401
|
Romero FA, Jones CT, Xu Y, Fenaux M, Halcomb RL. The Race to Bash NASH: Emerging Targets and Drug Development in a Complex Liver Disease. J Med Chem 2020; 63:5031-5073. [PMID: 31930920 DOI: 10.1021/acs.jmedchem.9b01701] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD) characterized by liver steatosis, inflammation, and hepatocellular damage. NASH is a serious condition that can progress to cirrhosis, liver failure, and hepatocellular carcinoma. The association of NASH with obesity, type 2 diabetes mellitus, and dyslipidemia has led to an emerging picture of NASH as the liver manifestation of metabolic syndrome. Although diet and exercise can dramatically improve NASH outcomes, significant lifestyle changes can be challenging to sustain. Pharmaceutical therapies could be an important addition to care, but currently none are approved for NASH. Here, we review the most promising targets for NASH treatment, along with the most advanced therapeutics in development. These include targets involved in metabolism (e.g., sugar, lipid, and cholesterol metabolism), inflammation, and fibrosis. Ultimately, combination therapies addressing multiple aspects of NASH pathogenesis are expected to provide benefit for patients.
Collapse
Affiliation(s)
- F Anthony Romero
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Christopher T Jones
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Yingzi Xu
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Martijn Fenaux
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Randall L Halcomb
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| |
Collapse
|
402
|
Jia J, Bissa B, Brecht L, Allers L, Choi SW, Gu Y, Zbinden M, Burge MR, Timmins G, Hallows K, Behrends C, Deretic V. AMPK, a Regulator of Metabolism and Autophagy, Is Activated by Lysosomal Damage via a Novel Galectin-Directed Ubiquitin Signal Transduction System. Mol Cell 2020; 77:951-969.e9. [PMID: 31995728 DOI: 10.1016/j.molcel.2019.12.028] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 12/24/2019] [Indexed: 12/29/2022]
Abstract
AMPK is a central regulator of metabolism and autophagy. Here we show how lysosomal damage activates AMPK. This occurs via a hitherto unrecognized signal transduction system whereby cytoplasmic sentinel lectins detect membrane damage leading to ubiquitination responses. Absence of Galectin 9 (Gal9) or loss of its capacity to recognize lumenal glycans exposed during lysosomal membrane damage abrogate such ubiquitination responses. Proteomic analyses with APEX2-Gal9 have revealed global changes within the Gal9 interactome during lysosomal damage. Gal9 association with lysosomal glycoproteins increases whereas interactions with a newly identified Gal9 partner, deubiquitinase USP9X, diminishes upon lysosomal injury. In response to damage, Gal9 displaces USP9X from complexes with TAK1 and promotes K63 ubiquitination of TAK1 thus activating AMPK on damaged lysosomes. This triggers autophagy and contributes to autophagic control of membrane-damaging microbe Mycobacterium tuberculosis. Thus, galectin and ubiquitin systems converge to activate AMPK and autophagy during endomembrane homeostasis.
Collapse
Affiliation(s)
- Jingyue Jia
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Bhawana Bissa
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lukas Brecht
- Munich Cluster of Systems Neurology, Munich, Germany
| | - Lee Allers
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Seong Won Choi
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Yuexi Gu
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Mark Zbinden
- Human Metabolome Technologies America, Boston, MA, USA
| | - Mark R Burge
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Graham Timmins
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; School pf Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Kenneth Hallows
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Vojo Deretic
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| |
Collapse
|
403
|
Gonzalez-Pujana A, Igartua M, Santos-Vizcaino E, Hernandez RM. Mesenchymal stromal cell based therapies for the treatment of immune disorders: recent milestones and future challenges. Expert Opin Drug Deliv 2020; 17:189-200. [PMID: 31918562 DOI: 10.1080/17425247.2020.1714587] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Mesenchymal stromal cells (MSCs) present unique immunomodulatory properties that make them promising candidates for the treatment of inflammatory and immune disorders. MSC-mediated immunomodulation is a complex combination of mechanisms, in which the secretome plays a fundamental role. The plethora of bioactive molecules MSCs produce, such as indoleamine 2,3-dioxygenase (IDO) or prostaglandin E2 (PGE2), efficiently regulates innate and adaptive immunity. As a result, MSCs have been extensively employed in preclinical studies, leading to the conduction of multiple clinical trials.Areas covered: This review summarizes the effects of some of the key biomolecules in the MSC secretome and the advances in preclinical studies exploring the treatment of disorders including graft-versus-host disease (GvHD) or inflammatory bowel disease (IBD). Further, late-stage clinical trials and the first MSC-based therapies that recently obtained regulatory approval are discussed.Expert opinion: Extensive research supports the potential of MSC-based immunomodulatory therapies. However, to establish the bases for clinical translation, the future of study lies in the standardization of protocols and in the development of strategies that boost the therapeutic properties of MSCs.
Collapse
Affiliation(s)
- Ainhoa Gonzalez-Pujana
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| |
Collapse
|
404
|
Beckwith DM, Cudic M. Tumor-associated O-glycans of MUC1: Carriers of the glyco-code and targets for cancer vaccine design. Semin Immunol 2020; 47:101389. [PMID: 31926647 DOI: 10.1016/j.smim.2020.101389] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023]
Abstract
The transformation from normal to malignant phenotype in human cancers is associated with aberrant cell-surface glycosylation. It has frequently been reported that MUC1, the heavily glycosylated cell-surface mucin, is altered in both, expression and glycosylation pattern, in human carcinomas of the epithelium. The presence of incomplete or truncated glycan structures, often capped by sialic acid, commonly known as tumor-associated carbohydrate antigens (TACAs), play a key role in tumor initiation, progression, and metastasis. Accumulating evidence suggests that expression of TACAs is associated with tumor escape from immune defenses. In this report, we will give an overview of the oncogenic functions of MUC1 that are exerted through TACA interactions with endogenous carbohydrate-binding proteins (lectins). These interactions often lead to creation of a pro-tumor microenvironment, favoring tumor progression and metastasis, and tumor evasion. In addition, we will describe current efforts in the design of cancer vaccines with special emphasis on synthetic MUC1 glycopeptide vaccines. Analysis of the key factors that govern structure-based design of immunogenic MUC1 glycopeptide epitopes are described. The role of TACA type, position, and density on observed humoral and cellular immune responses is evaluated.
Collapse
Affiliation(s)
- Donella M Beckwith
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States.
| |
Collapse
|
405
|
Mahanti M, Pal KB, Sundin AP, Leffler H, Nilsson UJ. Epimers Switch Galectin-9 Domain Selectivity: 3 N-Aryl Galactosides Bind the C-Terminal and Gulosides Bind the N-Terminal. ACS Med Chem Lett 2020; 11:34-39. [PMID: 31938460 DOI: 10.1021/acsmedchemlett.9b00396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
A series of 3-deoxy-3-N-arylated-β-d-galactoside and -guloside derivatives have been synthesized by cesium fluoride/trimetylsilylaryl triflate-mediated benzyne generation and N-arylation of 3-deoxy-3-amino-β-d-galactosides and -gulosides, respectively. Evaluation as ligands to galectin-1, 2, 3, 4N (N-terminal domain), 4C (C-terminal domain), 7, 8N, 8C, 9C, and 9N revealed that the galactosides selectively bound galectin-9C, whereas the gulosides selectively bound galectin-9N. Hence, the N-aryl group induces galectin-9 selectivity and the ligand 3C-configuration acts as an epimeric selectivity switch between the two domains of galectin-9. Furthermore, MD simulations revealed that galacto derivatives in galectin-9C and gulo derivatives in galectin-9N find stable poses with specific interactions, which proposes a possible explanation to the gal/gulo 9C/9N selectivity.
Collapse
Affiliation(s)
- Mukul Mahanti
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Kumar Bhaskar Pal
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Anders P. Sundin
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan 28, 221 84 Lund, Sweden
| | - Ulf J. Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
406
|
Bratteby K, Torkelsson E, L'Estrade ET, Peterson K, Shalgunov V, Xiong M, Leffler H, Zetterberg FR, Olsson TG, Gillings N, Nilsson UJ, Herth MM, Erlandsson M. In Vivo Veritas: 18F-Radiolabeled Glycomimetics Allow Insights into the Pharmacological Fate of Galectin-3 Inhibitors. J Med Chem 2020; 63:747-755. [PMID: 31846326 DOI: 10.1021/acs.jmedchem.9b01692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glycomimetic drugs have attracted increasing interest as unique targeting vectors or surrogates for endogenous biomolecules. However, it is generally difficult to determine the in vivo pharmacokinetic profile of these compounds. In this work, two galectin-3 inhibitors were radiolabeled with fluorine-18 and used as surrogate PET tracers of TD139 and GB1107. Both compounds are promising drugs for clinical applications. In vivo evaluation revealed that both surrogates strongly differed with respect to their biodistribution profile. The disaccharide (TD139 surrogate) was rapidly eliminated from blood while the monosaccharide (GB1107 surrogate) showed no sign of excretion. The data obtained allowed us to infer the different in vivo fate of TD139 and GB1107 and rationalize how different administration routes could boost efficacy. Whereas the fast excretion profile of the TD139 surrogate indicated that systemic application of disaccharides is unfavorable, the extended biological half-life of the GB1107 surrogate indicated that systemic administration is possible for monosaccharides.
