 channels are critical brain inflammation detectors and neuropathic pain biomarkers in mice. Nat Commun 2017; 8:15292. [PMID: 28489079 PMCID: PMC5436240 DOI: 10.1038/ncomms15292] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
The capsaicin receptor TRPV1 has been widely characterized in the sensory system as a key component of pain and inflammation. A large amount of evidence shows that TRPV1 is also functional in the brain although its role is still debated. Here we report that TRPV1 is highly expressed in microglial cells rather than neurons of the anterior cingulate cortex and other brain areas. We found that stimulation of microglial TRPV1 controls cortical microglia activation per se and indirectly enhances glutamatergic transmission in neurons by promoting extracellular microglial microvesicles shedding. Conversely, in the cortex of mice suffering from neuropathic pain, TRPV1 is also present in neurons affecting their intrinsic electrical properties and synaptic strength. Altogether, these findings identify brain TRPV1 as potential detector of harmful stimuli and a key player of microglia to neuron communication.
Collapse
|
442
|
Zhou J, Wang J, Li W, Wang C, Wu L, Zhang J. Paeoniflorin attenuates the neuroinflammatory response in a rat model of chronic constriction injury. Mol Med Rep 2017; 15:3179-3185. [DOI: 10.3892/mmr.2017.6371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 12/19/2016] [Indexed: 11/05/2022] Open
|
443
|
Anti-inflammatory mechanism of lonchocarpine in LPS- or poly(I:C)-induced neuroinflammation. Pharmacol Res 2017; 119:431-442. [PMID: 28288940 DOI: 10.1016/j.phrs.2017.02.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/23/2017] [Accepted: 02/07/2017] [Indexed: 01/09/2023]
Abstract
Neuroinflammation plays an important role in the progression of various neurodegenerative diseases. In this study, we investigated the anti-inflammatory effects of lonchocarpine, a natural compound isolated from Abrus precatorius, under in vitro and in vivo neuroinflammatory conditions induced by challenge with lipopolysaccharide (LPS)- or polyinosinic-polycytidylic acid (poly(I:C)). Lonchocarpine suppressed the expression of iNOS and proinflammatory cytokines in LPS or poly(I:C)-stimulated BV2 microglial cells. These anti-inflammatory effects were verified in brains of mice with systemic inflammation induced by administration of LPS or poly(I:C). Lonchocarpine reduced the number of Iba-1-positive activated microglia, and suppressed the mRNA expression of various proinflammatory markers in the cortex of LPS- or poly(I:C)-injected mice. Molecular mechanistic experiments showed that lonchocarpine inhibited NF-κB activity by reducing the phosphorylation and degradation of IκBα in LPS- or poly(I:C)-stimulated BV2 cells. Analysis of further upstream signaling pathways in LPS-stimulated microglia showed that lonchocarpine inhibited the phosphorylation of IκB kinase and TGFβ-activated kinase 1 (TAK1). Moreover, lonchocarpine suppressed the interaction of myeloid differentiation factor 88 (MyD88) and intereleukin-1 receptor-associated kinase 4 (IRAK4). These data suggest that toll-like receptor 4 downstream signals such as MyD88/IRAK4-TAK1-NF-κB are at least partly involved in the anti-inflammatory mechanism of lonchocarpine in LPS-stimulated microglia. Its strong anti-inflammatory effects may make lonchocarpine an effective preventative drug for neuroinflammatory disorders that are associated with systemic inflammation.
Collapse
|
444
|
Mapplebeck JCS, Beggs S, Salter MW. Molecules in pain and sex: a developing story. Mol Brain 2017; 10:9. [PMID: 28270169 PMCID: PMC5341415 DOI: 10.1186/s13041-017-0289-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/23/2017] [Indexed: 11/17/2022] Open
Abstract
Microglia are dynamic immune cells with diverse roles in maintaining homeostasis of the central nervous system. Dysregulation of microglia has been critically implicated in the genesis of neuropathic pain. Peripheral nerve injury, a common cause of neuropathic pain, engages microglia-neuronal signalling which causes disinhibition and facilitated excitation of spinal nociceptive pathways. However, recent literature indicates that the role of microglia in neuropathic pain is sexually dimorphic, and that female pain processing appears to be independent of microglia, depending rather on T cells. Despite this sex difference, pain signalling in the spinal cord converges downstream of microglia, as NMDAR-mediated facilitated excitation in pain transmitting neurons is consistent between males and females. Determining whether pain signalling is sexually dimorphic in humans and, further, addressing the sex bias in pain research will increase the translational relevance of preclinical findings and advance our understanding of chronic pain in women.
