401
|
Frost GR, Li YM. The role of astrocytes in amyloid production and Alzheimer's disease. Open Biol 2017; 7:170228. [PMID: 29237809 PMCID: PMC5746550 DOI: 10.1098/rsob.170228] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is marked by the presence of extracellular amyloid beta (Aβ) plaques, intracellular neurofibrillary tangles (NFTs) and gliosis, activated glial cells, in the brain. It is thought that Aβ plaques trigger NFT formation, neuronal cell death, neuroinflammation and gliosis and, ultimately, cognitive impairment. There are increased numbers of reactive astrocytes in AD, which surround amyloid plaques and secrete proinflammatory factors and can phagocytize and break down Aβ. It was thought that neuronal cells were the major source of Aβ. However, mounting evidence suggests that astrocytes may play an additional role in AD by secreting significant quantities of Aβ and contributing to overall amyloid burden in the brain. Astrocytes are the most numerous cell type in the brain, and therefore even minor quantities of amyloid secretion from individual astrocytes could prove to be substantial when taken across the whole brain. Reactive astrocytes have increased levels of the three necessary components for Aβ production: amyloid precursor protein, β-secretase (BACE1) and γ-secretase. The identification of environmental factors, such as neuroinflammation, that promote astrocytic Aβ production, could redefine how we think about developing therapeutics for AD.
Collapse
Affiliation(s)
- Georgia R Frost
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Programs of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Programs of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
- Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| |
Collapse
|
402
|
Satomoto M, Sun Z, Adachi YU, Kinoshita H, Makita K. Sevoflurane preconditioning ameliorates lipopolysaccharide-induced cognitive impairment in mice. Exp Anim 2017; 67:193-200. [PMID: 29187700 PMCID: PMC5955751 DOI: 10.1538/expanim.17-0102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Systemic inflammation induces brain neuronal inflammation, in turn causing acute
cognitive disorders. Furthermore, neuronal inflammation is one cause of postoperative
cognitive disorder (POCD) and delirium. However, no sufficiently established
pharmacological treatment is available for neurocognitive inflammation. This study
evaluated the possible neuroprotective effects of preconditioning with sevoflurane
anesthesia on cognition and neuroinflammatory changes in an animal model of
lipopolysaccharide (LPS)-induced systemic inflammation. Adult mice were randomly divided
into (1) control, (2) 2% sevoflurane preconditioning for 1 h, (3) intraperitoneal 5 mg/kg
LPS injection, and (4) 2% sevoflurane preconditioning for 1 h + LPS injection groups. At
24 h after 5 mg/kg LPS injection, microglial activation based on ionized calcium-binding
adapter molecule 1 (Iba-1) expression in the hippocampus was determined using
immunostaining and immunoblotting. IL-1β and IL-6 immunoblotting were used as inflammation
markers, and β-site of amyloid precursor protein cleaving enzyme 1 (BACE1) immunoblotting
was performed to evaluate amyloid β-protein (Aβ) accumulation. Long-term cognitive
impairment was evaluated using fear conditioning tests. Intraperitoneal LPS increased
levels of Iba-1 (150%), inflammation markers (160%), and Aβ accumulation (350%), and
sevoflurane preconditioning suppressed these increases. Systemic LPS caused learning
deficits. Sevoflurane also maintained long-term memory in mice receiving LPS injection.
Sevoflurane preconditioning prevented long-term memory impairment in the mouse model
administered systemic LPS by decreasing excessive microglial activation, inflammation, and
Aβ accumulation. This study supports the hypothesis that sevoflurane preconditioning might
also be beneficial for neuronal inflammation. Sevoflurane might be beneficial for reducing
delirium and POCD.
Collapse
Affiliation(s)
- Maiko Satomoto
- Department of Anesthesiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.,Present address: Department of Anesthesiology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Zhongliang Sun
- Department of Anesthesiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yushi U Adachi
- Department of Anesthesiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hiroyuki Kinoshita
- Department of Anesthesiology, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Nagakute-shi, Aichi 480-1195, Japan
| | - Koshi Makita
- Department of Anesthesiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
403
|
Choi JY, Jang JS, Son DJ, Im HS, Kim JY, Park JE, Choi WR, Han SB, Hong JT. Antarctic Krill Oil Diet Protects against Lipopolysaccharide-Induced Oxidative Stress, Neuroinflammation and Cognitive Impairment. Int J Mol Sci 2017; 18:ijms18122554. [PMID: 29182579 PMCID: PMC5751157 DOI: 10.3390/ijms18122554] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/19/2017] [Accepted: 11/22/2017] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress and neuroinflammation are implicated in the development and pathogenesis of Alzheimer’s disease (AD). Here, we investigated the anti-inflammatory and antioxidative effects of krill oil. Oil from Euphausia superba (Antarctic krill), an Antarctic marine species, is rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We examined whether krill oil diet (80 mg/kg/day for one month) prevents amyloidogenesis and cognitive impairment induced by intraperitoneal lipopolysaccharide (LPS) (250 µg/kg, seven times daily) injections in AD mice model and found that krill oil treatment inhibited the LPS-induced memory loss. We also found that krill oil treatment inhibited the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and decreased reactive oxygen species (ROS) and malondialdehyde levels. Krill oil also suppresses IκB degradation as well as p50 and p65 translocation into the nuclei of LPS-injected mice brain cells. In association with the inhibitory effect on neuroinflammation and oxidative stress, krill oil suppressed amyloid beta (1–42) peptide generation by the down-regulating APP and BACE1 expression in vivo. We found that eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (50 and 100 µM) dose-dependently decreased LPS-induced nitric oxide and ROS generation, and COX-2 and iNOS expression as well as nuclear factor-κB activity in cultured microglial BV-2 cells. These results suggest that krill oil ameliorated impairment via anti-inflammatory, antioxidative, and anti-amyloidogenic mechanisms.
Collapse
Affiliation(s)
- Ji Yeon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| | - Jun Sung Jang
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| | - Hyung-Sik Im
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| | - Ji Yeong Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| | - Joung Eun Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| | - Won Rak Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| |
Collapse
|
404
|
Lactobacilli-fermented cow's milk attenuated lipopolysaccharide-induced neuroinflammation and memory impairment in vitro and in vivo. J DAIRY RES 2017; 84:488-495. [DOI: 10.1017/s0022029917000620] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nutritional interventions are now recommended as strategies to delay Alzheimer's disease (AD) progression. The present study evaluated the neuroprotective effect (anti-inflammation) of lactic acid bacteria (either Lactobacillus fermentum LAB9 or L. casei LABPC) fermented cow's milk (CM) against lipopolysaccharide (LPS)-activated microglial BV2 cells in vitro. The ability of CM-LAB in attenuating memory deficit in LPS-induced mice was also investigated. ICR mice were orally administered with CM-LAB for 28 d before induction of neuroinflammation by LPS. Learning and memory behaviour were assessed using the Morris Water Maze Test. Brain tissues were homogenised for measurement of acetylcholinesterase (AChE), antioxidative, lipid peroxidation (malondialdehyde (MDA)) and nitrosative stress (NO) parameters. Serum was collected for cytokine analysis. CM-LAB9 and CM-LABPC significantly (P < 0·05) decreased NO level but did not affect CD40 expression in vitro. CM-LAB attenuated LPS-induced memory deficit in mice. This was accompanied by significant (P < 0·05) increment of antioxidants (SOD, GSH, GPx) and reduction of MDA, AChE and also pro-inflammatory cytokines. Unfermented cow's milk (UCM) yielded greater cytokine lowering effect than CM-LAB. The present findings suggest that attenuation of LPS-induced neuroinflamation and memory deficit by CM-LAB could be mediated via anti-inflammation through inhibition of AChE and antioxidative activities.
Collapse
|
405
|
Hooper C, De Souto Barreto P, Coley N, Cesari M, Payoux P, Salabert AS, Andrieu S, Vellas B. Cross-sectional Associations of Fatigue with Cerebral β-Amyloid in Older Adults at Risk of Dementia. Front Med (Lausanne) 2017; 4:173. [PMID: 29164115 PMCID: PMC5681742 DOI: 10.3389/fmed.2017.00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/29/2017] [Indexed: 01/08/2023] Open
Abstract
Fatigue is a common symptom in the elderly and has also been associated with impaired cognition in older adults. Hence, we sought to explore the cross-sectional relationship between fatigue and cerebral β-amyloid (Aβ) in 269 elderly individuals reporting subjective memory complaints from the Multidomain Alzheimer Preventive Trial. Standard uptake value ratios (SUVRs) were generated by [18F] florbetapir positron emission tomography (PET) using the cerebellum as a reference. Cortical-to-cerebellar SUVRs (cortical-SUVRs) were obtained using the mean signal from the frontal cortex, temporal cortex, parietal cortex, precuneus, anterior cingulate, and posterior cingulate. Other brain regions independently assessed were the anterior cingulate, anterior putamen, caudate, hippocampus, medial orbitofrontal cortex, occipital cortex, parietal cortex, pons, posterior cingulate, posterior putamen, precuneus, semioval center, and temporal cortex. Fatigue was defined according to two questions retrieved from the Center for Epidemiological Studies-Depression scale. Chronic fatigue was defined as meeting fatigue criteria at two consecutive clinical visits 6 months apart between study baseline and 1 year (visits were performed at baseline, 6 months and 1 year then annually). Cross-sectional associations between fatigue variables and cerebral Aβ were explored using fully adjusted multiple linear regression models. We found no statistically significant cross-sectional associations between fatigue assessed at the clinical visit closest to PET and Aβ in any brain region. Similarly, chronic fatigue was not significantly associated with Aβ load. Sensitivity analysis in subjects with a Clinical Dementia Rating of 0.5 showed that fatigue reported at the clinical visit closest to PET was, however, weakly associated with increased Aβ in the hippocampus (B-coefficient: 0.07, 95% CI: 0.01, 0.12, p = 0.016). These preliminary results suggest that fatigue might be associated with Aβ in brain regions associated with Alzheimer’s disease in subjects in the early stages of disease.