Collapse
Affiliation(s)
- Klas Bratteby
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Jagtvej 160 , DK-2100 Copenhagen , Denmark.,Department of Radiation Physics , Skåne University Hospital , Barngatan 3 , 222 42 Lund , Sweden.,Centre for Analysis and Synthesis, Department of Chemistry , Lund University , 221 00 Lund , Sweden.,Department of Clinical Physiology , Nuclear Medicine & PET, Rigshospitalet , Blegdamsvej 9 , DK-2100 Copenhagen , Denmark
| | - Edvard Torkelsson
- Department of Radiation Physics , Skåne University Hospital , Barngatan 3 , 222 42 Lund , Sweden.,Centre for Analysis and Synthesis, Department of Chemistry , Lund University , 221 00 Lund , Sweden
| | - Elina Tampio L'Estrade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Jagtvej 160 , DK-2100 Copenhagen , Denmark.,Department of Radiation Physics , Skåne University Hospital , Barngatan 3 , 222 42 Lund , Sweden.,Department of Neurology and Neurobiology Research Unit , Copenhagen University Hospital , Rigshospitalet, Building 6931, Blegdamsvej 9 , DK-2100 Copenhagen , Denmark
| | - Kristoffer Peterson
- Centre for Analysis and Synthesis, Department of Chemistry , Lund University , 221 00 Lund , Sweden
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Jagtvej 160 , DK-2100 Copenhagen , Denmark.,Department of Clinical Physiology , Nuclear Medicine & PET, Rigshospitalet , Blegdamsvej 9 , DK-2100 Copenhagen , Denmark.,Department of Neurology and Neurobiology Research Unit , Copenhagen University Hospital , Rigshospitalet, Building 6931, Blegdamsvej 9 , DK-2100 Copenhagen , Denmark
| | - Mengfei Xiong
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Jagtvej 160 , DK-2100 Copenhagen , Denmark.,Department of Neurology and Neurobiology Research Unit , Copenhagen University Hospital , Rigshospitalet, Building 6931, Blegdamsvej 9 , DK-2100 Copenhagen , Denmark
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG , Lund University , BMCC1228b, Klinikgatan 28 , 221 84 Lund , Sweden
| | - Fredrik R Zetterberg
- Galecto Biotech AB , Sahlgrenska Science Park, Medicinaregatan 8A , 413 46 Gothenburg , Sweden
| | - Tomas G Olsson
- Department of Radiation Physics , Skåne University Hospital , Barngatan 3 , 222 42 Lund , Sweden
| | - Nic Gillings
- Department of Clinical Physiology , Nuclear Medicine & PET, Rigshospitalet , Blegdamsvej 9 , DK-2100 Copenhagen , Denmark
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry , Lund University , 221 00 Lund , Sweden
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Jagtvej 160 , DK-2100 Copenhagen , Denmark.,Department of Clinical Physiology , Nuclear Medicine & PET, Rigshospitalet , Blegdamsvej 9 , DK-2100 Copenhagen , Denmark
| | - Maria Erlandsson
- Department of Radiation Physics , Skåne University Hospital , Barngatan 3 , 222 42 Lund , Sweden
| |
Collapse
|
407
|
New clues arising from hunt of saccharides binding to galectin 3 via 3D QSAR and docking studies. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
408
|
Galectin-8 binds to the Farnesylated C-terminus of K-Ras4B and Modifies Ras/ERK Signaling and Migration in Pancreatic and Lung Carcinoma Cells. Cancers (Basel) 2019; 12:cancers12010030. [PMID: 31861875 PMCID: PMC7017085 DOI: 10.3390/cancers12010030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/23/2022] Open
Abstract
K-Ras is the most prominent driver of oncogenesis and no effective K-Ras inhibitors have been established despite decades of intensive research. Identifying new K-Ras-binding proteins and their interaction domains offers the opportunity for defining new approaches in tackling oncogenic K-Ras. We have identified Galectin-8 as a novel, direct binding protein for K-Ras4B by mass spectrometry analyses and protein interaction studies. Galectin-8 is a tandem-repeat Galectin and it is widely expressed in lung and pancreatic carcinoma cells. siRNA-mediated depletion of Galectin-8 resulted in increased K-Ras4B content and ERK1/2 activity in lung and pancreatic carcinoma cells. Moreover, cell migration and cell proliferation were inhibited by the depletion of Galectin-8. The K-Ras4B–Galectin-8 interaction is indispensably associated with the farnesylation of K-Ras4B. The lysine-rich polybasic domain (PBD), a region that is unique for K-Ras4B as compared to H- and N-Ras, stabilizes the interaction and accounts for the specificity. Binding assays with the deletion mutants of Galectin-8, comprising either of the two carbohydrate recognition domains (CRD), revealed that K-Ras4B only interacts with the N-CRD, but not with the C-CRD. Structural modeling uncovers a potential binding pocket for the hydrophobic farnesyl chain of K-Ras4B and a cluster of negatively charged amino acids for interaction with the positively charged lysine residues in the N-CRD. Our results demonstrate that Galectin-8 is a new binding partner for K-Ras4B and it interacts via the N-CRD with the farnesylated PBD of K-Ras, thereby modulating the K-Ras effector pathways as well as cell proliferation and migration.
Collapse
|
409
|
Sindrewicz P, Yates EA, Turnbull JE, Lian LY, Yu LG. Interaction with the heparin-derived binding inhibitors destabilizes galectin-3 protein structure. Biochem Biophys Res Commun 2019; 523:336-341. [PMID: 31866013 DOI: 10.1016/j.bbrc.2019.12.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/22/2022]
Abstract
The β-galactoside-binding protein, galectin-3, is extensively involved in cancer development, progression and metastasis through multiple mechanisms. Inhibition of the galectin-3-mediated actions is increasingly considered as a promising therapeutic approach for cancer treatment. Our early studies have identified several novel galectin-3 binding inhibitors from chemical modification of the anticoagulant drug heparin. These heparin-derived galectin-3 binding inhibitors, which show no anticoagulant activity and bind to the galectin-3 canonical carbohydrate-binding site, induce galectin-3 conformational changes and inhibit galectin-3-mediated cancer cell adhesion, invasion and angiogenesis in vitro and reduce metastasis in mice. In this study, we determined the binding affinities of these heparin-derived ligands to galectin-3 using an isothermal titration calorimetry (ITC) ligand displacement approach. Such ITC experiments showed that the 2-de-O-sulphated, N-acetylated (compound E) and 6-de-O-sulphated, N-acetylated (F) heparin-derived ligands and their ultra-low molecular weight sub-fractions (E3 and F3) bind to galectin-3 with KD ranging from 0.96 to 1.32 mM.Differential scanning fluorimetry analysis revealed that, in contrast to the disaccharide ligand, N-acetyl-lactosamine, which binds to the fully folded form of galectin-3 and promotes galectin-3 thermal stability, the heparin-derived ligands preferentially bind to the unfolded state of galectin-3 and cause destabilization of the galectin-3 protein structure. These results provide molecular insights into the interaction of galectin-3 with the heparin-derived ligands and explain the previously demonstrated in vitro and in vivo effects of these binding inhibitors on galectin-3-mediated cancer cell behaviours.
Collapse
Affiliation(s)
- Paulina Sindrewicz
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK
| | - Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Jeremy E Turnbull
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Lu-Yun Lian
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Lu-Gang Yu
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK.
| |
Collapse
|
410
|
Binding of Gold(III) Porphyrin by the Pro-metastatic Regulatory Protein Human Galectin-3. Molecules 2019; 24:molecules24244561. [PMID: 31842510 PMCID: PMC6943629 DOI: 10.3390/molecules24244561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Gold(III) porphyrin presents an attractive alternative to the use of, for example, cisplatin in chemotherapy. However, approaches that allow to selectively target cancer cells are highly sought. Many plant and mammalian lectins have been shown to bind oligosaccharide sequences of the aberrant glycosylation pattern found on cancerous tumors. For example human galectin-3, of the galectin family specific for β-galactoside, is overexpressed in the extracellular matrix of tumorigenous and metastatic tissues. We searched for non-carbohydrate ligands for galectin-3 that can guide a cytotoxic drug to the cancer cells by maintaining its affinity for tumor associated carbohydrate antigens. Previous findings showed that zinc tetrasulfonatophenylporphyrin can bind galectin-3 with sub-micromolar affinity without disturbing lactose binding. Gold(III) porphyrin is not only cytotoxic to cancer cells, it knows also a potential application as photosensitiser in photodynamic therapy. We investigated the binding of gold(III) porphyrin to galectin-3 using different biophysical interaction techniques and demonstrated a low micromolar affinity of human galectin-3 for the cytotoxic compound. Co-crystallization attempts in order to understand the binding mode of gold porphyrin to galectin-3 failed, but molecular docking emphasized a highly populated secondary binding site that does not hinder lactose or Thomsen Friendenreich disaccharide binding. This suggests that gold(III) porphyrin might significantly enhance its concentration and delivery to cancer cells by binding to human galectin-3 that keeps its orientation towards tumor associated carbohydrate antigens.
Collapse
|
411
|
Dahlqvist A, Mandal S, Peterson K, Håkansson M, Logan DT, Zetterberg FR, Leffler H, Nilsson UJ. 3-Substituted 1-Naphthamidomethyl-C-galactosyls Interact with Two Unique Sub-sites for High-Affinity and High-Selectivity Inhibition of Galectin-3. Molecules 2019; 24:molecules24244554. [PMID: 31842451 PMCID: PMC6943516 DOI: 10.3390/molecules24244554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 11/21/2022] Open
Abstract
The galectins are a family of galactose-binding proteins playing key roles in inflammatory processes and cancer. However, they are structurally very closely related, and discovery of highly selective inhibitors is challenging. In this work, we report the design of novel inhibitors binding to a subsite unique to galectin-3, which confers both high selectivity and affinity towards galectin-3. Olefin cross metathesis between allyl β-C-galactopyranosyl and 1-vinylnaphthalenes or acylation of aminomethyl β-C-galactopyranosyl with 1-naphthoic acid derivatives gave C-galactopyranosyls carrying 1-naphthamide structural elements that interacted favorably with a galectin-3 unique subsite according to molecular modeling and X-ray structural analysis of two inhibitor-galectin-3 complexes. Affinities were down to sub-µM and selectivities over galectin-1, 2, 4 N-terminal domain, 4 C-terminal domain, 7, 8 N-terminal domain, 9 N-terminal domain, and 9 C-terminal domain were high. These results show that high affinity and selectivity for a single galectin can be achieved by targeting unique subsites, which holds promise for further development of small and selective galectin inhibitors.
Collapse
Affiliation(s)
- Alexander Dahlqvist
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, POB124, SE-22100 Lund, Sweden; (A.D.); (S.M.); (K.P.)
| | - Santanu Mandal
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, POB124, SE-22100 Lund, Sweden; (A.D.); (S.M.); (K.P.)
| | - Kristoffer Peterson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, POB124, SE-22100 Lund, Sweden; (A.D.); (S.M.); (K.P.)
| | - Maria Håkansson
- SARomics Biostructures AB, Medicon Village, SE-223 63 Lund, Sweden; (M.H.); (D.T.L.)
| | - Derek T. Logan
- SARomics Biostructures AB, Medicon Village, SE-223 63 Lund, Sweden; (M.H.); (D.T.L.)
- Biochemistry and Structural Biology, Center for Molecular Protein Science, Department of Chemistry, Lund University, POB124, SE-22100 Lund, Sweden
| | - Fredrik R. Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Gothenburg, Sweden;
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan 28, 221 84 Lund, Sweden;
| | - Ulf J. Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, POB124, SE-22100 Lund, Sweden; (A.D.); (S.M.); (K.P.)