Collapse
Affiliation(s)
- Josiane C S Mapplebeck
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | - Simon Beggs
- Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Michael W Salter
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, Canada. .,University of Toronto Centre for the Study of Pain, Toronto, ON, Canada.
| |
Collapse
|
445
|
Yin M, Chen Y, Zheng H, Pu T, Marshall C, Wu T, Xiao M. Assessment of mouse cognitive and anxiety-like behaviors and hippocampal inflammation following a repeated and intermittent paradoxical sleep deprivation procedure. Behav Brain Res 2017; 321:69-78. [DOI: 10.1016/j.bbr.2016.12.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/21/2016] [Accepted: 12/25/2016] [Indexed: 12/12/2022]
|
446
|
Abstract
Traumatic brain injury (TBI), with its diverse heterogeneity and prolonged secondary pathogenesis, remains a clinical challenge. Clinical studies thus far have failed to identify an effective treatment strategy when a combination of targets controlling aspects of neuroprotection, neuroinflammation, and neuroregeneration is needed. Omega-3 fatty acids (n-3FA) offer the advantage of this approach. Although further clinical trial research is needed, there is a growing body of strong preclinical evidence and clinical experience that suggests that benefits may be possible from aggressively adding substantial amounts of n-3FA to optimize the nutritional foundation of TBI, concussion, and postconcussion syndrome patients. Early and optimal doses of n-3FA, even in a prophylactic setting, have the potential to improve outcomes from this potentially devastating problem. With evidence of unsurpassed safety and tolerability, n-3FA should be considered mainstream, conventional medicine, if conventional medicine can overcome its inherent bias against nutritional, nonpharmacologic therapies.
Collapse
Affiliation(s)
- Michael D Lewis
- a Brain Health Education and Research Institute , Potomac , Maryland
| |
Collapse
|
447
|
Astrocytic Orosomucoid-2 Modulates Microglial Activation and Neuroinflammation. J Neurosci 2017; 37:2878-2894. [PMID: 28193696 DOI: 10.1523/jneurosci.2534-16.2017] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/24/2017] [Accepted: 02/03/2017] [Indexed: 12/12/2022] Open
Abstract
Orosomucoid (ORM) is an acute-phase protein that belongs to the immunocalin subfamily, a group of small-molecule-binding proteins with immunomodulatory functions. Little is known about the role of ORM proteins in the CNS. The aim of the present study was to investigate the brain expression of ORM and its role in neuroinflammation. Expression of Orm2, but not Orm1 or Orm3, was highly induced in the mouse brain after systemic injection of lipopolysaccharide (LPS). Plasma levels of ORM2 were also significantly higher in patients with cognitive impairment than in normal subjects. RT-PCR, Western blot, and immunofluorescence analyses revealed that astrocytes are the major cellular sources of ORM2 in the inflamed mouse brain. Recombinant ORM2 protein treatment decreased microglial production of proinflammatory mediators and reduced microglia-mediated neurotoxicity in vitro LPS-induced microglial activation, proinflammatory cytokines in hippocampus, and neuroinflammation-associated cognitive deficits also decreased as a result of intracerebroventricular injection of recombinant ORM2 protein in vivo Moreover, lentiviral shRNA-mediated Orm2 knockdown enhanced LPS-induced proinflammatory cytokine gene expression and microglial activation in the hippocampus. Mechanistically, ORM2 inhibited C-C chemokine ligand 4 (CCL4)-induced microglial migration and activation by blocking the interaction of CCL4 with C-C chemokine receptor type 5. Together, the results from our cultured glial cells, mouse neuroinflammation model, and patient studies suggest that ORM2 is a novel mediator of astrocyte-microglial interaction. We also report that ORM2 exerts anti-inflammatory effects by modulating microglial activation and migration during brain inflammation. ORM2 can be exploited therapeutically for the treatment of neuroinflammatory diseases.SIGNIFICANCE STATEMENT Neural cell interactions are important for brain physiology and pathology. Particularly, the interaction between non-neuronal cells plays a central role in regulating brain inflammation, which is closely linked to many brain disorders. Here, we newly identified orosomucoid-2 (ORM2) as an endogenous protein that mediates such non-neuronal glial cell interactions. Based on the critical role of astrocyte-derived ORM2 in modulating microglia-mediated neuroinflammation, ORM2 can be exploited for the diagnosis, prevention, or treatment of devastating brain disorders that have a strong neuroinflammatory component, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis.