Collapse
Affiliation(s)
- Claudie Hooper
- Gérontopôle, Department of Geriatrics, CHU Toulouse, Purpan University Hospital, Toulouse, France
| | - Philipe De Souto Barreto
- Gérontopôle, Department of Geriatrics, CHU Toulouse, Purpan University Hospital, Toulouse, France.,UMR1027 INSERM, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Nicola Coley
- UMR1027 INSERM, Université de Toulouse III Paul Sabatier, Toulouse, France.,Department of Epidemiology and Public Health, CHU Toulouse, Toulouse, France
| | - Matteo Cesari
- Gérontopôle, Department of Geriatrics, CHU Toulouse, Purpan University Hospital, Toulouse, France.,UMR1027 INSERM, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Pierre Payoux
- UMR 1214, Toulouse Neuroimaging Center, University of Toulouse III, Toulouse, France.,Department of Nuclear Medicine, CHU Toulouse, Toulouse, France
| | - Anne Sophie Salabert
- UMR 1214, Toulouse Neuroimaging Center, University of Toulouse III, Toulouse, France.,Department of Nuclear Medicine, CHU Toulouse, Toulouse, France
| | - Sandrine Andrieu
- Gérontopôle, Department of Geriatrics, CHU Toulouse, Purpan University Hospital, Toulouse, France.,UMR1027 INSERM, Université de Toulouse III Paul Sabatier, Toulouse, France.,Department of Epidemiology and Public Health, CHU Toulouse, Toulouse, France
| | - Bruno Vellas
- Gérontopôle, Department of Geriatrics, CHU Toulouse, Purpan University Hospital, Toulouse, France.,UMR1027 INSERM, Université de Toulouse III Paul Sabatier, Toulouse, France
| | | |
Collapse
|
406
|
Periodontitis induced by bacterial infection exacerbates features of Alzheimer's disease in transgenic mice. NPJ Aging Mech Dis 2017; 3:15. [PMID: 29134111 PMCID: PMC5673943 DOI: 10.1038/s41514-017-0015-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/04/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is a localized infectious disease caused by periodontopathic bacteria, such as Porphyromonas gingivalis. Recently, it has been suggested that bacterial infections may contribute to the onset and the progression of Alzheimer’s disease (AD). However, we do not have any evidence about a causative relationship between periodontitis and AD. In this study, we investigated by using a transgenic mouse model of AD whether periodontitis evoked by P. gingivalis modulates the pathological features of AD. Cognitive function was significantly impaired in periodontitis-induced APP-Tg mice, compared to that in control APP-Tg mice. Levels of Amiloid β (Aβ) deposition, Aβ40, and Aβ42 in both the hippocampus and cortex were higher in inoculated APP-Tg mice than in control APP-Tg mice. Furthermore, levels of IL-1β and TNF-α in the brain were higher in inoculated mice than in control mice. The levels of LPS were increased in the serum and brain of P. gingivalis-inoculated mice. P. gingivalis LPS-induced production of Aβ40 and Aβ42 in neural cell cultures and strongly enhanced TNF-α and IL-1β production in a culture of microglial cells primed with Aβ. Periodontitis evoked by P. gingivalis may exacerbate brain Aβ deposition, leading to enhanced cognitive impairments, by a mechanism that involves triggering brain inflammation. Alzheimer’s disease is a scourge of longevity that will drain enormous resources from health budgets in the future. Unfortunately, the pathogenesis of the disease remains an enigma and there is no adequate treatment or prophylaxis for the disease. One key priority is to examine the modifiable risk factors that influence the development of dementia. A risk factor relationship between periodontal pathogens/periodontal disease and AD exists. In Alzheimer’s model mice infected with Porphromonas gingivalis, a type of periodontopathic bacterium, cognitive function was reduced and deposition of amyloid β peptide was increased. Moreover, inflammatory cytokines and bacterial endotoxin were increased in the serum and brain. Neuroinflammation may be caused by an increase in these inflammatory mediators, and the pathology of Alzheimer’s disease may be exacerbated. Since periodontal infections are treatable, treatment of periodontal diseases during this period may be effective for delaying the onset or progression of AD.
Collapse
|
407
|
Tripathi A, Paliwal P, Krishnamurthy S. Piracetam Attenuates LPS-Induced Neuroinflammation and Cognitive Impairment in Rats. Cell Mol Neurobiol 2017; 37:1373-1386. [PMID: 28176051 PMCID: PMC11482115 DOI: 10.1007/s10571-017-0468-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
Abstract
The present study was performed to investigate the effect of piracetam on neuroinflammation induced by lipopolysaccharide (LPS) and resulting changes in cognitive behavior. Neuroinflammation was induced by a single dose of LPS solution infused into each of the lateral cerebral ventricles in concentrations of 1 μg/μl, at a rate of 1 μl/min over a 5-min period, with a 5-min waiting period between the two infusions. Piracetam in doses of 50, 100, and 200 mg/kg i.p. was administered 30 min before LPS infusion and continued for 9 days. On ninth day, the behavioral test for memory and anxiety was done followed by blood collection and microdissection of the hippocampus (HIP) and prefrontal cortex brain regions. Piracetam attenuated the LPS-induced decrease in coping strategy to novel environment indicating anxiolytic activity. It also reversed the LPS-induced changes in the known arm and novel arm entries in the Y-maze test indicating amelioration of spatial memory impairment. Further, piracetam moderated LPS-induced decrease in the mitochondrial complex enzyme activities (I, II, IV, and V) and mitochondrial membrane potential. It ameliorated changes in hippocampal lipid peroxidation and nitrite levels including the activity of superoxide dismutase. Piracetam region specifically ameliorated LPS-induced increase in the level of IL-6 in HIP indicating anti-neuroinflammatory effect. Further, piracetam reduced HIP Aβ (1-40) and increased blood Aβ level suggesting efflux of Aβ from HIP to blood. Therefore, the present study indicates preclinical evidence for the use of piracetam in the treatment of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Alok Tripathi
- Neurotherapeutics Laboratory, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P., 221 005, India
| | - Pankaj Paliwal
- Neurotherapeutics Laboratory, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P., 221 005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P., 221 005, India.
| |
Collapse
|
408
|
Sundman MH, Chen NK, Subbian V, Chou YH. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun 2017; 66:31-44. [PMID: 28526435 DOI: 10.1016/j.bbi.2017.05.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
As head injuries and their sequelae have become an increasingly salient matter of public health, experts in the field have made great progress elucidating the biological processes occurring within the brain at the moment of injury and throughout the recovery thereafter. Given the extraordinary rate at which our collective knowledge of neurotrauma has grown, new insights may be revealed by examining the existing literature across disciplines with a new perspective. This article will aim to expand the scope of this rapidly evolving field of research beyond the confines of the central nervous system (CNS). Specifically, we will examine the extent to which the bidirectional influence of the gut-brain axis modulates the complex biological processes occurring at the time of traumatic brain injury (TBI) and over the days, months, and years that follow. In addition to local enteric signals originating in the gut, it is well accepted that gastrointestinal (GI) physiology is highly regulated by innervation from the CNS. Conversely, emerging data suggests that the function and health of the CNS is modulated by the interaction between 1) neurotransmitters, immune signaling, hormones, and neuropeptides produced in the gut, 2) the composition of the gut microbiota, and 3) integrity of the intestinal wall serving as a barrier to the external environment. Specific to TBI, existing pre-clinical data indicates that head injuries can cause structural and functional damage to the GI tract, but research directly investigating the neuronal consequences of this intestinal damage is lacking. Despite this void, the proposed mechanisms emanating from a damaged gut are closely implicated in the inflammatory processes known to promote neuropathology in the brain following TBI, which suggests the gut-brain axis may be a therapeutic target to reduce the risk of Chronic Traumatic Encephalopathy and other neurodegenerative diseases following TBI. To better appreciate how various peripheral influences are implicated in the health of the CNS following TBI, this paper will also review the secondary biological injury mechanisms and the dynamic pathophysiological response to neurotrauma. Together, this review article will attempt to connect the dots to reveal novel insights into the bidirectional influence of the gut-brain axis and propose a conceptual model relevant to the recovery from TBI and subsequent risk for future neurological conditions.
Collapse
Affiliation(s)
- Mark H Sundman
- Department of Psychology, University of Arizona, Tucson, AZ, USA.
| | - Nan-Kuei Chen
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Vignesh Subbian
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, USA
| | - Ying-Hui Chou
- Department of Psychology, University of Arizona, Tucson, AZ, USA; Cognitive Science Program, University of Arizona, Tucson, AZ, USA; Arizona Center on Aging, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
409
|
Fahrenhold M, Rakic S, Classey J, Brayne C, Ince PG, Nicoll JAR, Boche D. TREM2 expression in the human brain: a marker of monocyte recruitment? Brain Pathol 2017; 28:595-602. [PMID: 28987033 PMCID: PMC6221091 DOI: 10.1111/bpa.12564] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/02/2017] [Indexed: 01/04/2023] Open
Abstract
Mutation in the triggering receptor expressed on myeloid cells (TREM) 2 gene has been identified as a risk factor for several neurodegenerative diseases including Alzheimer's disease (AD). Experimental studies using animal models of AD have highlighted a number of functions associated with TREM2 and its expression by microglial cells. It has therefore been assumed that this is also the case in humans. However, there is very limited information concerning the cellular expression of TREM2 in the human brain. As part of investigations of microglia using post‐mortem resources provided by the Medical Research Council Cognitive Function and Ageing Studies (MRC‐CFAS), we immunostained the cerebral cortex of 299 participants for TREM2 using the Sigma antibody HPA010917 and compared with the macrophage/microglial markers Iba1 and CD68. As expected, Iba1 and CD68 labeled microglia and perivascular macrophages. However, in most cases (284/299), the TREM2 antibody labelled monocytes within vascular lumens, but not microglia or perivascular macrophages. In contrast, in 5 out of 6 cases with acute infarcts, TREM2 immunoreaction identified cells within the brain parenchyma interpreted as recruited monocytes. Six cases with old infarcts contained phagocytic foamy macrophages which were CD68‐positive but TREM2 negative. Our observations, using the HPA010917 anti‐TREM2 antibody, suggest that TREM2 is not expressed by microglia but instead seems to be a marker of recruited monocytes in the human brain. This finding has implications with regards to the role of TREM2 as a risk factor, emphasizing the importance of systemic immune responses in the development and progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Marie Fahrenhold
- Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Sonja Rakic
- Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - John Classey
- Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Carol Brayne
- Cambridge Institute of Public Health, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, Sheffield University, Sheffield, S10 2HQ, UK
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.,Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, Southampton SO16 6YD, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | | |
Collapse
|
410
|
Choi JY, Hwang CJ, Lee DY, Gu SM, Lee HP, Choi DY, Oh KW, Han SB, Hong JT. (E)-2-Methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) Phenol Ameliorates LPS-Mediated Memory Impairment by Inhibition of STAT3 Pathway. Neuromolecular Med 2017; 19:555-570. [PMID: 29052076 PMCID: PMC5683055 DOI: 10.1007/s12017-017-8469-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
Abstract
Alzheimer’s disease (AD) is pathologically characterized by an excessive accumulation of amyloid-beta (Aβ) fibrils within the brain. We tested the anti-inflammatory and anti-amyloidogenic effects of (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP), a selective signal transducer and activator of transcription 3 (STAT3) inhibitor. We examined whether MMPP (5 mg/kg in drinking water for 1 month) prevents amyloidogenesis and cognitive impairment on AD model mice induced by intraperitoneal LPS (250 μg/kg daily 7 times) injections. Additionally, we investigated the anti-neuroinflammatory and anti-amyloidogenic effect of MMPP (1, 5, and 10 μg/mL) in LPS (1 μg/mL)-treated cultured astrocytes and microglial BV-2 cells. MMPP treatment reduced LPS-induced memory loss. This memory recovery effect was associated with the reduction of LPS-induced inflammatory proteins; cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as activation of microglial cells and astrocytes in the brain. Furthermore, MMPP reduced LPS-induced β-secretase and Aβ generation. In in vitro study, LPS-induced expression of inflammatory proteins and amyloidogenic proteins was decreased in microglial BV-2 cells and cultured astrocytes by MMPP treatment. Moreover, MMPP treatment suppressed DNA binding activities of the activation of STAT3 in in vivo and in vitro. These results indicated that MMPP inhibits LPS-induced amyloidogenesis and neuroinflammation via inhibition of STAT3.