- Correspondence:
| |
Collapse
|
412
|
Galectin-3 Coordinates a Cellular System for Lysosomal Repair and Removal. Dev Cell 2019; 52:69-87.e8. [PMID: 31813797 DOI: 10.1016/j.devcel.2019.10.025] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/13/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022]
Abstract
Endomembrane damage elicits homeostatic responses including ESCRT-dependent membrane repair and autophagic removal of damaged organelles. Previous studies have suggested that these systems may act separately. Here, we show that galectin-3 (Gal3), a β-galactoside-binding cytosolic lectin, unifies and coordinates ESCRT and autophagy responses to lysosomal damage. Gal3 and its capacity to recognize damage-exposed glycans were required for efficient recruitment of the ESCRT component ALIX during lysosomal damage. Both Gal3 and ALIX were required for restoration of lysosomal function. Gal3 promoted interactions between ALIX and the downstream ESCRT-III effector CHMP4 during lysosomal repair. At later time points following lysosomal injury, Gal3 controlled autophagic responses. When this failed, as in Gal3 knockout cells, lysosomal replacement program took over through TFEB. Manifestations of this staged response, which includes membrane repair, removal, and replacement, were detected in model systems of lysosomal damage inflicted by proteopathic tau and during phagosome parasitism by Mycobacterium tuberculosis.
Collapse
|
413
|
Saadeldin IM, Swelum AAA, Elsafadi M, Mahmood A, Osama A, Shikshaky H, Alfayez M, Alowaimer AN, Magdeldin S. Thermotolerance and plasticity of camel somatic cells exposed to acute and chronic heat stress. J Adv Res 2019; 22:105-118. [PMID: 31969994 PMCID: PMC6965514 DOI: 10.1016/j.jare.2019.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
The Arabian camel is the largest known mammal that can survive in severe hot climatic conditions. We provide the molecular explanation for the thermotolerance of camel granulosa somatic cells after exposure to 45 °C for 2 (acute heat shock) or 20 h (chronic heat shock). The common features of the cellular responses to acute heat stress were the increase of heat shock proteins and DNA repair enzymes expression. Actin polymerization and Rho signaling were critically activated as a cellular defense against heat shock. Cells exposed to chronic heat shock showed altered cell architecture with a decrease in total detected proteins, metabolic enzymes, and cytoskeletal protein expression. Treatment with transforming growth factor beta (TGFβ) pathway inhibitor SB-431542 suppressed the morphological alterations of cells exposed to chronic heat shock. Moreover, during the recovery stage at 38 °C for 24 h, proteomic changes were partially restored with an exponential increase in HSP70 expression, and the cells restored their normal cellular morphology on the 9th day of recovery. Full proteomics data are available via ProteomeXchange with identifier PXD012159. The strategies of cellular defense and tolerance to both thermal conditions reflect the flexible adaptability of camel somatic cells to conserve life under extremely hot conditions.
Collapse
Key Words
- Actin
- Anastasis
- CB, Cytochalasin B
- Camel
- GSH, reduced glutathione
- HSPs
- HSPs, heat shock proteins
- IDA, information dependent acquisition
- MDA, malondialdehyde
- Proteomics
- RI, ROCK-inhibitor
- ROCK
- ROCKs, Rho-associated protein kinases
- TGFβ
- TGFβ, transforming growth factor beta
- TIC, total ion chromatography
- Y-27632, ROCK-inhibitor Y-27632
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia.,Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Mona Elsafadi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Aya Osama
- Proteomics and Metabolomics Unit, 57357 Children's Cancer Hospital, Cairo, Egypt
| | - Hassan Shikshaky
- Proteomics and Metabolomics Unit, 57357 Children's Cancer Hospital, Cairo, Egypt
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Saudi Society for Camel Research, King Saud University, Saudi Arabia
| | - Abdullah N Alowaimer
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sameh Magdeldin
- Proteomics and Metabolomics Unit, 57357 Children's Cancer Hospital, Cairo, Egypt.,Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
414
|
Querol Cano L, Tagit O, Dolen Y, van Duffelen A, Dieltjes S, Buschow SI, Niki T, Hirashima M, Joosten B, van den Dries K, Cambi A, Figdor CG, van Spriel AB. Intracellular Galectin-9 Controls Dendritic Cell Function by Maintaining Plasma Membrane Rigidity. iScience 2019; 22:240-255. [PMID: 31786520 PMCID: PMC6906692 DOI: 10.1016/j.isci.2019.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/17/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022] Open
Abstract
Endogenous extracellular Galectins constitute a novel mechanism of membrane protein organization at the cell surface. Although Galectins are also highly expressed intracellularly, their cytosolic functions are poorly understood. Here, we investigated the role of Galectin-9 in dendritic cell (DC) surface organization and function. By combining functional, super-resolution and atomic force microscopy experiments to analyze membrane stiffness, we identified intracellular Galectin-9 to be indispensable for plasma membrane integrity and structure in DCs. Galectin-9 knockdown studies revealed intracellular Galectin-9 to directly control cortical membrane structure by modulating Rac1 activity, providing the underlying mechanism of Galectin-9-dependent actin cytoskeleton organization. Consequent to its role in maintaining plasma membrane structure, phagocytosis studies revealed that Galectin-9 was essential for C-type-lectin receptor-mediated pathogen uptake by DCs. This was confirmed by the impaired phagocytic capacity of Galectin-9-null murine DCs. Together, this study demonstrates a novel role for intracellular Galectin-9 in modulating DC function, which may be evolutionarily conserved.
Collapse
Affiliation(s)
- Laia Querol Cano
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Oya Tagit
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Yusuf Dolen
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Anne van Duffelen
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Shannon Dieltjes
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Sonja I Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Toshiro Niki
- GalPharma Co., Ltd., Takamatsu, Kagawa 761-0301, Japan; Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa, 761-0793, Japan
| | - Mitsuomi Hirashima
- GalPharma Co., Ltd., Takamatsu, Kagawa 761-0301, Japan; Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa, 761-0793, Japan
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Annemiek B van Spriel
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands.
| |
Collapse
|
415
|
Martău GA, Mihai M, Vodnar DC. The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector-Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers (Basel) 2019; 11:E1837. [PMID: 31717269 PMCID: PMC6918388 DOI: 10.3390/polym11111837] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022] Open
Abstract
Nowadays, biopolymers as intelligent and active biopolymer systems in the food and pharmaceutical industry are of considerable interest in their use. With this association in view, biopolymers such as chitosan, alginate, pectin, cellulose, agarose, guar gum, agar, carrageenan, gelatin, dextran, xanthan, and other polymers have received significant attention in recent years due to their abundance and natural availability. Furthermore, their versatile properties such as non-toxicity, biocompatibility, biodegradability, and flexibility offer significant functionalities with multifunctional applications. The purpose of this review is to summarize the most compatible biopolymers such as chitosan, alginate, and pectin, which are used for application in food, biotechnological processes, and biomedical applications. Therefore, chitosan, alginate, and pectin are biopolymers (used in the food industry as a stabilizing, thickening, capsular agent, and packaging) with great potential for future developments. Moreover, this review highlights their characteristics, with a particular focus on their potential for biocompatibility, biodegradability, bioadhesiveness, and their limitations on certain factors in the human gastrointestinal tract.
Collapse
Affiliation(s)
- Gheorghe Adrian Martău
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj–Napoca, Romania; (G.A.M.); (M.M.)
| | - Mihaela Mihai
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj–Napoca, Romania; (G.A.M.); (M.M.)
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj–Napoca, Romania; (G.A.M.); (M.M.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj–Napoca, Romania
| |
Collapse
|
416
|
Gilson RC, Gunasinghe SD, Johannes L, Gaus K. Galectin-3 modulation of T-cell activation: mechanisms of membrane remodelling. Prog Lipid Res 2019; 76:101010. [PMID: 31682868 DOI: 10.1016/j.plipres.2019.101010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/24/2019] [Accepted: 09/29/2019] [Indexed: 12/15/2022]
Abstract
Galectin-3 (Gal3) is a multifaceted protein which belongs to a family of lectins and binds β-galactosides. Gal3 expression is altered in many types of cancer, with increased expression generally associated with poor prognosis. Although the mechanisms remain unknown, Gal3 has been implicated in several biological processes involved in cancer progression, including suppression of T cell-mediated immune responses. Extracellular Gal3 binding to the plasma membrane of T cells alters membrane organization and the formation of an immunological synapse. Its multivalent capacity allows Gal3 to interact specifically with different membrane proteins and lipids, influencing endocytosis, trafficking and T cell receptor signalling. The ability of Gal3 to inhibit T cell responses may provide a mechanism by which Gal3 aids in cancer progression. In this review, we seek to give an overview of the mechanisms by which Gal3 alters the spatial organization of cell membranes and how these processes impact on T cell activation.
Collapse
Affiliation(s)
- Rebecca C Gilson
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney 2052, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, Australia
| | - Sachith D Gunasinghe
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney 2052, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, Australia
| | - Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology unit, UMR3666, CNRS, U1143, INSERM, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney 2052, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
417
|
Valverde P, Ardá A, Reichardt NC, Jiménez-Barbero J, Gimeno A. Glycans in drug discovery. MEDCHEMCOMM 2019; 10:1678-1691. [PMID: 31814952 PMCID: PMC6839814 DOI: 10.1039/c9md00292h] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Glycans are key players in many biological processes. They are essential for protein folding and stability and act as recognition elements in cell-cell and cell-matrix interactions. Thus, being at the heart of medically relevant biological processes, glycans have come onto the scene and are considered hot spots for biomedical intervention. The progress in biophysical techniques allowing access to an increasing molecular and structural understanding of these processes has led to the development of effective therapeutics. Indeed, strategies aimed at designing glycomimetics able to block specific lectin-carbohydrate interactions, carbohydrate-based vaccines mimicking self- and non-self-antigens as well as the exploitation of the therapeutic potential of glycosylated antibodies are being pursued. In this mini-review the most prominent contributions concerning recurrent diseases are highlighted, including bacterial and viral infections, cancer or immune-related pathologies, which certainly show the great promise of carbohydrates in drug discovery.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | - Ana Ardá
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | | | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
- Ikerbasque , Basque Foundation for Science , 48013 Bilbao , Bizkaia , Spain
- Department of Organic Chemistry II , University of the Basque Country , UPV/EHU , 48940 Leioa , Bizkaia , Spain
| | - Ana Gimeno
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| |
Collapse
|
418
|
Papadopoulos C, Kravic B, Meyer H. Repair or Lysophagy: Dealing with Damaged Lysosomes. J Mol Biol 2019; 432:231-239. [PMID: 31449799 DOI: 10.1016/j.jmb.2019.08.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022]
Abstract
Lysosomal membrane permeabilization or full rupture of lysosomes is a common and severe stress condition that is relevant for degenerative disease, infection and cancer. If damage is limited, cells can repair lysosomes by means of the endosomal sorting complex required for transport (ESCRT) machinery. Presumably, if repair fails, lysosomes are tagged with ubiquitin to initiate clearance by selective macroautophagy, termed lysophagy. Accumulating evidence suggests damage-induced exposure of luminal glycans to the cytosol as the key trigger for ubiquitination. In this review, we discuss recent data on cellular damage sensing, the underlying ubiquitination and autophagy machinery as well as additional layers of regulation such as processing of ubiquitinated proteins by the AAA-ATPase VCP/p97. We conclude with thoughts on how these mechanisms may regulate decision making between lysosome repair and lysophagy.