Collapse
|
448
|
Sapkota A, Gaire BP, Cho KS, Jeon SJ, Kwon OW, Jang DS, Kim SY, Ryu JH, Choi JW. Eupatilin exerts neuroprotective effects in mice with transient focal cerebral ischemia by reducing microglial activation. PLoS One 2017; 12:e0171479. [PMID: 28178289 PMCID: PMC5298292 DOI: 10.1371/journal.pone.0171479] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/21/2017] [Indexed: 12/16/2022] Open
Abstract
Microglial activation and its-driven neuroinflammation are characteristic pathogenetic features of neurodiseases, including focal cerebral ischemia. The Artemisia asiatica (Asteraceae) extract and its active component, eupatilin, are well-known to reduce inflammatory responses. But the therapeutic potential of eupatilin against focal cerebral ischemia is not known, along with its anti-inflammatory activities on activated microglia. In this study, we investigated the neuroprotective effect of eupatilin on focal cerebral ischemia through its anti-inflammation, particularly on activated microglia, employing a transient middle cerebral artery occlusion/reperfusion (tMCAO), combined with lipopolysaccharide-stimulated BV2 microglia. Eupatilin exerted anti-inflammatory responses in activated BV2 microglia, in which it reduced secretion of well-known inflammatory markers, including nitrite, IL-6, TNF-α, and PGE2, in a concentration-dependent manner. These observed in vitro effects of eupatilin led to in vivo neuroprotection against focal cerebral ischemia. Oral administration of eupatilin (10 mg/kg) in a therapeutic paradigm significantly reduced brain infarction and improved neurological functions in tMCAO-challenged mice. The same benefit was also observed when eupatilin was given even within 5 hours after MCAO induction. In addition, the neuroprotective effects of a single administration of eupatilin (10 mg/kg) immediately after tMCAO challenge persisted up to 3 days after tMCAO. Eupatilin administration reduced the number of Iba1-immunopositive cells across ischemic brain and induced their morphological changes from amoeboid into ramified in the ischemic core, which was accompanied with reduced microglial proliferation in ischemic brain. Eupatilin suppressed NF-κB signaling activities in ischemic brain by reducing IKKα/β phosphorylation, IκBα phosphorylation, and IκBα degradation. Overall, these data indicate that eupatilin is a neuroprotective agent against focal cerebral ischemia through the reduction of microglial activation.