Collapse
Affiliation(s)
- Ji Yeon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Do Yeon Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Sun Mi Gu
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Dong Young Choi
- College of Pharmacy, Yeungnam University, 280, Daehak-ro, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Ki Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
411
|
Teixeira FB, Saito MT, Matheus FC, Prediger RD, Yamada ES, Maia CSF, Lima RR. Periodontitis and Alzheimer's Disease: A Possible Comorbidity between Oral Chronic Inflammatory Condition and Neuroinflammation. Front Aging Neurosci 2017; 9:327. [PMID: 29085294 PMCID: PMC5649154 DOI: 10.3389/fnagi.2017.00327] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022] Open
Abstract
Periodontitis is an oral chronic infection/inflammatory condition, identified as a source of mediators of inflammation into the blood circulation, which may contribute to exacerbate several diseases. There is increasing evidence that inflammation plays a key role in the pathophysiology of Alzheimer’s disease (AD). Although inflammation is present in both diseases, the exact mechanisms and crosslinks between periodontitis and AD are poorly understood. Therefore, this article aims to review possible comorbidity between periodontitis and AD. Here, the authors discuss the inflammatory aspects of periodontitis, how this oral condition produces a systemic inflammation and, finally, the contribution of this systemic inflammation for worsening neuroinflammation in the progression of AD.
Collapse
Affiliation(s)
- Francisco B Teixeira
- Institute of Biological Science, Federal University of Pará, Belém, Brazil.,College of Medicine, Federal University of Pará, Altamira, Brazil
| | - Miki T Saito
- Dental School, Brazil-Amazon Integrated Faculty, Belém, Brazil
| | - Filipe C Matheus
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rui D Prediger
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Elizabeth S Yamada
- Institute of Biological Science, Federal University of Pará, Belém, Brazil
| | | | - Rafael R Lima
- Institute of Biological Science, Federal University of Pará, Belém, Brazil
| |
Collapse
|
412
|
Soualeh N, Soulimani R, Bouayed J. Hippocampal-dependent memory deficit induced by perinatal exposure to polutted eels in middle-aged offspring mice: Sex differential effects. Toxicol Lett 2017; 280:247-258. [PMID: 28847518 DOI: 10.1016/j.toxlet.2017.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 01/11/2023]
Abstract
The effects of perinatal exposure to low, intermediate, or highly polluted eels on neonatal, postnatal, adult and middle-aged brain inflammation, and on cognitive performances of middle-aged offspring mice were compared to those of offspring controls. Inflammatory markers in microglia were assessed in offspring on the postnatal days-PNDs 1, 21, 100 and 330. Activated p38MAPK, ERK-1/2 and p65, and acetylcholine levels were assessed in the middle-aged hippocampus. Plasma myeloperoxidase and corticosterone levels were evaluated at PND 330. Learning and its retention, and working memory in middle-aged offspring were assessed using the Morris water maze, and Y-maze. Our results showed enhanced microglia production of inflammatory markers across the lifespan of male as well as female exposed offspring. Inflammation and increased p38 MAPK activation were detected in the exposed middle-aged hippocampus of both exposed sexes. Significant levels of MPO, but not corticosterone, were found in middle-aged males and females perinatally exposed to eels. However, decreases in ERK1/2 and p65 activation, and acetylcholine levels were only detected in female hippocampus exposed to either intermediately or highly polluted eels. Sex selective effects were also detected with regard to memory, the only altered cognitive function. Thus, middle-aged females, but not males, perinatally exposed to either intermediately or highly polluted eels take longer to locate the escape platform, spend considerably less time in the platform and perform less visit to the platform in the retention test. Our results suggest perinatal programming of hippocampal-dependent memory deficit by inflammation in middle-aged offspring, in sex and dose dependent manner.
Collapse
Affiliation(s)
- Nidhal Soualeh
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France
| | - Rachid Soulimani
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France
| | - Jaouad Bouayed
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France.
| |
Collapse
|
413
|
Wu Z, Ni J, Liu Y, Teeling JL, Takayama F, Collcutt A, Ibbett P, Nakanishi H. Cathepsin B plays a critical role in inducing Alzheimer's disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice. Brain Behav Immun 2017; 65:350-361. [PMID: 28610747 DOI: 10.1016/j.bbi.2017.06.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
A number of clinical and experimental studies have revealed a strong association between periodontitis and accelerated cognitive decline in Alzheimer's disease (AD); however, the mechanism of the association is unknown. In the present study, we tested the hypothesis that cathepsin (Cat) B plays a critical role in the initiation of neuroinflammation and neural dysfunction following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis (PgLPS) in mice (1mg/kg, daily, intraperitoneally). Young (2months old) and middle-aged (12months old) wild-type (WT; C57BL/6N) or CatB-deficient (CatB-/-) mice were exposed to PgLPS daily for 5 consecutive weeks. The learning and memory function were assessed using the passive avoidance test, and the expression of amyloid precursor protein (APP), CatB, TLR2 and IL-1β was analyzed in brain tissues by immunohistochemistry and Western blotting. We found that chronic systemic exposure to PgLPS for five consecutive weeks induced learning and memory deficits with the intracellular accumulation of Aβ in neurons in the middle-aged WT mice, but not in young WT or middle-aged CatB-/- mice. PgLPS significantly increased the expression of CatB in both microglia and neurons in middle-aged WT mice, while increased expression of mature IL-1β and TLR2 was restricted to microglia in the hippocampus of middle-aged WT mice, but not in that of the middle-aged CatB-/- ones. In in vitro studies, PgLPS (1µg/ml) stimulation upregulated the mean mRNA expression of IL-1β, TLR2 and downregulated the protein levels of IκBα in the cultured MG6 microglia as well as in the primary microglia from WT mice, which were significantly inhibited by the CatB-specific inhibitor CA-074Me as well as by the primary microglia from CatB-/- mice. Furthermore, the mean mRNA expression of APP and CatB were significantly increased in the primary cultured hippocampal neurons after treatment with conditioned medium from PgLPS-treated WT primary microglia, but not after treatment with conditioned medium neutralized with anti-IL-1beta, and not after treatment with conditioned medium from PgLPS-treated CatB-/- primary microglia or with PgLPS directly. Taken together, these findings indicate that chronic systemic exposure to PgLPS induces AD-like phenotypes, including microglia-mediated neuroinflammation, intracellular Aβ accumulation in neurons and impairment of the learning and memory functions in the middle-aged mice in a CatB-dependent manner. We propose that CatB may be a therapeutic target for preventing periodontitis-associated cognitive decline in AD.
Collapse
Affiliation(s)
- Zhou Wu
- Department of Aging Science and Pharmacology, Kyushu University, Japan; OBT Research Center, Faculty of Dental Science, Kyushu University, Japan.
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Kyushu University, Japan
| | - Yicong Liu
- Department of Aging Science and Pharmacology, Kyushu University, Japan
| | - Jessica L Teeling
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom
| | - Fumiko Takayama
- Department of Aging Science and Pharmacology, Kyushu University, Japan
| | - Alex Collcutt
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom
| | - Paul Ibbett
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom
| | - Hiroshi Nakanishi
- Department of Aging Science and Pharmacology, Kyushu University, Japan
| |
Collapse
|
414
|
Dolatabadi HRD, Zarrindast MR, Reisi P, Nasehi M. The Effects of Pentoxifylline on Serum Levels of Interleukin 10 and Interferon Gamma and Memory Function in Lipopolysaccharide-induced Inflammation in Rats. Adv Biomed Res 2017; 6:110. [PMID: 28904938 PMCID: PMC5590393 DOI: 10.4103/abr.abr_49_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Studies have shown that pentoxifylline (PTX) in addition to protective effects on blood vessels probably has positive influence against the brain inflammation. Therefore, the aim of this study was to evaluate the effects of PTX on serum levels of interleukin 10 (IL-10) and interferon gamma (IFN-γ) and passive avoidance learning in lipopolysaccharide (LPS)-induced inflammation in rats. MATERIALS AND METHODS Inflammation was induced by intraperitoneal (i.p.) injection of LPS (0.5 and 5 mg/kg) in male Wistar rats. After a week, PTX (25 mg/kg; i.p.) was injected for 14 days. Passive avoidance learning test was used for evaluation of learning and memory. Serum levels of cytokines were measured by enzyme-linked immunosorbent assay. RESULTS The behavioral results did not show any significant effect of LPS and PTX on learning and memory. Both doses of LPS (0.5 and 5 mg/kg) decreased IL-10 significantly (P < 0.05). PTX prevented this reduction just in the LPS 0.5 mg/kg + PTX 25 mg/kg group. Serum level of IFN-γ was increased only in the LPS 0.5 mg/kg + PTX 25 mg/kg group comparing to the LPS 0.5 mg/kg group (P < 0.05). CONCLUSIONS The results showed that LPS-induced inflammation decreased the serum levels of IL-10. PTX could prevent these decreases only in mild inflammation. Both PTX and LPS-induced inflammation had no significant effects on learning and memory; therefore, their effects on CNS require further study.