Collapse
Affiliation(s)
| | - Bojana Kravic
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Hemmo Meyer
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
419
|
Sindrewicz P, Li X, Yates EA, Turnbull JE, Lian LY, Yu LG. Intrinsic tryptophan fluorescence spectroscopy reliably determines galectin-ligand interactions. Sci Rep 2019; 9:11851. [PMID: 31413267 PMCID: PMC6694196 DOI: 10.1038/s41598-019-47658-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Galectins are involved in the regulation of divergent physiological and pathological processes and are increasingly recognized to play important roles in a number of diseases. However, a simple and effective way in assessing galectin-ligand interactions is lacking. Our examination of the sequence of all 12 human galectin members reveals the presence of one or more tryptophan residues in the carbohydrate-recognition domains of each galectin. This led us to investigate the possibility that alteration of the galectin intrinsic tryptophan fluorescence could be used in determining the strength of galectin-ligand interactions. One representative member from each of the three subtype galectins, galectin-2 (proto-), galectin-3 (chimera-) and galectin-4 (tandem repeat-type), was selected and analysed for galectin interaction with three ligands of different affinities: galactose, lactose and N-acetyl-lactosamine using tryptophan fluorescence spectroscopy (TFS) and, as a comparison, isothermal titration calorimetry (ITC). Good agreement between TFS and ITC measurements were revealed in ligand bindings of all galectin members. Moreover, TFS detected very weak galectin binding where ITC could not reliably do so. The reliability of TFS in determining galectin-ligand interactions was further validated by analysis of galectin-3 interaction with a semisynthetic ligand, F3. Thus, TFS can be used as a simple, sensitive and reliable way to determine galectin-ligand interactions and also as a drug-discovery platform in developing galectin-targeted therapeutic drugs.
Collapse
Affiliation(s)
- Paulina Sindrewicz
- Department of Cellular and Molecular Physiology, Institute of translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK
| | - Xiaoxin Li
- Department of Cellular and Molecular Physiology, Institute of translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK
| | - Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Jeremy E Turnbull
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Lu-Yun Lian
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Lu-Gang Yu
- Department of Cellular and Molecular Physiology, Institute of translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK.
| |
Collapse
|
420
|
Pal KB, Mahanti M, Leffler H, Nilsson UJ. A Galactoside-Binding Protein Tricked into Binding Unnatural Pyranose Derivatives: 3-Deoxy-3-Methyl-Gulosides Selectively Inhibit Galectin-1. Int J Mol Sci 2019; 20:E3786. [PMID: 31382488 PMCID: PMC6696278 DOI: 10.3390/ijms20153786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Galectins are a family of galactoside-recognizing proteins involved in different galectin-subtype-specific inflammatory and tumor-promoting processes, which motivates the development of inhibitors that are more selective galectin inhibitors than natural ligand fragments. Here, we describe the synthesis and evaluation of 3-C-methyl-gulopyranoside derivatives and their evaluation as galectin inhibitors. Methyl 3-deoxy-3-C-(hydroxymethyl)-β-d-gulopyranoside showed 7-fold better affinity for galectin-1 than the natural monosaccharide fragment analog methyl β-d-galactopyranoside, as well as a high selectivity over galectin-2, 3, 4, 7, 8, and 9. Derivatization of the 3-C-hydroxymethyl into amides gave gulosides with improved selectivities and affinities; methyl 3-deoxy-3-C-(methyl-2,3,4,5,6-pentafluorobenzamide)-β-d-gulopyranoside had Kd 700 µM for galectin-1, while not binding any other galectin.
Collapse
Affiliation(s)
- Kumar Bhaskar Pal
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Mukul Mahanti
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Hakon Leffler
- Section MIG, Department of Laboratory Medicine, Lund University, BMC-C1228b, Klinikgatan 28, SE-221 84 Lund, Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
421
|
Klose M, Salloum JE, Gonschior H, Linder S. SNX3 drives maturation of Borrelia phagosomes by forming a hub for PI(3)P, Rab5a, and galectin-9. J Cell Biol 2019; 218:3039-3059. [PMID: 31337623 PMCID: PMC6719455 DOI: 10.1083/jcb.201812106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/06/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022] Open
Abstract
Borrelia burgdorferi is the causative agent of Lyme disease. Klose et al. show that SNX3 drives processing of internalized B. burgdorferi by binding PI(3)P on the phagosome surface and recruiting galectin-9 vesicles, thus forming a convergence point for the endosomal recycling machinery during processing of spirochetes. The spirochete Borrelia burgdorferi, the causative agent of Lyme disease, is internalized by macrophages and processed in phagolysosomes. Phagosomal compaction, a crucial step in phagolysosome maturation, is driven by contact of Rab5a-positive vesicles with the phagosomal coat. We show that the sorting nexin SNX3 is transported with Rab5a vesicles and that its PX domain enables vesicle–phagosome contact by binding to PI(3)P in the phagosomal coat. Moreover, the C-terminal region of SNX3 recruits galectin-9, a lectin implicated in protein and membrane recycling, which we identify as a further regulator of phagosome compaction. SNX3 thus forms a hub for two distinct vesicle populations, constituting a convergence point for the endosomal recycling machinery, to contribute to phagosome maturation and intracellular processing of borreliae. These data also suggest that the helical shape of B. burgdorferi itself, providing sites of high curvature and thus local PI(3)P enrichment at phagosomes, may be one of the driving elements underlying the efficient elimination of spirochetes by immune cells.
Collapse
Affiliation(s)
- Matthias Klose
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | - Johann E Salloum
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | | | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
422
|
Cummings RD. "Stuck on sugars - how carbohydrates regulate cell adhesion, recognition, and signaling". Glycoconj J 2019; 36:241-257. [PMID: 31267247 DOI: 10.1007/s10719-019-09876-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
We have explored the fundamental biological processes by which complex carbohydrates expressed on cellular glycoproteins and glycolipids and in secretions of cells promote cell adhesion and signaling. We have also explored processes by which animal pathogens, such as viruses, bacteria, and parasites adhere to glycans of animal cells and initiate disease. Glycans important in cell signaling and adhesion, such as key O-glycans, are essential for proper animal development and cellular differentiation, but they are also involved in many pathogenic processes, including inflammation, tumorigenesis and metastasis, and microbial and parasitic pathogenesis. The overall hypothesis guiding these studies is that glycoconjugates are recognized and bound by a growing class of proteins called glycan-binding proteins (GBPs or lectins) expressed by all types of cells. There is an incredible variety and diversity of GBPs in animal cells involved in binding N- and O-glycans, glycosphingolipids, and proteoglycan/glycosaminoglycans. We have specifically studied such molecular determinants recognized by selectins, galectins, and many other C-type lectins, involved in leukocyte recruitment to sites of inflammation in human tissues, lymphocyte trafficking, adhesion of human viruses to human cells, structure and immunogenicity of glycoproteins on the surfaces of human parasites. We have also explored the molecular basis of glycoconjugate biosynthesis by exploring the enzymes and molecular chaperones required for correct protein glycosylation. From these studies opportunities for translational biology have arisen, involving production of function-blocking antibodies, anti-glycan specific antibodies, and synthetic glycoconjugates, e.g. glycosulfopeptides, that specifically are recognized by GBPs. This invited short review is based in part on my presentation for the IGO Award 2019 given by the International Glycoconjugate Organization in Milan.
Collapse
Affiliation(s)
- Richard D Cummings
- Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
423
|
Sammar M, Drobnjak T, Mandala M, Gizurarson S, Huppertz B, Meiri H. Galectin 13 (PP13) Facilitates Remodeling and Structural Stabilization of Maternal Vessels during Pregnancy. Int J Mol Sci 2019; 20:ijms20133192. [PMID: 31261864 PMCID: PMC6651626 DOI: 10.3390/ijms20133192] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Galectins regulate cell growth, proliferation, differentiation, apoptosis, signal transduction, mRNA splicing, and interactions with the extracellular matrix. Here we focus on the galectins in the reproductive system, particularly on a group of six galectins that first appears in anthropoid primates in conjunction with the evolution of highly invasive placentation and long gestation. Of these six, placental protein 13 (PP13, galectin 13) interacts with glycoproteins and glycolipids to enable successful pregnancy. PP13 is related to the development of a major obstetric syndrome, preeclampsia, a life-threatening complication of pregnancy which affects ten million pregnant women globally. Preeclampsia is characterized by hypertension, proteinuria, and organ failure, and is often accompanied by fetal loss and major newborn disabilities. PP13 facilitates the expansion of uterine arteries and veins during pregnancy in an endothelial cell-dependent manner, via the eNOS and prostaglandin signaling pathways. PP13 acts through its carbohydrate recognition domain that binds to sugar residues of extracellular and connective tissue molecules, thus inducing structural stabilization of vessel expansion. Further, decidual PP13 aggregates may serve as a decoy that induces white blood cell apoptosis, contributing to the mother's immune tolerance to pregnancy. Lower first trimester PP13 level is one of the biomarkers to predict the subsequent risk to develop preeclampsia, while its molecular mutations/polymorphisms that are associated with reduced PP13 expression are accompanied by higher rates of preeclampsia We propose a targeted PP13 replenishing therapy to fight preeclampsia in carriers of these mutations.