Collapse
Affiliation(s)
- Arjun Sapkota
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Bhakta Prasad Gaire
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Kyu Suk Cho
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Se Jin Jeon
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Oh Wook Kwon
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Dae Sik Jang
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
- * E-mail:
| |
Collapse
|
449
|
Alvarez-Carbonell D, Garcia-Mesa Y, Milne S, Das B, Dobrowolski C, Rojas R, Karn J. Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells. Retrovirology 2017; 14:9. [PMID: 28166799 PMCID: PMC5294768 DOI: 10.1186/s12977-017-0335-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/19/2017] [Indexed: 01/27/2023] Open
Abstract
Background Multiple toll-like receptors (TLRs) are expressed in cells of the monocytic lineage, including microglia, which constitute the major reservoir for human immunodeficiency virus (HIV) infection in the brain. We hypothesized that TLR receptor mediated responses to inflammatory conditions by microglial cells in the central nervous system (CNS) are able to induce latent HIV proviruses, and contribute to the etiology of HIV-associated neurocognitive disorders. Results Newly developed human microglial cell lines (hµglia), obtained by immortalizing human primary microglia with simian virus-40 (SV40) large T antigen and the human telomerase reverse transcriptase, were used to generate latently infected cells using a single-round HIV virus carrying a green fluorescence protein reporter (hµglia/HIV, clones HC01 and HC69). Treatment of these cells with a panel of TLR ligands showed surprisingly that two potent TLR3 agonists, poly (I:C) and bacterial ribosomal RNA potently reactivated HIV in hμglia/HIV cells. LPS (TLR4 agonist), flagellin (TLR5 agonist), and FSL-1 (TLR6 agonist) reactivated HIV to a lesser extent, while Pam3CSK4 (TLR2/1 agonist) and HKLM (TLR2 agonist) only weakly reversed HIV latency in these cells. While agonists for TLR2/1, 4, 5 and 6 reactivated HIV through transient NF-κB induction, poly (I:C), the TLR3 agonist, did not activate NF-κB, and instead induced the virus by a previously unreported mechanism mediated by IRF3. The selective induction of IRF3 by poly (I:C) was confirmed by chromatin immunoprecipitation (ChIP) analysis. In comparison, in latently infected rat-derived microglial cells (hT-CHME-5/HIV, clone HC14), poly (I:C), LPS and flagellin were only partially active. The TLR response profile in human microglial cells is also distinct from that shown by latently infected monocyte cell lines (THP-1/HIV, clone HA3, U937/HIV, clone HUC5, and SC/HIV, clone HSCC4), where TLR2/1, 4, 5, 6 or 8, but not for TLR3, 7 or 9, reactivated HIV. Conclusions TLR signaling, in particular TLR3 activation, can efficiently reactivate HIV transcription in infected microglia, but not in monocytes or T cells. The unique response profile of microglial cells to TLR3 is fundamental to understanding how the virus responds to continuous microbial exposure, especially during inflammatory episodes, that characterizes HIV infection in the CNS. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0335-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Stephanie Milne
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Biswajit Das
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Roxana Rojas
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA.
| |
Collapse
|
450
|
Mason S. Lactate Shuttles in Neuroenergetics-Homeostasis, Allostasis and Beyond. Front Neurosci 2017; 11:43. [PMID: 28210209 PMCID: PMC5288365 DOI: 10.3389/fnins.2017.00043] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022] Open
Abstract
Understanding brain energy metabolism—neuroenergetics—is becoming increasingly important as it can be identified repeatedly as the source of neurological perturbations. Within the scientific community we are seeing a shift in paradigms from the traditional neurocentric view to that of a more dynamic, integrated one where astrocytes are no longer considered as being just supportive, and activated microglia have a profound influence. Lactate is emerging as the “good guy,” contrasting its classical “bad guy” position in the now superseded medical literature. This review begins with the evolution of the concept of “lactate shuttles”; goes on to the recent shift in ideas regarding normal neuroenergetics (homeostasis)—specifically, the astrocyte–neuron lactate shuttle; and progresses to covering the metabolic implications whereby homeostasis is lost—a state of allostasis, and the function of microglia. The role of lactate, as a substrate and shuttle, is reviewed in light of allostatic stress, and beyond—in an acute state of allostatic stress in terms of physical brain trauma, and reflected upon with respect to persistent stress as allostatic overload—neurodegenerative diseases. Finally, the recently proposed astrocyte–microglia lactate shuttle is discussed in terms of chronic neuroinflammatory infectious diseases, using tuberculous meningitis as an example. The novelty extended by this review is that the directionality of lactate, as shuttles in the brain, in neuropathophysiological states is emerging as crucial in neuroenergetics.
Collapse
Affiliation(s)
- Shayne Mason
- Centre for Human Metabolomics, North-West University Potchefstroom, South Africa
| |
Collapse
|