Collapse
Affiliation(s)
| | - Mohammad Reza Zarrindast
- Institute for Cognitive Science Studies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
415
|
Paeschke N, von Haefen C, Endesfelder S, Sifringer M, Spies CD. Dexmedetomidine Prevents Lipopolysaccharide-Induced MicroRNA Expression in the Adult Rat Brain. Int J Mol Sci 2017; 18:ijms18091830. [PMID: 28832497 PMCID: PMC5618479 DOI: 10.3390/ijms18091830] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022] Open
Abstract
During surgery or infection, peripheral inflammation can lead to neuroinflammation, which is associated with cognitive impairment, neurodegeneration, and several neurodegenerative diseases. Dexmedetomidine, an α-2-adrenoceptor agonist, is known to exert anti-inflammatory and neuroprotective properties and reduces the incidence of postoperative cognitive impairments. However, on the whole the molecular mechanisms are poorly understood. This study aims to explore whether dexmedetomidine influences microRNAs (miRNAs) in a rat model of lipopolysaccharide (LPS)-induced neuroinflammation. Adult Wistar rats were injected with 1 mg/kg LPS intraperitoneal (i.p.) in the presence or absence of 5 µg/kg dexmedetomidine. After 6 h, 24 h, and 7 days, gene expressions of interleukin 1-β (IL1-β), tumor necrosis factor-α (TNF-α), and microRNA expressions of miR 124, 132, 134, and 155 were measured in the hippocampus, cortex, and plasma. Dexmedetomidine decreased the LPS-induced neuroinflammation in the hippocampus and cortex via significant reduction of the IL1-β and TNF-α gene expressions after 24 h. Moreover, the LPS-mediated increased expressions of miR 124, 132, 134, and 155 were significantly decreased after dexmedetomidine treatment in both brain regions. In plasma, dexmedetomidine significantly reduced LPS-induced miR 155 after 6 h. Furthermore, there is evidence that miR 132 and 134 may be suitable as potential biomarkers for the detection of neuroinflammation.
Collapse
Affiliation(s)
- Nadine Paeschke
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Clarissa von Haefen
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Marco Sifringer
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Claudia D Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
416
|
Walker Ii WH, Borniger JC, Surbhi, Zalenski AA, Muscarella SL, Fitzgerald JA, Zhang N, Gaudier-Diaz MM, DeVries AC. Mammary Tumors Induce Central Pro-inflammatory Cytokine Expression, but Not Behavioral Deficits in Balb/C Mice. Sci Rep 2017; 7:8152. [PMID: 28811490 PMCID: PMC5557981 DOI: 10.1038/s41598-017-07596-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/29/2017] [Indexed: 11/08/2022] Open
Abstract
Breast cancer survivors are more likely to develop mood disorders and cognitive deficits than women in the general population. Previous studies suggest that peripheral tumors elicit central pro-inflammatory cytokine production, in turn leading to depression and cognitive deficits. In the current study, two cohorts of female Balb/C mice received bilateral orthotopic injections of syngeneic 67NR, 4T07, or 4T1cells (1 × 105 cells per injection) to induce mammary tumors. Approximately three weeks later, learned fear (via fear conditioning) or depressive-like behavior (via tail suspension and forced swim test) was assessed. Proinflammatory cytokine levels were increased in the serum (IL-1β, TNFα, IFNγ) and livers (IL-1β, IL-6, TNFα) of mice with 4T07 or 4T1 tumors compared to 67NR tumors and the vehicle control. IL-1β was increased in both the hippocampus and cortex of mice injected with 4T07 or 4T1 cell lines relative to the other treatment groups. However, mammary tumors had no effect on hippocampal doublecortin + and did not alter depressive-like behavior or learned fear. These data demonstrate that similarly sized tumors can produce differential immune responses and that tumor-induced central pro-inflammatory cytokine production can exist in the absence of depressive-like behavior or cognitive deficits.
Collapse
Affiliation(s)
- William H Walker Ii
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA.
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA.
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA.
| | - Jeremy C Borniger
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
| | - Surbhi
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
| | - Abigail A Zalenski
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
| | - Stevie L Muscarella
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
| | - Julie A Fitzgerald
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
| | - Ning Zhang
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
| | - Monica M Gaudier-Diaz
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
| | - A Courtney DeVries
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Neuroscience Research Institute, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
- Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, 460W 12th Ave., Columbus, OH, 43210, USA
| |
Collapse
|
417
|
Innate Immunity Stimulation via Toll-Like Receptor 9 Ameliorates Vascular Amyloid Pathology in Tg-SwDI Mice with Associated Cognitive Benefits. J Neurosci 2017; 37:936-959. [PMID: 28123027 DOI: 10.1523/jneurosci.1967-16.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of parenchymal amyloid-β (Aβ) plaques, cerebral amyloid angiopathy (CAA) and neurofibrillary tangles. Currently there are no effective treatments for AD. Immunotherapeutic approaches under development are hampered by complications related to ineffectual clearance of CAA. Genome-wide association studies have demonstrated the importance of microglia in AD pathogenesis. Microglia are the primary innate immune cells of the brain. Depending on their activation state and environment, microglia can be beneficial or detrimental. In our prior work, we showed that stimulation of innate immunity with Toll-like receptor 9 agonist, class B CpG (cytosine-phosphate-guanine) oligodeoxynucleotides (ODNs), can reduce amyloid and tau pathologies without causing toxicity in Tg2576 and 3xTg-AD mouse models. However, these transgenic mice have relatively little CAA. In the current study, we evaluated the therapeutic profile of CpG ODN in a triple transgenic mouse model, Tg-SwDI, with abundant vascular amyloid, in association with low levels of parenchymal amyloid deposits. Peripheral administration of CpG ODN, both before and after the development of CAA, negated short-term memory deficits, as assessed by object-recognition tests, and was effective at improving spatial and working memory evaluated using a radial arm maze. These findings were associated with significant reductions of CAA pathology lacking adverse effects. Together, our extensive evidence suggests that this innovative immunomodulation may be a safe approach to ameliorate all hallmarks of AD pathology, supporting the potential clinical applicability of CpG ODN. SIGNIFICANCE STATEMENT Recent genetic studies have underscored the emerging role of microglia in Alzheimer's disease (AD) pathogenesis. Microglia lose their amyloid-β-clearing capabilities with age and as AD progresses. Therefore, the ability to modulate microglia profiles offers a promising therapeutic avenue for reducing AD pathology. Current immunotherapeutic approaches have been limited by poor clearance of a core AD lesion, cerebral amyloid angiopathy (CAA). The present study used Tg-SwDI mice, which have extensive CAA. We found that stimulation of the innate immune system and microglia/macrophage activation via Toll-like receptor 9 using CpG (cytosine-phosphate-guanine) oligodeoxynucleotides (ODNs) leads to cognitive improvements and CAA reduction, without associated toxicity. Our data indicate that this novel concept of immunomodulation represents a safer method to reduce all aspects of AD pathology and provide essential information for potential clinical use of CpG ODN.
Collapse
|
418
|
Wang X, Li M, Cao Y, Wang J, Zhang H, Zhou X, Li Q, Wang L. Tenuigenin inhibits LPS-induced inflammatory responses in microglia via activating the Nrf2-mediated HO-1 signaling pathway. Eur J Pharmacol 2017; 809:196-202. [DOI: 10.1016/j.ejphar.2017.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
|
419
|
Repeated daily administration of increasing doses of lipopolysaccharide provides a model of sustained inflammation-induced depressive-like behaviour in mice that is independent of the NLRP3 inflammasome. Behav Brain Res 2017; 352:99-108. [PMID: 28760701 DOI: 10.1016/j.bbr.2017.07.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/28/2017] [Accepted: 07/27/2017] [Indexed: 12/16/2022]
Abstract
Mounting preclinical evidence has implicated the NLRP3 inflammasome in depression-related behaviours elicited by chronic stress or acute lipopolysaccharide (LPS) challenge. However, the relevance of acute LPS as a model of depression has been questioned and behavioural time-courses of its effects can be inconsistent. The aims of this study were (1) to develop a novel protocol for repeated daily LPS administration and (2) to use this model to assess the involvement of NLRP3 inflammasome signalling in sustained inflammation-induced depressive-like behaviour in adult C57BL/6J mice deficient in NLRP3. Acute LPS (0.83mg/kg; i.p.) induced sickness behaviour evident as hypolocomotor activity. However, there was no significant increase in depressive-like behaviour in the forced swim test 24h post-administration. Interestingly, depressive-like behaviours were observed in the female urine sniffing test and in the sucrose preference test at 24h, but not 48h, post-administration of acute LPS. To mimic a period of sustained inflammation, 3-day repeated increasing LPS doses (0.1, 0.42 and 0.83mg/kg; i.p.) was compared to constant LPS doses (0.83mg/kg; i.p.). Sickness behaviour was seen in response to increasing doses, but tolerance developed to repeated constant doses of LPS. Furthermore, 3-day increasing doses of LPS resulted in a significant increase in immobility time in the forced swim test, consistent with depressive-like behaviour. When NLRP3-/- mice received this 3-day increasing dose regimen of LPS, sickness behaviours were attenuated compared to wild-type mice. The behaviour in the forced swim test was not significantly altered in NLRP3-/- mice. We propose that this increasing repeated dosing LPS model of inflammation-induced depressive-like behaviour may better model the sustained inflammation observed in depression and may provide a more translationally relevant paradigm to study the inflammatory mechanisms that contribute to depression.
Collapse
|
420
|
Shamim D, Laskowski M. Inhibition of Inflammation Mediated Through the Tumor Necrosis Factor α Biochemical Pathway Can Lead to Favorable Outcomes in Alzheimer Disease. J Cent Nerv Syst Dis 2017; 9:1179573517722512. [PMID: 28811745 PMCID: PMC5536370 DOI: 10.1177/1179573517722512] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 06/25/2017] [Indexed: 11/17/2022] Open
Abstract
Tumor necrosis factor α (TNF-α) inhibitors have long been used as disease-modifying agents in immune disorders. Recently, research has shown a role of chronic neuroinflammation in the pathophysiology of neurodegenerative diseases such as Alzheimer disease, and interest has been generated in the use of anti-TNF agents and TNF-modulating agents for prevention and treatment. This article extensively reviewed literature on animal studies testing these agents. The results showed a role for direct and indirect TNF-α inhibition through agents such as thalidomide, 3,6-dithiothalidomide, etanercept, infliximab, exendin-4, sodium hydrosulfide, minocycline, imipramine, and atorvastatin. Studies were performed on mice, rats, and monkeys, with induction of neurodegenerative physiology either through the use of chemical agents or through the use of transgenic animals. Most of these agents showed an improvement in cognitive function as tested with the Morris water maze, and immunohistochemical and histopathological staining studies consistently showed better outcomes with these agents. Brains of treated animals showed significant reduction in pro-inflammatory TNF-α and reduced the burden of neurofibrillary tangles, amyloid precursor protein, and β-amyloid plaques. Also, recruitment of microglial cells in the central nervous system was significantly reduced through these drugs. These studies provide a clearer mechanistic understanding of the role of TNF-α modulation in Alzheimer disease. All studies in this review explored the use of these drugs as prophylactic agents to prevent Alzheimer disease through immune modulation of the TNF inflammatory pathway, and their success highlights the need for further research of these drugs as therapeutic agents.