Collapse
Affiliation(s)
- Marei Sammar
- Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, 2161002 Karmiel, Israel.
| | - Tijana Drobnjak
- Faculty of Pharmaceutical Sciences, School of Health Science, University of Iceland, 107 Reykjavik, Iceland
| | - Maurizio Mandala
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87030 Rende, Italy
| | - Sveinbjörn Gizurarson
- Faculty of Pharmaceutical Sciences, School of Health Science, University of Iceland, 107 Reykjavik, Iceland
| | - Berthold Huppertz
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Hamutal Meiri
- Hylabs Ltd., Rehovot, 7670606 and TeleMarpe Ltd., 6908742 Tel Aviv, Israel
| |
Collapse
|
424
|
Rudman N, Gornik O, Lauc G. Altered N-glycosylation profiles as potential biomarkers and drug targets in diabetes. FEBS Lett 2019; 593:1598-1615. [PMID: 31215021 DOI: 10.1002/1873-3468.13495] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
N-glycosylation is a ubiquitous protein modification, and N-glycosylation profiles are emerging as both biomarkers and functional effectors in various types of diabetes. Genome-wide association studies identified glycosyltransferase genes as candidate causal genes for type 1 and type 2 diabetes. Studies focused on N-glycosylation changes in type 2 diabetes demonstrated that patients can be distinguished from healthy controls based on N-glycome composition. In addition, individuals at an increased risk of future disease development could be identified based on N-glycome profiles. Moreover, accumulating evidence indicates that N-glycans have a major role in preventing the impairment of glucose-stimulated insulin secretion by maintaining the glucose transporter in proper orientation, indicating that interindividual variation in protein N-glycosylation might be a novel risk factor contributing to diabetes development. Defective N-glycosylation of T cells has been implicated in type 1 diabetes pathogenesis. Furthermore, studies of N-glycan alterations have successfully been used to identify individuals with rare types of diabetes (such as the HNF1A-MODY), and also to evaluate functional significance of novel diabetes-associated mutations. In conclusion, both N-glycans and glycosyltransferases emerge as potential therapeutic targets in diabetes.
Collapse
Affiliation(s)
- Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
425
|
Kucińska M, Porębska N, Lampart A, Latko M, Knapik A, Zakrzewska M, Otlewski J, Opaliński Ł. Differential regulation of fibroblast growth factor receptor 1 trafficking and function by extracellular galectins. Cell Commun Signal 2019; 17:65. [PMID: 31208421 PMCID: PMC6572767 DOI: 10.1186/s12964-019-0371-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/14/2019] [Indexed: 01/18/2023] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are integral membrane proteins that transmit signals through the plasma membrane. FGFRs signaling needs to be precisely adjusted as aberrant FGFRs function is associated with development of human cancers or severe metabolic diseases. The subcellular localization, trafficking and function of FGFRs rely on the formation of multiprotein complexes. In this study we revealed galectins, lectin family members implicated in cancer development and progression, as novel FGFR1 binding proteins. We demonstrated that galectin-1 and galectin-3 directly bind to the sugar chains of the glycosylated extracellular part of FGFR1. Although both galectins compete for the same binding sites on FGFR1, these proteins elicit different impact on FGFR1 function and cellular trafficking. Galectin-1 mimics fibroblast growth factor as it efficiently activates FGFR1 and receptor-downstream signaling pathways that result in cell proliferation and apoptotic evasion. In contrast, galectin-3 induces extensive clustering of FGFR1 on the cell surface that inhibits constitutive internalization of FGFR1. Our data point on the interplay between extracellular galectins and FGFRs in the regulation of cell fate.
Collapse
Affiliation(s)
- Marika Kucińska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Agata Lampart
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta Latko
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Agata Knapik
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
426
|
Abstract
The glycome describes the complete repertoire of glycoconjugates composed of carbohydrate chains, or glycans, that are covalently linked to lipid or protein molecules. Glycoconjugates are formed through a process called glycosylation and can differ in their glycan sequences, the connections between them and their length. Glycoconjugate synthesis is a dynamic process that depends on the local milieu of enzymes, sugar precursors and organelle structures as well as the cell types involved and cellular signals. Studies of rare genetic disorders that affect glycosylation first highlighted the biological importance of the glycome, and technological advances have improved our understanding of its heterogeneity and complexity. Researchers can now routinely assess how the secreted and cell-surface glycomes reflect overall cellular status in health and disease. In fact, changes in glycosylation can modulate inflammatory responses, enable viral immune escape, promote cancer cell metastasis or regulate apoptosis; the composition of the glycome also affects kidney function in health and disease. New insights into the structure and function of the glycome can now be applied to therapy development and could improve our ability to fine-tune immunological responses and inflammation, optimize the performance of therapeutic antibodies and boost immune responses to cancer. These examples illustrate the potential of the emerging field of 'glycomedicine'.
Collapse
Affiliation(s)
- Colin Reily
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tyler J Stewart
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
427
|
Blois SM, Dveksler G, Vasta GR, Freitag N, Blanchard V, Barrientos G. Pregnancy Galectinology: Insights Into a Complex Network of Glycan Binding Proteins. Front Immunol 2019; 10:1166. [PMID: 31231368 PMCID: PMC6558399 DOI: 10.3389/fimmu.2019.01166] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Galectins are a phylogenetically conserved family of soluble β-galactoside binding proteins, consisting of 15 different types, each with a specific function. Galectins contribute to placentation by regulating trophoblast development, migration, and invasion during early pregnancy. In addition, galectins are critical players regulating maternal immune tolerance to the embedded embryo. Recently, the role of galectins in angiogenesis during decidualization and in placenta formation has gained attention. Altered expression of galectins is associated with abnormal pregnancies and infertility. This review focuses on the role of galectins in pregnancy-associated processes and discusses the relevance of galectin-glycan interactions as potential therapeutic targets in pregnancy disorders.
Collapse
Affiliation(s)
- Sandra M Blois
- Reproductive Medicine Research Group, Division of General Internal and Psychosomatic Medicine, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, UMB, Baltimore, MD, United States
| | - Nancy Freitag
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Véronique Blanchard
- Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gabriela Barrientos
- Laboratory of Experimental Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
428
|
Dahlgren C, Karlsson A, Bylund J. Intracellular Neutrophil Oxidants: From Laboratory Curiosity to Clinical Reality. THE JOURNAL OF IMMUNOLOGY 2019; 202:3127-3134. [DOI: 10.4049/jimmunol.1900235] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022]
|
429
|
Dahlqvist A, Zetterberg FR, Leffler H, Nilsson UJ. Aminopyrimidine-galactose hybrids are highly selective galectin-3 inhibitors. MEDCHEMCOMM 2019; 10:913-925. [PMID: 31303989 PMCID: PMC6596385 DOI: 10.1039/c9md00183b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022]
Abstract
Galactopyranosides with aryl-aminopyrimidine moieties at O3 inhibit the tumor and immunity-related galectin-3 with high selectivity over other galectins.
Galectins are a family of carbohydrate recognition proteins involved in, among other things, modulating cell signalling and cell–environment interactions, giving them roles in several pathologies like cancer and idiopathic lung fibrosis. Hence, developing new galectin inhibitors with high affinity and high selectivity is important to be able to target such diseases. Most existing galectin inhibitors have a disaccharide scaffold, but there has been success as of late in developing monogalactoside inhibitors such as α-arylthioglycosides. Here, we report aminopyrimidine-derivatised galactosides as good galectin-3 inhibitors with affinities down to 1.7 μM and a more than 300-fold selectivity over galectin-1. Mutant studies replacing Arg144 in galectin-3 with lysine and serine support the hypothesis that the binding of the derivatives involves interactions with Arg144. Molecular dynamics simulations converged to stable poses of the inhibitor aminopyrimidine moiety with polar interactions with Asp148 and Ser237, while the aryl-aminopyrimidine ring stacked onto the side chain of Arg144. Hence, combining an aminopyrimidine motif with a phenyl α-thiogalactoside motif offers an attractive route towards highly selective galectin-3 inhibitors.
Collapse
Affiliation(s)
- Alexander Dahlqvist
- Centre for Analysis and Synthesis , Department of Chemistry , Lund University , Box 124 , SE-221 00 Lund , Sweden .
| | - Fredrik R Zetterberg
- Galecto Biotech AB , Sahlgrenska Science Park, Medicinaregatan 8A , SE-413 46 Gothenburg , Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine , Section MIG , Lund University BMC-C1228b , Klinikgatan 28 , SE-221 84 Lund , Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis , Department of Chemistry , Lund University , Box 124 , SE-221 00 Lund , Sweden .
| |
Collapse
|
430
|
Dahlqvist A, Furevi A, Warlin N, Leffler H, Nilsson UJ. Stereo- and regioselective hydroboration of 1- exo-methylene pyranoses: discovery of aryltriazolylmethyl C-galactopyranosides as selective galectin-1 inhibitors. Beilstein J Org Chem 2019; 15:1046-1060. [PMID: 31164942 PMCID: PMC6541369 DOI: 10.3762/bjoc.15.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/21/2019] [Indexed: 12/16/2022] Open
Abstract
Galectins are carbohydrate recognition proteins that bind carbohydrates containing galactose and are involved in cell signaling and cellular interactions, involving them in several diseases. We present the synthesis of (aryltriazolyl)methyl galactopyranoside galectin inhibitors using a highly diastereoselective hydroboration of C1-exo-methylene pyranosides giving inhibitors with fourfold or better selectivity for galectin-1 over galectin-3, -4C (C-terminal CRD), -4N (N-terminal CRD), -7, -8C, -8N, -9C, and -9N and dissociation constants down to 170 µM.
Collapse
Affiliation(s)
- Alexander Dahlqvist
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 LUND, Sweden
| | - Axel Furevi
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 LUND, Sweden
| | - Niklas Warlin
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 LUND, Sweden
| | - Hakon Leffler
- Division of Microbiology, Immunology and Glycobiology, Lund University, BMC C12, SE-221 84 LUND, Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 LUND, Sweden
| |
Collapse
|
431
|
Leffler H. Letter by Leffler Regarding Article, “Modified Citrus Pectin Prevents Blood-Brain Barrier Disruption in Mouse Subarachnoid Hemorrhage by Inhibiting Galectin-3”. Stroke 2019; 50:e136. [DOI: 10.1161/strokeaha.119.024744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hakon Leffler
- Department of Laboratory Medicine, Lund University, Sweden
| |
Collapse
|
432
|
Taylor ME, Drickamer K. Mammalian sugar-binding receptors: known functions and unexplored roles. FEBS J 2019; 286:1800-1814. [PMID: 30657247 PMCID: PMC6563452 DOI: 10.1111/febs.14759] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Mammalian glycan-binding receptors, sometimes known as lectins, interact with glycans, the oligosaccharide portions of endogenous mammalian glycoproteins and glycolipids as well as sugars on the surfaces of microbes. These receptors guide glycoproteins out of and back into cells, facilitate communication between cells through both adhesion and signaling, and allow the innate immune system to respond quickly to viral, fungal, bacterial, and parasitic pathogens. For many of the roughly 100 glycan-binding receptors that are known in humans, there are good descriptions of what types of glycans they bind and how selectivity for these ligands is achieved at the molecular level. In some cases, there is also comprehensive evidence for the roles that the receptors play at the cellular and organismal levels. In addition to highlighting these well-understood paradigms for glycan-binding receptors, this review will suggest where gaps remain in our understanding of the physiological functions that they can serve.