Collapse
Affiliation(s)
- Daniah Shamim
- Saba University School of Medicine, The Bottom, Dutch Caribbean
| | | |
Collapse
|
421
|
Nanoplasmonic fiber tip probe detects significant reduction of intracellular Alzheimer's disease-related oligomers by curcumin. Sci Rep 2017; 7:5722. [PMID: 28720893 PMCID: PMC5516023 DOI: 10.1038/s41598-017-05619-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/15/2017] [Indexed: 11/17/2022] Open
Abstract
Considerable evidence shows critical roles of intracellular pathogenic events of Alzheimer’s disease (AD). In particular, intracellular amyloid-β accumulation and oligomerization are early AD pathologic processes, which may lead to changes in inflammatory molecules and other AD-related pathological components. Curcumin and its analogs have been identified as potential drug candidates for AD. However, the effects of curcumin on intracellular AD pathologic processes remain largely unknown. Here we utilized a recently developed nanoplasmonic fiber tip probe (nFTP) technology and investigated whether curcumin leads to intracellular AD pathologic changes. We showed that our nFTP technology could robustly detect intracellular AD-related protein changes caused by a well-known inflammation inducer and a familial AD mutation. Intriguingly, curcumin remarkably reduced the level of intracellular oligomers while modestly reduced the level of an inflammatory cytokine. Thus, our results provided evidence that curcumin’s mechanism of action in attenuating AD pathology is through a major role of decreasing oligomerization.
Collapse
|
422
|
Zhao Y, Jaber V, Lukiw WJ. Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer's Disease (AD): Detection of Lipopolysaccharide (LPS) in AD Hippocampus. Front Cell Infect Microbiol 2017; 7:318. [PMID: 28744452 PMCID: PMC5504724 DOI: 10.3389/fcimb.2017.00318] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Although the potential contribution of the human gastrointestinal (GI) tract microbiome to human health, aging, and disease is becoming increasingly acknowledged, the molecular mechanics and signaling pathways of just how this is accomplished is not well-understood. Major bacterial species of the GI tract, such as the abundant Gram-negative bacilli Bacteroides fragilis (B. fragilis) and Escherichia coli (E. coli), secrete a remarkably complex array of pro-inflammatory neurotoxins which, when released from the confines of the healthy GI tract, are pathogenic and highly detrimental to the homeostatic function of neurons in the central nervous system (CNS). For the first time here we report the presence of bacterial lipopolysaccharide (LPS) in brain lysates from the hippocampus and superior temporal lobe neocortex of Alzheimer's disease (AD) brains. Mean LPS levels varied from two-fold increases in the neocortex to three-fold increases in the hippocampus, AD over age-matched controls, however some samples from advanced AD hippocampal cases exhibited up to a 26-fold increase in LPS over age-matched controls. This “Perspectives” paper will further highlight some very recent research on GI tract microbiome signaling to the human CNS, and will update current findings that implicate GI tract microbiome-derived LPS as an important internal contributor to inflammatory degeneration in the CNS.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, United States.,Department of Anatomy and Cell Biology, Louisiana State University Health Science CenterNew Orleans, LA, United States
| | - Vivian Jaber
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, United States
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, United States.,Department of Ophthalmology, Louisiana State University Health Science CenterNew Orleans, LA, United States.,Department of Neurology, Louisiana State University Health Science CenterNew Orleans, LA, United States
| |
Collapse
|
423
|
Choi JY, Hwang CJ, Lee HP, Kim HS, Han SB, Hong JT. Inhibitory effect of ethanol extract of Nannochloropsis oceanica on lipopolysaccharide-induced neuroinflammation, oxidative stress, amyloidogenesis and memory impairment. Oncotarget 2017; 8:45517-45530. [PMID: 28489589 PMCID: PMC5542205 DOI: 10.18632/oncotarget.17268] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/26/2017] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress and neuroinflammation is implicated in the pathogenesis and development of Alzheimer's disease (AD). Here, we investigated the suppressive possibility of ethanol extract of Nannochloropsis oceanica (N. oceanica) on memory deficiency along with the fundamental mechanisms in lipopolysaccharide (LPS)-treated mice model. Among several extracts of 32 marine microalgae, ethanol extract of N. oceanica showed the most significant inhibitory effect on nitric oxide (NO) generation, NF-κB activity and β-secretase activity in cultured BV-2 cells, neuronal cells and Raw 264.7 cells. Ethanol extract of N. oceanica (50, 100 mg/kg) also ameliorated LPS (250 μg/kg)-induced memory impairment. We also found that ethanol extract of N. oceanica inhibited the LPS-induced expression of iNOS and COX-2. Furthermore, the production of reactive oxygen species (ROS), malondialdehyde (MDA) level as well as glutathione (GSH) level was also decreased by treatment of ethanol extract of N.oceanica. The ethanol extract of N. oceanica also suppresses IκB degradation as well as p50 and p65 translocation into the nucleus in LPS-treated mice brain. Associated with the inhibitory effect on neuroinflammation and oxidative stress, ethanol extract of N. oceanica suppressed Aβ1-42 generation through down-regulation of APP and BACE1 expression in in vivo. These results suggest that ethanol extract of N. oceanica ameliorated memory impairment via anti-inflammatory, anti-oxidant and anti-amyloidogenic mechanisms.
Collapse
Affiliation(s)
- Ji Yeon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Hee Sik Kim
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseoung, Daejeon 305-806, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| |
Collapse
|
424
|
Mottahedin A, Ardalan M, Chumak T, Riebe I, Ek J, Mallard C. Effect of Neuroinflammation on Synaptic Organization and Function in the Developing Brain: Implications for Neurodevelopmental and Neurodegenerative Disorders. Front Cell Neurosci 2017; 11:190. [PMID: 28744200 PMCID: PMC5504097 DOI: 10.3389/fncel.2017.00190] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/20/2017] [Indexed: 12/27/2022] Open
Abstract
The brain is a plastic organ where both the intrinsic CNS milieu and extrinsic cues play important roles in shaping and wiring neural connections. The perinatal period constitutes a critical time in central nervous system development with extensive refinement of neural connections, which are highly sensitive to fetal and neonatal compromise, such as inflammatory challenges. Emerging evidence suggests that inflammatory cells in the brain such as microglia and astrocytes are pivotal in regulating synaptic structure and function. In this article, we will review the role of glia cells in synaptic physiology and pathophysiology, including microglia-mediated elimination of synapses. We propose that activation of the immune system dynamically affects synaptic organization and function in the developing brain. We will discuss the role of neuroinflammation in altered synaptic plasticity following perinatal inflammatory challenges and potential implications for neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amin Mottahedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Maryam Ardalan
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Tetyana Chumak
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Ilse Riebe
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Joakim Ek
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| |
Collapse
|
425
|
Khallaf WA, Messiha BA, Abo-Youssef AM, El-Sayed NS. Protective effects of telmisartan and tempol on lipopolysaccharide-induced cognitive impairment, neuroinflammation, and amyloidogenesis: possible role of brain-derived neurotrophic factor. Can J Physiol Pharmacol 2017; 95:850-860. [DOI: 10.1139/cjpp-2017-0042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiotensin II has pro-inflammatory and pro-oxidant potentials. We investigated the possible protective effects of the Angiotensin II receptor blocker telmisartan, compared with the superoxide scavenger tempol, on lipopolysaccharide (LPS)-induced cognitive decline and amyloidogenesis. Briefly, mice were allocated into a normal control group, an LPS control group, a tempol treatment group, and 2 telmisartan treatment groups. A behavioral study was conducted followed by a biochemical study via assessment of brain levels of beta amyloid (Aβ) and brain-derived neurotropic factor (BDNF) as amyloidogenesis and neuroplasticity markers, tumor necrosis factor alpha (TNF-α), nitric oxide end products (NOx), neuronal and inducible nitric oxide synthase (nNOS and iNOS) as inflammatory markers, and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione reduced (GSH), and nitrotyrosine (NT) as oxido-nitrosative stress markers. Finally, histopathological examination of cerebral cortex, hippocampus, and cerebellum sections was performed using routine and special Congo red stains. Tempol and telmisartan improved cognition, decreased brain Aβ deposition and BDNF depletion, decreased TNF-α, NOx, nNOS, iNOS, MDA, and NT brain levels, and increased brain SOD and GSH contents, parallel to confirmatory histopathological evidences. In conclusion, tempol and telmisartan are promising drugs in managing cognitive impairment and amyloidogenesis, at least via upregulation of BDNF with inhibition of neuroinflammation and oxido-nitrosative stress.
Collapse
Affiliation(s)
- Waleed A.I. Khallaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Basim A.S. Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Amira M.H. Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Nesrine S. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| |
Collapse
|
426
|
Fjell AM, Idland AV, Sala-Llonch R, Watne LO, Borza T, Brækhus A, Lona T, Zetterberg H, Blennow K, Wyller TB, Walhovd KB. Neuroinflammation and Tau Interact with Amyloid in Predicting Sleep Problems in Aging Independently of Atrophy. Cereb Cortex 2017; 28:2775-2785. [DOI: 10.1093/cercor/bhx157] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 12/27/2022] Open
Affiliation(s)
- Anders Martin Fjell
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ane-Victoria Idland
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo Delirium Research Group, Department of Geriatric Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Roser Sala-Llonch
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Department of Geriatric Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Tom Borza
- Centre for Old Age Psychiatric Research, Innlandet Hospital Trust, Ottestad, Norway
| | - Anne Brækhus
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Tarjei Lona
- Department of surgery, Diakonhjemmet Hospital, Oslo, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Gower Street, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Torgeir Bruun Wyller
- Oslo Delirium Research Group, Department of Geriatric Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Kristine Beate Walhovd
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
427
|
Sala-Llonch R, Idland AV, Borza T, Watne LO, Wyller TB, Brækhus A, Zetterberg H, Blennow K, Walhovd KB, Fjell AM. Inflammation, Amyloid, and Atrophy in The Aging Brain: Relationships with Longitudinal Changes in Cognition. J Alzheimers Dis 2017; 58:829-840. [DOI: 10.3233/jad-161146] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Roser Sala-Llonch
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ane-Victoria Idland
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tom Borza
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Centre for Old Age Psychiatric Research, Innlandet Hospital Trust, Ottestad, Norway
| | - Leiv Otto Watne
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Torgeir Bruun Wyller
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Anne Brækhus
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kristine Beate Walhovd
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Anders Martin Fjell
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| |
Collapse
|
428
|
Khan MS, Ali T, Abid MN, Jo MH, Khan A, Kim MW, Yoon GH, Cheon EW, Rehman SU, Kim MO. Lithium ameliorates lipopolysaccharide-induced neurotoxicity in the cortex and hippocampus of the adult rat brain. Neurochem Int 2017; 108:343-354. [PMID: 28511952 DOI: 10.1016/j.neuint.2017.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/04/2017] [Accepted: 05/12/2017] [Indexed: 11/28/2022]
Abstract
Lithium an effective mood stabilizer, primary used in the treatment of bipolar disorders, has been reported as a protective agent in various neurological disorders. In this study, we examined the neuroprotective role of lithium chloride (LiCl) against lipopolysaccharide (LPS) in the cortex and hippocampus of the adult rat brain. We determined that LiCl -attenuated LPS-induced activated toll-like receptor 4 (TLR4) signalling and significantly reduced the nuclear factor-kB (NF-KB) translation factor and various other inflammatory mediators such as interleukin-1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α). We also analyzed that LiCl significantly abrogated activated gliosis via attenuation of specific markers for activated microglia, ionized calcium-binding adaptor molecule (Iba-1) and astrocytes, glial fibrillary acidic protein (GFAP) in both the cortex and hippocampus of the adult rat brain. Furthermore, we also observed that LiCl treatment significantly ameliorated the increase expression level of apoptotic neurodegeneration protein markers Bax/Bcl2, activated caspase-3 and poly (ADP-ribose) polymerase-1 (PARP-1) in the cortex and hippocampus regions of the LPS-treated adult rat brain. In addition, the morphological results of the fluoro-jade B (FJB) and Nissl staining showed that LiCl attenuated the neuronal degeneration in the cortex and hippocampus regions of the LPS-treated adult rat brain. Taken together, our Western blot and morphological results indicated that LiCl significantly prevents the LPS-induced neurotoxicity via attenuation of neuroinflammation and apoptotic neurodegeneration in the cortex and hippocampus of the adult rat brain.
Collapse
Affiliation(s)
- Muhammad Sohail Khan
- Division of Life Science and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Tahir Ali
- Division of Life Science and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Muhammad Noman Abid
- Division of Life Science and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Myeung Hoon Jo
- Division of Life Science and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Amjad Khan
- Division of Life Science and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Min Woo Kim
- Division of Life Science and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Gwang Ho Yoon
- Division of Life Science and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Eun Woo Cheon
- Department of Food Science, International University of Korea, Jinju, 660-759, Republic of Korea
| | - Shafiq Ur Rehman
- Division of Life Science and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
429
|
Kim YE, Hwang CJ, Lee HP, Kim CS, Son DJ, Ham YW, Hellström M, Han SB, Kim HS, Park EK, Hong JT. Inhibitory effect of punicalagin on lipopolysaccharide-induced neuroinflammation, oxidative stress and memory impairment via inhibition of nuclear factor-kappaB. Neuropharmacology 2017; 117:21-32. [DOI: 10.1016/j.neuropharm.2017.01.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/13/2022]
|
430
|
Solomon U, Taghogho EA. Methyl jasmonate attenuates memory dysfunction and decreases brain levels of biomarkers of neuroinflammation induced by lipopolysaccharide in mice. Brain Res Bull 2017; 131:133-141. [PMID: 28411132 DOI: 10.1016/j.brainresbull.2017.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 04/05/2017] [Indexed: 01/09/2023]
Abstract
Neuroinflammation plays a central role in the etiology and progression of Alzheimer's disease (AD), a neurodegenerative disorder, characterized by a gradual loss of memory functions. Thus, it has been proposed that agents that could reduce inflammatory processes in AD brains might be useful for the treatment of the disease. Methyl jasmonate (MJ) is a bioactive compound, which has been reported to exhibit anti-amnesic and in vitro anti-inflammatory activities. In this study, we further examine its effects on the brain levels of biomarkers of neuroinflammation in lipopolysaccharide (LPS)-induced memory deficits in mice. Mice (n=6) were pretreated intraperitoneally with MJ (10-40mg/kg), donepezil (DP) (1mg/kg) or vehicle (10mL/kg) for 30min prior to injection of LPS (250μg/kg, i.p) daily for 7days. Thirty minutes after LPS administration on day 7, memory function was assessed using Y-maze test. After Y-maze test, the levels of biomarkers of neuroinflammation: prostaglandin E2 (PGE2), tumor necrosis factor α (TNFα) and interleukin 1β (IL1β) were estimated in brain tissue homogenates using ELISA. Expressions of positive cells of cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), nuclear factor kappa B (NF-κB) and amyloid-beta (Aβ) in the prefrontal cortex were also assessed using immunohistochemistry technique. Our data showed that MJ (10, 20 and 40mg/kg) significantly (p<0.05) reversed LPS-induced memory deficits in mice. The increased brain levels of PGE2, TNFα and IL1β in LPS-treated mice were significantly (p<0.05) reduced by MJ indicating anti-neuroinflammatory activity. MJ also suppressed the expression of COX2, iNOS and NFκB, which further suggest anti-neuroinflammation. The increased brain level of Aβ in LPS-treated mice was significantly (p<0.05) suppressed by MJ suggesting anti-amyloidogenesis-like effect. Our present data showed that MJ attenuated LPS-induced memory dysfunction via mechanisms involving inhibition of pro-inflammatory mediators and beta-amyloid generation in mice.
Collapse
Affiliation(s)
- Umukoro Solomon
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Eduviere Anthony Taghogho
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| |
Collapse
|
431
|
Zakaria R, Wan Yaacob WM, Othman Z, Long I, Ahmad AH, Al-Rahbi B. Lipopolysaccharide-induced memory impairment in rats: a model of Alzheimer's disease. Physiol Res 2017; 66:553-565. [PMID: 28406691 DOI: 10.33549/physiolres.933480] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a primary cause of dementia in the middle-aged and elderly worldwide. Animal models for AD are widely used to study the disease mechanisms as well as to test potential therapeutic agents for disease modification. Among the non-genetically manipulated neuroinflammation models for AD, lipopolysaccharide (LPS)-induced animal model is commonly used. This review paper aims to discuss the possible factors that influence rats' response following LPS injection. Factors such as dose of LPS, route of administration, nature and duration of exposure as well as age and gender of animal used should be taken into account when designing a study using LPS-induced memory impairment as model for AD.
Collapse
Affiliation(s)
- R Zakaria
- Department of Physiology and Department of Psychiatry, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.
| | | | | | | | | | | |
Collapse
|
432
|
Wang H, Xu YS, Wang ML, Cheng C, Bian R, Yuan H, Wang Y, Guo T, Zhu LL, Zhou H. Protective effect of naringin against the LPS-induced apoptosis of PC12 cells: Implications for the treatment of neurodegenerative disorders. Int J Mol Med 2017; 39:819-830. [PMID: 28260042 PMCID: PMC5360435 DOI: 10.3892/ijmm.2017.2904] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
Several studies have demonstrated that increased apoptosis plays an essential role in neurodegenerative disorders. It has been demonstrated that lipopolysaccharide (LPS) induces apoptosis largely through the production of intracellular reactive oxygen species (ROS) and inflammatory mediators. In this study, we investigated the potential protective mechanisms of naringin (Nar), a pummelo peel extract, on LPS-induced PC12 cell apoptosis. Nar pre-conditioning prior to stimulation with LPS for 18 h was a prerequisite for evaluating PC12 cell viability and the protective mechanisms of Nar. Nar significantly improved cell survival in a time- and concentration-dependent manner. On the one hand, Nar downregulated cytochrome P450 2E1 (CYP2E1), inhibited the release of ROS, mitigated the stimulation of oxidative stress, and rectified the antioxidant protein contents of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), superoxide dismutase (SOD)2 and glutathione synthetase (GSS). On the other hand, Nar down-regulated inflammatory gene and protein expression, including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, HMGB1, high mobility group box 1 protein (HMGB1), cyclo-oxygenase-2 (COX-2), the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-TNF receptor-associated factor 6 (TRAF6) path way and downstream mitogen activated protein kinase (MAPK) phosphorylation, activator protein transcription factor-1 (AP-1) and nuclear factor (NF)-κB. Moroever, Nar markedly attenuated the cytochrome c shift from the mitochondria to the cytosol and regulated caspase-3-related protein expression. To the best of our knowledge, this is the first study to report the antioxidant, anti-inflammatory and anti-apoptotic effects of Nar in neuronal-like PC12 cells. These results suggest that Nar can be utilized as a potential drug for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurosurgery, Traffic Hospital of Shandong Province, Jinan, Shandong 250031, P.R. China
| | - You Song Xu
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Miao Lin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Chao Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Rui Bian
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hao Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Ting Guo
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lin Lin Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hang Zhou
- Department of Neurosurgery, The 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
433
|
Singh R, Bansal R. Investigations on 16-Arylideno Steroids as a New Class of Neuroprotective Agents for the Treatment of Alzheimer's and Parkinson's Diseases. ACS Chem Neurosci 2017; 8:186-200. [PMID: 27776205 DOI: 10.1021/acschemneuro.6b00313] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Neuroinflammatory mechanisms mediated by activated glial and cytokines (TNF-α, IL-1β) might contribute to neuronal degeneration leading to Alzheimer's (AD) and Parkinson's disease (PD). Lipopolysaccharide (LPS) is an inflammogen derived from the cell wall of Gram-negative bacteria, which promotes neuroinflammation and subsequent neurodegeneration. Dehydroepiandrosterone (DHEA) and testosterone have been reported as neuroprotective steroids useful for the treatment of various neurodegenerative disorders. In the present study, several 16-arylidene steroidal derivatives have been evaluated as neuroprotective agents in LPS-treated animal models. It was observed that 16-arylidene steroidal derivatives 1a-d and 6a-h considerably improve LPS-induced learning, memory, and movement deficits in animal models. Biochemical estimations of brain serum of treated animals revealed suppression of oxidative and nitrosative stress, acetylcholinesterase activity, and reduction in TNF-α levels, which were induced through LPS mediated neuroinflammatory mechanisms leading to neurodegeneration of brain. Of all the steroidal derivatives, 16-(4-pyridylidene) steroid 1c and its 4-aza analogue 6c were found to be the most active neuroprotective agents and produced effects comparable to standard drug celecoxib at a much lower dose and better than dexamethasone at the same dose in terms of behavioral, biochemical, and molecular aspects.