Collapse
|
433
|
Caldararu O, Manzoni F, Oksanen E, Logan DT, Ryde U. Refinement of protein structures using a combination of quantum-mechanical calculations with neutron and X-ray crystallographic data. Acta Crystallogr D Struct Biol 2019; 75:368-380. [PMID: 30988254 PMCID: PMC6465982 DOI: 10.1107/s205979831900175x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/30/2019] [Indexed: 11/20/2022] Open
Abstract
Neutron crystallography is a powerful method to determine the positions of H atoms in macromolecular structures. However, it is sometimes hard to judge what would constitute a chemically reasonable model, and the geometry of H atoms depends more on the surroundings (for example the formation of hydrogen bonds) than heavy atoms, so that the empirical geometry information for the H atoms used to supplement the experimental data is often less accurate. These problems may be reduced by using quantum-mechanical calculations. A method has therefore been developed to combine quantum-mechanical calculations with joint crystallographic refinement against X-ray and neutron data. A first validation of this method is provided by re-refining the structure of the galectin-3 carbohydrate-recognition domain in complex with lactose. The geometry is improved, in particular for water molecules, for which the method leads to better-resolved hydrogen-bonding interactions. The method has also been applied to the active copper site of lytic polysaccharide monooxygenase and shows that the protonation state of the amino-terminal histidine residue can be determined.
Collapse
Affiliation(s)
- Octav Caldararu
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Francesco Manzoni
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Esko Oksanen
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
- Instruments Division, European Spallation Source ESS ERIC, PO Box 176, SE-221 00 Lund, Sweden
| | - Derek T. Logan
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
434
|
Capalbo C, Scafetta G, Filetti M, Marchetti P, Bartolazzi A. Predictive Biomarkers for Checkpoint Inhibitor-Based Immunotherapy: The Galectin-3 Signature in NSCLCs. Int J Mol Sci 2019; 20:ijms20071607. [PMID: 30935099 PMCID: PMC6479404 DOI: 10.3390/ijms20071607] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Checkpoint inhibitor-based immunotherapy is opening a promising scenario in oncology, with objective responses registered in multiple cancer types. However, reliable predictive markers of tumor responsiveness are still lacking. These markers need to be urgently identified for a better selection of patients that can be candidates for immunotherapy. In this pilot study, a cohort of 34 consecutive patients bearing programmed death-ligand 1 (PD-L1)-positive non-small cell lung carcinoma (NSCLC), treated with pembrolizumab, was considered. The retrospective immuno-phenotypic analysis performed on the original tumor biopsies allowed for the identification of a specific "galectin signature", which strongly correlated with tumor responsiveness to anti PD-1 immunotherapy. We observed that the large majority of patients (about 90%) with high galectin-3 tumor expression (score 3+) showed an early and dramatic progression of the disease after three cycles of treatments. In contrast, all patients with negative or low/intermediate expression of galectin-3 in tumor cells showed an early and durable objective response to pembrolizumab, indicating galectin-3 as an interesting predictive marker of tumor responsiveness. The galectin-3 signature, at least in NSCLCs, promises a better selection of patient candidates for immunotherapy, reducing unnecessary treatment exposures and social costs. A large multicenter study is ongoing to validate this finding.
Collapse
Affiliation(s)
- Carlo Capalbo
- Department of Medical Oncology, Sant'Andrea University Hospital, 00189 Rome, Italy.
- Department of Molecular Medicine Sapienza University of Rome viale Regina Elena 324, 00161 Rome, Italy.
| | - Giorgia Scafetta
- Department of Oncology-Pathology Sant'Andrea University Hospital, via di Grottarossa 1035, 00189 Rome, Italy.
| | - Marco Filetti
- Department of Medical Oncology, Sant'Andrea University Hospital, 00189 Rome, Italy.
| | - Paolo Marchetti
- Department of Medical Oncology, Sant'Andrea University Hospital, 00189 Rome, Italy.
| | - Armando Bartolazzi
- Department of Oncology-Pathology Sant'Andrea University Hospital, via di Grottarossa 1035, 00189 Rome, Italy.
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Hospital, S-17176 Stockholm, Sweden.
| |
Collapse
|
435
|
Katzenmaier EM, Fuchs V, Warnken U, Schnölzer M, Gebert J, Kopitz J. Deciphering the galectin-12 protein interactome reveals a major impact of galectin-12 on glutamine anaplerosis in colon cancer cells. Exp Cell Res 2019; 379:129-139. [PMID: 30935948 DOI: 10.1016/j.yexcr.2019.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/12/2022]
Abstract
Galectins are β-galactoside binding proteins which possess a variety of functions including modulation of apoptosis, growth and differentiation. Hence, alterations in the expression profile have been associated with loss of cellular homeostasis contributing to tumor growth and progression. Though galectin-12 is significantly downregulated in several tumor entities, including colon cancer, its impact on cellular homeostasis as well as galectin-12 specific binding partners have not been identified so far. We therefore established an experimental strategy which is based on reversible cross-link immunoprecipitation to capture the galectin-12 protein interactome in colon cancer cells. By applying this approach, we identified 10 novel candidates of galectin-12 interacting proteins including the neutral amino acid exchanger SLC1A5. Remarkably, we uncovered that binding of galectin-12 to SLC1A5 significantly reduced glutamine uptake in our model cell line. Consequently, utilization of glutamine carbon for biomass synthesis was profoundly affected, suggesting galectin-12 as a novel inhibitor of glutamine anaplerosis in colon cancer cells. More detailed analysis revealed that colon cancer cells can counteract galectin-12 mediated glutamine deprivation by induction of compensatory mechanisms which facilitate adaption to low-glutamine conditions and thus survival.
Collapse
Affiliation(s)
- Eva-Maria Katzenmaier
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vera Fuchs
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
436
|
Pal KB, Mahanti M, Huang X, Persson S, Sundin AP, Zetterberg FR, Oredsson S, Leffler H, Nilsson UJ. Quinoline-galactose hybrids bind selectively with high affinity to a galectin-8 N-terminal domain. Org Biomol Chem 2019; 16:6295-6305. [PMID: 30117507 DOI: 10.1039/c8ob01354c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Quinolines, indolizines, and coumarins are well known structural elements in many biologically active molecules. In this report, we have developed straightforward methods to incorporate quinoline, indolizine, and coumarin structures into galactoside derivatives under robust reaction conditions for the discovery of glycomimetic inhibitors of the galectin family of proteins that are involved in immunological and tumor-promoting biological processes. Evaluation of the quinoline, indolizine and coumarin-derivatised galactosides as inhibitors of the human galectin-1, 2, 3, 4N (N-terminal domain), 4C (C-terminal domain), 7, 8N, 8C, 9N, and 9C revealed quinoline derivatives that selectively bound galectin-8N, a galectin with key roles in lymphangiogenesis, tumor progression, and autophagy, with up to nearly 60-fold affinity improvements relative to methyl β-d-galactopyranoside. Molecular dynamics simulations proposed an interaction mode in which Arg59 had moved 2.5 Å and in which an inhibitor carboxylate and quinoline nitrogen formed structure-stabilizing water-mediated hydrogen bonds. The compounds were demonstrated to be non-toxic in an MTT assay with several breast cancer cell lines and one normal cell line. The improved affinity, selectivity, and low cytotoxicity suggest that the quinoline-galactoside derivatives provide an attractive starting point for the development of galectin-8N inhibitors potentially interfering with pathological lymphangiogenesis, autophagy, and tumor progression.
Collapse
Affiliation(s)
- Kumar Bhaskar Pal
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00, Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
437
|
Mathew MP, Donaldson JG. Glycosylation and glycan interactions can serve as extracellular machinery facilitating clathrin-independent endocytosis. Traffic 2019; 20:295-300. [PMID: 30706592 DOI: 10.1111/tra.12636] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/04/2023]
Abstract
In contrast to clathrin-mediated endocytosis (CME) which is well characterized and understood, little is known about the regulation and machinery underlying clathrin-independent endocytosis (CIE). There is also a wide variation in the requirements each individual CIE cargo has for its internalization. Recent studies have shown that CIE is affected by glycosylation and glycan interactions. We briefly review these studies and explore how these studies mesh with one another. We then discuss what this sensitivity to glycan interactions could indicate for the regulation of CIE. We address the spectrum of responses CIE has been shown to have with respect to changes in glycan interactions and attempt to reconcile disparate observations onto a shared conceptual landscape. We focus on the mechanisms by which cells can alter the glycan interactions at the plasma membrane and propose that glycosylation and glycan interactions could provide cells with a tool box with which cells can manipulate CIE. Altered glycosylation is often associated with a number of diseases and we discuss how under different disease settings, glycosylation-based modulation of CIE could play a role in disease progression.
Collapse
Affiliation(s)
- Mohit P Mathew
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Julie G Donaldson
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
438
|
Stegmayr J, Zetterberg F, Carlsson MC, Huang X, Sharma G, Kahl-Knutson B, Schambye H, Nilsson UJ, Oredsson S, Leffler H. Extracellular and intracellular small-molecule galectin-3 inhibitors. Sci Rep 2019; 9:2186. [PMID: 30778105 PMCID: PMC6379368 DOI: 10.1038/s41598-019-38497-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/27/2018] [Indexed: 01/04/2023] Open
Abstract
Galectin-3 is a carbohydrate binding protein which has important roles in cancer and immunity. Potent galectin-3 inhibitors have been synthesized, for experimental purposes and potential clinical use. As galectin-3 is implicated in both intra- and extracellular activities, permeability of galectin-3 inhibitors is an important parameter determining biological effects. We compared the cellular uptake of galectin-3 inhibitors and their potency in the intracellular or extracellular space. The inhibitors differed in their polar surface area (PSA), but had similar affinities for galectin-3. Using a well-established permeability assay, we confirmed that the uptake was significantly higher for the inhibitor with the lowest PSA, as expected. To analyze intracellular activity of the inhibitors, we developed a novel assay based on galectin-3 accumulation around damaged intracellular vesicles. The results show striking differences between the inhibitors intracellular potency, correlating with their PSAs. To test extracellular activity of the inhibitors, we analyzed their potency to block binding of galectin-3 to cell surfaces. All inhibitors were equally able to block galectin-3 binding to cells and this was proportional to their affinity for galectin-3. These inhibitors may serve as useful tools in exploring biological roles of galectin-3 and may further our understanding of intracellular versus extracellular roles of galectin-3.