Collapse
Affiliation(s)
- Ranjit Singh
- University Institute of Pharmaceutical
Sciences, Panjab University, Chandigarh 160 014, India
| | - Ranju Bansal
- University Institute of Pharmaceutical
Sciences, Panjab University, Chandigarh 160 014, India
| |
Collapse
|
434
|
Hennessy E, Gormley S, Lopez-Rodriguez AB, Murray C, Murray C, Cunningham C. Systemic TNF-α produces acute cognitive dysfunction and exaggerated sickness behavior when superimposed upon progressive neurodegeneration. Brain Behav Immun 2017; 59:233-244. [PMID: 27633985 PMCID: PMC5176008 DOI: 10.1016/j.bbi.2016.09.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
Inflammation influences chronic neurodegeneration but its precise roles are not yet clear. Systemic inflammation caused by infection, trauma or co-morbidity can alter the brain's inflammatory status, produce acute cognitive impairments, such as delirium, and drive new pathology and accelerated decline. Consistent with this, elevated systemic TNF-α is associated with more rapid cognitive decline over 6months in Alzheimer's disease patients. In the current study we challenged normal animals and those with existing progressive neurodegeneration (ME7 prion disease) with TNF-α (i.p.) to test the hypothesis that this cytokine has differential effects on cognitive function, sickness behavior and features of underlying pathology contingent on the animals' baseline condition. TNF-α (50μg/kg) had no impact on performance of normal animals (normal brain homogenate; NBH) on working memory (T-maze) but produced acute impairments in ME7 animals similarly challenged. Plasma TNF-α and CCL2 levels were equivalent in NBH and ME7 TNF-challenged animals but hippocampal and hypothalamic transcription of IL-1β, TNF-α and CCL2 and translation of IL-1β were higher in ME7+TNF-α than NBH+TNF-α animals. TNF-α produced an exaggerated sickness behavior response (hypothermia, weight loss, inactivity) in ME7 animals compared to that in NBH animals. However a single challenge with this dose was not sufficient to produce de novo neuronal death, synaptic loss or tau hyperphosphorylation that was distinguishable from that arising from ME7 alone. The data indicate that acutely elevated TNF-α has robust acute effects on brain function, selectively in the degenerating brain, but more sustained levels may be required to significantly impact on underlying neurodegeneration.
Collapse
Affiliation(s)
- Edel Hennessy
- School of Biochemistry & Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Shane Gormley
- School of Biochemistry & Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Ana Belen Lopez-Rodriguez
- School of Biochemistry & Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Caoimhe Murray
- School of Biochemistry & Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Carol Murray
- School of Biochemistry & Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Colm Cunningham
- School of Biochemistry & Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
435
|
Liu Z, Chen Y, Qiao Q, Sun Y, Liu Q, Ren B, Liu X. Sesamol supplementation prevents systemic inflammation-induced memory impairment and amyloidogenesis via inhibition of nuclear factor kappaB. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201600734] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food; College of Food Science and Engineering; Northwest A&F University; Yangling China
| | - Yuwei Chen
- Laboratory of Functional Chemistry and Nutrition of Food; College of Food Science and Engineering; Northwest A&F University; Yangling China
| | - Qinglian Qiao
- Laboratory of Functional Chemistry and Nutrition of Food; College of Food Science and Engineering; Northwest A&F University; Yangling China
| | - Yali Sun
- Laboratory of Functional Chemistry and Nutrition of Food; College of Food Science and Engineering; Northwest A&F University; Yangling China
| | - Qian Liu
- Laboratory of Functional Chemistry and Nutrition of Food; College of Food Science and Engineering; Northwest A&F University; Yangling China
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food; College of Food Science and Engineering; Northwest A&F University; Yangling China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food; College of Food Science and Engineering; Northwest A&F University; Yangling China
| |
Collapse
|
436
|
Liu Q, Chen Y, Shen C, Xiao Y, Wang Y, Liu Z, Liu X. Chicoric acid supplementation prevents systemic inflammation‐induced memory impairment and amyloidogenesis via inhibition of NF‐κB. FASEB J 2016; 31:1494-1507. [DOI: 10.1096/fj.201601071r] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/12/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Qian Liu
- Laboratory of Functional Chemistry and Nutrition of FoodCollege of Food Science and Engineering, Northwest A&F University Yangling China
| | - Yuwei Chen
- Laboratory of Functional Chemistry and Nutrition of FoodCollege of Food Science and Engineering, Northwest A&F University Yangling China
| | - Chun Shen
- Laboratory of Functional Chemistry and Nutrition of FoodCollege of Food Science and Engineering, Northwest A&F University Yangling China
| | - Yating Xiao
- Laboratory of Functional Chemistry and Nutrition of FoodCollege of Food Science and Engineering, Northwest A&F University Yangling China
| | - Yutang Wang
- Laboratory of Functional Chemistry and Nutrition of FoodCollege of Food Science and Engineering, Northwest A&F University Yangling China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of FoodCollege of Food Science and Engineering, Northwest A&F University Yangling China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of FoodCollege of Food Science and Engineering, Northwest A&F University Yangling China
| |
Collapse
|
437
|
All-trans retinoic acid (ATRA) prevents lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment in aged rats. J Neuroimmunol 2016; 300:21-29. [DOI: 10.1016/j.jneuroim.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/12/2016] [Accepted: 10/06/2016] [Indexed: 12/12/2022]
|
438
|
Swanson A, Willette AA. Neuronal Pentraxin 2 predicts medial temporal atrophy and memory decline across the Alzheimer's disease spectrum. Brain Behav Immun 2016; 58:201-208. [PMID: 27444967 PMCID: PMC5349324 DOI: 10.1016/j.bbi.2016.07.148] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/29/2016] [Accepted: 07/16/2016] [Indexed: 12/21/2022] Open
Abstract
Chronic neuroinflammation is thought to potentiate medial temporal lobe (MTL) atrophy and memory decline in Alzheimer's disease (AD). It has become increasingly important to find novel immunological biomarkers of neuroinflammation or other processes that can track AD development and progression. Our study explored which pro- or anti-inflammatory cerebrospinal fluid (CSF) biomarkers best predicted AD neuropathology over 24months. Using Alzheimer's Disease Neuroimaging Initiative data (N=285), CSF inflammatory biomarkers from mass spectrometry and multiplex panels were screened using stepwise regression, followed up with 50%/50% model retests for validation. Neuronal Pentraxin 2 (NPTX2) and Chitinase-3-like-protein-1 (C3LP1), biomarkers of glutamatergic synaptic plasticity and microglial activation respectively, were the only consistently significant biomarkers selected. Once these biomarkers were selected, linear mixed models were used to analyze their baseline and longitudinal associations with bilateral MTL volume, memory decline, global cognition, and established AD biomarkers including CSF amyloid and tau. Higher baseline NPTX2 levels corresponded to less MTL atrophy [R2=0.287, p<0.001] and substantially less memory decline [R2=0.560, p<0.001] by month 24. Conversely, higher C3LP1 modestly predicted more MTL atrophy [R2=0.083, p<0.001], yet did not significantly track memory decline over time. In conclusion, NPTX2 is a novel pro-inflammatory cytokine that predicts AD-related outcomes better than any immunological biomarker to date, substantially accounting for brain atrophy and especially memory decline. C3LP1 as the microglial biomarker, by contrast, performed modestly and did not predict longitudinal memory decline. This research may advance the current understanding of AD etiopathogenesis, while expanding early diagnostic techniques through the use of novel pro-inflammatory biomarkers, such as NPTX2. Future studies should also see if NPTX2 causally affects MTL morphometry and memory performance.
Collapse
Affiliation(s)
- Ashley Swanson
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - A A Willette
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States; Department of Psychology, Iowa State University, Ames, IA, United States; Aging Mind and Brain Institute, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
439
|
Zhang L, Zhang Z, Fu Y, Yang P, Qin Z, Chen Y, Xu Y. Trans-cinnamaldehyde improves memory impairment by blocking microglial activation through the destabilization of iNOS mRNA in mice challenged with lipopolysaccharide. Neuropharmacology 2016; 110:503-518. [DOI: 10.1016/j.neuropharm.2016.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 08/09/2016] [Accepted: 08/14/2016] [Indexed: 12/20/2022]
|
440
|
Bester J, Soma P, Kell DB, Pretorius E. Viscoelastic and ultrastructural characteristics of whole blood and plasma in Alzheimer-type dementia, and the possible role of bacterial lipopolysaccharides (LPS). Oncotarget 2016; 6:35284-303. [PMID: 26462180 PMCID: PMC4742105 DOI: 10.18632/oncotarget.6074] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer-type dementia (AD) is a neurodegenerative disorder and the most common form of dementia. Patients typically present with neuro- and systemic inflammation and iron dysregulation, associated with oxidative damage that reflects in hypercoagulability. Hypercoagulability is closely associated with increased fibrin(ogen) and in AD patients fibrin(ogen) has been implicated in the development of neuroinflammation and memory deficits. There is still no clear reason precisely why (a) this hypercoagulable state, (b) iron dysregulation and (c) increased fibrin(ogen) could together lead to the loss of neuronal structure and cognitive function. Here we suggest an alternative hypothesis based on previous ultrastructural evidence of the presence of a (dormant) blood microbiome in AD. Furthermore, we argue that bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, might be the cause of the continuing and low-grade inflammation, characteristic of AD. Here, we follow an integrated approach, by studying the viscoelastic and ultrastructural properties of AD plasma and whole blood by using scanning electron microscopy, Thromboelastography (TEG®) and the Global Thrombosis Test (GTT®). Ultrastructural analysis confirmed the presence and close proximity of microbes to erythrocytes. TEG® analysis showed a hypercoagulable state in AD. TEG® results where LPS was added to naive blood showed the same trends as were found with the AD patients, while the GTT® results (where only platelet activity is measured), were not affected by the added LPS, suggesting that LPS does not directly impact platelet function. Our findings reinforce the importance of further investigating the role of LPS in AD.
Collapse
Affiliation(s)
- Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Prashilla Soma
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| |
Collapse
|
441
|
Lukiw WJ. Bacteroides fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer's Disease. Front Microbiol 2016; 7:1544. [PMID: 27725817 PMCID: PMC5035737 DOI: 10.3389/fmicb.2016.01544] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/15/2016] [Indexed: 12/29/2022] Open
Abstract
The human microbiome consists of ~3.8 × 1013 symbiotic microorganisms that form a highly complex and dynamic ecosystem: the gastrointestinal (GI) tract constitutes the largest repository of the human microbiome by far, and its impact on human neurological health and disease is becoming increasingly appreciated. Bacteroidetes, the largest phylum of Gram-negative bacteria in the GI tract microbiome, while generally beneficial to the host when confined to the GI tract, have potential to secrete a remarkably complex array of pro-inflammatory neurotoxins that include surface lipopolysaccharides (LPSs) and toxic proteolytic peptides. The deleterious effects of these bacterial exudates appear to become more important as GI tract and blood-brain barriers alter or increase their permeability with aging and disease. For example, presence of the unique LPSs of the abundant Bacteroidetes species Bacteroides fragilis (BF-LPS) in the serum represents a major contributing factor to systemic inflammation. BF-LPS is further recognized by TLR2, TLR4, and/or CD14 microglial cell receptors as are the pro-inflammatory 42 amino acid amyloid-beta (Aβ42) peptides that characterize Alzheimer's disease (AD) brain. Here we provide the first evidence that BF-LPS exposure to human primary brain cells is an exceptionally potent inducer of the pro-inflammatory transcription factor NF-kB (p50/p65) complex, a known trigger in the expression of pathogenic pathways involved in inflammatory neurodegeneration. This 'Perspectives communication' will in addition highlight work from recent studies that advance novel and emerging concepts on the potential contribution of microbiome-generated factors, such as BF-LPS, in driving pro-inflammatory degenerative neuropathology in the AD brain.