Collapse
Affiliation(s)
- John Stegmayr
- Department of Laboratory Medicine, Lund University, 22100, Lund, Sweden.
| | | | - Michael C Carlsson
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark.,Agilent Technologies Denmark ApS, 2600, Glostrup, Denmark
| | - Xiaoli Huang
- Department of Biology, Lund University, 22100, Lund, Sweden.,Xintela AB, 22381, Lund, Sweden
| | - Gunjan Sharma
- Department of Laboratory Medicine, Lund University, 22100, Lund, Sweden
| | | | | | - Ulf J Nilsson
- Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Stina Oredsson
- Department of Biology, Lund University, 22100, Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
439
|
Bojić-Trbojević Ž, Jovanović Krivokuća M, Vilotić A, Kolundžić N, Stefanoska I, Zetterberg F, Nilsson UJ, Leffler H, Vićovac L. Human trophoblast requires galectin-3 for cell migration and invasion. Sci Rep 2019; 9:2136. [PMID: 30765738 PMCID: PMC6376043 DOI: 10.1038/s41598-018-38374-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
Invasive extravillous cytotrophoblast of the human placenta expresses galectins-1, -3, and -8 in vivo and in vitro. This study aimed to investigate the potential role of galectin-3 in cell migration and invasion, using recombinant human galectin-3 (rhgalectin-3), small molecule galectin inhibitor I47, and galectin-3 silencing. HTR-8/SVneo cell migration was stimulated by rhgalectin-3 and reduced by I47, which could be neutralised by rhgalectin-3. Inhibitor specificity and selectivity for the galectins expressed in extravillous trophoblast were validated in solid phase assays using recombinant galectin-1, -3, -8, confirming selectivity for galectin-3. HTR-8/SVneo cell migration and invasion, and invasion by isolated trophoblast cells in primary culture were significantly reduced in the presence of I47, which could be restored by rhgalectin-3. Upon HTR-8/SVneo cell treatment with galectin-3 siRNA both LGALS3 and galectin-3 protein were dramatically decreased. Silencing of galectin-3 induced significant reduction in cell migration and invasion, which was restored by rhgalectin-3. The influence on known mediators of cell invasion, MMP2 and -9, and integrins α1, α5, and β1 was followed in silenced cells, showing lower levels of MMPs and a large reduction in integrin subunit β1. These results show that galectin-3 acts as a pro-invasive autocrine/paracrine factor in trophoblast in vitro.
Collapse
Affiliation(s)
- Ž Bojić-Trbojević
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - M Jovanović Krivokuća
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - A Vilotić
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - N Kolundžić
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia.,King's College London, Faculty of Life Sciences & Medicine, Department of Women & Children's Health, Guy's Hospital, London SE1 9RT, London, United Kingdom
| | - I Stefanoska
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - F Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8A, 413 46, Gothenburg, Sweden
| | - U J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, POB 124, SE-22100, Lund, Sweden
| | - H Leffler
- Section MIG, Department of Laboratory Medicine Lund University, BMC-C1228b, Klinikgatan 28, 221 84, Lund, Sweden
| | - Lj Vićovac
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia.
| |
Collapse
|
440
|
Verteramo ML, Stenström O, Ignjatović MM, Caldararu O, Olsson MA, Manzoni F, Leffler H, Oksanen E, Logan DT, Nilsson UJ, Ryde U, Akke M. Interplay between Conformational Entropy and Solvation Entropy in Protein-Ligand Binding. J Am Chem Soc 2019; 141:2012-2026. [PMID: 30618244 DOI: 10.1021/jacs.8b11099] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding the driving forces underlying molecular recognition is of fundamental importance in chemistry and biology. The challenge is to unravel the binding thermodynamics into separate contributions and to interpret these in molecular terms. Entropic contributions to the free energy of binding are particularly difficult to assess in this regard. Here we pinpoint the molecular determinants underlying differences in ligand affinity to the carbohydrate recognition domain of galectin-3, using a combination of isothermal titration calorimetry, X-ray crystallography, NMR relaxation, and molecular dynamics simulations followed by conformational entropy and grid inhomogeneous solvation theory (GIST) analyses. Using a pair of diastereomeric ligands that have essentially identical chemical potential in the unbound state, we reduced the problem of dissecting the thermodynamics to a comparison of the two protein-ligand complexes. While the free energies of binding are nearly equal for the R and S diastereomers, greater differences are observed for the enthalpy and entropy, which consequently exhibit compensatory behavior, ΔΔ H°(R - S) = -5 ± 1 kJ/mol and - TΔΔ S°(R - S) = 3 ± 1 kJ/mol. NMR relaxation experiments and molecular dynamics simulations indicate that the protein in complex with the S-stereoisomer has greater conformational entropy than in the R-complex. GIST calculations reveal additional, but smaller, contributions from solvation entropy, again in favor of the S-complex. Thus, conformational entropy apparently dominates over solvation entropy in dictating the difference in the overall entropy of binding. This case highlights an interplay between conformational entropy and solvation entropy, pointing to both opportunities and challenges in drug design.
Collapse
Affiliation(s)
- Maria Luisa Verteramo
- Centre for Analysis and Synthesis, Department of Chemistry , Lund University , 221 00 Lund , Sweden
| | - Olof Stenström
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry , Lund University , 221 00 Lund , Sweden
| | | | - Octav Caldararu
- Theoretical Chemistry, Department of Chemistry , Lund University , 221 00 Lund , Sweden
| | - Martin A Olsson
- Theoretical Chemistry, Department of Chemistry , Lund University , 221 00 Lund , Sweden
| | - Francesco Manzoni
- Biochemistry and Structural Biology, Center for Molecular Protein Science, Department of Chemistry , Lund University , 221 00 Lund , Sweden
| | - Hakon Leffler
- Microbiology, Immunology, and Glycobiology, Department of Laboratory Medicine , Lund University , 221 00 Lund , Sweden
| | - Esko Oksanen
- European Spallation Source ESS ERIC , 225 92 Lund , Sweden
| | - Derek T Logan
- Biochemistry and Structural Biology, Center for Molecular Protein Science, Department of Chemistry , Lund University , 221 00 Lund , Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry , Lund University , 221 00 Lund , Sweden
| | - Ulf Ryde
- Theoretical Chemistry, Department of Chemistry , Lund University , 221 00 Lund , Sweden
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry , Lund University , 221 00 Lund , Sweden
| |
Collapse
|
441
|
Tian M, Yang N, Zhang L, Fu Q, Tan F, Li C. Expression profiling and functional characterization of galectin-3 of turbot (Scophthalmus maximus L.) in host mucosal immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 84:333-340. [PMID: 30296481 DOI: 10.1016/j.fsi.2018.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/12/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Galectins, a family of evolutionary conserved β-galactoside-binding proteins, have been characterized in a wide range of species. Galectin-3 is the only member in the chimera type, which is a monomeric lectin with one CRD domain. A growing body of evidence have indicated vital roles of galectin-3 in innate immune responses against infection. Here, one galectin-3 gene was captured in turbot (SmLgals3) with a 1203 bp open reading frame (ORF). In comparison to other species, SmLgals3 showed the highest similarity and identity to large yellow croaker and medaka, respectively. The genomic structure analysis showed that SmLgals3 had 5 exons similar to other vertebrate species. The syntenic analysis revealed that galectin-3 had the same neighboring genes across all the selected species, which suggested the synteny encompassing galectin-3 region during vertebrate evolution. Subsequently, SmLgals3 was widely expressed in all the examined tissues, with the highest expression level in brain and the lowest expression level in skin. In addition, SmLgals3 was significantly down-regulated in intestine following both Gram-negative bacteria Vibrio anguillarum, and Gram-positive bacteria Streptococcus iniae immersion challenge. Finally, the rSmLgals3 showed strong binding ability to all the examined microbial ligands. Taken together, our results suggested SmLgals3 played vital roles in fish innate immune responses against infection. However, the knowledge of SmLgals3 are still limited in teleost species, further studies should be carried out to better characterize its detailed roles in teleost mucosal immunity.
Collapse
Affiliation(s)
- Mengyu Tian
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Lu Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China.
| |
Collapse
|
442
|
A Brief History of Charcot-Leyden Crystal Protein/Galectin-10 Research. Molecules 2018; 23:molecules23112931. [PMID: 30424011 PMCID: PMC6278384 DOI: 10.3390/molecules23112931] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Eosinophils are present in tissues, such as the respiratory tract, spleen, lymph nodes and blood vessels. The significant presence of eosinophils in these tissues are associated with various diseases, including asthma, allergies, acute myeloid leukemia, etc. Charcot-Leyden crystal protein/galectin-10 is overexpressed in eosinophils and has also been identified in basophils and macrophages. In human body, this protein could spontaneously form Charcot-Leyden crystal in lymphocytes or in the lysates of lymphocytes. At present, the role of Charcot-Leyden crystal protein/galectin-10 in lymphocytes is not fully understood. This review summarizes research progress on Charcot-Leyden crystal protein/galectin-10, with emphasis on its history, cellular distributions, relations to diseases, structures and ligand binding specificity.
Collapse
|
443
|
Lee J, Ye Y. The Roles of Endo-Lysosomes in Unconventional Protein Secretion. Cells 2018; 7:cells7110198. [PMID: 30400277 PMCID: PMC6262434 DOI: 10.3390/cells7110198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
Protein secretion in general depends on signal sequence (also named leader sequence), a hydrophobic segment located at or close to the NH2-terminus of a secretory or membrane protein. This sequence guides the entry of nascent polypeptides into the lumen or membranes of the endoplasmic reticulum (ER) for folding, assembly, and export. However, evidence accumulated in recent years has suggested the existence of a collection of unconventional protein secretion (UPS) mechanisms that are independent of the canonical vesicular trafficking route between the ER and the plasma membrane (PM). These UPS mechanisms export soluble proteins bearing no signal sequence. The list of UPS cargos is rapidly expanding, along with the implicated biological functions, but molecular mechanisms accountable for the secretion of leaderless proteins are still poorly defined. This review summarizes our current understanding of UPS mechanisms with an emphasis on the emerging role of endo-lysosomes in this process.
Collapse
Affiliation(s)
- Juhyung Lee
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
444
|
Nielsen MI, Stegmayr J, Grant OC, Yang Z, Nilsson UJ, Boos I, Carlsson MC, Woods RJ, Unverzagt C, Leffler H, Wandall HH. Galectin binding to cells and glycoproteins with genetically modified glycosylation reveals galectin-glycan specificities in a natural context. J Biol Chem 2018; 293:20249-20262. [PMID: 30385505 DOI: 10.1074/jbc.ra118.004636] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/22/2018] [Indexed: 01/02/2023] Open
Abstract
Galectins compose a protein family defined by a conserved sequence motif conferring affinity for β-galactose-containing glycans. Moreover, galectins gain higher affinity and fine-tune specificity by glycan interactions at sites adjacent to their β-galactoside-binding site, as revealed by extensive testing against panels of purified glycans. However, in cells, galectins bind glycans on glycoproteins and glycolipids in the context of other cellular components, such as at the cell surface. Because of difficulties in characterizing natural cellular environments, we currently lack a detailed understanding of galectin-binding specificities in the cellular context. To address this challenge, we used a panel of genetically stable glycosylation mutated CHO cells that express defined glycans to evaluate the binding affinities of 10 different carbohydrate-recognition domains in galectins to N-glycans and mucin-type O-glycans. Using flow cytometry, we measured the cell-surface binding of the galectins. Moreover, we used fluorescence anisotropy to determine the galectin affinities to recombinant erythropoietin used as a reporter glycoprotein produced by the glycoengineered cells and to synthetic N-glycans with defined branch structures. We found that all galectins, apart from galectin-8N, require complex N-glycans for high-affinity binding. Galectin-8N targeted both N- and O-linked glycans with high affinity, preferring 2,3-sialylated N-acetyllactosamine (LacNAc) structures. Furthermore, we found that 2,3-sialylation suppresses high-affinity binding of select galectins, including galectin-2, -3, -4N, and -7. Structural modeling provided a basis for interpreting the observed binding preferences. These results underscore the power of a glycoengineered platform to dissect the glycan-binding specificities of carbohydrate-binding proteins.
Collapse
Affiliation(s)
- Mathias Ingemann Nielsen
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - John Stegmayr
- the Division for Microbiology, Immunology and Glycobiology (MIG), Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22100 Lund, Sweden
| | - Oliver C Grant
- the Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Zhang Yang
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Ulf J Nilsson
- the Centre for Analysis and Synthesis, Department of Chemistry, Lund University, 22100 Lund, Sweden, and
| | - Irene Boos
- the Bioorganische Chemie, Universität Bayreuth, Gebäude NW I, 95440 Bayreuth, Germany
| | - Michael C Carlsson
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark,; the Division for Microbiology, Immunology and Glycobiology (MIG), Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22100 Lund, Sweden
| | - Robert J Woods
- the Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Carlo Unverzagt
- the Bioorganische Chemie, Universität Bayreuth, Gebäude NW I, 95440 Bayreuth, Germany
| | - Hakon Leffler
- the Division for Microbiology, Immunology and Glycobiology (MIG), Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22100 Lund, Sweden
| | - Hans H Wandall
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark,.
| |
Collapse
|
445
|
AbuSamra DB, Argüeso P. Lectin-Glycan Interactions in Corneal Infection and Inflammation. Front Immunol 2018; 9:2338. [PMID: 30349544 PMCID: PMC6186829 DOI: 10.3389/fimmu.2018.02338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/20/2018] [Indexed: 11/13/2022] Open
Abstract
The cornea is an extraordinary component of vision that functions as the principal barrier to pathogens in the eye while allowing light transmission into the retina. Understanding the cellular and molecular mechanisms that maintain homeostasis in this tissue is the subject of intense scientific study given the high prevalence of corneal disease. Over the past decade, the interactions between lectins and glycans on plasma membranes have emerged as important regulatory factors in corneal biology. In particular, members of the galectin family have been shown to bind multiple β-galactoside-containing receptors to regulate immunopathological processes associated with viral and bacterial infection, transplantation, wound healing, dry eye, angiogenesis, and lymphangiogenesis. In this review, we describe the current understanding of how these surface interactions intersect with different pathways to activate unique cellular responses in cornea as well as their potential therapeutic implications.
Collapse
Affiliation(s)
- Dina B AbuSamra
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Pablo Argüeso
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
446
|
Bartolazzi A. Galectins in Cancer and Translational Medicine: From Bench to Bedside. Int J Mol Sci 2018; 19:ijms19102934. [PMID: 30261668 PMCID: PMC6213758 DOI: 10.3390/ijms19102934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Armando Bartolazzi
- Pathology Research Laboratory, St. Andrea University Hospital, via di Grottarossa 1035, 00189 Rome, Italy.
- Ministry of Health-Lungotevere Ripa 1, 00168 Rome, Italy.
| |
Collapse
|
447
|
Ruvolo PP. Galectins as regulators of cell survival in the leukemia niche. Adv Biol Regul 2018; 71:41-54. [PMID: 30245264 DOI: 10.1016/j.jbior.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023]
Abstract
The microenvironment within the bone marrow (BM) contains support cells that promote leukemia cell survival and suppress host anti-tumor defenses. Galectins are a family of beta-galactoside binding proteins that are critical components in the tumor microenvironment. Galectin 1 (LGALS1) and Galectin 3 (LGALS3) as regulators of RAS signaling intracellularly and as inhibitors of immune cells extracellularly are perhaps the best studied members for their role in leukemia biology. Interest in Galectin 9 (LGALS9) is growing as this galectin has been identified as an immune checkpoint molecule. LGALS9 also supports leukemia stem cells (LSCs) though a mechanism of action is not clear. LGALS1 and LGALS3 each participate in a diverse number of survival pathways that promote drug resistance by supporting pro-tumor molecules such BCL2, MCL-1, and MYC and blocking tumor suppressors like p53. Acute myeloid leukemia (AML) BM mesenchymal stromal cells (MSC) have protein signatures that differ from healthy donor MSC. Elevated LGALS3 protein in AML MSC is associated with refractory disease/relapse demonstrating that MSC derived galectin impacts patient survival. LGALS3 is a critical determining factor whether MSC differentiate into adipocytes or osteoblasts so the galectin influences the cellular composition of the leukemia niche. Both LGALS3 and LGALS1 when secreted can suppress immune function. Both galectins can induce apoptosis of T cells. LGALS3 also modulates T cell receptor endocytosis and impairs interferon mediated chemokine production by binding glycosylated interferon. LGALS3 as a TIM3 binding partner acts to suppress T cell function. Galectins also impact leukemia cell mobilization and may participate in homing mechanisms. LGALS3 participates in transport mechanism of integrins, receptors, and other molecules that control cell adhesion and cell:cell interactions. The diversity of these various functions demonstrate the importance of these galectins in the leukemia niche. This review will cover the role of LGALS1, LGALS3, and LGALS9 in the various processes that are critical for maintaining leukemia cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Peter P Ruvolo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
448
|
Casals C, Campanero-Rhodes MA, García-Fojeda B, Solís D. The Role of Collectins and Galectins in Lung Innate Immune Defense. Front Immunol 2018; 9:1998. [PMID: 30233589 PMCID: PMC6131309 DOI: 10.3389/fimmu.2018.01998] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
Different families of endogenous lectins use complementary defense strategies against pathogens. They may recognize non-self glycans typically found on pathogens and/or host glycans. The collectin and galectin families are prominent examples of these two lectin categories. Collectins are C-type lectins that contain a carbohydrate recognition domain and a collagen-like domain. Members of this group include surfactant protein A (SP-A) and D (SP-D), secreted by the alveolar epithelium to the alveolar fluid. Lung collectins bind to several microorganisms, which results in pathogen aggregation and/or killing, and enhances phagocytosis of pathogens by alveolar macrophages. Moreover, SP-A and SP-D influence macrophage responses, contributing to resolution of inflammation, and SP-A is essential for tissue-repair functions of macrophages. Galectins also function by interacting directly with pathogens or by modulating the immune system in response to the infection. Direct binding may result in enhanced or impaired infection of target cells, or can have microbicidal effects. Immunomodulatory effects of galectins include recruitment of immune cells to the site of infection, promotion of neutrophil function, and stimulation of the bactericidal activity of infected macrophages. Moreover, intracellular galectins can serve as danger receptors, promoting autophagy of the invading pathogen. This review will focus on the role of collectins and galectins in pathogen clearance and immune response activation in infectious diseases of the respiratory system.
Collapse
Affiliation(s)
- Cristina Casals
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - María A Campanero-Rhodes
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Química Física Rocasolano, CSIC, Madrid, Spain
| | - Belén García-Fojeda
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Dolores Solís
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Química Física Rocasolano, CSIC, Madrid, Spain
| |
Collapse
|
449
|
Frangogiannis NG. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med 2018; 65:70-99. [PMID: 30056242 DOI: 10.1016/j.mam.2018.07.001] [Citation(s) in RCA: 559] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Cardiac fibrosis is a common pathophysiologic companion of most myocardial diseases, and is associated with systolic and diastolic dysfunction, arrhythmogenesis, and adverse outcome. Because the adult mammalian heart has negligible regenerative capacity, death of a large number of cardiomyocytes results in reparative fibrosis, a process that is critical for preservation of the structural integrity of the infarcted ventricle. On the other hand, pathophysiologic stimuli, such as pressure overload, volume overload, metabolic dysfunction, and aging may cause interstitial and perivascular fibrosis in the absence of infarction. Activated myofibroblasts are the main effector cells in cardiac fibrosis; their expansion following myocardial injury is primarily driven through activation of resident interstitial cell populations. Several other cell types, including cardiomyocytes, endothelial cells, pericytes, macrophages, lymphocytes and mast cells may contribute to the fibrotic process, by producing proteases that participate in matrix metabolism, by secreting fibrogenic mediators and matricellular proteins, or by exerting contact-dependent actions on fibroblast phenotype. The mechanisms of induction of fibrogenic signals are dependent on the type of primary myocardial injury. Activation of neurohumoral pathways stimulates fibroblasts both directly, and through effects on immune cell populations. Cytokines and growth factors, such as Tumor Necrosis Factor-α, Interleukin (IL)-1, IL-10, chemokines, members of the Transforming Growth Factor-β family, IL-11, and Platelet-Derived Growth Factors are secreted in the cardiac interstitium and play distinct roles in activating specific aspects of the fibrotic response. Secreted fibrogenic mediators and matricellular proteins bind to cell surface receptors in fibroblasts, such as cytokine receptors, integrins, syndecans and CD44, and transduce intracellular signaling cascades that regulate genes involved in synthesis, processing and metabolism of the extracellular matrix. Endogenous pathways involved in negative regulation of fibrosis are critical for cardiac repair and may protect the myocardium from excessive fibrogenic responses. Due to the reparative nature of many forms of cardiac fibrosis, targeting fibrotic remodeling following myocardial injury poses major challenges. Development of effective therapies will require careful dissection of the cell biological mechanisms, study of the functional consequences of fibrotic changes on the myocardium, and identification of heart failure patient subsets with overactive fibrotic responses.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer G46B, Bronx, NY, 10461, USA.
| |
Collapse
|
450
|
Affiliation(s)
- Hakon Leffler
- Sect MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University
| |
Collapse
|