Collapse
Affiliation(s)
- Walter J Lukiw
- Bollinger Professor of Alzheimer's disease (AD), Neuroscience Center and Departments of Neurology and Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA USA
| |
Collapse
|
442
|
Baik SH, Kang S, Son SM, Mook-Jung I. Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer's disease mouse model. Glia 2016; 64:2274-2290. [PMID: 27658617 DOI: 10.1002/glia.23074] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/24/2016] [Accepted: 09/09/2016] [Indexed: 11/09/2022]
Abstract
Pathological hallmarks of Alzheimer's disease (AD) include extracellularly accumulated amyloid β (Aβ) plaques and intracellular neurofibrillary tangles in the brain. Activated microglia, brain-resident macrophages, are also found surrounding Aβ plaques. The study of the brain of AD mouse models revealed that Aβ plaque formation is completed by the consolidation of newly generated plaque clusters in vicinity of existed plaques. However, the dynamics of Aβ plaque formation, growth and the mechanisms by which microglia contribute to Aβ plaque formation are unknown. In the present study, we confirmed how microglia are involved in Aβ plaque formation and their growth in the brain of 5XFAD mice, the Aβ-overexpressing AD transgenic mouse model, and performed serial intravital two-photon microscopy (TPM) imaging of the brains of 5XFAD mice crossed with macrophage/microglia-specific GFP-expressing CX3CR1GFP/GFP mice. We found that activated microglia surrounding Aβ plaques take up Aβ, which are clusters developed inside activated microglia in vivo and this was followed by microglial cell death. These dying microglia release the accumulated Aβ into the extracellular space, which contributes to Aβ plaque growth. This process was confirmed by live TPM in vivo imaging and flow cytometry. These results suggest that activated microglia can contribute to formation and growth of Aβ plaques by causing microglial cell death in the brain. GLIA 2016;64:2274-2290.
Collapse
Affiliation(s)
- Sung Hoon Baik
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, South Korea
| | - Seokjo Kang
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, South Korea
| | - Sung Min Son
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, South Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, South Korea.
| |
Collapse
|
443
|
Mawanda F, Wallace RB, McCoy K, Abrams TE. Systemic and localized extra-central nervous system bacterial infections and the risk of dementia among US veterans: A retrospective cohort study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2016; 4:109-117. [PMID: 27752534 PMCID: PMC5061465 DOI: 10.1016/j.dadm.2016.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Emerging evidence indicates associations between extra-central nervous system (CNS) bacterial infections and an increased risk for dementia; however, epidemiological evidence is still very limited. METHODS This study involved a retrospective cohort of a national sample of US veterans (N = 417,172) aged ≥56 years. Extended Cox proportional hazard models adjusted for demographic characteristics and medical and psychiatric comorbidities determined the associations between systemic and localized extra-CNS bacterial infections occurring >2 years before the initial dementia diagnosis and the risk for dementia. RESULTS Exposure to any extra-CNS bacterial infection was associated with a significantly increased risk for dementia (hazard ratio [HR] = 1.20 [95% confidence interval = 1.16-1.24]). Independently, septicemia (HR = 1.39 [1.16-1.66]), bacteremia (HR = 1.22 [1.00-1.49]), osteomyelitis (HR = 1.20 [1.06-1.37]), pneumonia (HR = 1.10 [1.02-1.19]), urinary tract infections (HR = 1.13 [1.08-1.18]), and cellulitis (HR = 1.14 [1.09-1.20]) were associated with a significantly increased risk for dementia. DISCUSSION Both systemic and localized extra-CNS bacterial infections are associated with an increased risk for developing dementia.
Collapse
Affiliation(s)
- Francis Mawanda
- Department of Epidemiology, University of Iowa, Iowa City, IA, USA
| | - Robert B. Wallace
- Department of Epidemiology, University of Iowa, Iowa City, IA, USA
- Department of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kimberly McCoy
- Center for Comprehensive Access & Delivery Research and Evaluation, Iowa City VA Health Care System, Iowa City, IA, USA
| | - Thad E. Abrams
- Department of Epidemiology, University of Iowa, Iowa City, IA, USA
- Department of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Comprehensive Access & Delivery Research and Evaluation, Iowa City VA Health Care System, Iowa City, IA, USA
| |
Collapse
|
444
|
Eduviere AT, Umukoro S, Adeoluwa OA, Omogbiya IA, Aluko OM. Possible Mechanisms Involved in Attenuation of Lipopolysaccharide-Induced Memory Deficits by Methyl Jasmonate in Mice. Neurochem Res 2016; 41:3239-3249. [DOI: 10.1007/s11064-016-2050-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/19/2016] [Accepted: 08/27/2016] [Indexed: 12/22/2022]
|
445
|
Gardner L, White J, Eimerbrink M, Boehm G, Chumley M. Imatinib methanesulfonate reduces hyperphosphorylation of tau following repeated peripheral exposure to lipopolysaccharide. Neuroscience 2016; 331:72-7. [DOI: 10.1016/j.neuroscience.2016.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/17/2016] [Accepted: 06/05/2016] [Indexed: 12/12/2022]
|
446
|
Khodamoradi M, Asadi-Shekaari M, Esmaeili-Mahani S, Esmaeilpour K, Sheibani V. Effects of genistein on cognitive dysfunction and hippocampal synaptic plasticity impairment in an ovariectomized rat kainic acid model of seizure. Eur J Pharmacol 2016; 786:1-9. [DOI: 10.1016/j.ejphar.2016.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/21/2016] [Accepted: 05/23/2016] [Indexed: 11/24/2022]
|
447
|
Zhang H, Ma L, Yin YL, Dong LQ, Cheng GG, Ma YQ, Li YF, Xu BN. Over-expression of TSPO in the hippocampal CA1 area alleviates cognitive dysfunction caused by lipopolysaccharide in mice. Brain Res 2016; 1646:402-409. [DOI: 10.1016/j.brainres.2016.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
|
448
|
Huang NQ, Jin H, Zhou SY, Shi JS, Jin F. TLR4 is a link between diabetes and Alzheimer's disease. Behav Brain Res 2016; 316:234-244. [PMID: 27591966 DOI: 10.1016/j.bbr.2016.08.047] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 01/30/2023]
Abstract
Recently, more and more studies have shown that there is an essential link between diabetes mellitus (DM) and Alzheimer's disease (AD). In addition, innate immunity plays an important role in the occurrence and development of DM and AD, which increase the risk of developing type 2 diabetes (T2D) and AD. Although the pathogenesis of those diseases is still a matter of debate, the important role of Toll-like receptor 4 (TLR4) in the two diseases has been receiving much attention at present. TLR4 and insulin resistance do have close ties, and chronic TLR4 activation may contribute to the insulin resistance. Aside from this, TLR4-mediated chronic inflammation also causes many DM complications such as diabetic nephropathy, diabetic retinopathy and diabetic neuropathy and has a profound impact on the internal environment of the body and brain's microenvironment. In parallel, TLR4 is widely distributed in the brain and also has an important role in the central nervous system (CNS) via regulation of neuroinflammation. The cerebrum under the circumstances of insulin resistance may lead to mitochondrial dysfunction in neurons. Interestingly, in the initial stage, the activation of TLR4 has a useful scavenging effect on amyloid beta (Aβ), but chronic long-term activation leads to Aβ deposition in the brain. Therefore we speculate that the TLR4 signaling pathway may be a potential link between DM and AD.
Collapse
Affiliation(s)
- Nan-Qu Huang
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Guizhou, China
| | - Hai Jin
- Institute of Digestive Diseases of Affiliated Hospital, Zunyi Medical College, Guizhou, China
| | - Shao-Yu Zhou
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Guizhou, China; Department of Environmental Health, Indiana University, Bloomington, Indiana, United States
| | - Jing-Shan Shi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Guizhou, China
| | - Feng Jin
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Guizhou, China.
| |
Collapse
|
449
|
Hu X, Wang T, Jin F. Alzheimer’s disease and gut microbiota. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1006-1023. [DOI: 10.1007/s11427-016-5083-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/10/2016] [Indexed: 12/13/2022]
|
450
|
Khan MS, Ali T, Kim MW, Jo MH, Jo MG, Badshah H, Kim MO. Anthocyanins protect against LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex. Neurochem Int 2016; 100:1-10. [PMID: 27522965 DOI: 10.1016/j.neuint.2016.08.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/08/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022]
Abstract
Several studies provide evidence that reactive oxygen species (ROS) are key mediators of various neurological disorders. Anthocyanins are polyphenolic compounds and are well known for their anti-oxidant and neuroprotective effects. In this study, we investigated the neuroprotective effects of anthocyanins (extracted from black soybean) against lipopolysaccharide (LPS)-induced ROS-mediated neuroinflammation and neurodegeneration in the adult mouse cortex. Intraperitoneal injection of LPS (250 μg/kg) for 7 days triggers elevated ROS and oxidative stress, which induces neuroinflammation and neurodegeneration in the adult mouse cortex. Treatment with 24 mg/kg/day of anthocyanins for 14 days in LPS-injected mice (7 days before and 7 days co-treated with LPS) attenuated elevated ROS and oxidative stress compared to mice that received LPS-injection alone. The immunoblotting results showed that anthocyanins reduced the level of the oxidative stress kinase phospho-c-Jun N-terminal Kinase 1 (p-JNK). The immunoblotting and morphological results showed that anthocyanins treatment significantly reduced LPS-induced-ROS-mediated neuroinflammation through inhibition of various inflammatory mediators, such as IL-1β, TNF-α and the transcription factor NF-kB. Anthocyanins treatment also reduced activated astrocytes and microglia in the cortex of LPS-injected mice, as indicated by reductions in GFAP and Iba-1, respectively. Anthocyanins also prevent overexpression of various apoptotic markers, i.e., Bax, cytosolic cytochrome C, cleaved caspase-3 and PARP-1. Immunohistochemical fluoro-jade B (FJB) and Nissl staining indicated that anthocyanins prevent LPS-induced neurodegeneration in the mouse cortex. Our results suggest that dietary flavonoids, such as anthocyanins, have antioxidant and neuroprotective activities that could be beneficial to various neurological disorders.
Collapse
Affiliation(s)
- Muhammad Sohail Khan
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Tahir Ali
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Min Woo Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Myeung Hoon Jo
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Min Gi Jo
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Haroon Badshah
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| |
Collapse
|